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Reverberant Audio Source Separation via Sparse and Low-Rank Modeling
Simon Arberet, Pierre Vandergheynst

Abstract—
The performance of audio source separation from underde-

termined convolutive mixture assuming known mixing filters
can be significantly improved by using an analysis sparse prior
optimized by a reweighting `1 scheme and a wideband data-
fidelity term, as demonstrated by a recent article. In this
letter, we show that the performance can be improved even
more significantly by exploiting a low-rank prior on the source
spectrograms. We present a new algorithm to estimate the sources
based on i) an analysis sparse prior, ii) a reweighting scheme so
as to increase the sparsity, iii) a wideband data-fidelity term in
a constrained form, and iv) a low-rank constraint on the source
spectrograms. Evaluation on reverberant music mixtures shows
that the resulting algorithm improves state-of-the-art methods by
more than 2 dB of signal-to-distortion ratio.

I. INTRODUCTION

An audio recording can be viewed as a mixture of several
audio signals (e.g., musical instruments or speech), called
sources. Mathematically, a convolutive mixture of N audio
sources on M channels can be written as:

xm(t) =

N∑
n=1

(amn ? sn)(t) + em(t), 1 ≤ m ≤M, (1)

where ? is the convolution operator, sn(t) ∈ R and xm(t) ∈ R
denote sampled time signals of respectively the n-th source
and the m-th mixture (t being a discrete time index), amn(t) ∈
R denotes the filter that models the impulse response between
the n-th source and the m-th microphone, and em(t) is the
noise at the m-th microphone.

The goal of the Blind Source Separation (BSS) problem is
to estimate the N source signals sn(t) (1 ≤ n ≤ N ), given the
M mixture signals xm(t) (1 ≤ m ≤M ). When the number of
sources is larger than the number of mixture channels (N >
M ), the BSS problem is said to be underdetermined and is
often addressed by sparsity-based approaches [1]–[3].

Audio signals are usually not sparse in the time domain, but
they are in the time-frequency (TF) domain. Some approaches
penalise the source TF coefficients with a `0 constraint (binary
masking) [2], or a `1 cost [1], [4]. Another recent approach
is the reweighting `1 scheme [5], which promotes a stronger
sparsity assumption than the `1 cost, and has recently been
shown to outperform `1 for source separation by almost 1 dB
[6]. While synthesis sparse priors have been widely used for
source modeling, analysis sparse priors have been used only
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recently in audio source separation [6], and results showed
that it improves the separation by about 1 dB in SDR.

Low-rank modeling, which can be traced back from Eckart
[7] has been widely exploited in problems such as matrix
completion [8] and robust PCA [9]. The idea of modeling
the source spectrograms (i.e. the magnitude of the source TF
coefficients) with a low-rank matrix has not been used directly,
but indirectly via the non-negative matrix factorization (NMF)
[10], [11] which also assumes the non-negativity of the factors.
While this idea has been quite successful in audio BSS, it
remains that the NMF approximation has some important
limitations: its solution is non-unique and it converges but only
to a fix point and very slowly. However, without these non-
negativity constraints, the low-rank approximation, in the least
squares sense, is unique and has a closed form solution, which
can be computed via a singular value decomposition (SVD).

In this article, we focus on addressing the source estimation
task, i.e. the second stage of a typical BSS approach, assuming
that the mixing filters amn are known. The main contribution
of this paper is to: i) introduce, in addition to a sparsity
assumption, a low-rank model of the source spectrograms, i.e.
we assume that the magnitude (and not the phase) of the short-
time Fourier representation of each source is low-rank, and ii)
derive an optimization algorithm based on a proximal splitting
scheme [12] so as to estimate the sources. This algorithm also
incorporates three ingredients, which were recently introduced
in audio BSS [6]: i) an analysis sparsity prior, ii) a reweighting
`1 scheme, and iii) a wideband data fitting constraint.

II. NOTATIONS

A. The convolutive mixture model in operator form

The mixture model (1) can be written as:

x = A(s) + e. (2)

where x ∈ RM×T is the matrix of the mixture composed of the
xm(t) entries, i.e. x = [xm(t)]M,T

m=1,t=1, T being the number
of samples. Similarly s ∈ RN×T is the matrix of sources
composed of the sn(t) entries, e ∈ RM×T is the matrix of
the noise composed of the em(t) entries, and A : RN×T →
RM×T is the discrete linear operator defined by

[A(s)]m,t =

N∑
n=1

(amn ? sn)(t).

