Consumer Segmentation and Knowledge Extraction from Smart Meter and Survey Data

<u>Tri Kurniawan Wijaya</u>^{1*}, Tanuja Ganu², Dipanjan Chakraborty², Karl Aberer¹, Deva P. Seetharam²

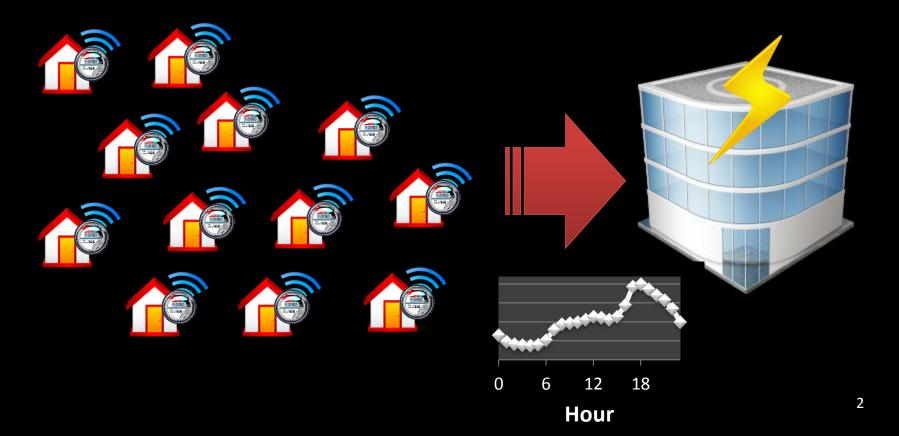
¹⁾EPFL, Switzerland & ²⁾IBM Research, India

*)The work is done during the author's internship at IBM Research, India supported by EU FP7 WATTALYST

Smart meters

measure energy consumption at homes

communicate the measurements to utility companies



Smart meters (2)

angels

demand response

match supply and demand

prevent black-out

renewable energy sources

theft detection

fault detection

demons

burglary

targeted marketing

privacy breach

insurance companies

Challenges

- 1 Versatile consumer segmentation framework
- 2 Determine behavioral change over time
- 3 Identify clusters' characteristics

1 Consumer segmentation

past

near future

specific challenges specific applications adhoc general framework versatile

quick analysis context-aware decision support

Our Framework

Unsupervised Learning

Configuration Selection

Features Generator

statistical functions: mean, median, standard deviation, IQR, ...

Context Filtering

holidays, seasons, special events, ...

Temporal Aggregation

hourly, daily, weekly, monthly, ...

Data Selection

Target Sensors: smart meters, ...

Context Sensors: weather, temperature, ...

- 5 Customized algorithm choose algorithm, #clusters (or auto)
- 4 Customized features mean, std dev, IQR, median
- 3 Customized context summer, winter, weekend, January, February, temp $> \tau$
- 2 Customized temporal aggregation

hourly, every 3 hours, daily, weekly, or monthly

1 Customized data selection period of time, subset of customers, time of day

2 Cluster consistency

Given all of these clusters, what do we want to know?

Does this consumer change her cluster?

note that: clusters are label-invariant

Individual to cluster consistency:

$$i2c(x, C_1, C_2) = \frac{|C_1(x) \cap C_2(x)| + |(X \setminus C_1(x)) \cap (X \setminus C_2(x))| - 1}{|X| - 1}$$

$$= \frac{\#(\text{friends} \to \text{friends}) + \#(\text{non-friends} \to \text{non-friends})}{|\text{customers}|}$$

consistent •

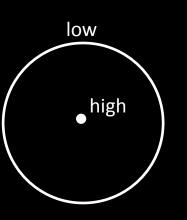
inconsistent

the lower the value, the more likely x changes her cluster

Clustering consistency index

How far does this consumer change?
 distance rank

$$dr(x,C(x)) = \frac{\left| \{x' \mid dist(x,\zeta^{C(x)}) < dist(x',\zeta^{C(x)}), x' \in C(x)\} \right|}{|C(x)|}$$



 proportion of fellow cluster members who are farther from the centroid

the higher the value, the more confidence we are that x belong to C(x) allows us to be (cluster) size-invariant

Clustering consistency index

Does the cluster configuration changes?

