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Abstract

The use of parametric methods for the estimation of communication channels requires
a diverse suite of components : models, algorithms (for estimation and detection) and
analytical tools (error bounds, time-frequency uncertainty limits,...). The coherent
study of each one of them is the goal of this thesis.

In the first part, we propose a parametric model, the sparse common support
model, and study under which conditions it can be used to describe communication
channels. We then extend classical subspace estimation methods to work on this
model, and propose a fast estimation algorithm having a superlinear complexity and
a linear memory footprint with respect to the number of measurements. For com-
parison, a direct implementation has a cubic complexity and a quadratic memory
footprint.

Parametric estimation can only be relevant if it is wisely used, i.e. if the right
model is first selected. This task is called detection, and we outline two procedures to
complete it. The first one uses the statistical properties of the noise and is therefore
powerful but sensitive to model mismatches. A second detection method is based
on the low dimensionality of the model, and uses a convexification of the rank of a
matrix, called the effective rank, to determine the intrinsic dimension of the model.

The first part is concluded with comparative tests on measured channel impulse
responses (with added noise), which shows the proposed model and algorithms im-
prove channel estimation at low signal to noise ratio (SNR).

In the second part, we study the localization on periodic domains, which is neces-
sary to analyze the performance of periodic parameters estimation.

First, we will construct periodic waveforms which have a minimal time-frequency
product. These periodic waveforms — obtained from Mathieu functions — play a role
similar to Gaussian functions with respect to the Heisenberg uncertainty principle.
A fundamental difference is that in the periodic case, the Heisenberg limit is only
achieved by (infinitely) narrow periodic waveforms, and thus, the maximally compact
waveforms we construct provide the achievable lowerbound for any given width.

Then, we show that lowerbounds on the variance of estimators such as the Cramér-
Rao bound (CRB), and its siblings (the CRB family), can be expressed in a form
equivalent to the Heisenberg uncertainty principle. From this similarity, we build
periodic lowerbounds (the periodic CRB, the periodic Hammersley-Chapman-Robbins
bound,. ..) with minimal efforts.

Finally, we obtain an explicit analytical formula for the Barankin bound on a
single periodic parameter and observe that this bound is not necessarily tight despite
the fact that it is the strongest that can be obtained in the CRB family.
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Résumeé

L’utilisation de méthodes paramétriques pour l'estimation de canaux de communi-
cation demande 'utilisation de plusieurs composants : des modéles, des algorithmes
(pour Pestimation et la détection) et des outils d’analyse (bornes d’erreur, limites sur
Pétalement temps-fréquence, . .. ). L’étude concertée de ces composants est le but de
cette thése.

Dans une premiére partie, nous proposerons un modeéle paramétrique, le modéle
a support clairsemé et commun, et étudierons sous quelles conditions il peut étre
appliqué a l'estimation des canaux de communication. Nous adapterons ensuite des
méthodes de sous-espaces bien connues & ce modéle, et proposerons un algorithme
d’estimation avec complexité superlinéaire et une occupation mémoire linéaire en
terme du nombre de mesures effectuées. Comme comparaison, une implémentation
directe de cette méthode aurait une complexité cubique et une occupation mémoire
quadratique.

Une estimation paramétrique doit-étre utilisée & propos pour étre efficace, c’est-
a-dire que le bon modéle doit d’abord étre sélectionné. Cette sélection est appelée
détection, et nous décrirons deux procédures la réalisant. La premiére, utilise les pro-
priétés statistiques du bruit sur les mesures, et est donc performante mais sensible aux
erreurs de modélisation. La seconde méthode exploite la faible dimension du modéle,
et utilise pour cela une convexification du rang matriciel — appelé le rang effectif —
afin de déterminer la dimension intrinséque du modéle. Pour conclure cette premiére
partie, des tests comparatifs seront réalisés sur des canaux de communication mesurés
sur le terrain et auxquels du bruit est ajouté. Ces tests indiquent que le modéle et les
algorithmes proposés améliorent I’estimation des canaux lorsque le rapport de puis-
sance entre le signal et le bruit est faible.

Dans une seconde partie, nous étudierons la localisation sur des domaines péri-
odiques, ce qui est nécessaire pour 'analyse des performances lors de ’estimation de
parameétres périodiques.

Premiérement, nous construirons des fonctions périodiques possédant un étalement
temps-fréquence minimal. Ces fonctions périodiques — obtenues a partir des fonctions
de Mathieu — ont des propriétés similaires aux fonctions Gaussiennes vis-a-vis du
principe d’Heisenberg dans le domaine périodique. Une distinction fondamentale est
que dans le cas périodique, la limite du principe d’Heisenberg ne peut-étre atteinte que
par des fonctions infiniment concentrées, et donc les fonctions & compacité maximum
construites indiquent la limite atteignable, quelque soit la concentration.

vii



viii Résumé

Ensuite, nous montrerons que des bornes inférieurs sur la variance d’estimations,
comme la borne de Cramér-Rao (BCR) et affiliées (famille BCR), peuvent-étre ex-
primées sous une forme semblable au principe d’Heisenberg. Par cette similitude,
nous construirons des bornes périodiques (BCR périodique, borne de Hammersley-
Chapman-Robbins périodique) avec un effort minimum.

Finalement, nous obtiendrons une formule analytique explicite de la borne de
Barankin pour un seul paramétre périodique et observerons qu’elle ne peut pas tou-
jours étre atteinte malgré le fait qu’elle soit la borne la plus performante de la famille
BCR.

Mots-clés: canauz clairsemés, estimation paramétrique, principe d’Heisenberg,
bornes circulaires, borne de Barankin.
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Introduction

Motivation

Sometimes, the landscape of signal processing seems to split in half. On one side, a
data oriented labour, where the collection and description of signals is the bulk of the
work, and datasets are the deliverables. On the other side, an area where abstract
models are the foundations on which theories and algorithms are built.

While it is perfectly natural to fit into one of the category, as one cannot specialize
in “everything”, keeping an eye on the other side is essential.

The philosopher of science Edmund Husserl?, declared in his inaugural lecture of
May 1917 [69; 87] :

“Natural objects, for example, must be experienced before any theorising
about them can occur.”,

which may appear as an endorsement of empiricism over speculative sciences, and
in a more extreme view, the reduction of scientific knowledge to the experience and
experiments. However in the same lecture, a few paragraphs later, this erroneous
interpretation is unambiguously refuted

“Experience by itself is not science. [...| We would be in a nasty position
indeed if empirical science were the only kind of science possible.”

This short philosophical digression was not in vain. If we follow the good Edmund,
writing “Theory and Applications” in the title of this thesis was a terrible misnomer,
since we should have used, “Applications and Theory” instead®. Nevertheless, the
most important is saved, as both terms are distinct and are essential one to the other.

Following this intuition, the observation of a phenomenon should precede its mod-
elization. So, before telling the what, why and how of parametric estimation, we will
simply observe.

An observation from mobile communications

An electromagnetic impulse is transmitted over the air, a listening device records the
magnetic field with three different antennas:

2Edmund Husserl (1859-1938), was a german philosopher and mathematician, founder of phe-
nomenology.

3This may be the quickest self-rebuttal in academical history.



2 Introduction

These signals — called channels — can be well described by giving the position
and amplitudes of a few spikes. Furthermore, the positions of these spikes seems to
be the same from one channel to another. Therefore, we could describe the above
image by giving first the positions shared by all the channels (indicated by dashed
lines), and than the amplitudes of these spikes for each channel. What we obtain
is a parametric representation of the signal, where each of the numbers we used for
the description (positions, amplitudes) is called a parameter. The initial structure
we imposed on the signal — namely that it is a succession of 5 spikes with shared
locations between channels — is called a model.

Parametric estimation is the task of determining the parameter values from a set
of observations called measurements. The difficulty may lie in the incompleteness of
the measurements, their corruption by noise or the computational complexity of the
estimation itself.

If we look again at our communication example some time later, the transmitter
— which has moved in the meantime — sends another impulse, and this time the
listening device records

What is first seen, is that these signals also have a structure, albeit quite differ-
ent. This difference occurred despite the fact that they both come from the same
experimental setup and were recorded within a short period of time.

The central question is now to find how to best represent these signals, which is
the task of modelization. The unique model we used to describe the channels in the
first figure does not describe the second figure adequately.

Ideally, a model should describe a signal with as few numbers as possible (the pa-
rameters), so that a minimal amount of information is required to identify a particular
instance.

The obvious trade-off is that a short signal description can only represent a limited
category of signals, which may pose a problem given the structural changes we have
seen in the previous example.

Therefore, a “one size fits all” model is a chimera, and modelization should be
concerned not only with the description of a model but also with the identification of
its practical range of application. To do so, a model must be linked to the physical



properties of the reality it describes. We will focus on this task in Chapter 1 as a
preliminary.

Detection and estimation

Once a collection of models describes adequately what we may observe, one of them
must be chosen given an observation (measurements). This task is called detection.
The goal is to select a model to meet a particular objective, such as minimizing
the energy of the difference between an original signal not corrupted by noise and a
corrupted observation, or estimating the time at which the first spike arrived, and so
on. More fundamentally, a model should capture what is intelligible in an observation,
i.e. make visible the causes by which an observation is what it is.

Once a model has been chosen, the estimation of its parameter can take place, as
we mentioned previously.

In Chapters 2-4 We will study the estimation and detection of the mobile com-
munications channels studied in Chapter 1. We will be concerned with accuracy as
well as computational complexity, since mobile communications have strict time and
power and complexity constraints.

The tools of the trade

To solve engineering problems, one should have in its toolbox instruments to analyze
the performances of a proposed solution. In estimation theory, delimiting a range for
the precision with which the numerical value of a parameter can be estimated is a
cornerstone in the analysis of performance.

In communications, many parameters are periodic. A concrete example of a pe-
riodic parameter — not from communications — which can be easily grasped, is the
wind direction. For example, its range can be taken from 0° to 360°, and its periodic
nature lies in the fact that both ends of this interval are neighbors, e.g. moving 0.1°
backward from 0° leads to 359.9° which is at the other end of the range.

From this simple example, we see that the periodic nature of a parameter must
be taken into account when judging how far an estimate is from the true value. In
Chapter 5 we will get more familiar with the notion of periodic localization through
the study of Heisenberg uncertainty principle on a periodic domain. Then we will
derive lowerbounds on the variance of periodic estimators.

Historical notes

Parametric estimation of communication channels is a well-studied and mature topic.
An early model, called the multipath channel model can be traced back to the PhD
thesis of Turin in 1956 [130]. While the communication medium remains the same,
the devices exploiting it have tremendously changed. First, the allocated bandwidth
has evolved and since around 1990, multiple antennas systems started to be more
widely deployed, especially due to the capacity breakthrough achieved with space-time
coding [7; 124]. The evolution of these two factors lead to sensibly different channel
models, which require different processing techniques. Also, the computational power
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of communication devices has greatly improved thanks to Moore’s law, which allows
for more advanced processing.

The methods we will consider come from the antenna arrays literature [137; 108;
140] for the most part and use the classical tools of spectral estimation [119]. This
field was heavily researched (and funded) for its military applications, e.g. radar
detection. In these systems, the number of antennas tends to be large as they are
not supposed to fit in a pocket, and it resulted in multiple parallel channels to be
estimated. In today’s communications, the number of antennas is not as large, but
what has been lost in the spatial domain was gained in the temporal domain. By
trading off one for the other, we will lose some properties and retain other, and most
of the analysis will have to adapt to these modifications.

On the theoretical side, uncertainty principles date back to the beginning of the
20" century [66; 111] and played an important role in the early years of quantum
physics, and lead to the characterization of a particle’s state by a probability distri-
bution called the wave function.

More prosaically, uncertainty principles stem from a lack of commutativity be-
tween two operators such as the localization and the momentum or the localization
in time and the localization in frequency. The later interpretation made them an
important result in time-frequency analysis — with numerous applications in filter
design, image processing, multiresolution analysis, etc — the pioneering work is due
to D. Gabor in 1946 [58].

Surprisingly, some elementary facts about uncertainty principles for continuous
and infinitely supported functions are not available for periodic waveforms or infi-
nite sequences (equivalence using Fourier series), even though a periodic uncertainty
principle exists [35] and has been analyzed [99; 100; 126; 52; 72]. What is miss-
ing in particular, is the knowledge of periodic waveforms having the same periodic
time-frequency characteristics as Gaussians functions have in non-periodic spaces.*

Other theoretical tools are lowerbounds on the variance of an estimator, such
as the Cramér-Rao lowerbound [48]. An equivalence between a bayesian version of
the Cramér-Rao bound [132] and the Heisenberg uncertainty principle was shown
by A. Dembo in 1990 [50] using the work of Stam on the entropy power inequality
(EPI). The equivalence between what is usually called the Cramér-Rao bound - i.e.
a non-bayesian lowerbound — and the Heisenberg principle could not be found in the
literature.

Outline and contributions

The present thesis will be composed of two parts which could be seen as “Applications”
and “Theory” — thus following the views of Husserl. Contributions to modelization
and algorithms will be found in Part I, while more fundamental and analytical results
will be found in part II.

4The prolate spheroidal functions of Slepian [118] do not exactly answer this question.



Part | : Estimation & detection of sparse channels

In Chapter 1, the Sparse common support (SCS) channel model is proposed and
analyzed. It is a joint multipath model, where the path locations are shared among
channels. We derive the elementary properties the communication channels should
have in order to be fitted by this model. Specifically, the requirements for sparsity
are found in (1.2) and involve such quantities as the channel bandwidth, the numbers
scatterers and their dimension, the delay-spread and the propagation speed. For the
common support property, Proposition 1.1 links the dimension of the antenna array
to the bandwidth of the channel. To complete the characterization, a formula for the
path amplitudes correlation is given in Proposition 1.2. A concrete example of SCS
channels is discussed.

In Chapter 2, we review subspace estimation methods such as the annihilating
filter method and ESPRIT from the point of view of the data matriz and one of its
decomposition called the Vandermonde decomposition. We show that these algorithms
can be used to jointly estimate SCS channels.

Then, we show that the complexity and memory requirements for the joint estima-
tion can be lowered from O(PM?) and O(PM?) to O(PK M log(M)) and O(PKM)
respectively, where M is proportional to the number of measurements per channel, P
is the number of channels and K is the number of paths per channel. To obtain this
result, a convergence theorem is adapted to fit the measurement setup (Theorem 2.3).

For a small and constant K, the estimation can be considered to be superfast and
in-place, to use the classical algorithmic terminology.

Both the original and the accelerated methods are implemented using state of the
art libraries and significant speed improvements are shown for a number of measure-
ments per channel larger than 100 and the same estimation error as in the original
method.

In Chapter 3, we address the detection problem, specifically the determination of
the number of paths. For detection, methods based on information criterion cannot be
computed as effectively as it is the case for large antenna arrays. Having less samples
in space, it is necessary to replicate measurements to build a data matrix to work on.
This replication leads to a non-flat spectral distribution for the noise matrix.

Two criteria based on the properties of the noise are proposed. The first one is
fairly coarse and can be evaluated at no extra cost within the superfast estimation
algorithm. The second one can be used to target a chosen false detection rate and is
applied after the estimation as a validation step, to potentially adjust the result.

A third, purely geometric criterion is proposed called the Partial effective rank. It
monitors the evolution of the intrinsic dimension of the signal subspace in the larger
measurement, space. This intrinsic dimension is based on a smooth surrogate of the
rank, and can therefore cope with the presence of noise — unlike the matrix rank.

To conclude Chapter 3, a test is run on channel impulse responses recorded in a
suburban environment to which synthetic noise was added. We compare the proposed
superfast estimation algorithm combined with the partial effective rank detection to a
method which exploits the joint sample sparsity (few non zero samples) of the channels
— and we show that the sparse common support model suits the most at low SNR,
and that an appropriate detection method overcomes sudden and radical changes of
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the channels (e.g. going through a tunnel).

In Chapter 4, we study how the principles exposed earlier can be used in an
iterative fashion. Iterative estimation algorithms are especially useful where an initial
estimate is known a priori, yielding a tracking algorithm. A connection is made with
the family of rake receiver algorithms.

Part Il : Fundamental Limits on Periodic Localization

The channels studied in the first part were excited by periodic signals, so that the
recorded impulse responses were parametrized by non periodic parameters (the paths
amplitudes) and periodic parameters (the paths localization, known as time of ar-
rival). Periodic parameters are also commonly encountered in bearing estimation
problems.