The adjoint operator A∗ : RM×T → RN×T of A is ob-
tained by applying the convolution mixing process with the
adjoint filters a∗nm(t) , amn(−t),∀t instead of amn, that is:
[A∗(x)]n,t =

∑M
m=1(a∗nm ? xm)(t).
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B. Time-frequency transform

As stated in the introduction, a powerful assumption is the
sparsity of the audio sources in the TF domain. A popular TF
representation is obtained via the short time Fourier transform
(STFT).

The monochannel STFT operator ψ : RT → CQ×F
transforms a monochannel signal sn of length T , into a matrix
ψ(sn) = [ŝn(qL/R, f)]Q,Fq=1,f=1 ∈ CQ×F of TF coefficients
ŝn(t, f), with t = qL/R, L being the window size, R the
redundancy ratio, q and f , the time frame and frequency
index, respectively. Let us also define the multichannel STFT
operator Ψ ∈ CT×B that transforms a multichannel signal
s of length T , into a matrix s̃ ∈ CN×B populated by the
B = QF TF column vectors ŝ(t, f) ∈ CN . Thus s̃ = sΨ,
and the ISTFT is obtained by applying the adjoint operator
Ψ∗ ∈ CB×T on the STFT coefficients s̃, i.e. s = s̃Ψ∗ . With
these notations, it is clear that sn Ψ = vec(ψ(sn)), where
vec() is the vec operator which maps a matrix into a vector by
stacking its columns. Let also define the source spectrogram
of source sn as |ψ(sn)| ∈ RQ×F+ , where | · | is the element
wise absolute value.

III. PROBLEM FORMULATION

In order to estimate the sources from the mixture, we formu-
late an optimization problem composed of three terms. First,
as we want our convolutive mixture model (2) to match the
observations, we impose the reconstruction error ‖x−A(s)‖2
to be small and bounded by ε. Secondly, we assume an
analysis sparse prior of the source TF representation, and thus
we would like to minimize the `0 norm ‖sΨ ‖0. Finally we
assume that the rank of each source spectrogram |ψ(sn)| is
bounded by a small integer l.

This problem is NP because of the `0 norm and thus
cumbersome for a problem of our size. However, the `0 norm
can be replaced by a `1 norm, or for a sparser solution, by
a sequence of weighted `1 minimizations ‖sΨ ‖W,1 where
W ∈ RN×B+ is a matrix with positive entries wij , and
‖z‖W,1 ,

∑
i,j wij |zij | is the weighted `1 norm [5]. Finally,

the problem we want to solve, replacing the `0 norm with the
weighting `1 norm is:

argmin
s∈RN×T

‖sΨ ‖W,1

subject to ‖x−A(s)‖2 ≤ ε,
rank(|ψ(sn)|) ≤ l, n = 1, . . . , N. (3)

This problem is still non-convex and hard to solve because the
last constraint is non-convex1. We will see later in the paper
how to deal with it.

1It is classical in convex optimization to relax the rank function by the
nuclear norm in order to make the problem convex. However replacing the
rank function with the nuclear norm in the last line of (3) will not make the
problem convex because of the composition with the absolute value. Moreover,
it is also more convenient to explicitly set the desired rank than having to tune
a regularization parameter or to set a bound on the nuclear norm.

IV. OPTIMIZATION ALGORITHMS

In order to estimate the sources, an optimization algorithm
called SSLR is derived. This (meta-)algorithm solves a se-
quence of optimization subproblems, each of which involves
finding the solution of problem (3).

A. The SSRA and SSLR algorithms

The SSRA algorithm [6] is an iterative procedure which
consists in computing, at each iteration k, the solution s(k)

of a weighted `1 problem, for a given weight matrix W(k),
and then re-estimating W such that the weights W(k+1) are
essentially the inverse of the value of the solution s(k) of
the current problem. This reweighing scheme is a classical
procedure [5], [6], [13] which has been proved to approach
the `0 norm minimization. In this paper we are using the
same reweighting approach as SSRA, but with subproblem (3)
instead of the weighted `1 problem of [6] which is essentially
the same as problem (3) but without the low-rank constraints.
We call SSLR the resulting procedure.