For example, over time?

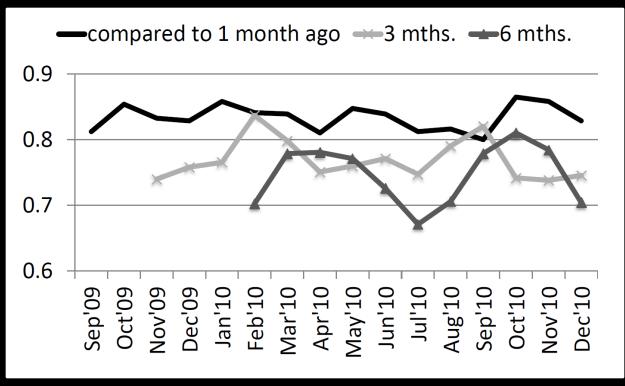
Cluster to cluster consistency:

$$ccc(C_1, C_2, X) = \frac{1}{X} \sum_{x \in X} i2c(x, C_1, C_2)$$

the lower the value, the higher the difference between C_1 and C_2

consistent •
inconsistent

Cluster to cluster consistency

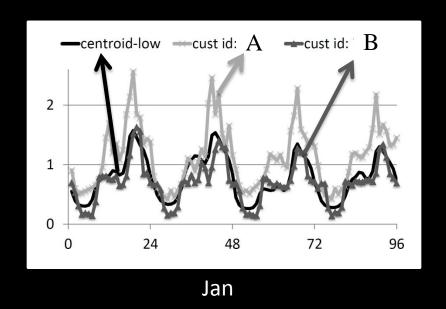


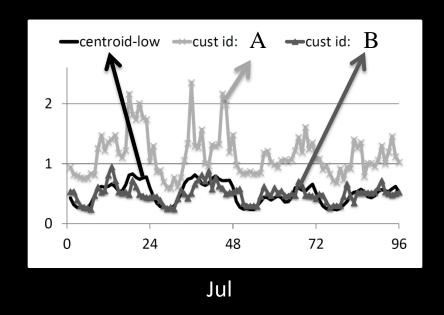
the higher, the more similar

See comparison with 6 months ago:

- There are not so much difference between autumn and spring.
- But, there are a lot of difference between summer and winter.
- Next slide, more on Jan vs Jul ...

Individual to cluster consistency





- In Jan, ${f A}$ and ${f B}$ are in the low consumption cluster
- i2c(A, Jan, Jul) = low (changes her cluster) $\rightarrow dr(A, Jul) = high$
- i2c(B, Jan, Jul) = high (stays in the low consumption cluster)
- Devise a personalized energy (saving) feedback for A! While her "friends" reduce their consumption in Jul (summer), A did not!

3 Knowledge extraction

 What are the characteristics that define a cluster? get insight from the survey data (consumer characteristics)
 How discriminative is (q,a) to cluster c?

$$DI_c(q, a) = \frac{\#_c(q, a) - \#_{\neg c}(q, a)}{\max\{\#_c(q, a), \#_{\neg c}(q, a)\}}$$