Firstly, to gain some insights on localization in periodic domains, we will study
the time-frequency product of periodic waveforms, also known as time-frequency un-
certainty using the terminology of quantum physics. The Fourier dual of a periodic
waveform is its Fourier series, and so the time-frequency product of waveforms is by
the unitary nature of the Fourier transform equivalent to the time-frequency product
of (infinite length) sequences, which is easier to deal with from a numerical point of
view.

One of the main difference between the non-periodic and the periodic case is that
the lowerbound on uncertainty given by the Heisenberg/Breitenberger uncertainty
principle cannot be achieved by periodic waveforms, unless they are infinitely narrow
over the period (their variance tends to zero) [99]. This limitation contrasts sharply
with the non-periodic case, in which gaussian functions of any spread are known to
meet exactly the lowerbound. Since the lower limit is not achievable by periodic
waveforms with an arbitrary spread, it is of interest to know what is the minimal
achievable time-frequency product for a given spread, and which waveforms achieve
it.

In Chapter 5, we formulate an optimization program which for a given periodic
waveform spread, generates its Fourier series such as to minimize its time-frequency
product. We call such a sequence/waveform a mazimally compact sequence/waveform.

The optimization is a primal semi-definite program (SDP) (Theorem 5.2) for which
strong duality holds (Lemma 5.3 ). By analyzing the boundary of the feasible region
of the dual formulation of the SDP, we obtain an analytical formula for maximally
compact waveforms (Theorem 5.3). This formula is the harmonic Mathieu equation
which solutions are harmonic Mathieu functions [80]. Among this set of functions,
we show that Mathieu’s harmonic cosine of order 0 generates all maximally-compact
waveforms up to a shift and/or a modulation.

An interesting parallel shall be made with Slepian’s prolate spheroidal wave func-
tions (PSWF) [118]. These functions are solutions of a differential equation similar
to Mathieu’s equation (both equations are Sturm-Liouville equations [10]). The main
difference between the two solutions is particularly clear from the definition of the
problem they respectively solve. PSWF minimize the spread of a periodic waveform
under a strict bandlimiting constraint on its Fourier series. In our case, instead of
a bandlimiting constraint on the Fourier series, we minimized its spread. It shall be



seen as a “soft” penalization scheme instead of a hard constraint®.

In Chapter 6, we show that the Cramér-Rao bound (CRB) a lowerbound on
the variance of unbiased estimators — can be formulated as an uncertainty principle
(Lemma 6.1 and Theorem 6.1). This general formulation makes the derivation of a
CRB for periodic parameters straightforward, and we obtain a periodic CRB as a
simple corollary (Corollary 6.1). It highlights that the definition of localization in a
periodic domain plays a central role. With the definition from Chapter 5, the periodic
CRB has the same form as in the non-periodic case (it is the inverse of the Fisher
information), which allows to use all the existing literature on the subject — e.g.
[119] Appendix B.6, [143] — and to obtain lowerbounds for the joint estimation of
periodic and non periodic parameters (Theorem 6.2 and Corollary 6.2).

A truly periodic definition of the CRB is by itself of limited interest. However,
having a rigorously valid formulation makes it much easier to look for potentially
stronger lowerbounds for periodic parameters. Stronger lowerbounds are obtained
by replacing the derivative in the formulation of the CRB by a different linear op-
erator. Finding the linear shift invariant filter maximizing the lowerbound is known
as the Barankin bound approximation problem. We solve this problem analytically
for a single periodic parameter (Theorem 6.3 and Corollary 6.3), and observe a gap
between our solution and what is achievable in practice (MMSE estimator) — see
Examples 6.f-6.g. It indicates that the Barankin bound is not necessarily tight (more
thorough discussion in Section 6.3.3).

5In practice, our numerical formulation assumes a finite length for the Fourier series, which effect
is negligible if it is long enough. For design purposes, this length can be reduced, in which case the
solution is no more the Fourier series of a Mathieu function.

6The formulation has a range of applications broader than the CRB itself, for example, a periodic
version of the Hammersley-Chapman-Robbins bound (HCRB) is shown in Example 6.e
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Nous pensons savoir les choses d’'une maniére absolue et non point
d’une maniére sophistique, purement accidentelle, quand nous pen-
sons savoir que la cause par laquelle la chose existe, est bien la cause
de cette chose, et que par suite nous pensons que la chose ne saurait
étre autrement que nous la savons.

Aristote le Stagirite — Seconds Analytiques, ch.2.

We suppose ourselves to possess unqualified scientific knowledge of
a thing, as opposed to knowing it in the accidental way in which the
sophist knows, when we think that we know the cause on which the
fact depends, as the cause of that fact and of no other, and, further,
that the fact could not be other than it is.

Aristotle the Stagirite — Posterior Analytics, ch.2.
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Chapter 1

Parametric models for
communications

1.1 Parametric or not parametric? — that is the
question.

1.1.1 What are parametric models?

A parametric signal model is a mapping from a countable set of scalar numbers —
called parameters — to a signal space, which can take several forms (vector space,
union of subspaces, ...). Therefore, many signals model — bandlimited waveforms,
piecewise constant signals, ...— falls into the parametric category.

More specifically, the denomination “parametric” is usually reserved to models
where parameters represent the degrees of freedom of the signal. For example, consider
a signal s(t) made of a known bandlimited waveform w(t) of period 27 arbitrarily
shifted and scaled

s(t) = co - w(t —to).

Since the signal is periodic, it is characterized by its continuous-time Fourier series
(CTFS), and because it is bandlimited, it has only a finite number of non-zero CTFS
coefficients [S[—M], ..., S[M]]T € C2M+1,

On the one hand, since the waveform w(t) is known, s(¢) is unequivocally charac-

terized by [CO .
to

If both representations admit a finite number of parameters, only the latter one
is directly linked to the effective unknowns in the signal — its degrees of freedom.

The estimation of this reduced number of coefficients from a set of samples of
s(t) is usually called parametric estimation. In the present example, it is a non-
linear estimation problem, and the word parametric stresses the difference with the
estimation of its CTFS coefficients which is a simple linear estimation problem — a
projection onto a linear subspace in this particular case.

11
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1.1.2 Advantages of parametric models

From an idealized point of view, parametric models, i.e. models having the signal
degrees of freedom for parameters, possess mostly benefits.

First, with an adequate sampling scheme, one may sample at a rate close to the
rate of innovation of the signal (the number of degrees of freedom per unit of time)
and still be able to reconstruct it. The theory of Finite Rate of Innovation (FRI)
sampling, studies the theory and the algorithms for sampling at the rate of innovation.
Signal models such as sum of periodic waveforms, piecewise polynomials, exponential
splines have been studied in relation to FRI sampling.

The usage of a model with as few parameters as possible makes estimation more
robust against noise and measurement errors. Indeed, by reducing the number of
parameters, the pre-image space of the signal — i.e. the parameter space — shrinks
in dimension. In the previous example, the parameters belong to C x [—m, [ which
is much smaller than the space of its CTFS coefficients CM (M > 2).

Therefore, the inverse mapping from the measurements to the parameters is in
general better conditioned.

Also, a reduced number of parameters implies a description of the signal can be
encoded on fewer bits. For example, this is important in MIMO communications
where the transmitter can form “beams” to increase the communication bit-rate. To
do so, it needs an estimate of the communication channels; these estimates are known
at the receiver. If the receiver can efficiently encode the channels impulse response, a
lesser portion of the channel capacity is used for this exchange of information.

In a nutshell, the key feature of parametric models is to be extremely rigid. A
model with few parameters can only generate signals with particular attributes, and
it makes their estimation more robust.

1.1.3 What are the limitations?

If rigidity is the main advantage of parametric models, it is also their Achille’s heel.

To quote the statistician George E.P. Box, “All models are wrong, some are useful”.
And the more rigid a model, the higher the chances to have a mismatch between this
model and the physical phenomenon it describes.

Again, the model rigidity plays the central role, for the worse this time.

Let’s go back to our toy example and consider the signal is not made of a single
waveform, but a cluster of them

5(t) = or-w(t —to — Aty).
k

—

The number of parameters is now 2K. If we collect samples corrupted by noise
Spn=8(t—nT)+o0-FE,,

where F,, are identically and independently distributed (iid). standard normal ran-
dom variable, then we face a dilemma. For At; small enough, there is a noise power
o? above which the shifts At; cannot be reliably estimated. In these circumstances it
may be preferable to use the “wrong” signal model s(t). Also, when o is small enough
and K is large, the bandlimited signal model becomes the most parsimonious model.
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We see from this little experiment that different models may coexist to describe
a single physical reality. The more rigid models provide a useful regularization when
the signal to noise ratio (SNR) decreases.

1.2 A parametric model for communications

In this section, we motivate a simple and rigid model for multiple output wireless
communications. Wireless communications are carried over a finite band of the elec-
tromagnetic (EM) spectrum, and so the bandlimited model with Shannon-Nyquist
sampling and reconstruction provides a safe and reliable model. The goal is to study
which additional properties of the EM channel we can establish to make channel
estimation — and thus communication — more accurate with low power (low SNR).

1.2.1 The multipath model

The first thorough study of parametric channel models for wireless communications
is the work of G. Turin [130].
A receiving device operates over a channel H

x(t) = H{s}(1),
where s(t) is a bandlimited and periodic signal sent by the transmitting device.
The physical properties of the channel are the following

e [t is non-dispersive and linear
e [t is locally time-invariant

e The propagation medium contains reflecting and scattering objects

The linearity and time-invariance of the channel, imply that the effect of H on the
transmitted waveform can be written as a convolution with an impulse response h(t)
— called the channel impulse response (CIR),

x(t) = (hxs)(t).
Scattering objects are sources of many independent reflections, and so they can
be modeled as clusters of reflections

K
W)= > Arp(t—tp— Aty),

k=1 (A, Aty)ECK

where Cy,...,Cx are clusters centered at time tq,...,tx, (Ag, Aty) € C x [-7 7|
are the random amplitude and delays of individual reflections, and ¢ is the channel
mask, i.e. a waveform which occupies a finite portion of the spectrum. In the Fourier
domain, the CIR becomes

K
Hin] = Ze_ﬁ”"t’“@[n] . Z AgeI2mnAte , In| < M.
k=1 (Ag,Atg)eCy
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t

Rayleigh multipath

Figure 1.1: An accurate multipath model comprises clusters of reflections called scat-
terers. The Rayleigh-fading multipath model is an approximation of this model in
which the reflections from each scatterer are aggregated into a single reflection called
a path. Because of the large number of reflections and their independent polarization,
the central limit theorem implies that the paths amplitudes are complex-valued inde-
pendently distributed normal random variables. Therefore, the magnitude is Rayleigh
distributed, which gave its name to the model.

where @ is the CTFS of ¢. We can now formulate the two assumptions central to the
Rayleigh fading multipath channel model

1. If the intra-cluster delays At, are substantially smaller than the inverse band-
width (At, < 1/(2M + 1)), then one can make the 0" order approximation

e A 1 m< M.

2. If the random amplitudes A, are 0-mean independently distributed random
variables (with finite variance), then by the central-limit theorem

C) = Z A,

(Ag,Atg)€Cy

are independent normally distributed random variables, Cy ~ N (0, ¢2I).

Definition 1.1. A Rayleigh fading multipath channel with K paths has the
impulse response

K
h(t) = > Creplt — i) , (L.1)
k=1
where
Ck ~ Nc((), Ciﬂ)

are independent random variables. The coefficients Cy, are called the path am-
plitudes and t) are called the times of arrival (ToA).
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The multipath channel model is also present at the foundations of spread-spectrum
communications such as CDMA. The rake-receiver uses an estimate of the times of
arrival and the path amplitudes to combine the paths coherently with weights chosen
to maximize the channel equalization gain. For more on the subject, see [89].

1.2.2 The conditions for sparsity

The multipath model tells us that the channel impulse response is composed of a
small number of paths. However, this number should be considered relative to the
delay-spread and the bandwidth to be relevant.

Definition 1.2. Let h be a multipath channel with K paths. Assume uniformly
distributed time of arrival t; < --- < tx over an interval defined as the delay-
spread of the channel, i.e. T > tg —1;.

Then the channel h is sparse if

TK <2M+1,
.

i.e. if the rate of innovation is substantially smaller than the Nyquist rate.

From this definition, we can already see two competing trends for EM channels to
be sparse

1. To be sparse, the multipath model must hold, which requires a low enough
bandwidth (so that clusters form paths).

2. To be sparse, the path density must not be too high compared to the bandwidth
according to Definition 1.2. Therefore, the bandwidth must be high enough.

This trade-off shall be kept in mind when trying to apply sparse methods to
estimate EM channels; Figure 1.2 shows how, for a fixed cluster width, the delay-
spread and bandwidth influence the relevance of a sparse model.

The delay-spread, the cluster width and the inverse bandwidth can be expressed
in terms of physical distances — with ¢ the speed of light

1. The delay-spread is the maximum propagation time difference between paths. If
dmax 18 the maximum difference between the distances of propagation between
paths, the delay-spread is expressed as

dmax

C

T =

2. The maximal ToA difference within a cluster Aty is linked to the physical
dimension of scatterers. If scatterers have a maximum radius 7.« then

2r
Atmax S r;lax .

3. The bandwidth is B = WTHHL the associated physical distance is the mini-
mum wavelength Ay, = ¢ - B/2.
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Short delay-spread 7/8 Long delay-spread 7

(a) (b)

High bandwidth B

LOow panawidtn 5/8

Figure 1.2: This figure shows how sparsity relates to the channel bandwidth and its
delay-spread. All four panels (a)-(d) have the same number of signal components —
80 of them grouped in 8 clusters with exponentially fast energy decay. Signals (a) and
(¢) cannot be considered sparse as the rate of innovation is close to/greater than the
Nyquist rate on the time-lapse corresponding to the delay-spread, and 0 outside it.
Signal (b) is weakly sparse, the rate of innovation is for this reason also high. In this
setup the sample sparsity approach may be suitable. The signal (d) can be considered
sparse as only the 8 clusters will be resolvable in the presence of noise. The rate of
innovation of this approximation is much lower than the Nyquist rate. Even though
(b) and (d) have the same rate of innovation in a strict sense, (d) can be approximated
with a signal having 1/10% the rate of innovation of (b) thanks to its low bandwidth.
This approximation motivates the use of a model with a low rate of innovation in the
low-SNR regime where the model approximation error has less power than the noise.

The requisites of having a cluster density substantially lower than the Nyquist-rate
and also unresolvable paths within each clusters, is expressed as the inequation

Atmax < ~ < T
max — —.
BS K

And so, the sparse approximation requires that in the spatial domain
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Figure 1.3: The ideal SCS channel model is a set of P channels of bandwidth B each
having K components aligned in time. Assuming complex valued signal components,
the total number of unknowns is (2P + 1)K instead of 3PK for a sparse model with
independent time of arrivals (ToA), or 2P times the Nyquist Rate for a bandlimited
model.

which implies that the size of the scatterers should be modest compared to the
difference between distances of propagation.

c dmax
Zrmax < 5 < —— (1.2)
In Figure 1.2, only (d) verifies (1.2). For the signal Figure 1.2.(b), a model with a
small number of non-zero samples in the time-domain (sample sparsity) could be indi-
cated. For Figure 1.2.(a)(c), a bandlimited model limited to a window corresponding
to the delay-spread would be the right choice.
It is immediately visible from this simple example that as a model becomes more
rigid its range of application narrows, and deciding correctly when to use it becomes
critical.

1.2.3 The common support assumption

We have seen how sparsity occurs in point-to-point communications. Modern com-
munications systems go beyond point-to-point communications by having multiple
inputs and multiple outputs (multiple transmitting and receiving antennas). We turn
our attention to the models describing the channels between a unique transmitter and
several receivers! (SIMO).

As shown in Figure 1.3, if the assumptions of (1.1) hold, having P receiving
antennas creates P multipath channels with channel impulse responses given by

IThe multiple input case (MIMO), is especially relevant for space-time coding [7], we focus here
on the estimation of the channels themselves
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K
hp(t) = ch,pSD(t —trp)
k=1

where Cj, , ~ N¢(0, ci1).

If the amplitude of reflections from different scatterers are independent, the corre-
lation between Cj, , and C}, 4, p # ¢, amplitudes of reflections from a same scatterer
in different channels, requires some thoughts and we will propose a model in the next
subsection.