B. Convex optimization algorithms

At each iteration of the reweighing approach described in
section IV-A, the solution of problem (3) has to be computed.
In order to compute the solution of this problem, we rely on
the framework of proximal splitting methods [12], because first
they are efficient convex optimization algorithms that can deal
with multiple (eventually non-smooth) terms and constraints,
and secondly because they are particularly well suited for
large scale problems and relatively easy to implement. While
in Problem (3), the `2-ball is a convex set, the set of low-
rank matrices is non-convex. However, despite any conver-
gence guaranty in general, using non-convex set constraints in
proximal splitting methods can lead to efficient algorithms in
practice when the projection can be computed exactly [14].

We first introduce the general framework of proximal
splitting methods. Then we describe the PSDMM algorithm
(Algorithm 2) which is a well-adapted algorithm to solve
optimization problems involving an arbitrary number of non-
smooth functions, and more particularly problem (3).

1) Proximal splitting methods: As we will see in section
IV-B3, proximal splitting methods can solve optimization
problems of the form:

argmin
s∈RN×T

I∑
i=1

fi(Li(s)), (4)

where fi, are convex functions from RJi to R and Li :
RN×T → RJi are bounded linear operators. Note that any
convex constraint C on s can be incorporated in this formula-
tion via the indicator function iC(·), where C represents the
constraint set, and iC(s) = 0 if s ∈ C, and +∞ otherwise.

Problem (3) can be seen as a particular instance of problem
(4) with three functions f1, f2, f3, and with L1 = L3 = I,
L2 = A, f1(s) = ‖sΨ ‖W,1, f2(A(s)) = iBε`2

(A(s)), where
Bε`2 = {s ∈ RN×T : ‖s − x‖2 ≤ ε}, and f3(s) = iRl(s),
where Rl = {s ∈ RN×T : 1 ≤ n ≤ N, rank(|ψ(sn)|) ≤ l}.
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Algorithm 1: ADMM algorithm

Initialize: k = 0, y(0) ∈ G, z(0) ∈ G, γ > 0.
repeat

s(k+1) = proxL
γG(y(k) − z(k))

y(k+1) = proxγF (L(s(k+1)) + z(k))

z(k+1) = z(k) + L(s(k+1))− y(k+1)

k = k + 1.
until convergence;
return s(k)

Note that f1(s) and f2(A(s)) are convex, but f3(s) is not
convex because Rl is a non-convex set.

The key concept in proximal splitting methods is the use of
the proximity operator proxfi of a function fi defined as:

proxfi(z) , argmin
y∈RJi

fi(y) +
1

2
‖z− y‖22, (5)

which is a natural extension of the notion of a projection.
This definition extends naturally for some matrices z and y,
by replacing the `2 norm with the Frobenius norm. Solution
to (4) is reached iteratively by successive application of the
proximity operator associated with each function fi. See
[12] for a review of proximal splitting methods and their
applications in signal and image processing.

We derive in the appendix the proximity operators of
functions f1(s) = ‖sΨ ‖W,1, f2(s) = iBε`2

(s) involved
in optimization problem (3), and the projection on Rl for
function f3(s) = iRl(s) which can not formally be called
"prox" because f3 is not a convex function. We derive in the
following sub-sections the optimization framework to solve
problem (4).

2) ADMM Algorithm: The Alternating Direction Method of
Multipliers (ADMM) [12] is a well suited algorithm to solve
large-scale convex optimization of the form:

argmin
s∈H

F (L(s)) +G(s), (6)

where F : G → ]−∞,+∞] and G : H → ]−∞,+∞] are
proper, convex, lowersemicontinuous (l.s.c.) functions, H and
G being finite-dimensional real vector spaces equipped with
an inner product 〈·, ·〉, and a norm ‖ · ‖ = 〈·, ·〉

1
2 . The map

L : H → G is a continuous linear operator with induced
norm: ‖L ‖ = max{‖L(s)‖ : s ∈ H with ‖L(s)‖ ≤ 1}. If L
is injective, the ADMM algorithm described in Algorithm 1
converges to a solution of (6), where proxL

G is defined by:

proxL
G(y) , argmin

s∈H
G(s) +

1

2
‖L(s)− y‖22. (7)