DI > 0, discriminative *positive*

DI < 0, discriminative *negative*

Clusters' characteristics

(-) single

(-) 1200

-0.90

-0.87

Clusters based on absolute consumption					
Cluster Question		Answer	DI		
	family type	single	0.86		
low	floor area (sq ft.)	805-1073	0.86		
	#bedrooms	≤ 2	0.85		
	electric shower	(-) ≥ 20 mins	-0.76		
medium	family type	(-) single	-0.61		
	floor area (sq ft.)	2300-2750	0.56		
	#children	≥ 4	0.93		

family type

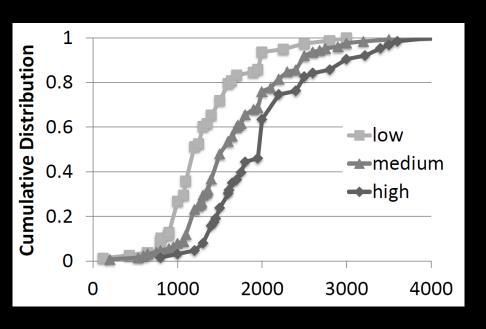
floor area (sq ft.)

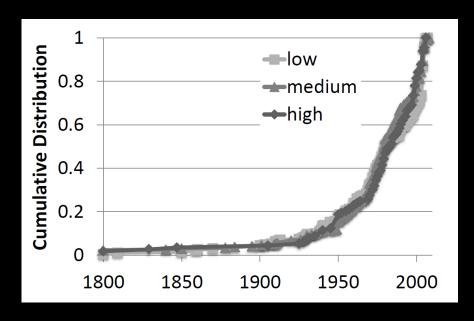
high

Clusters based on consumption variability

Cluster	Question	Answer	DI
	water pump	(-) 1-2hrs	-0.88
low	family type	single	0.80
	washing machine	(-) 2-3 loads	-0.76
	electric shower	10-20 mins	0.59
medium	family type	(-) single	-0.55
	#children	(-) ≥ 3	-0.54
high	tumble dryer	≥ 2 to 3 loads	0.90
	#children	≥ 4	0.88
	floor area (sq ft.)	2800	0.79

Floor area vs year built





Floor area

CDFs are clearly distinguishable

The year the houses were built

CDFs are coincides to each other

Appliance ownership

for DI \geq 0.60

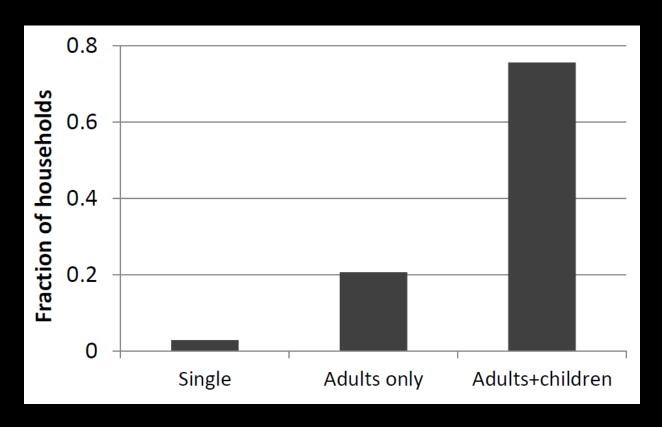
Clusters based on absolute consumption

#	Appliance	Cluster	Ownership	DI
1	dishwasher	high	(-) no	-0.76
2	games consoles	low	(-) yes	-0.70
3	tumble dryer	low	no	0.68
4	dishwasher	low	no	0.67
5	games consoles	high	yes	0.61

Clusters based on consumption variability

#	Appliance	Cluster	Ownership	DI
1	dishwasher	high	(-) no	-0.72
2	tumble dryer	high	(-) no	-0.72
3	tumble dryer	low	no	0.71
4	games consoles	low	(-) yes	-0.69
5	dishwasher	low	no	0.67
6	games consoles	high	yes	0.60

Games consoles



Fraction of households which own games consoles

Since family type is highly discriminative for consumer energy consumption behavior, this correlation might explain why games consoles ownership is also highly discriminative.