For the times of arrival ty, ,, k =1,..., K, p=1,..., P a common support property
may immediately hold :

Proposition 1.1. If the mazimum distance between antennas is bounded from

above by Apax and
c

E )

then, one may make the common support approximation for allk =1,..., K

Amax <<

def
tk = tk,l ~ tk72 R tlc,P-

Spatial correlation

The last important piece to finish the modelization is to determine the correlation be-
tween the path amplitudes Cj, , and Cj, 4. To this end a modelization of the scatterers
is required. If we assume propagation on a 2-dimensional plane?, each scatterer can be
modeled as a bundle of reflections which localizations are independently drawn from
a bivariate probability density. With the isotropic multivariate normal distribution
and following the methodology in [110], the path amplitudes correlation is given by

Proposition 1.2. In the physical layout of Figure 1.4, the correlation of path
amplitudes is accurately modeled as

N [C’“’poiq} dp.q
VETCeTE O " {JO (2“ e ) (1.3)

o~ 1 Li(ki) dp,
23 (o5 ) o1 e )]

2A similar analysis holds in 3-dimensions.
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NS

Qk,p}q/ .

dpaq

Figure 1.4: The model makes a “far-field” assumption in which the azimuth of the
scatterer is the same for every antenna. With this assumption, the angle between the
normal to the antenna pair (p,q) in the array and the azimuth of cluster k relative to
antennas p or q are the same. This angle is noted Oy p 4. The cluster width is noted
o2 and the distance between the antenna array and the cluster is Ay (the far-field
assumption makes the distance between the cluster and an antenna the same for each
antenna of the array). The euclidean distance between antennas p and q is noted dy, .

where A} /o ~ (1 — e=3% /)y, J, is the n'" Bessel function of the first kind
and I, is the n* modified Bessel function of the first kind.

Proof.
See Appendix A. 0

Corollary 1.1. For ki — 0 (narrow scatterer):

E|Cy,Cl
{ P M} = Su_odo (27‘('%> , (1.4)
VE[Cip[[E[[Crql] Ac

where \. is the wavelength of the carrier frequency.

With (1.4), the often used antenna distances d, , > A./2 yield a correlation of
magnitude of at most 0.4, as can be seen in Figure 1.5.



20 Parametric models for communications
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Figure 1.5: Correlation between path amplitudes at antennas p and q separated by a
distance dp, , according to the model (1.4) for narrow scatterers.

Definition 1.3. The P channels of a Sparse Common Support model with K
Rayleigh fading paths have for CIR

K
hp(t) = Y Crplt —ti) , (1.5)
k=1

with path amplitudes Cy., ~ N (0, c21) and cross-correlation defined by (1.3).
Therefore the channels of the sparse common support model share a set pa-
rameters {ty}r=1,. Kk and have their own path amplitudes.

Measurements of sparse common support channels will therefore share a common
set of parameters and have also parameters of their own. This calls for joint estimation
techniques which we will develop in the next chapter.

1.2.4 An example of sparse common support channels

We now validate the sparse common support model on a set of measurements collected
by the FTW laboratory in Vienna [67]. We will subsequently call these data the
Weikendorf dataset, from the place it was collected in.

The properties of the Weikendorf dataset are listed in Table 1.1, and Figure 1.6.(a)
shows the CIR over time.

The properties necessary for the sparse common support hold if :
3:-10%m-s !

5 = “Ioonin = 2-5m. Approximately, scatterers should have a size up to

one meter, and the distance between them should be more than 10m.

1.

2. Receiving antennas form a linear array with 8 elements separated by a distance
Ac/2 = 7.5cm. Therefore the maximum distance between antennas is

c
Anax = 60 2.5m = —.
cm << m B

The common support assumption is relevant.
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a) Evolution of CIR over time
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Figure 1.6: Field measurements from the Weikendorf dataset [677]. The receiver is
a base-station with P = 8 antennas, and the transmitter is mobile. The image a)
shows the magnitude of the first antenna’s CIR. The channel is qualitatively sparse
except when the transmitter goes through a tunnel. The real part of the CIR for three
different antennas is shown in b) confirming the common support property and the

transient nature of sparsity.

3. If the properties necessary for sparsity hold, and one can use (1.4) to show that
the path amplitude cross-correlation does not exceed 0.4 as shown in Figure 1.5,
and therefore path amplitudes are not shared between the channels.

Sparsity as a transient property

The bandwidth, propagation speed and antenna topology are fundamental properties
of a communication system which is not subject to change over time. On the other
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Table 1.1: Properties of the Weikendorf dataset [67]

Property Value

Center frequency f. 2 GHz

Center wavelength A 15 cm

Bandwidth 120 MHz

Mobile Tx 15 monopole antennas uniformly arranged on
a 30 cm diameter circle at 1.5 m from the
ground

Static Rx 8 patch antennas separated by 7.5 cm (Ac/2)
forming a linear array at 20 m from the
ground

Time interval between snapshots 21 ms

Tx speed 3 to 6 km/h.

Recording About 1 minute. The Tx travelled a distance

of about 50-80 m) and went through a tunnel

hand, the landscape of scatterers may evolve as the transmitter or the receiver move
(mobile communications) or as reflecting objects move (mobile environment).
Therefore, the sparsity pattern of a channel may change over time. This is specially
true in the Weikendorf dataset — see Figure 1.6.(b) — in which the transmitter
goes through a tunnel : the many reflections inside the tunnel invalidate the sparse
multipath assumption.
The dynamic nature of sparsity leads to two separate algorithmic issues

Tracking Over time, the parameters of a sparse multipath model may vary smoothly,
which hints at an estimation which tracks the signal parameters.

Model selection An estimator of sparse models should be able to evaluate if the model assump-
tions are met. E.g., failure to do so would result in poor performances in the
tunnel.

1.3 Conclusion

This study of the physics at work behind sparsity in wireless communications allowed
us to delimitate the range of application of a rigid channel model like the Rayleigh
multipath model. Our conclusions corroborate those of Berger [30] on sparse esti-
mation of underwater acoustic channels. In the acoustic setup, the low propagation
speed of sound waves (=~ 1.5 x 10°m---s~! in water) compared to EM waves inval-
idates most of the properties required by the multipath model, and in this case the
less rigid sparse model used in the compressed sensing framework provides a good
trade-off between the multipath model and the bandlimited model.

The sparse common support model is shown to be relevant for outdoor communi-
cations with a medium bandwidth — up to 200MHz approximately — as found in the
Weikendorf dataset. Nevertheless, it does not rule out its application to ultrawide-
band communications as the physical properties of the channel are entirely different
for short range communications[42; 73].
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The challenges laid out in this chapter — which we will study next — can be
summarized as

e Developing joint estimation algorithms for the sparse common support model.

e Developing tracking algorithms to take advantage of smooth variations of the
parameter values over time.

e Developing efficient and accurate tools for model order estimation. This task is
an instance of a detection problem.

e Detecting transient properties such as sparsity — which is a corollary of model
order estimation (detection).

After presenting estimation and detection methods in Chapters 2 and 3 respec-
tively, the fitness of the sparse common support model will be tested on the Weikendorf
dataset presented above at the end of Chapter 3.
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Chapter 2

Parametric estimation
algorithms

The parametric model for communications developed in Chapter 1 sets up the funda-
mental — because dictated by the physics — properties of wireless communications.

If we picture communications as a succession of layers — the physical properties
forming the first one — the sampling scheme completes the picture. This second layer
is not dictated directly by physics, nevertheless standardization leaves few options (for
good reasons). In this chapter, we will focus on OFDM based communications which
are the most common in modern standards — e.g. WLAN, digital radio and TV, 4G
communications! — and we quickly outline in Section 2.1 the features relevant to the
channel estimation problem.

With this base, we then develop channel estimation algorithms in two steps. Sec-
tion 2.2 reviews line spectra estimation techniques, and extends them to sparse com-
mon support (SCS) channels (see Chapter 1) which require a joint estimation of the
support. After identification of the computational bottlenecks, we propose a less de-
manding algorithm in Section 2.3 with guarantees on the accuracy. The reduction of
the computational complexity is crucial since channel estimation is a core block in
the communication stack of mobile devices.

2.1 Measurements model for OFDM communications

The processing chain from the electromagnetic radiation measured by an antenna to
a sequence of samples can be schematized as

e A demodulator, which converts a real-valued bandpass signal into its complex-
valued baseband equivalent

e A lowpass filter

1We may cite a few examples: IEEE 802.11a/g/n for WLAN; DAB, DVB-T, DVB-H, and Medi-
aFLO for digital radio and TV; 3GPP-LTE, IEEE 802.16¢/802.20 for 4G communications.

25
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e An analog to digital converter sampling uniformly and quantizing the input.
We will assume an ideal uniform sampler and neglect the distortion introduced
by quantization.

It is assumed that white gaussian noise is present in the measurements of the
channels (no interference). Since demodulation is a linear operation, the baseband
equivalent channel after demodulation is

y(t) = (z*h)(t) +e(t), (2.1)

where 2(t) is the transmitted signal, h(t) is the channel impulse response (CIR)

and £(¢) is a 0-mean white gaussian process with variance o2.

The signal z(t) is filtered with an ideal lowpass filter? of cutoff pulsation wy = QT—’ST
and critically sampled at 1/7Ts Hz, resulting in a sequence with DTFT
Y (/) = X(ed¥) - H(e?*) + E(e?) (2.2)

where E(e/) is a white 0-mean gaussian process over [—, 7[ with variance o2.

2.1.1 OFDM in a nutshell

Nothing was said about the properties of z(t) so far as it depends on the communi-
cation protocol itself. We choose Orthogonal Frequency Division Multiplering, which
has the following properties

e The signal z(t) is a succession of frames. Each frame has a duration T}.

e Symbols are coded on the coefficients of an N-points DF'T. This DFT coefficients
are called subcarriers, and their inverse DFT is interpolated with a lowpass
filter to yield a periodic waveform z4(t) of period T,. A subset of subcarriers
is reserved for signalling data called pilots, the other subcarriers are for the
transmitted data.

2.1.2 Structure of a frame

A frame of duration T is composed in time of a cyclic prefix and the data block x4
as shown in Figure 2.1.

The cyclic prefix is a periodic padding of the data block. Using the notation of
Figure 2.1

x(t) = x(t+Tq), t€I[to— Tmax, tol-
It serves two purposes

e Helps synchronization at the receiver side by detecting the correlation between
the prefix and the matching portion in the data block.

e Makes the convolution between the CIR and the OFDM frame appear “circular”
if the CIR is supported on [0, Tyax|.

2In practice the sampling prefilter has an impulse response close to an ideal filter.
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* Ty >
[¢—— Tmax >« Ty >|
... . . NIE Td) T4 (1‘) e e |
tO — Tmax to to + Td

Figure 2.1: OFDM frame format : x4(t) is the data block of the frame and a cyclic
prefiz of length Tmax 1S prepended to form the frame.

Indeed, with the latter property for ¢ € [to — Tmax; L0 — Tmax + Tul

y(t) = (z*h)(t) +(t) ,
= (Faxh)(t) +e(t) .

where 2,4 is the periodization of x.
After sampling uniformly y over [to — Tmax, fo — Tmax + ZTu| at a rate %, the
N-points DFT of the sampled signal is

Y[n] = Xq4[n]- Hn]+ E[n] ,n=0,...,N — 1. (2.3)

2.1.3 Pilot layouts and the delay-spread

To estimate the impulse response spectrum H, the receiver possess the DFT coeffi-
cients of the measurements Y.

In the noiseless case (E[n] = 0), if H is only supposed to be bandlimited and
critically sampled, a simple dimensional argument shows that X; must be perfectly
known and everywhere non-null in order for the mapping from H to Y to be invertible;
i.e. for the effect of the channel to be reversed.

Nevertheless, the use of a cyclic prefix was motivated by the fact that h(t) is
supported on [0, Tiax[, Where Tmax < Ty is an upperbound on the delay-spread of the
CIR, i.e. H is also time limited.

With this assumption on the delay-spread, the classical Shannon-Nyqvist sampling
theory [114] used dually — time-limited replaces bandlimited — states that H is
unambiguously defined by its DFT coefficients decimated by L%J [134].

Therefore, only a decimated set of the coefficients can be reserved for values known
by both the transmitting parties, called pilots. Without loss of generality we index
these pilots on a the set {—M, ..., M}, yielding an (odd) number of 2M + 1 pilots
per frame.

The resulting pilot layouts are shown in Figure 2.2. The most popular layout is by
far the scattered layout, with the rationals that it provides the densest time-frequency
sampling grid for a fixed average number of pilots.

2.1.4 Sparse common support (SCS) channels for OFDM com-
munications

The problem of parametric channel estimation in OFDM communications with mul-
tiple antennas is know well defined. The sparse common support model from Defini-
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Figure 2.2: In pilot assisted OFDM communications, subcarriers (time-frequency
slots) are reserved to transmit data (o) or to probe the channel with predefined values
called “pilots” (e ). The pilot layout forms a sampling scheme for the CIR in time and
frequency. The pilots form a regular lattice in time and frequency. The gap between
pilots in frequency (vertical gap) is of particular interest. The separation between
pilots in frequency D is called the decimation factor. In b) and ¢), D = 3.

tion 1.3 is compatible with the OFDM signal specifications since it was assumed that
a bandlimited and periodic signal is transmitted.

Assuming the pilots® take the value 1, the demodulated measurements for P SCS
channels are

K
Yolm] = Y cppe2rPmtmolte/Te . Blm] . p=1,...,P,
k=1
and m € {—|(N—1)/2D],...,|N/2D|}. The integer numbers D and m are the gap
and offset of pilots in the DFT domain®. A schematic view of the receiver frontend
is shown in Figure 2.3.
To avoid a cluttered notation we assume without loss of generality mg = 0 and m €
{=M,...,M}, and define wy, = 27ts, /Ty mod 7, so that the channel measurements
are in the DFT domain

K
Y,[m] = Z crpe P 4 Blm] |
k=1

Im| < M. (2.4)

2.2 Basic algorithms

In this section, we study the estimation of the time of arrival (ToA) and amplitude of
paths according to the measurement model (2.4). These algorithms are generalizations
of line spectra estimation techniques to multiple inputs.

3Pilots are usually complex numbers of unit-modulus — e.g. see [55; 54; 89] — setting their value
to 1 does not restrict the range of application as a ‘demodulation” of the pilots would not change
the noise statistics.

4Varying the values of these parameters generates the different layouts shown in Figure 2.2.
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Figure 2.3: Schematic view of the receiver from the antenna to the pilots.

The data matriz is a central object that will be used in the different algorithms
we will study in this chapter and the upcoming ones.

Definition 2.1. (Data Matriz)
Let {Y,}p=1,..p be measurements defined in (2.4). The data matrix T of
dimension L is the block Toeplitz matriz of size P(2(M +1) — L) x L

T
T=|: ,
Tp
such that
5 xL
Y [-M+L—-1] Y,[-M+L-2] ...  Y,[-M]
Y, -M+L] Y, -M+L-1] ... Y, [-M+1]
T, = x2(M+1)— L
Y, [M] Y [M—1 ... Y,[M—L+1]

Definition 2.2. (Vandermonde decomposition)
In the notseless case (Pr[E[n] =0] = 1), the Toeplitz blocks T, in Defini-
tion 2.1 have a Vandermonde decomposition

T, = Voou1)-DpVi,

where D), is a diagonal matriz of size K,

D, = diag(cip,....cxp)
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and V,, is a Vandermonde matriz of dimensions n x K

1 1 .. 1
e—iDwi e IDwa o emiDuwk
Vi =
€7ij1n 67jDW2n o 67ijKn

From the Vandermonde decomposition, a useful lemma immediately follows

Lemma 2.1. In the noiseless case

rank(T) < K.

Proof.
Using Definition 2.2,
Vem1)-1)D1
T = : Vi.
V- Dp
Therefore, T is the sum of K rank-1 matrices and has a rank of K at
most. g

If the Vandermonde decomposition is useful to prove a rank property on the data
matrix, the value of the factors in this decomposition is unknown, and finding them
amounts to solving the channel estimation problem.?

b Example 2.a — Joint multipath estimation : the data matrix

In this chapter, a small toy example will be used throughout the sections, to show the
formulas “in action”. This example has P = 2 channels with K = 3 paths, and 9 DFT
pilots are available for each channel (M = 4). The gap between each pilot is D = 3.