Minimization s(k+1) = proxL
γG(y(k)−z(k)) is a least squares

problem including the linear operator L which computation
necessitates inner iterations. Antonin Chambolle and Thomas
Pock [15] proposed a trick to precondition this step. Using
their preconditioner (see section B in the Appendix), this
minimization can be replaced by a simple prox computation,
yielding the preconditioned ADMM algorithm also known
as Chambolle-Pock Algorithm. Interestingly, the convergence

Algorithm 2: PSDMM: Preconditioned SDMM algorithm

Initialize: k = 0, s(0) ∈ RN×T , for i = 1, . . . , I ,
z(i,0) ∈ RJi , γ > 0, τ < γ/‖L ‖2
repeat

for i← 1 to I do
y(i,k+1) = proxγfi(Li(s

(k)) + z(i,k))

z(i,k+1) = z(i,k) + Li(s(k))− y(i,k+1)

s(k+1) = s(k) − τ
γI

∑I
i=1 L

∗
i (2z

(i,k+1) − z(i,k))
k = k + 1.

until convergence;
return s(k)

of this algorithm has been proved [15] for a general (not
necessarily injective) bounded linear operator L.

3) Preconditioned SDMM (PSDNN) Algorithm: In a sim-
ilar way as in [12], problem (4) can be formulated as a
particular case of problem (6) in the I-fold product space
H = RN×T × . . . × RN×T , with G = RJ1 × . . . × RJI .
We denote s = (s1, . . . , sI) a generic element of H, and
z = (z1, . . . , zI) a generic element of G. Then we define L :
H → G by L(s) = (L1(s1), . . . ,LI(sI)), F (z) =

∑I
i=1 fi(zi),

and G(s) = iD(s) where, iD(·) the indicator function of the
convex set D = {(s, . . . , s) ∈ H : s ∈ RN×T }. By deriving
algorithm 1 with this parametrization and the Chambolle-Pock
preconditioner, we obtain algorithm 2, denoted PSDNN.

V. EXPERIMENTS

We evaluated our SSLR algorithm with state-of-the-art
methods over convolutive mixtures of music sources. For all
the experiments, the test signals are sampled at 11 kHz and
we use a STFT with cosine windows.

A. Experimental protocol

The mixing filters were room impulse responses simulated
via the Roomsim toolbox [16], with a room size of dimension
3.55 m × 4.45 m × 2.5 m, and with the same microphones
and source configuration as in [4]. The number of microphones
was M = 2, and the number of sources was varied in the range
3 ≤ N ≤ 6. The distances of the sources from the center of the
microphone pairs was varied between 80 cm and 1.2 m. The
mixing filters were generated with a reverberation time RT60

of 250 ms, and a microphone spacing of one meter. For each
case N = 3 to 6, ten mixtures where realized by convolving,
for each mixture, M mixing filters with N music sources of
the BSS Oracle dataset composed of 30 music signals. For all
the constrained methods, we set ε = 10−4, and we vary the
low-rank parameter from l = 5 to l = 30. We also compared
our algorithm with the classical DUET method [2] as well as
SSRA [6] and the synthesis-`1 minimization with wideband
data-fidelity (BPDN-S) [4], [6]. We initialized all the methods
that need initialization, by applying the adjoint mixing operator
to the mixture signal, i.e. s(0) := A∗(x).

The performance is evaluated for each source using the
signal-to-distortion ratio (SDR), as defined in [18], which
indicates the overall quality of each estimated source compared
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to the target. We then average this measure over all the sources
and all the mixtures for each mixing condition.

B. Results
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Fig. 1. Variation of the average SDR as a function of the number N of
sources over music mixtures with reverberation time RT60 = 250.

The results are depicted in Fig. 1. We can notice that the
best performance is achieved with our proposed SSLR method
with a maximal rank of l = 10. The improvement with respect
to SSRA is about 2±1 dB in SDR depending of the number of
sources. This shows the relevance of the low-rank constraint
to model the source spectrograms. Moreover, all the other
versions of SSLR, with other rank constraints l, outperformed
SSRA, which indicates that the low-rank constraint does not
degrade the performance even when l is not set optimally.