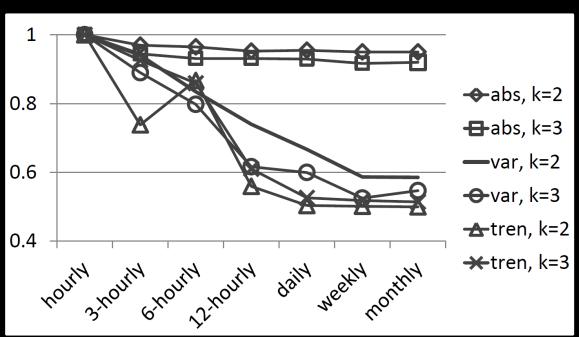
Conclusion

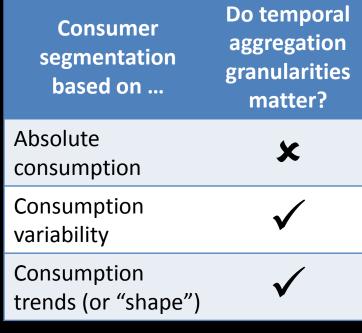
- Versatile, context-aware consumer segmentation framework
 - temporal aggregation, context filtering, feature generation
- Cluster consistency index
 - Which consumers change their clusters? How far?
 - track clusters' changes over time
- Discriminative index
 - Clusters : unsupervised learning;
 - It is imperative to understand what they are made of, extract the main characteristics which define the clusters.

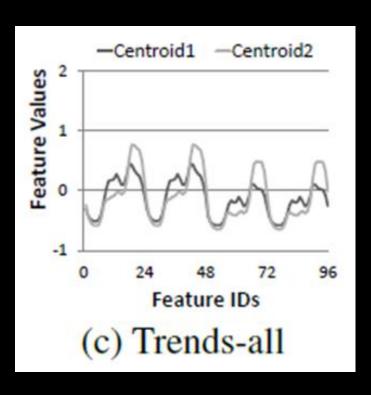
end of presentation

Cluster to cluster consistency

can be used to find out the effect of temporal aggregations on the consumer segmentation results





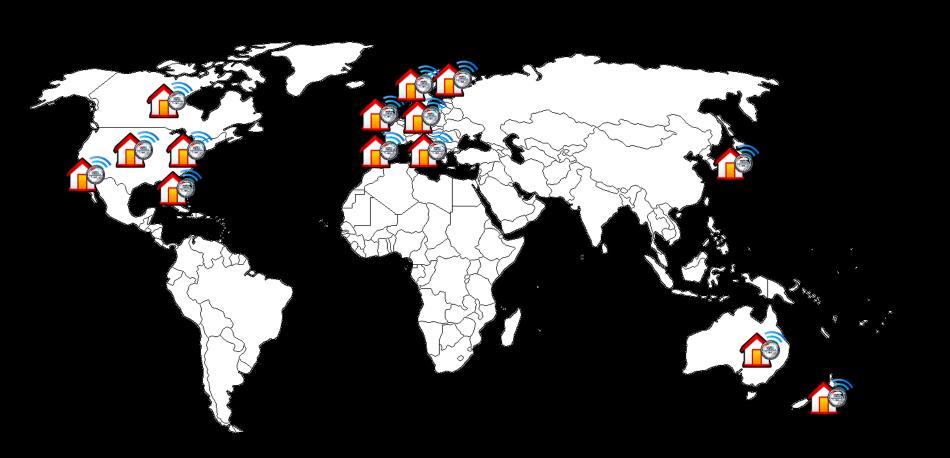


Consumer Segmentation and Knowledge Extraction from Smart Meter and Survey Data

Tri Kurniawan Wijaya¹, Tanuja Ganu², Dipanjan Chakraborty²,
Karl Aberer¹, Deva P. Seetharam²

¹EPFL, Switzerland & ²IBM Research, India
supported by EU FP7 WATTALYST

Worldwide deployment



Automatic cluster configuration selection

- From a set of cluster configuration
 - Rank all configurations using the
 - Silhouette,
 - Dunn, and
 - Davies-Bouldin indices
 - Majority voting using the three (ranked) lists
 - using the 1st rank from each list
 - if the majority is not found, continue to the 2nd (3rd, 4th ...) until the majority is found or the lists are exhausted