The times of arrival (ToA) are respectively 0.1, 0.6 and 1.4. The power of each scatterer
is [1, 1.5, 0.5]. The amplitudes cx , for each path are realizations of uncorrelated complex
normal random variables (the channels are independent Rayleigh fading). A realization of
the amplitudes is for example

—0.205 + 0.0929] 0.718 +0.423j —0.26 + 0.385;
—0.556 +1.25]  2.95+1.51j  0.697 — 0.648j |’

yielding the CIR

51f ty. /T, are integers, then the Vandermonde decomposition and the SVD coincide up to a rotation
of the diagonal entries in D), to make them real and non-negative. Furthermore the columns of V,
are the n + 1 points DF'T basis vectors.
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The DFT coefficients of the CIRs are

—0.33 + 0.67j —0.24 4 0.42j —0.28 4 0.64j 0.25 + 0.9j 0.97 + 0.377j 0.85 — 0.66j 0G0
—3.95 + 3.27j —1.57 4+ 5.25j 1.66 + 4.67j 3.09 + 2.11j 2.34 4 0.08j 1.31 — 0.49j .

The DC coefficient of the DFTs is the framed one, and one out of three coefficient is a
pilot known at the receiver (shaded boxes).
From this data the receiver can build the block-Toeplitz data matrix

'[m —0.33 4 0.67j —0.87 — 1.16j 0.31 — 0.01j 0.4 +0.72j 7

—0.13 - 1.06j  [0.25+0.9j]  —0.33+0.67j —0.87 — 1.16j 0.31 — 0.01j

—0.484+0.15] —0.13 —1.06)  [0.25+0.9j] —0.33+0.67j —0.87 — 1.16j

—0.17 4 1.43j  —0.4840.15) —0.13 —1.06j  [0.25 + 0.9j]  —0.33 + 0.67j

T — 0.56 — 0.5j —0.17 4+ 1.43) —0.48 +0.15] —0.13 — 1.06j  [0.25 +0.9j (2 5)
- ‘3.094—2.11]‘] —3.95 + 3.27§ —2.95 — 1.01j 2.44 — 1.6j —1.66 +2.875 |’ .

0.86 — 0.93j [3:09 +2.11j] -3.95+3.273 —2.95 - 1.01 2.44 — 1.6j

—3.98 + 1.03j 0.86 — 0.93j [3.09+2.11j] —3.95+3.27j —2.95—1.01j

2.01 + 3.78j —3.98 + 1.03j 0.86 — 0.93j [3:09 +2.11j]  —3.95 + 3.27j
| 4.21 + 0.46j 2.01 + 3.78j —3.98 4 1.03j 0.86 — 0.93] 3.09 + 2.11j ||

which is not hermitian as the original time-domain measurements are complex-valued.
As expected from the Vandermonde decomposition, T' has rank 3, and one can verify
S that its singular values are [17.19, 6.78, 5.25, 0, 0].

J

2.2.1 The annihilating filter

The first estimation technique for the times of arrivals we review, is called the annihi-
lating filter method, or Prony’s method. It dates back to [101] and is used in spectral
estimation [129] and FRI sampling [133; 31]. We can show from Lemma 2.1

Proposition 2.1. Let T be the noiseless data matriz with K + 1 columns, then
there exists a € CE+1\{0} such that

Ta = 0. (2.6)
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‘ The vector a is called the annihilating filter of T'.

Proof.
The proof is a corollary of Lemma 2.1, by which T' of column dimension
K + 1 is singular. Therefore its nullspace contains a # 0. ]

Moreover, the annihilating filter a is unique up to scaling if and only if the noiseless
data matrix T' is of rank K — necessary and sufficient conditions are found in [15].

Equation(2.6) can also be seen as a K terms linear recursion on the measurements.
Indeed, if one scales the annihilating filter so that ax+1 = —1, then

[T 1.x[ali.x = [T]. k11, (2.7)

which shows that any DFT coefficient® of the signal can be written as a linear
combination of the previous K ones. This interpretation is popular in coding theory,
e.g. see the Berlekamp-Massey algorithm for linear feedback shift registers (LFSR)
on finite fields [85].

The time of arrival are found as the roots of the annihilating polynomial — the
polynomial of degree K which coefficients in the canonical form are the entries of a.

Lemma 2.2. [15]
Given Y,[m] = Z,{;l cupW™% form =—-M+K,...,M and t; # tj, Vi # j,
there exists a unique set of coefficients {ay}x=1,.. K such that:

Yolm] = arYyfm — 1] + asYyfm — 2| + - + axYy[m — K]

where

wi —ale_l — =AW — K

is the polynomial with roots {W'}p_1 K.

Proof.

A linear recursion of degree K can be written as:
Wy = @1 Wp—1 + -+ agWn_x, arx # 0. (2.8)

Its characteristic equation is:

K-1

wl —aw® = —ag w—ag = 0. (2.9)

If Ay is a solution of (2.9) then multiplying both sides of the equation by
A=K (5£ 0 since ax # 0) shows that A7 is a solution of (2.8). Moreover by
linearity, any linear combination of solutions of (2.8) is still a solution, and

SExcept for the first K coefficients which do not have K predecessors
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if (2.9) has K distinct solutions, {ay}r=1, . k is uniquely defined by a set of
K independent linear equations.
Hence, for Zszl e pW™h “solution” of (2.8), & # ¢ mod Ty for all
k # 1, there exists a unique set {ay }r=1,. x such that {W?},_; x are the
K distinct roots of w® —aqw® ! — - —ap_1w — ak. O
7~ Example 2.b — Joint multipath estimation : the annihilating filter property —

Continuing the previous example, Lemma 2.2 implies that the DFT coefficients in the pilot
sequence can be written as a linear combination of the 3 previous coefficients. This linear
prediction property (2.7) is written as (the DC coefficient is boxed for reference)

[ —0.87 — 1.16j

0.31 — 0.01j

0.40 + 0.72j ]

— GRS
—0.33 + 0.67j —0.87 — 1.16j 0.31 — 0.01j 38 + 0.67j
0.25 + 0.9j —0.334+0.67j  —0.87 — 1.16j
) - ) —0.13 — 1.06j
—0.13 — 1.06j l0.25+0.9_]l —0.33 4 0.67j 048 + 0.15)
—0.48 + 0.15j —0.13 — 1.06j 0.25 4 0.9j ai —0.17 + 1.43]
—0.17 + 1.43j —0.48 + 0.15]  —0.18 — 1.06j 0.56 — 0.5
— 2.95 — 1.01j 2.44 — 1.6j —1.66 + 2.87) az —3.95 + 3.27) |°
—3.95 + 3.27j —2.95 — 1.01j 2.44 — 1.6 as 3.00 + 2.11j
3.00 + 2.11j —3.95 4+ 3.27j  —2.95 — 1.01j 0.86 — 0.93;
0.86 — 0.93j [3.09+2.11j] —3.95 + 3.27j —3.98 + 1.03j
—3.98 + 1.03j 0.86 — 0.93] 3.09 + 2.11j 2.01 +3.78j
) ) - L 4.21+0.465
| 2.01+3.78j —3.98 + 1.03j 0.86 — 0.93) |

Solving this system yields the annihilating filter coefficients

[ao, ..., as] = [1, —0.24 +0.4j, 0.24 + 0.39j, —1 + 0.02j,

The roots of the corresponding polynomial are [0.96 — 0.3j, —0.23 —0.97j, —0.49 + 0.87j].
The phases of the roots are [0.3, 1.8, 4.2], which are the original ToAs multiplied by 3 —
the decimation factor.

If AWGN is added to the measurements, neither the least-square nor the total least-
square approach are optimal to solve the linear prediction equation (2.7). To mitigate the
effect of the noise, a denoising step is performed on the data first — see Figure 2.5.

-

J

In the presence of AWGN, (2.7) is a linear system with both coefficients and
constant terms corrupted by white gaussian noise. If the noise realizations were
independent from one coefficient to another, a consistant estimate of a would be
obtained by solving the system in the Total Least Square (TLS) sense. However, the
noise realizations in [T, 1.x are constant along the diagonal.

To remedy this shortcoming a denoising step, called Cadzow denoising [40], is
used in [31] for a single channel. This denoising method uses a a lift and project
approach by enforcing the low rank constraint on the Toeplitz data-matrix (lift) fol-
lowed by restoration of the Toeplitz structure. This two step procedure is iterated
until convergence.

The estimation performances are found to be best for a data-matrix of roughly
equal dimensions [31], i.e. for L = M + 1.

Since M > K, the computational cost of the annihilating filter followed by Cadzow
denoising is dominated by the SVD used in the lift operation in the denoising steps
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Figure 2.4: Simulations with P = 4 non-fading channels with K =5 paths and 63
DFT pilots (M = 31). Denoising the measurements with Cadzow algorithm greatly
improves the performances of the annihilating filter (AF) method.

which requires O(PM?) operations” as seen in Figure 2.5.

2.2.2 Rotation invariance

The annihilating filter method used the low-rank property of the data matrix to
compute the estimate of the time of flights. The Vandermonde decomposition only
entered the picture indirectly when linking the roots of the annihilating polynomial to
the ToA, i.e. after the estimation has taken place. The denoising iterations remedy
this shortcoming by taking into account the Toeplitz structure of the data matrix
during the estimation.

We now shift our attention to the ESPRIT algorithm [108] which takes into account
the peculiar structural properties of T' to estimate the time of arrivals.

The ESPRIT algorithm relies on the rotation invariance property of the data
matrix column space

Proposition 2.2. Let T = USV™* be a noiseless data-matric — see Defini-

tion 2.1 — of rank K written in the form of its singular value decomposition.

The submatrices VT = [V]iend—1,1:x and V= [V]2:end1:kc verify
vi=VIR,

where the eigenvalues of R are \y(R) = e?Pr,

7This complexity assumes a “constant” and thus negligible number of iterations for denoising. In
comparison solving the annihilating filter in the TLS sense requires O(PM K?) operations.
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Figure 2.5: Estimation of the ToAs using the annihilating filter property and Cadzow
denoising. The denoising step is an iterative lift and project algorithm [40]. The lift

operation (thick frame) requires O(PM?) flops and its computational cost is the most
significant.

Proof.

The rotation invariance property obviously holds on the Vandermonde de-
composition of T' (see Definition 2.2)

eJ Dwi

Tyl e/Pe
vi=Yy

eI PwK

def
= Dp

The matrices V and [V]. 1.x span the same subspace, the column space of
T. Therefore there exists an invertible K x K matrix A such that V. = V A.
Then
VI =V'A = VWWDrA = VWAA 'DRA.
M~ ——

vi déf R

O

This establishes that rotation invariance can be used for joint ToA estimation on
common support channels, and the procedure is summarized in Figure 2.6.
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Figure 2.6: Estimation of the ToAs using the rotation invariance property of the
block-Toeplitz data-matriz. The computational complexily is dominated by the esti-
mation of the signal subspace (thick frame) requiring O(PM?) flops.

- Example 2.c — Joint multipath estimation : the rotation invariance property —

Continuing the previous examples, we obtain an orthonormal basis for the 3-dimensional
signal space of T' by taking the 3 principal singular-vectors of its column-space :

0.4 —0.39 0.43

"2 0.06 - 048] 0,42 = 0.024j  —0.23 + 0.33j!

V = : —0.4 + 0.14j —0.46 + 0.27] —0.31 — 0.43j"
| 0.24 4 0.33j —0.3 + 0.43j 0.37 +0.02j

1 0.27 — 0.37j —0.10 + 0.31]  —0.22 + 0.42j ,

Because the data-matrix in (2.5) is exactly rank 3 (no noise), the columns of T' belong
to this subspace; in the presence of noise, this step orthogonally projects the columns of
the data-matrix on a subspace of dimension 3, fitting the data to the low-rank model.

Then, the two minors V' (solid frame) and V¥ (dashed frame) verify the rotation
invariance property stated in Proposition 2.2. The matrix R solution of VI = V'R is

—0.20 — 0.98j —0.22 — 0.2j 0.13 — 0.07j
R = | —0.10+0.059j 0.91 — 0.29j 0.22 + 0.03j
—0.023 — 0.026j 0.094 — 0.11j  —0.47 + 0.87j

This matrix is not diagonal because the column vectors of V' are not the 3 original
phasors but a linear combination of them. The diagonal rotation matrix is obtained by
undoing the similarity which transformed it into R, i.e. by computing the eigenvalue
decomposition of R. The diagonal rotation elements are the eigenvalues of R

—0.227 — 0.974j 1.8 0.6
z = |0955—-0296j | ,so Zz = (03| = 3-|0.1
—0.49 + 0.872j 4.2 1.4
- J

2.2.3 Putting it all together

The paths amplitudes are estimated independently for each antenna, by solving a
(2M + 1) x K inhomogeneous linear system of equations, e.g. see [31; 15].

Numerical comparisons

Before any further investigations, we can take a step back and compare on synthetic
data how the proposed algorithms fare compared one to another, and so retain only
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Figure 2.7: Simulations with P = 4 non-fading channels with K =5 paths and 63
DFT pilots (M = 31). The performances of the ESPRIT algorithm match those of
the annihilating filter method combined with Cadzow denoising.

the promising ones. Tests on physically measured channel impulse responses are
deferred to the end of Chapter 3.

Non-fading channels We start with a crude SCS model having deterministic path
amplitudes (non-fading) — the parameters are given in Figure 2.7.

As a first observation, the two serious contenders are ESPRIT based methods and
the annihilating filter method with Cadzow denoising. As seen in Figure 2.4, the
annihilating filter method alone is insufficient, and this observation made on joint
estimation corroborates the results made on single channels [31].

Further simulations on fading channels More comprehensive simulations on Rayleigh
fading channels are presented in Appendix B, together with lowerbounds on the pa-
rameters estimation to assess the performances.

Computational cost

Since M > K, the computational cost of the annihilating filter followed by Cadzow de-
noising is dominated by the SVD used in the lift operation in the denoising steps which
requires O(PM?). operations®. Like Cadzow denoising algorithm, the computational
cost of ESPRIT algorithm is also dominated on a SVD of size P(M + 1) x (M + 1)
used for the signal subspace identification, resulting in a cost of O(PM?). However a
single SVD of this size is required by the ESPRIT algorithm. Costs are summarized
in Table 2.1.

The ESPRIT based estimation and the annihilating filter with denoising have the
same computational cost order, however the non-iterative nature of ESPRIT makes
it more attractive.

8This complexity assumes a “constant” and negligible number of iterations for denoising. In
comparison solving the annihilating filter in the TLS sense requires O(PM K?) operations.
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2.3 Fast, in place estimation

The amount of computations and memory consumed by the proposed parametric es-
timation algorithms is problematic for M large — especially for an embedded use
in communication devices. As an example, the 3GPP-LTE standard [54] uses be-
tween 72 and 1200 resource elements® depending on the bandwidth mode. For higher
bandwidth modes, it renders the proposed algorithms fairly incompatible with the
real-time and embedded requirements of mobile communications.

For a signal sampled at a rate far above the rate of innovation [31] — i.e. K < M
— the extraction of the K dimensional signal subspace from the M + 1 dimensional
column space of T' is particularly inefficient for two reasons :

1. A total of M + 1 singular vectors are computed, and only the K principal are
used.

2. The data matrix is well structured and it can be represented in memory by
P - (2M + 1) complex numbers, and in some cases, affords faster algebraic ma-
nipulations. Algorithms used to compute the SVD may not exploit this structure
and may also destroy it right from the beginning (e.g. Householder reflections,
and Givens rotations).

In this section, we outline a numerical procedure able to identify the signal sub-
space in O(PK M log(M)) flops and operating in O(P K M) memory, greatly reducing
the computational complexity of ESPRIT based algorithm. It is based on projection
onto a Krylov subspace using Lanczos’ algorithm. In general, identification of a signal
subspace with Lanczos’ algorithm is not new and can be found in [141] for example
where it is used on low-rank covariance matrices.

In our setup, the additional structure of the data matrix allows to reduce the
complexity not only to O(PK M?) but further down to O(PK M log(M)). A necessary
result to achieve this complexity order is to extend the convergence result of [142] such
as to apply when the spectral measure of a noise-only and properly scaled data-matrix
is unbounded as M grows. This result will be presented in Theorem 2.3.