VI. CONCLUSION

We proposed a novel algorithm for reverberant audio source
separation, which exploits the structure of the sources via
a (analysis) sparse and low-rank prior on the source spec-
trograms. The sources are estimated via an optimization al-
gorithm derived from the ADMM proximal scheme and the
Chambolle-Pock preconditioner. The algorithm is also based
on a reweighing analysis `1 approach so as to increase the
sparsity and a wideband data-fidelity term in a constrained
form. The results on convolutive music mixtures show that the
proposed method outperforms all of the tested methods with
an improvement of 2±1 dB of SDR over SSRA, and 5±1.5 dB
over DUET. An extension of this work would be, in addition to
the sources estimation, to estimate the mixing filters, possibly
with an alternating optimization approach. Also it would be
interesting to explore other variants of the problem and the
algorithm.

APPENDIX

A. Proximity operators
We derive the proximity and projection operators for the

functions f1(s) = ‖sΨ ‖W,1 and f2(s) = iBε`2
(s), and

f3(s) = iRl(s) introduced in section IV-B.

Proposition 1. (Prox of f1(·) = ‖ · Ψ ‖W,1) Let z̃ ∈ CN×B
and z ∈ RN×T . If Ψ ∈ CT×B is a tight frame, i.e. Ψ Ψ∗ = ν I,
and W ∈ RN×B+ is a matrix of positive weights wij , then

prox‖·Ψ ‖W,1
(z) = z + ν−1(proxν‖·‖W,1

− I)(zΨ) Ψ∗, (8)

with

proxν‖·‖W,1
(z̃) = (proxνwij |·|(z̃ij))1≤i≤N,1≤j≤B , (9)

where proxνwij |·| is the soft thresholding operator given by
proxλ|·|(zi) = zi

|zi| (|zi| − λ)+ with λ = νwij and (·)+ =

max(0, ·).

The proof of this proposition can be found in [6].

Proposition 2. (Prox of f2(·) = iBε`2
(·), i.e. PBε`2 (·))

PBε`2 (z) = x + min(1, ε/‖z− x‖2)(z− x). (10)

Proposition 3. (Projection PRl(·) for f3(·) = iRl(·))

PRl(z) =
(
PCl(|ψ(zn)|) ◦ ei∠ψ(zn)

)
1≤n≤N

, (11)

with ei∠z : z 7→ y = ei∠z being the element wise phase
such that ynm = ei arg(znm), and PCl(z) being the projection
onto the (non-convex) set Cl = {z : rank(z) ≤ l} of matrices
having a rank less or equal than l, which closed form solution,
given by the Eckart-Young theorem [7] is: PCl(z) = uΣ

lv∗,
where z = uΣv∗ is the singular value decomposition (SVD)
of z and Σ is a diagonal matrix with non-increasing entries

Σii, and Σ
l
ii :=

{
Σii if i ≤ l
0 if i > l.

Proof: Let El be the set of complex matrices
which element-wise magnitude is a low-rank
matrix, i.e. El = {z : rank(|z|) ≤ l} and let
PEl(z) = argminy {‖y − z‖F : y ∈ El} be the projection
onto El. For any matrices z and y, we have

‖y − z‖2F = ‖|y|‖2F + ‖|z|‖2F − 2 tr
(
|z|ᵀ

(
|y|ei(∠y−∠z)

))
≥ ‖|y| − |z|‖2F . (12)

Inequality (12) is an equality when ∠y = ∠z. Thus,
if the phase of y is not constrained as in the set El,
the matrix y minimizing ‖y − z‖F is the one mini-
mizing ‖|y| − |z|‖2F with ∠y = ∠z. Then, PEl(z) =
argminy {‖|y| − |z|‖F : |y| ∈ Cl,∠y = ∠z} = PCl(|z|) ◦
ei∠z.

B. Chambolle-Pock preconditioner [15]
The s-update step:

s(k+1) = proxL
γG(y(k) − z(k))

, argmin
s∈H

γG(s) +
1

2
‖L(s)− (y(k) − z(k))‖2 (13)

in the ADMM Algorithm 1 is a least squares problem in-
cluding the linear operator L which computation necessitates
inner iterations. The Chambolle-Pock preconditioner consists
in adding, in the minimization (13), the following term:
1
2

〈
( 1
τ −

1
γ LL∗)(s− s(k)), s− s(k)

〉
, with τ < γ

‖L ‖2 . As a
result the s-update step becomes:

s(k+1) = proxτG(s(k) − τ L∗(s̄(k))),

with s̄(k) = 1
γ (2z(k) − z(k−1)).
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