Jan

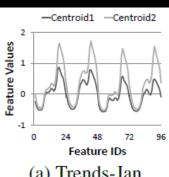
Jul

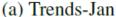
All year long

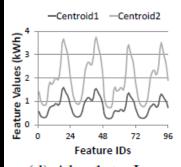
trends

absolute

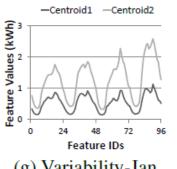
variability



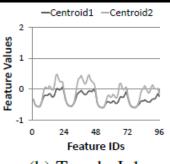




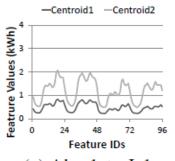
(d) Absolute-Jan



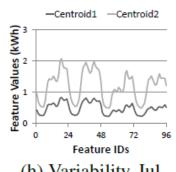
Variability-Jan



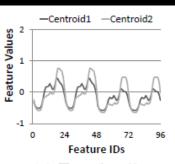
(b) Trends-Jul



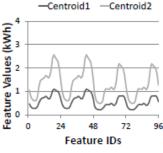
(e) Absolute-Jul



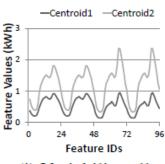
(h) Variability-Jul



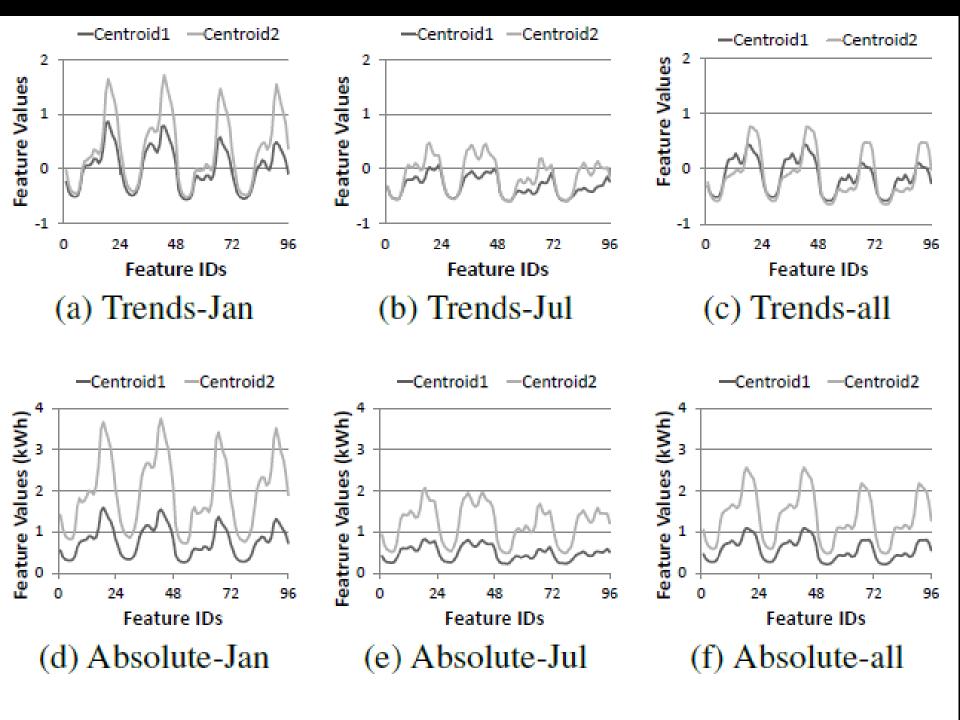
(c) Trends-all



(f) Absolute-all



Variability-all



Numerical/ordinal questions

how many ... ?approximate floor area ?

- special treatment
- introducing splitting points:
 - how many?
 where to put?
 combinatorial problem
- solution:
 - sort answers ascending
 - create ranges from n-gram of answers