2.3.1 Krylov subspace projection and Lanczos’ algorithm

A pedestrian introduction to Krylov subspaces The Krylov subspace of dimension
L of an hermitian symmetric matrix H of dimension M + 1 is the subspace spanned
by vectors obtained by applying L — 1 times the power method to an initial vector fj.
The power method computes at iteration ¢

f( = Hgfo )
For L — 1 iterations the associated Krylov subspace of dimension L is

Kr(H; fo) = span{fr}i—o,....L-1-

It is intuitive that with the adequate normalization, f, converges to &; the prin-
cipal eigenvector of H provided that (&1, fo) # 0, to show it

9roughly the number of pilots
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[

fo = BAE fo = Y M. (&m, fo)&m,

where the first term in the summation will outweigh the other terms as £ — oo.

Definition 2.3. The eigenvalues (resp. eigenvectors) of the orthogonal projec-
tion of an hermitian matriz H onto the Krylov subspace K1 (H, fo) are called
the Ritz values (resp. Ritz vectors) of H in K (H, fo).

Witnessing the convergence of the power method to the principal eigenvector, one
may follow the intuition that a Krylov subspace tends to “align” with the subspace
spanned by the principal eigenvectors of the original matrix H, implying the Ritz
vectors and Ritz values would provide an approximation of the principal eigenpairs
of H.

The formalization of this intuition is called Rayleigh-Ritz theory, a good introduc-
tion is found in [97].

The quantification of the error made by approximating the principal eigenvectors
and eigenvalues of the hermitian matrix T*T" with Ritz vectors/values will be treated
in Section 2.3.3.

Orthogonal projection onto a Krylov subspace: Lanczos algorithm The most
straightforward way to obtain the eigenbasis of K (H; fy) numerically, is to orthogo-
nalize the set of vectors { fr}s=o,... —1. Done naively (Gram-Schmidt process, House-
holder reflections, . ..), the cost of this operation is O(L*M).

A more efficient orthogonalization scheme is obtained by using the fact that vectors
in a Krylov subspace are in bijection with polynomials in H. A vector a € K (H; fo)
is expanded as

L-1
a = [ZW'HZ} Jo
=0

def
= pa(H)

and so, orthogonality of @ and a’ in a Krylov subspace for any initial vector fo
amounts to orthogonality of polynomials

(a,a)=0 <« (pa(H), pa(H)) = 0.

A sequence of orthogonal polynomials of increasing degree has the peculiar prop-
erty to verify a three terms recursion

Theorem 2.1. (Szego [123])
Let po(t), pi(t), ... be a sequence of orthogonal polynomials of increasing
order, i.e. p; is of degree i and (p; , p;) # 0 iff i = j. Then for alli >0
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Pig1(t) = (ait +by)pi(t) + cipi—1(t) ,

_ Q41 _ Bi+1 i _ oiqraioapill®
where b; = =L a; = b; [ =L ——B? , ¢ = sl
a; Qg1 a; o224 ||

and o, B; are the leading coefficients of p;, i.e. pi(t) = aut; + Biti—1 + - --.

Proof.
See [123].

An important implication of Theorem 2.1 is that an orthonormal basis {qo, . ..

spanning K (H; fy) can be obtained by computing recursively

£
qit+1 = pi+1(H)f0:
= (a;H + bj)p;(H) fo + cipi—1 (H) fo,
= (a;H +b;i)q; + ciqi—1 ,

Starting with qo = fO/ HfOH and q1 = W

, QL—1}

This recursive procedure, which orthogonalizes each basis vector against the two
previous ones is Ldnczos algorithm [74]. Another implication of this three terms
recursion is that the orthogonal projection of H onto K (H; fy) can be written as a

tridiagonal similarity [97]

ag P
. * B o
PIO)xc, (H;f0) = Q
Br-1

Br-1 ar—1

where Q =[qo -+ qr—1].

Therefore, computing the Ritz pairs amounts to evaluating the eigenvalue decom-
position of a symmetric tridiagonal matrix of dimension L. This eigenvalue problem
has an O(Llog? L) or O(L?) solution depending on whether the eigenvectors are to
be computed or not [62]; so that for L < M, the cost of the Lanczos iteration itself

dominates the cost of the whole procedure.

In practice, Lanczos’ algorithm suffers from unavoidable numerical instabilities,
which mitigation has been thoroughly studied [97; 32; 117]. A key observation is that
there exists stable algorithms [76; 12] computing an orthogonal basis for K, (H; fo)
in O(L x mvm(M)) where mvm(M) is the cost of a matrix vector multiplication of

size M.
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2.3.2 Fast Lanczos iterations for SCS estimation

The data matrix T' is not hermitian'®, nevertheless the ESPRIT algorithm only re-
quires its right singular vectors V. The mapping

T T°T = VAV™,

transforms the data matrix into an hermitian symmetric matrix, which we call the
data autocorrelation matriz. Its eigenvectors are V' and eigenvalues are A\, = a,%,
where o), are the singular values of T. A downside of this mapping is to square
the condition number, however since our interest is limited to the upper-end of the
spectrum, this is not a critical issue.

The data autocorrelation matrix is simply the sum of the block’s autocorrelation
matrices

P
T = Y T;T,,
p=1

therefore a matrix-vector multiplication can be done in parallel for each block.
For square Toeplitz matrices of dimension M + 1, matrix vector multiplications
can be done in O(M log M) using the FFT

Proposition 2.3. Let T}, be a square Toeplitz matrixz of dimension M + 1 with
a first-row tX and first column t..
The matriz-vector product Ty, f is computed in O(M log M) with O(M) mem-
ory as
T,f = [IDFT {g, DFT{[s". 0. - 1}}] 001

where
T
g, = DFT { [tg“ 0 tyarer tear - tw] } ,
Proof.
This is a well-known result — see [14] — which relies on embedding T}, into
a circulant matrix of dimension 2(M + 1). |

10An algorithm similar to Lanczos algorithm exists for non hermitian symmetric matrices —
Arnoldi’s method, though, its stability is in general poor.
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Table 2.1:  “O7” complexity [154] for subspace identification.

Algorithm Main Storage Latency Processing

computation units

Krylov KPM log M KM KM [144] P x FFT

engines

(2(M +1)

points)

Full SVD PM3 PM? PM3 1 multipurpose

(serial) processor

Full SVD PM? PM? M (log M + P) M?x 2-by-2

(systolic array) SVD pu.
[36; 43]

The full SVD is done with Jacobi rotations and can be massively parallelized using the systolic
array method of Brent et al. [36]. Parallelism greatly reduces the latency of the system, but since
it does not reduce the number of computations it comes at the cost of using multiple processing
units.

Corollary 2.1. Projection of T*T onto an L dimensional Krylov subspace re-
quires L matriz vector multiplications which can be computed with P(4L+1)+1
FFET of length 2(M +1).

Proof.

This complexity is obtained by precomputing the P FFTs for the generators
of the data matrix and of the FFT for the initial vector. Then each of the
L Lanczos iterations requires one matrix-vector multiplication (mvm) with
the data autocorrelation matrix, i.e. two toeplitz mvm, which amounts to
four FFTs. |

Assuming the K principal eigenpairs of T match the K principal Ritz pairs of
Kr(H; fo) for L ~ O(K) the signal subspace can be estimated in O(KPM log(M))
using only O(K M) memory to process the input measurements.

Table 2.1 summarizes the computational and memory consumption of the ESPRIT
based estimation using the proposed acceleration compared to a full SVD (done seri-
ally or in parallel with additional hardware).

2.3.3 How large must the Krylov subspace be?

The key assumption motivating the Krylov subspace approach is that the signal sub-
space can be accurately estimated from a subspace of dimension L < M + 1, rather
than from a full SVD of size M +1. This argument relies implicitly on the convergence
of the K principal Ritz pairs to the K principal eigenpairs of T*T'.

Several bounds on the convergence rate of the Ritz pairs to the eigenpairs exist in
the literature [71; 109; 140]. They bound the distance between the Ritz values and
the eigenvalues and the angle between the Ritz vectors and the eigenvectors, which is
the quantity of interest in our case.
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Figure 2.8: Normalized magnitudes of the K" and (K + 1)** singular values of a
data-matriz of size M + 1 (they are the square roots of the eigenvalues of the hermi-
tian product of the data-matriz with itself). The signal used to form the data-matriz
contains two paths (K = 2) with amplitudes ¢ = 1 and co = 0.5. The noise is iid
normally distributed with a variance of 2. It illustrates the gap forming between i
and A 41 as M grows.

Nevertheless, it is noted in [140] that the general bounds found in [71; 109] are
not tight and hard to use in practice. The bound of Xu [140] remedy this limitations
using two additional assumptions :

A1+ Auna
2
To see if this two conditions are met, a separation theorem is needed.

Je )\k >¢e and )\K+1 — )\M+1 < €. (210)

Theorem 2.2. Consider channel measurements as in (2.4)

K
Yoml = > crpe P+ Efm] ,  |m| < M.
=1l

where K is the number of paths, and E[m] are iid normally distributed with
a fized and finite variance.

Define T the block Toeplitz data-matrix with square blocks of dimension M+1
as in Definition 2.1.

Then, for M large enough, the eigenvalues \y > -+ > Apr41 > 0 of T*T

verify

A o , m< K,
N{ (logM) , else.

Proof.
See Appendix B.2. 0

With this separation theorem, the error estimate in [140] yields
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Theorem 2.3. In the setup of Theorem 2.2, consider the Ritz values and Ritz
vectors obtained from a projection onto a Krylov subspace of dimension L > K.

The approzimation of the K principal eigenvalues/vectors of T*T by the prin-
cipal Ritz values/vectors has an error of order

o (logM)Q(LK) |
VM
The definition of the error for the eigenvalues is a normalized difference with
the corresponding Ritz values

Ak — Ak
AK—Amin ’

where Xk is the k™ Ritz-value and \yin is the least eigenvalue.
For the eigenvectors the sine squared of the principal angle with the corre-
sponding Ritz vectors

sin® Z(&y, &x).-

Proof.
This is a direct application of Theorem 2.2 to Theorem 3.2 in [140]. O

Theorem 2.3 indicates an acceptable approximation error is obtained in O(K) for
M > K, and numerical simulation further support this assumption.

2.3.4 Numerical tests

We apply Lanczos algorithm to estimate the signal subspace in the ESPRIT algorithm.
Figure 2.9 shows that the accelerated implementation is competitive for M > 60. The
input has only one channel P = 1, and for P > 1 an implementation having P FFT
engines running in parallel should have essentially the same runtime.

The accuracy of the accelerated implementation is the same as the plain one (the
Ritz approximation error is negligible).

2.4 Conclusion

In this chapter, we have proposed an algorithm for the joint estimation of multipath
channels based on a classical line spectra estimation technique (ESPRIT).

The computational and memory requirements of a straightforward implementation
of this algorithm showed two issues. First, the computational load is independent of

12The exact value of M matters for the efficiency of the FFT computation; we report in this plot
sizes for which FFTW3 found a good optimization scheme.



2.4 Conclusion 45

—— Krylov subspace
107" | — Plain SVD

x45
1072

Time |s]

1073
50 100 150 200 250 300 350

M (half number of pilots)

Figure 2.9: Median runtime of ESPRIT-TLS (K =5, P = 1) on a single channel for
a given number of pilots 2M + 1. The test is coded in Python and uses the LAPACK
library to compute SVDs and the ARPACK library for the Lanczos iterations. The
fast matriz-vector multiplication uses the FFTWS library'?.

the sparsity level K/(2M +1) and grows cubically with the number of measurements.
Second, the memory footprint was quadratic in the number of measurements.

To adress these issues, we proposed a method based on projection onto Krylov
subspaces, which yields a practical solution requiring an amount of memory propor-
tional to the number of measurements and relies on the FFT for the most demanding
operations. This improvement is made possible by the fact that the data-matrix,
on which the algorithm relies, is never explicitely constructed thanks to its Toeplitz
structure. The theoretical results are confirmed by numerical tests.

To meaningfully measure the estimation accuracy gained over a classical non-
parametric method, tests on synthetically generated data are insufficient. At the end
of Chapter 3, we will undertake such tests. To do so, we will first need to include
signal detection in the picture (Chapter 3) — i.e. add the estimation of K to the
problem.
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Chapter 3

Model detection for sparse
channels

In Chapter 2 we treated estimation problems, i.e. the task consisting in fitting a
model with a fixed set of unknowns to a set of measurements. We assumed that
the sensed channels were realizations of multipaths channels with a known and static
number of paths and a common support. Starting from this a priori known state,
we proposed solutions to estimate the parameters of the model. Another issue is to
obtain this initial state — the identification of a precise model — from what can be
reasonably inferred from the general characteristics of the problem.

Usage of a single fixed model is too narrow for practical applications. E.g., in
multipath channel models, the number of paths is not known a priori and may vary
over time. Also we have seen in Chapter 1 that the multipath model may not always
be relevant as the classical bandlimited model is preferable in cluttered environments.

Therefore, the starting point of an estimation problem is not a single parametric
model but a collection of them, a class of models. The selection of the suitable one
is called detection [132]. Detection differs from estimation in the sense that it alters
the number or the nature of the estimated parameters. The simplest way to look at
the problem is sequential

Detection Estimation .
Class > Model > Estimate

However, estimation cannot be decoupled with detection as the fitness of the model
is revealed by the estimation. A more elaborate approach is to successively refine the
model selection using a feedback loop?.

l Detection Estimation .
Class > Model > Estimate

The issue with an iterative approach is its obvious computational cost and the delay
it may introduce. Ideally, detection and estimation should go side-by-side as much as
it is possible, e.g.

1E.g., “optimum feedback systems” [132].

47
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Pre-processing Estimation
Class > Estimate

y y y
Detection

This is the kind of processing flow we target; and so, the continuity with Chapter 2
is necessary as detection and estimation are now intertwined.

In this chapter, we study how the algorithms outlined in Chapter 2 can be modified
to include detection at a minimal cost. Rather than a sequential approach, we will
try to achieve a joint detection/estimation.

After a review of the main techniques, we propose two criterion. The first one is
based on an hypothesis which can be tested during the fast signal subspace identifica-
tion developed in Chapter 2. If need be, the validity of the detection can be verified
after estimation has taken place, in order to increase the model order if necessary.

The second criterion is a purely geometric one, based on the convexification of the
rank of a matrix called the effective rank [107].

3.1 A review of signal detection for subspace meth-
ods

An exhaustive listing of model order selection techniques for subspace identification
algorithms such as ESPRIT would be an overwhelming task based on their sheer
proliferation? [4; 105; 141; 142; 137; 145; 148].

We will only review methods based on the likelihood of the model. There exists
other methods such as covariance matching estimation techniques (COMET) which
we will not address, see [93] for an in depth review and applications. The selection
criteria based on the likelihood can be subdivided with respect to their mode of
selection. Namely, they use either thresholds or penalty functions.

The likelihood of a model Given a set of parameters O where K is the model
order, let ©) be an estimation based on an estimated model order k and a set of
observations Y € CNV*F distributed according to a probability density f. Each of the
P columns of Y is usually called a snapshot in the literature [137], and the number
of rows N is the number of samples per snapshot?.

The likelihood function — or simply likelihood — is the conditional probability law
f(Y[0W), j.e. the probability of the observation given the estimated parameter
values. For distributions of the exponential family, it is often easier to work with the
natural logarithm of the likelihood function

L©OW) = log f(Y|0W),

2Proposing yet another detection criterion feels in itself shameful; I can only invoke the specificity
of the problem to make it somehow acceptable.

3In the sparse common support model of Chapter 2, P would be the number of antennas, N the
number of pilots per frame and K the number of paths — note that K is not necessarily the number
of degrees of freedom in the model, but it provides an index for it.
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which has the same extrema as f by concavity of the logarithm.
The mazimum likelihood estimate of © is defined as

@%ﬁ = argmax £(@(k)),
6k

Finding the maximum-likelihood estimate or its approximation is the task of esti-
mation and choosing k is the task of detection.
For detection, two options are to be considered

1. A priori detection : Estimation of [I(@)I(JR) without explicit computation

of @)l(ﬁ, which can be seen as a decoupling of estimation and detection. The
feasibility of this approach depends on the problem.

2. A posteriori detection : Estimation of ﬁ(@yﬁ) after explicit computation of

(:)f\ff]{ or a close approximation of it. This approach necessitates the estimation
of the parameters for different model orders, which can be costly.

Not much needs to be said about a posteriori detection. Once the maximum-
likelihood estimate is known or approximated, one simply needs to plug these values
into the probability density of the signal model

A priori detection For a priori detection, we review the pioneering work of Wax and
Kailath [137]. Consider the measurement model

Yoln] =) copXo,In] + Epln],
=1

where E,[n| are iid zero mean complex-valued gaussian random variables with vari-
ance o2
Using matrix notation,

Y = XC+E,
where Y and E are N x P matrices and X, C have size N x K and K X P respectively

Y]y =Yp[n], [Xlne=Xoln]l, [Clip=cep, [Elnp=Epn]

Since the noise covariance matrix is a multiple of the identity, the covariance
matrix of the measurements is given by [137]

R =E[YY"] = XE[CC*| X* +7°L
| —
déf P
The noiseless covariance matrix ® is symmetric and has rank-K, we call {¢ps}r=1,. &
its K principal eigenvectors.
Under the hypothesis that the signal has only k (< K) components?, the estimated
covariance matrix R is truncated

4Evidently, the hypothesis k = K yields the measurements covariance matrix.
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k

R® =3 "(\ - 0®)pep} + 0’ (3.1)
(=1

by identification, (A, ¢o¢)e<k are the K principal eigenpairs of R Because this
parametrization is in bijection with the original one, O®) identifies with R*).

The noise E is additive white and gaussian, so the computation of the log-
likelihood function® is an easy task [132]

LOW) = —P - Indet R® —Tr{[ﬁ(k)]_lﬁ},

where R = %YY* is the sample covariance matriz and R™ is the maximum

likelihood estimate of R(*). N
This estimate can be built from (3.1) taking (A\¢, @¢) as the eigenpairs of the sample
covariance matrix R; and

min(N,P)

1 ~
~2
S by
7 7 min(N,P)—k D, Ao
(=k+1

as the estimation of the noise power.
This yields the log-likelihood formula found in [137]

P 21/(P—k)\ (P—R)IN
[Te—ria A )

P -~ )
ﬁ ZE:KJrl Ae

which can be evaluated directly from the spectrum of the sample covariance ma-
trix.

£©®) = log(

Penalization schemes In a seminal paper [4], Akaike showed that maximization of
the log-likelihood function leads to a model order estimate with a positive bias.

To overcome this bias, he proposed the addition of a penalty term, such as to
minimize the expected Kullback-Liebler divergence between the selected model and
the true model. Under certain regularity conditions — not discussed here, see [6] — it
is shown that the penalty is equal to the number of degrees of freedom in the model

Akaike Information Criterion : AIC(k) = fﬁ(@(k)) + Degrees of freedom .

penalty

The model order estimate is then

~

K = argmin AIC(k).
k

Many other penalty functions have been proposed, the most popular ones are
Rissanen’s MDL criterion [105] and the modified AIC [5].

5Terms independent of k are dropped.
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Thresholding schemes Bartlett and Lawley proposed a statistical test [28; 75] on
the likelihood of the following hypotheses

Hi @ Mgr1 = Mgro =gz = -+,

i.e. the hypotheses that the “left-over” eigenvalues of the covariance matrix are con-
tributed by the noise only — under the assumption of a flat noise spectrum. Starting
from k& = 0, these hypotheses are sequentially tested according to an approximate
x2-test. The index of the first accepted hypothesis is the model order estimate.

A central question is to find a relevant threshold value on which to base the decision
of the tests. This difficulty made penalty based methods much more popular than
threshold based methods.

3.1.1 Applicability of the reviewed detection scheme to the SCS
channel model

The mentioned methods rely heavily on the whiteness and the gaussian nature of
the noise. Indeed, the noise being jointly gaussian, the likelihood function can be
expressed in term of the measurements covariance matrix R. Also, if the noise co-
variance matrix is a multiple of the identity, the measurements covariance matrix is
simply the sum of the signal covariance matrix and the noise covariance matrix. This
property is known in linear algebra as deflation/inflation, as it shifts the eigenvalues.

In the sparse common support (SCS) model, the number of snapshots with inde-
pendent noise realizations, P, is the number of receiving antennas.

Therefore, to obtain a reasonably accurate estimate of the covariance matrix, it
is necessary that P > K (see Example 3.a) — which is to say, many more antennas
than signal “paths” are required. This assumption is in general not satisfied in mobile
communications.

Another angle of attack is to consider the columns of the data matrix T" introduced
in Definition 2.1 as snapshots. There, the number of snapshots is roughly half the
number of pilots which is in general much larger than the number of paths.

However, independence between the noise samples had to be sacrificed, since they
are replicated along the diagonals of the Toeplitz blocks. We have shown in Chap-
ter 2 that the spectrum of a noise-only data matrix is far from being flat [88]. Its
distribution was recently defined by Bryc et al. in [39] via its moments.

To summarize the difficulties :

e The noise and signal spectrums interact in a non-trivial way, ¢.e. it is more
complex than a simple inflation by o2.

e We conjecture that the likelihood function cannot be simply evaluated from the
spectrum of the data-matrix (or the covariance matrix o« T*T') as no closed-form
formula is known for the noise spectral distribution.

e For practical applications, the measurements are not only corrupted by AWGN
but also by potential model mismatches, which makes it harder to establish an
exact spectral profile for the noise.
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7~ Example 3.a — Convergence of the sample covariance matrix

The convergence of Rto R is relatively slow with respect to P/N the ratio between
the number of snapshots and the dimension of the covariance matrix. Ideally, the sample
covariance matrix of the noise should be a multiple of the identity. The ratio between its
largest and smallest eigenvalue provides a measure of how far it is from the assumed flat

spectrum.
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Figure 3.1: Convergence of the spectrum of the sample covariance matrix to
a flat spectrum. The covariance matrix of dimension N is computed from P
iid random vectors containing N iid standard gaussian random variables

Figure 3.1 shows that the number of independent snapshots needs to be orders of
magnitude larger than the dimension of the covariance matrix in order to obtain a flat
spectrum. In the SCS channel model, where independent snapshots are provided by the
antennas of the receiver, this assumption is unpractical.

.

Therefore a viable alternative seems to use a criterion with an a posteriori approx-
imation of the ML estimator likelihood. This implies that the available estimation
algorithm has performances close to the ML estimator and it also necessitates the
estimation of the signal parameters for all plausible model orders.

This “brute-force” solution, which consists in testing many models and keeping
only the best one, may not be suitable for channel estimation on mobile devices in
terms of energy efficiency and computational power.

To be more efficient, this approach would require to first obtain a rough estimate
of the model to narrow down the number of hypotheses.

3.2 Hypothesis testing for structured data matrices

Let E be a random square Toeplitz matrix of size n x n
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o €1 €2 ... E_n+1
€1 €0 E_1
€2 €1
E =
E_1 E_2
€1 €0 E_1
LEn—1 E9 €1 S

with iid diagonal entries 5 with independent real and imaginary parts distributed
as standard gaussian random variables.
Remember the block-Toeplitz data-matrix defined in Definition 2.1

T = fI‘sig + UZTnoisev

where
E,

Thoise = , Ei~---~E,~ E, iid.
Ep

Definition 3.1. Define two hypotheses based on the observations T', where o1 (T') >
o9(T) > -+ are the singular values of T

o Hy(k) : The signal model order is > k.
o Hy(k) : 0p(T) > || Thoisell-

Then

Proposition 3.1.

Proof.
By Weyl’s theorem [138]

|03(T) = 1:(Tig)| < [[Thoise |l -

Therefore =Hy (k) = o4 (Tsig) = 0 = —Hs(k), where — is the negation. This
proves the proposition by contraposition. 0

Proposition 3.1 indicates that as long as Hy(k) is true with a certain confidence,
the signal subspace dimension can be increased with the same or higher confidence.
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Figure 3.2: Statistics on the spectral norm of E over 1000 realizations. The crosses
represent the empirical mean and the box plots show — from the bottom whisker to
the top whisker— the quantiles 0.05, 0.25, 0.5, 0.75, and 0.95. The spectral norm
measure concentrates as n — oo to a value in the interval [v/2F , 2F].

Failure of the test does not indicate that the model order is overestimated — i.e.
the relation in (3.2) is not an equivalence. Nevertheless, it may provide a valuable
underestimate® of the model order, from which to start.

We have already established in Theorem 2.2 that ||Theise|| ~ O(v/nlogn), for the
hypothesis testing, a more precise characterization is needed.

3.2.1 The spectral norm of E

We begin our study of || Tyeise|| with one of its blocks, a simpler non-symmetric square
Toeplitz matrix E.

Proposition 3.2.

. | E]
2.-F <1 — < 2.
v2-r = 8% nlogn — Fo

where [~ 0.8288 - - -,

Proof.
See Appendix C.1 a

In Figure 3.2, the interval found in Proposition 3.2 is confirmed by simulations.

3.2.2 Muiltiple snapshots (P > 1)

The analysis done for a single Toeplitz block does not trivially extend to multiple
stacked blocks. The lowerbound stated in Proposition 3.2 for P = 1 is also a (trivial)

6Tt is an underestimate if the confidence level used to test the hypothesis is high enough.
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Figure 3.3: Same setup as in Figure 3.2, now with P = 4. The asymptotic lower-
bound on the spectral norm for P =1, is also (trivially) a lowerbound for P > 1.

lowerbound for P > 1, as shown in Figure 3.3.

For an accurate characterization in function of n and P, numerical simulation can
be carried out offline to estimate precisely the spectral distribution of T gjse-

Based on this estimation one can compute a threshold to implement the test-
ing of hypothesis Hs(k) at a given level of confidence. This procedure is given as
Algorithm 3.1.

3.2.3 Numerical results

To assess the relevance of Algorithm 3.1, we simulate a P = 4 SCS channels with
K = 7 paths each. Each channel impulse response is uniformly sampled at a critical
rate of N = 255 (large sample regime) and N = 31 (small sample regime) samples
per period.

In wireless communications, the ambient noise level o2 is usually known, as it de-
pends mostly on the gain levels of the amplifiers in the radio-frequency (RF) frontend
or can be estimated during idle time. Therefore, we assume o2 is known and fixed,
and the relative amplitude of the received signal is varied to simulate different SNR
regimes.

In Figures 3.4 and 3.5, the model order estimate is given by largest index for which
the hypothesis Hs is accepted

K = max  k,
Hs (k) is true

and the box plots schematize its empirical distribution. The model order estimate
can be compared to the real model order K, but this comparison becomes meaningless
below a certain SNR, where some of the paths cannot be reliably estimated.

A better comparison is to use an oracle which outputs the model order maximizing
the quality of the estimation. In the context of communications, maximization of the
SNR between the true CIR and the estimated CIR is the goal pursued by channel
estimation as it translates into a higher bit-rate if proper coding is applied [47].
Therefore, the standard for comparison is the oracle which outputs the model order
for which the estimation algorithm achieves the highest SNR gain.

In view of Proposition 3.1, acceptation of the hypothesis Hs(k) is the affirmation
that the true model order is equal or greater than k, therefore the estimate K is bound
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Algorithm 3.1 Composite detection method : The hypothesis Hy and an information
criterion

Input: Sparse common support channel measurements yi, ..., yp (DFT domain),
and 7 a threshold for the hypothesis Ha
Output: K a model order estimate and (t1, ..., tz), {(C1p, ..., €z p)}p=1.p the

SCS model parameters
14 0; k<« 1; Q<« 0 iterate + true; f < random()
while iterate and £k < M +1 do

14— 1+1
f < blockToeplitzMult(yi, ..., ...yp; f)
Add (¢, o, Bi—1) + LanczosIteration(Q; f) to Q

Ri déf {(Xj717j)}j:1”; %RitzPairs(Q)

¢ < ConvergedRitzPairs(R;, R;_1)
whilg iterate and k£ < ¢ do
if A\ > 7 then

k+—k+1
else N
Estimate (Z1, ..., {;) using the Ritz pairs (Apvy)
Estimate {(¢1,p, ..., Ckp)}p=1.p based on (¢1, ..., t;) and the measure-
ments

Compute Lj, the log-likelihood of the estimated values
ITCy < —Lj, + penalty(k)
if ITC, < ITCg_; then
k+—k+1
else
iterate < false
end if
end if
end while
end while
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to underestimate the true model order when H is tested with a high confidence, such
as 95%.

This observation seems to hold also in the conducted tests. As the number of
samples N increases, the measure of the noise spectral norm concentrates and the
SVD of T, tends to its Vandermonde decomposition — which is to say that each
of its singular value corresponds to a path gain oy (Tsg) — >°, |ck,p\2. This explains
why the predicted model order is closer to the oracle in Figure 3.4 than in Figure 3.5.

3.3 Avoiding overfitting

In the previous section, we developed a hypothesis, which when it is accepted with
high confidence provides a reliable underestimate of the model order. The advantage
of this hypothesis is to be entirely based on the higher end of the data-matrix spectrum
which allows for an online evaluation during the identification of the signal subspace.

If the hypothesis is accepted with a low confidence, a positive bias is introduced and
the model order estimate is likely to be overestimated — e.g. setting the confidence
at 50% leads to often accept spurious dimensions.

We saw in Chapter 2 that the data-matrix spectrum only reveals a low-rank prop-
erty and not necessarily its inherent Vandermonde decomposition structure.

Therefore, there ought to be a more robust way to estimate the model-order a
posteriori, i.e. after estimation is fully completed. This step can be seen as an extra
validation used to reject paths which could be explained solely by the noise.

3.3.1 The validation of paths
We assume that a channel estimation gives us K path estimates for P SCS channels
(Ok, €ras ---s Cup), kel, ..., K.
Moreover, the path indices have been classified in two sets :
e /C, contains indices of paths which have been accepted
e /C_ contains indices of paths which status is uncertain.

This classification is feasible in practice since K = () is a valid choice.
We first compute the total residual energy for each path in C_

2
projs, [+, e—Iwrm, ]TH) kek_, (3.3)

def - 1

e ~ 2

= D '(1_2M+1)
p=1

where .

Sy - span{[efweM ...

N S P

For each of these residual energy rx, we should compute the probability to observe
it under the assumption that ¢y 1 = -+ = ¢, p = 0, d.e. roughly” the probability of
a spurious detection. In the next section we compute a threshold for rj to target a
given false detection rate.

, €

7 To be absolutely exact, one should also account for interactions between paths within A _.
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Figure 3.4: These figures show the model order estimation and equalization gain
obtained with an oracle (in blue) — the oracle chooses the model order mazximizing
the equalization gain — and with the simple hypothesis test of Ha(k) (in red) at
different levels of confidence for each row. As expected, using as a model order the
maximal index k for which Hs(k) is believed true, leads to a slight underestimation.
However, the estimation gain achievable with this model order estimate is close to the

one obtained with the oracle.
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Figure 3.5: A smaller number of samples leads to a less concentrated measure of
the noise matrixz spectral norm, which can explain a larger gap. Nevertheless, this
hypothesis testing still provides a reliable lowerbound on the model order which can be
evaluated online with the fast estimation algorithms developed in Chapter 2.
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3.3.2 Extremal statistics of the noise projection

Define the random variable

(P2M +1) % 3 T [m] (3.4)
max\4 + = — m s .
r N RVol T

which is the maximal energy correlation between the noise and the phasor \/%ﬁ

scaled by a factor %
For w € [—m 7[, the distribution of pmax is not easily evaluated as it is the max-
imum in a continuum of correlated y? random variables. If we restrict w to the set
2ml Ye=—m,....m, the phasors form an orthogonal set and the random variable
6] SM+1

M1
P M

5, max Z Z = Ep[m]
=1 |m=—M

is the maximum in a set of iid x2 distributed random variables, for which we can easily
evaluate the distribution. Because of the bandlimitedness, the difference between the
true value of ppax(P,2M + 1) and its approximation obtained by restricting w to the
discrete set cannot be arbitrarily large®, therefore

2

s mhm

Proposition 3.3. A fixed target false detection rate o« — the expected probability
to have at least one detection caused by noise (the probability of overfitting) —
can be achieved approximately by the selection criterion

o2

Validate the k™ path if :  r, > mta ; (3.5)

where 1y, is defined as in (3.3), to is the solution of
1(Pita) = (P= DL (1 - a)mis
¢co 15 a scalar to be chosen within 10.77, 1].

The function ~(P,t) def f; xP~le @ dx, is the lower incomplete gamma
function [2/.

Proof.
See Appendix C.2. O

8See Appendix C.2 for an exact quantification.
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Corollary 3.1. For a single channel (P = 1), the selection criterion is

2
Validate the k™ path if :  r, > — mlog (1 - Q)T}H) 7
o2 oM +1
- o
o (2M + 1) {O + (a)}

Proof.

Use the identity v(1,#) = 1 — e™!, [2] to obtain the first equality. The
second equality follows from the Taylor expansion with respect to « in the
neighborhood of 0. O

The selection criterion stated in Proposition 3.3 is only an approximation, mostly due
to the fact that we assumed the signal did not interfere with the noise when a spurious
path is detected, and also that the estimation algorithm maximizes the correlation
between the pilot measurements and a phasor.

A second approximation was made in linking the distributions of p/ .. and ppax,
where we introduced a correction factor of ¢y which reduces the bias of p/ .. as an
estimate of ppax, but their respective distributions differ slightly®. Nevertheless, the
dependence on M, P and o is correctly captured.

Note that at the limit — when M — oo — pl .«
[63], which parameters can be found in [51](p. 156).

The quantity E,/Ny is the preferred way to measure the SNR in the communica-
tion community. At first sight in Proposition 3.3 — if one ignores ¢, — it appears
that the selection criterion is inversely proportional to E,/Ng, which would be a nat-
ural rule of thumb to follow. In Corollary 3.1, the Taylor expansion makes it more
obvious that the selection criterion does not only depend on E,/Ny but also on the
number of pilots if this number is not negligible as compared to 1/«, the inverse false
positive rate.

follows a Gumbel distribution

b Example 3.b — Extremal statistics of the noise

We can first verify how accurately the observed false positive rate matches the target when
the selection criterion of Proposition 3.3 is used in an idealized setup. In the idealized setup,
we consider measurements containing exclusively noise (no path). Each plot display the
probability (vertical axis) to have a correlation between the noise measurements and a pulse
shape — i.e. a matched-filter output — less than a value ¢ (horizontal axis). In each plot,
we report three curves (upper and lower envelopes and a fit) and simulated data points.
The upper envelope is obtained if the maximum of the matched filter output were to be

9For all tested values of M and P, ¢y =~ 0.9 gave accurate results. See Appendix C.2 for more
details, especially Figure C.1.
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taken among 2M + 1 uniform shifts, and it corresponds to the choice of ¢o = 1. It is an
upper envelope because the output of the matched filter must be greater than the output
of the matched filter taken on a small set of shifts, therefore the value of the cumulative
distribution is over estimated. The lower envelope is obtained from an upperbound on the
maximum of the matched filter output and the plotted curve is thus below the expected
correlation, and corresponds to ¢ = 0.77.

The true expected maximum of the matched-filter output is obtained by simulation and
the probability it exceeds a threshold ¢ is shown as a data point. These simulation data are
accurately approximated by choosing the value ¢y = 0.9.

The number of channels increases from one line of plots to the next, and the number
of pilots increases from one column to the next.
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Figure 3.6: The blue data-points form the cumulative histogram of ”—;pmax —

the maximum of the correlation between complex-valued AWGN and a phasor

for arbitrary shifts in [—m, ©[. The green curves are the CDF obtained with

Proposition 3.3 for the extreme values of ¢o (0.77 and 1). The red curve is

obtained with cq = 0.9 and provides a good fit of the empirical data over all

the tested values of M and P.

Therefore one can accurately estimate the probability that a noise only signal would
have generated a detection for a given magnitude.

It does not address other discrepancies such as the difference between the maximum of
the matched-filter and what is obtained with a subspace method such as the joint ESPRIT
algorithm we proposed in Chapter 2; or the interferences between the signal and the noise.

- J
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3.3.3 An algorithm to prevent overfitting

We may combine the precedent results into an algorithm used after estimation as an
extra validation step.

The main idea is to start with an empty set K, of validated paths, and to add
one-by-one the paths based on the magnitude of their residual ;. Then, every time
a path is added to K4, the projections into the span of K, can be approximated by a
“Gram-Schmidt”-like orthogonalization. Because the correlation between two phasors
has a closed-form evaluation, the total cost of the procedure is O(K?), making it
negligible compared to the estimation.

3.3.4 On the selection of a false positive error rate

The key parameter « is left undetermined. It is not intrinsically bad for a model order
selection method to have a “knob” to turn — it would be if the corresponding param-
eter has no operational meaning or interpretation. Here « is linked to a particular
type of error which can be critical for some application.

For example, in secure ranging the estimation of the ToF should not include false
positive, i.e. a far-away eavesdropper should not be able to appear in the vicinity!°.
A false positive could result in unwarranted access, while a false negative result in
the denial of a legitimate service. The second issue is annoying while the first one is
catastrophic. For this application, the threshold in Proposition 3.3 would be computed
for a low value!! of a.

On the other hand, if the task is to maximize the SNR between the estimated and
the true channel impulse response, « should be chosen close to 1/2 so that the expected
SNR gain when rejecting or validating a path with a gain close to the threshold value
is roughly 0 dB'2.

7~ Example 3.c — Using validation to prevent overfitting

We generate P = 4 SCS channels with K = 5 paths and have 2M + 1 = 101 pilots for
each of them. We start from an overestimated a priori model order of 7.

To get rid of the overfitting, we reject estimated paths according to Proposition 3.3 for a
targeted false detection rate . For different values of « and different SNR (E,, /(o2 (2M +
1))) we measure o’ the fraction of the time the validated model order exceeds 5 :

100ne of the main application of secure ranging is to use proximity as a trust-metric. With this
one can pair devices based on their distances.

HTo get an idea of how low a can be, the paranoid gold standard of “5¢” to validate a discovery
in particle physics amounts to a false acceptance rate of the order 10~7, while the false acceptance
rate for an “evidence” is of the order 1073, and for “coverage by press agencies” of the order 1/2.
But we are not physicists, aren’t we?

12The conclusion that communication systems work like news agencies is correct from a non-
Bayesian perspective. However the prior of faster than light neutrinos is not quite comparable with
the hypothesis of having 6 paths instead of 5.
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SNR a= 0.5 0.1 0.05 0.01
—10 dB 0.056 0.004 0 0.0005
-5 dB 0.196 0.06 0.038  0.0125
0dB 0.266 0.088 0.056 0.021
5dB 0.27 0.092 0.062 0.0215
10 dB 0.274 0.088 0.06 0.021

The observed overfitting rate o’ only matches « loosely — the numerous simplifica-
tions made on the interactions between the signal and the noise are a probable cause.

Below 0 dB , o’ does not match a‘ because of how we defined it : validating 5 paths or

less is not equivalent to not having spurious detection when all the 5 paths cannot be
reliably estimated.

Not overfitting is not a goal in itself, we must also verify that the validation does not
reject legitimate paths. For o = 0.1, the statistical frequencies of the validated model order
are

SNR K= 1 2 3 4 5=K 6 7
—10dB 0 0.02 028 0566 0.122 0.004 0
-5 dB 0 0 0.002 0.302 0.636 0.06 0
0 dB 0 0 0 0.002 091 0.088 0

5 dB 0 0 0 0 0.908 0.092 0
10 dB 0 0 0 0 0.912 0.088 0

The behavior of the validation procedure is intuitive. At high SNR, the result con-
centrates around the true value, and below a certain SNR, some paths are missed, and
the distribution of the validated model order spreads since the weakest are not always reli-
ably estimated. Moreover the paths used for the simulation do not have equal amplitudes
([1, 1, =1, 0.7, 0.4]), and so the validated model order does not drop suddenly with the

\_ SNR. J

3.4 The Partial Effective Rank (PER) criterion

In the previous sections, we used the well defined AWGN noise model. We have seen
how one can then formulate and test hypotheses on the spectrum of the data matrix
T and on the estimated path amplitudes.

A possible caveat of this approach, is its strict dependance on the noise model.
If thermal and (some) background noises are accurately modeled by a white gaus-
sian process, other model mismatches (interferences, backscatter, ...) are harder to
characterize precisely, and a less powerful but more robust criterion not depending
directly on the noise statistics may be desirable.

Therefore one is lead to think about the detection problem in its most general
terms at an early stage: we observe a block Toeplitz data matrix which ideally shall
be low-rank.

The main difficulty in exploiting the low-rank structure is the inherent “roughness”
of the rank. Indeed, if we start with a data matrix of rank K much smaller than the full
rank, the addition of the least random perturbation of the original data immediately
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makes it fullrank; and the original property is completely lost.

In this section, we propose to use a “smooth” functional to replace the notion of
rank. This well behaved functional is called the effective rank introduced by Roy et
al. [107] based on [41].

We will use the effective rank to devise a heuristic model order selection criterion
called the partial effective rank (PER).

The core idea is to monitor the increase of the effective rank with the increase
of the model order. The criterion is then to detect a transition between two regimes
which indicate a probable transition between signal and noise dominance.

13

3.4.1 The effective rank

The effective rank, is a matrix functional introduced by Roy [107] which may be seen
as a “convexification” of the rank.

Definition 3.2. Let A be a non-null matriz with singular values o = [o1, ..., o]

in decreasing order, and singular values distribution (SVD) equal to
Pm = U'm/HUHl B m = ]-7 ceey M.
The Effective Rank of A is

erank(A) — H(p1,pm) ,

where H is the entropy of the singular values distribution

M
H(p1,. . ,pm) = — Y P 108, P
m=1

By convention erank(0) = 0.

This definition shares some similitudes with the entropy power [47], in which the
effective rank could be seen as the square-root of the entropy power of a discrete
random variable having the spectrum of A for distribution.

Unfortunately, the entropy power of a discrete random variable does not inherit
the properties enjoyed in the continuous case — notably, the entropy power inequality
(EPI) is known not to hold in general [113; 116].

The main properties of the effective ranks are

Proposition 3.4. (Roy et al. [107])

13Note that contrary to the hypothesis testing, the PER criterion is — for this application — less
grounded in theory.
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For any matriz A # 0 of dimension M x N and singular values o1 > g9 > ..
e 1 <erank(A) <rank(A) < min(M, N).
o crank (A) =1 iff og =03 = --- =0.

e crank (A) = rank(A) iff its non-0 singular values are all identical.

o The effective rank is invariant with respect to scaling, unitary transforma-
tion, transposition (real or hermitian).

For Hermitian positive semi-definite matrices A and B

o crank (A + B) < erank (A) + erank (B).

Proof.
See [107]. O

3.4.2 The partial effective rank (PER)

Consider a tall matrix'* A of dimension M x N of rank K having the singular value
decomposition
USV, UeCMM vy eCMxN,

and S a real-valued diagonal matrix with diagonal coefficients
o1 220k 20g41=-=0y =0

Denote A®) the best rank k approximation of A with respect to the Frobenius
norm, which is obtained by taking a partial SVD expansion including only the &
principal SVD basis vectors.

The rank of the matrices in the sequence (A(k)) increase one by one with k£ until
k > K, at which point it stalls to the value K. In general one may say

rank (A(k“)) — rank (A(k)) _J b ok >0 .
0 5 g = 0

The progression of the rank as the number of considered singular values increases
follows an “all or nothing” rule, which is highly sensitive to small perturbations of the
spectrum.

The effective rank can used in place of the rank to mitigate this sensitivity. We
define the partial effective rank of degree k as erank (A(k)) and obtain a measure
indicating the relative importance of a dimension in the singular basis of a matrix

14This requirement is used to simplify the notation, and incurs no loss of generality since
erank (A) = erank (A*)
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Definition 3.3. The relative weight of the k'™ singular dimension of a matriz
A is

Nk (A) 4f erank (A(k)) — erank (A(k_l)) k> L

Theorem 3.1. For all k > 1 and any matriz A with absolutely summable sin-
gular values o1 > o9 > -+,

The lowerbound is met iff o, = 0 and the upperbound is met iff op, = --- = 071.
Proof.
Let
oy
De . , U<k,
2i—10i
oy
Disi O

be respectively the normalized singular values of A®*) and A*+1).

Then for \ = i’““ak

i=1

Pk log Pk — A log A
1+ 1+ 1+ A 1+X) 7

M=

Hig) = —

~ H(p) N log(1 4+ A\) — Alog 1%\
BT 1+ '
H(p) — Alog(A) H(p) — Alog(N)
= AoV > ) AoV
T +log(1+A) > T

Since the singular values are non increasing, A < 1/k. Also, the effective
rank is majorized by the rank, thus

eH(p) <k<

> =

which implies H(p) < —log A.

We conclude that #(q) > #H(p), proving that n;(A) > 0.

Also, the term log(1 + A) > 0 we dropped vanishes iff A = 0. Therefore
or+1 = 0 is a necessary condition to have n;(A) = 0, and one can verify
equality is indeed met in this case.
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The proof of the upper-bound is obtained using the subadditivity of the
effective rank for hermitian positive semidefinite matrices. The subadditivity
property extends to arbitrary matrices A and B if span A | span B :

erank (A + B) = erank \/(A—i—B)*(A—I—B))
A"A+VB'B)
VA*A) + erank (VB'B)

A) + erank (B).

= erank

< erank

N TN TN

= erank

—

Therefore
erank (A(k"'l)) < erank (A(k)> + erank (O'k_H . uk+1v;§+1)

= erank (A(k)> + 1.

O

Theorem 3.1 essentially indicates that the evolution of the effective rank smoothes
the evolution of the rank, which is the desired behavior. The non-increasing ordering

of the singular values is essential, and the theorem would not be true otherwise!®.

3.4.3 The PER in action

We have verified the evolution of the partial effective rank obeys rules which makes
it a smooth approximation of the rank evolution, but it is not clear yet how this new
quantity shall be used in order to estimate the intrinsic dimensionality of a matrix.

To gain insight, we test it on a Toeplitz data-matrix T" having an intrinsic dimen-
sion 7. The generator of the matrix is a multipath signal corrupted by AWGN. The
evolution of the effective rank is shown in Figure 3.7 at various SNR.

A knee in the curve is clearly visible when crossing the intrinsic dimension. Note
that as the SNR decreases the knee shifts to the left, indicating that the dimensions
of the signal space having the lowest power are missed.

Based on this insight, we propose to use a very simple knee detector on the se-
quence (1 )k—o,..., based on the local maximum of the second derivative. This method
is purely heuristical and incurs a small overhead of computed singular values.

We can now use this criterion to estimate the model order'®, we report the results
in Figure 3.4.3.

15 As a little thought experiment, assume that 0k+1 strongly overpowers all the preceding singular
values which are all equal. The PER would drop from k to 14.

160ne may combine the PER criterion with the test of the hypothesis Hs, since the latter is
essentially “free” to test. It is not done in this experiment.
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Figure 3.7: Simulation on a signal with 7 colgnponents. Each curve shows an average
over 10 different noise realizations at a particular SNR. The variations in the curve
show a clear inflection at K = 7 (indicated by a dashed line). As the SNR dimin-
ishes, the inflection occurs at lower values of K and completely disappears at SNRs
< —10dB. The circled markers o indicate a knee in the curve, or the origin if no knee
is present in the curve. The curves are not monotonous, as the evolution of the PER
reflects how significant are each dimension of the matriz compared to the previous
ones. The first seven dimensions are all significant (signal space) but the first 19 are
not, and so the PER increases more for the 20" dimension than for the 8.

. % IMII\H xxxxxxx . H%[W b
T 6 ARLTL T
i o |r| W | ||ﬂx|!L“T !
LRI, i
= MH i i
o BRI WETT
10 15 20 0 5 10 15 20
SNR [dB] SNR [dB]

Figure 3.8: Model order estimation with the PER (green) compared with the Hs
hypothesis (red, confidence set at 95% ) and an oracle which maximizes the equalization
SNR gain (blue). The left panel has N = 31 pilots and the right panel N = 63 pilots.
The number of channels is P = 4.

3.5 Test-case : the Weikendorf measurements

Now that both estimation (Chapter 2) and detection (current chapter) have been
discussed for the SCS channel model (Chapter 1), it is time for the “reality-test” [14].
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b Example 3.d — Suburban propagation scenario (Weikendorf) ~

The Weikendorf measurements [67] are epitomical of a suburban environment exhibiting a
strong line of sight path and a couple reflection paths.
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Figure 3.9: The Weikendorf measurements scenario.

As it was shown in Figure 1.6, the transmitter goes through a tunnel. Within the tunnel,
the channel impulse response is not well described by the SCS model. This particularity
makes us anticipate interesting results for an algorithm detecting the presence of sparsity.

As a reminder (see Table 1.1), the parameters of the experiment are

Property Value

Center frequency f. 2 GHz

Center wavelength \. 15 cm

Bandwidth 120 MHz

Mobile Tx 15 monopole antennas uniformly arranged on a 30
cm diameter circle at 1.5 m from the ground

Static Rx 8 patch antennas separated by 7.5 cm (\:/2)
forming a linear array at 20 m from the ground

Time interval between snapshots 21 ms

Tx speed 3 to 6 km/h.

Recording About 1 minute. The Tx travelled a distance of

\ about 50-80 m) and went through a tunnel )

The Weikendorf measurements have a high SNR, and we will simulate a trans-

mission with less power by adding synthetic AWGN to the measurements. The DFT
pilots are uniformly laid-out every D = 3 DFT bin. We will use the estimated CIR to
demodulate 4-PSK coded data symbols occupying the DFT bins allotted to the data,
and the obtained Symbol Error Rate is the quality metric we will use to benchmark
the estimation (the lower the better).

For the task of estimation, we use the ESPRIT based algorithm with the Krylov

subspace method for the identification of the signal subspace.
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Figure 3.10: Consider a single pulse (- - -, dashed curve) critically sampled as
shown on the left column. From the samples (x, stems), 1-sparse representations
of the original signal are computed. In a), the problem is treated as a parametric
estimation of tog and co as in the FRI framework. Conceptually, the signal component
is chosen from the infinite and uncountable set of the pulse shape and its shifts in
[0, 1[. The original signal has a perfect 1-sparse representation in this setup. In b),
the signal component is chosen in a finite set of functions forming a basis of the signal
space. The original signal can be represented by these functions, but it does not have
a 1-sparse representation in general. In c), three times more synthesis functions are
added to the set, to form a frame. The signal has a much closer 1-sparse representation
in this frame thanks to the shift invariance introduced by the redundancy between
the synthesis functions, but the estimation becomes combinatorially more complez.
The estimation frameworks b) and c) are referred as discrete sparsity which is used
in Compressed Sensing (CS), and the estimation is subject to a trade-off between
accuracy and complexity.

For comparison, we will also apply two other algorithms

e The “classical” lowpass interpolation method. The lowpass interpolation of the
channel spectrum from the pilot measurements is more easily understood in the
time-domain where it consists in truncating the measured CIR to a fraction of
the frame interval.

e A parametric method using “sample sparsity” called RA-ORMP [49] (Rank
aware orthogonal recursive matching pursuit). This method comes from the
field of compressed sensing and efficiently exploits jointly sparse patterns, where
sparsity is to be understood in term of non-zero samples in the time domain.
The difference between sample sparsity and the notion we use is explained in
Figure 3.10. When the pilots are contiguous, a trivial speed-up is possible using
the FFT, we will call this algorithm fast RA-ORMP. We fix the sparsity level
appropriately by hand.

We use the PER criterion to estimate the model order. One of the reason is to have
a fairer comparison : since we add synthetic AWGN, estimating the model order based
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Figure 3.11: From the left panel a), we conclude that sparse recovery lowers the SER
compared to non-sparse recovery below 0dB of SNR. If we look at the SER over time
— right panel b) — we see that FRI-PERK is robust in the sense that if the input
signal is not sparse, its performs approzimately as well as a non-sparse recovery.

on the noise statistics could give an unfair advantage. Whenever the PER criterion
reaches the predefined maximum model order (we set it to 10), the algorithm falls
back to lowpass interpolation of the spectrum, i.e. it gives up on the sparse property
of the channel — a similar mechanism was not included in the RA-ORMP algorithm,
so we will be able to see if it improves the performances in the tunnel.

To please the acronym deity, we call the resulting algorithm FRI-PERK (FRI with
PER detection and Krylov method) — things could have been worse, we could have

gone recursive!” .

Interpretation of the results

From Figure 3.11 we may conclude that

e The channels do not exactly fit the SCS model, therefore the modelization error
becomes larger than the noise at high SNR

e The SCS property helps in lowering the symbol error rate at medium to low
SNR (below 0 dB)

e The “sparsity” model assumed by FRI (few reflections) matches the field mea-
surements better than the one assumed by CS (few non-0 coefficients) as seen
in Figure 3.12.

e Any algorithm exploiting sparsity must be “introspective”, i.e. it must detect
when sparsity does not occur, and fall-back to a non-sparse method whenever
it happens. It is exemplified by the stroll through the tunnel.

1" Trivia : What does the letter “B” stands for in “Benoit B. Mandelbrot” ?
Answer : .jo1qepuey ‘g touog,
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Figure 3.12: This figure compares the estimation result of FRI-PERK and RA-
ORMP. The input signal is the first frame received at the first antenna corrupted
with AWGN to obtain —5dB of SNR. Panel (a) shows the original and noisy CIR.
Panel (b) shows a portion of interest of the CIR estimated with FRI-PERK. The PER
criterion estimates K = 3, and by visual inspection on the “detail” panel, the three
signal components found match the largest ones of the original signal. Also, it is
visible that the envelope of the LoS path is accurately reproduced. Panel (c¢) shows the
result obtained with RA-ORMP. The discrete sparsity model causes the estimation to
be more sensitive to uncorrelated noise, as spurious spikes contributed by noise are
estimated as signal components. It is important to remember that the noisy CIR is
not completely observed, but only a subset of its DFT coefficients, which explains the
reconstruction may be worse than the “noisy signal” curve itself.

For the comparison to be complete between the sparse methods, Figure 3.13 shows
a benchmark on synthetic fading SCS data'®. The comparison of the execution time
shows that the algorithmic cost of the fast implementations — panel (a) — have
the same complexity with respect to M and P (FRI-PERK is slower by a constant
factor of 4). However a fast implementation of RA-ORMP could not be found for non-
contiguous pilots which are commonly used when the delay-spread is only a fraction of
the frame duration. In that case — panel (¢) — RA-ORMP has the same algorithmic
complexity as the non accelerated FRI-PER algorithm (RA-ORMP is slower by a
constant factor of 5).

For additional details on the experiments, see [14].

I8 All the algorithms were implemented in MATLAB, timing are indicative, not absolute.
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3.6 Conclusion

Hopefully, testing the proposed methods on “real-life” channel impulse responses has
made clear that estimation is only half of the picture, the other half being detection
/model selection.

The addition of a robust detection within the estimation algorithms from Chap-
ter 2 is a necessity to transform them from an academic project into a practically
usable algorithm, for the simple reason that it provides the model flexibility required
by mobile communications.

The goal of this chapter was to study how early in the algorithmic chain a model
can be selected in order to avoid unnecessary computations. To this end, we followed
the estimation process, and saw what could be said about the model as it progresses.
The first meaningful clues we had are the partial spectrum of the data matrix, being
progressively uncovered. We analyzed the properties of this spectrum from a random
matrix theory point-of-view, and obtained a biased estimate based on a hypothesis
test. Depending on the confidence used for this test the estimate had either a positive
or negative bias. From this point of view, we saw how paths could be validated at
the end of the estimation procedure.

In a second approach, we deliberately ignored the noise statistics and focused
solely on the geometry of the data matrix. We proposed a criterion based on a
convexification of the rank. Because this criterion ignores most of the specificities of
the problem, it is surely not optimal, but as a side-effect it should also cope fairly
well with undefined model mismatches and may have applications in fields other than
communications (collaborative filtering, recommendation systems, ...). A possible
application of this criterion in conjunction with the estimation algorithm developed
in Chapter 2 was shown on a measured CIR (with the addition of AWGN). More
tests would be required, particularly on CIRs with many strong reflections (urban
environment for example).

This chapter concludes our study on sparse channels estimation at a particular
time instant. In the next chapter, we will study the evolution of sparse channels over
time and see if any property can be exploited.
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Figure 3.13: A benchmark is run for pilot sequences of length 2M + 1 = 101 to
2M +1=1001. The top row compares FRI-PERK with FRI-PER — same algorithm
using a full SVD instead of Krylov subspace projection — and a fast implementation of
RA-ORMP using FFTs, which is possible since the pilots are contiguous in frequency
(D =1). The bottom row follows the same procedure, but with scattered pilots (D = 3)
and a delay-spread smaller than the frame length. There is no straightforward fast

implementation of RA-ORMP in this case.

The curves labeled “2x 7 and “4x” are

simply copies of the curves in the bottom doubled or quadrupled (their use is for
visual comparison and they do not correspond to an algorithm).
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Chapter 4

Tracking sparse channels

In Chapter 2, we considered the problem of estimating sparse common support (SCS)
channels without prior information about the channels parameters. In practice, mea-
surements from the past may give some information about the current state of the
channels because of the temporal correlation of parameters. Exploiting this correla-
tion across time is called tracking.

When is tracking relevant? A particular case where temporal correlation can be
exploited is when the times of arrival (ToA) vary slowly?, i.e. if between measurements
collected T seconds apart, the ToA vary by a small amount — say less than At¢. This
is the case if?

e The receiver moves at a low speed
e The scatterer moves at a low speed

e The transmitter moves at a low speed

The variation is then upper bounded by

2T
At £ — (receiver speed + scatterer speed + transmitter speed).
c

The magnitude of this time variation is not meaningful in itself, and it is to be
compared with the inverse bandwidth of the channel. As a quick example, pedestrian
speeds together with bandwidths on the order of the MHz yield variations of less
than a sample per second. This slow and smooth evolution is visible on the field
measurements in Example 4.a, shown hereafter.

From this first rudimentary but practical example, it appears that tracking shall
be considered as a useful complement for estimation; additional detection questions
— such as appearance/disappearance of a path — are left for further work.

1 The exploitation of correlation of paths amplitudes over time [70] is also an interesting problem,
not treated in this chapter.

2Neglecting clock-speed discrepancies and taking into account first order reflections only.

7
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(

~ Example 4.a — Suburban propagation scenario (Weikendorf) ~

In the Weikendorf measurements [67] used in Chapter 1, the transmitter (Tx) is moving at
an approximately constant speed of 5.5 km/h, which is roughly walking speed.The physical

layout is given in Figure 4.1.

& before tunnel ” Rx position
20m above ground

37Tm Os <i=24s

tunnel - / starting LoS

19m --- 24s <t < 37s 180m

after tunnel / ending LoS

' 4

’ 25m 375 <t<b3s 207.5m

@ Railway tunnel

ﬁ] Tx starting position
t=0s

Tx ending position

t=53s

Figure 4.1: The Weikendorf measurements scenario.

The other properties of the Weikendorf measurements were previously listed in Ta-
ble 1.1. Given the 17.5 m difference in the line of sight (LoS) distance between the
beginning and the end of the measuring period and the sampling rate of 120 MHz, the
time of arrival of the LoS path should be delayed by 7 samples.

initial LoS

53 time [s]

Figure 4.2: Portion of the CIR from the Weikendorf dataset. The transmitter
moves at a pedestrian speed, and each pixel represents a sample. One can
see the direct path, always present (except when the transmitter goes through
a tunnel around time 30s). Between time 5s and 10s a second path appears
suddenly, likely caused by a highly reflective object.

The constant speed of 5.5 m/s and the Tx movements are consistent with the CIR
shown in Figure 4.2. Also in these measurements, a transient path is visible. This can be

caused by several factors — e.g. masking by a building.

.

J
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The benefits of tracking Two aspects must be taken into account. First, tracking
may be used to reduce the computational complexity using prior knowledge to initial-
ize parameter values to a likely estimate and then search locally for a more accurate
estimation. Second, it may also provide robustness to noise by focusing the estimation
on portions of the signal with a higher prior probability of containing paths — these
methods are commonly referred to as “warm start optimization”.

These considerations point to iterative algorithms with a natural time-domain
interpretation, such as the family of Rake receivers [89] with a Gauss-Newton opti-
mization for example [121].

In this chapter, we start from the annihilating filter property and derive an iter-
ative procedure similar to the structured TLS® of Lemmerling et al. [77].

This approach leads to two different parametrizations. One of them has a time-
domain interpretation which connects it with Rake receivers algorithms. The second
parametrization is “complexified”, thus having twice the number of unknowns. Inter-
estingly, the extra dimensions prove useful to overcome local minima. Comparison of
these two interpretations shows the potential benefits of the complexified, annihilating
filter based tracking over traditional rake receiver methods.

Tracking does not imply an iterative estimation procedure shall be used, and vice-
versa; but they are naturally suited for this task when the solution is refined from
one iteration to the other.

4.1 Annihilation as a linear constraint

In Chapter 2, it was shown in (2.7) that the annihilating filter a € CX*! can be
computed as the solution of a linear equation

[T].1.x[ali.x = [T]. k41,

with a1 = —1, and [T, 1.x indexes the first K columns of T' (we use the same
notation as in Golub & Van Loan [60]).

Initial experiments compared the Least Squares (LS) and the Total Least Squares
(TLS) method to solve this system. Unsurprisingly, TLS fared better since both the
system coefficients and the objective of the equation are corrupted by noise.

This general rule, has its roots in the formal property

Lemma 4.1. [82/
The TLS solution X 1is of the linear system AX = B verifies

{)(7‘[_57 A14T[_57 ABTLS} = XaI‘gmiIIBH[AA AB]HF (41)

) )

st. (A+AA)X = (B+AB).

3Thanks to F. Quick from Qualcomm Inc., for pointing out the equivalence.
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Applied to the computation of the annihilating filter, the TLS method fails to take
into account the block-Toeplitz structure of the data-matrix T' (the corrections AA
and A B should themselves be block-Toeplitz). Usage of Cadzow denoising proved to
solve this issue.

Since it is not the annihilation property itself which is at fault for the poor perfor-
mances, but rather the method used to estimate the annihilating filter; it may be used
as a constraint in an optimization problem where we control the objective function :

Qopt = argl}(ﬁn Y — X||» (4.2)
a’7
st. ax[Y], =0, Vp=1, ..., P.

where Y is a (2M + 1) x P matrix containing the P measurement vectors, “«” is the
linear convolution without padding, and ||Z| . = Tr{Z*Z} is the Frobenius norm.
The solution of 4.2 is the set of P signals having a common annihilating filter of
length K + 1 which is the closest to the original measurements vectors with respect
to the Frobenius norm?.

The optimization (4.2) decomposes in two subproblems

(4.2) & Qopt = argmin n}%nHYfXHF (4.3)
a
st. AX =0, Vp=1, ..., P,

where A = Toeplitz(a).
The minimization with respect to X is a linear optimization problem, which can
be solved in closed form using Lagrange’s multipliers [34], and thus

Proposition 4.1. The optimization problem (4.2) is equivalent to the non-linear
Least-Squares problem

aopt = argmin || f(a)l3- (4.4)
a

where

fla) = vec (ATAY) , A = Toeplitz(a),

and vec is the linear operation transforming a matriz in a column-vector by
stacking-up its columns.

Non-linear least-squares programs do not have a closed form solution in general
and are tackled with iterative methods [56]. Another approach would be to use
Bresler’s IQML method [37]. It is not consistent in itself, but it can be made so,

4The total error is the sum of the £ norm of the error made on each channel measurements. A
weighted 2-norm can also be used with minimal modifications.
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using a prior denoising step on Y to make it low-rank[120]. The resulting algorithm
is called MODE?® (Method Of Direction Estimation).

Iterative methods require an initial estimate, and are therefore particularly suited
for tracking.
4.2 Two parametrizations

In the previous section, we eluded an important question
“Over which domain is a defined in (4.4)7”

First, notice that the optimization (4.4) is invariant with the scale of the anni-
hilating filter. Hence, as in Chapter 2, we set ax 41 a priori, which leaves us with
K complex-valued unknowns. We face the following dilemma in the definition of the
remaining K coefficients. They could be

e Coefficients of degree K polynomials :
[ah;K S (CK.

The search space has dimension 2K since every aj has a real and an imaginary
part.

e Coefficients of degree K polynomials with unit modulus roots® :

[a]1.x € CEN {a

|zk| = 1, z = roots(a) } .

The search space has dimension K, the unknowns are the phases of the roots.

These two options are made explicit by re-parametrizing the optimization (4.4) in
terms of the modulus and phase of the annihilating filter’s roots

arg min Hf([poly(rlejwl7 oy TREIVE), 1})”2, (4.5)

Wi, Wi €=, 7| 2
r1,....rx € RYor {1}

where the function poly computes a polynomial’s coefficients from its roots. The
definition of the coefficients 71, ..., rx over RT or trivially over the singleton {1}
yields the two options mentioned before.

5We would like to thank Pr. Ottersten for mentioning both IQML and MODE to us.

5Polynomial with roots on the unit-circle have hermitian symmetric coefficients, which may be
exploited before the rooting operation. We did not investigated in this direction. Thanks to Pr.
Ottersten for the suggestion to use this property.
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4.2.1 Time-domain interpretation for r| = --- =rg =1

The non-linear function f is thus simply the orthogonal projection of the measure-
ments Y into range (A*) — the row-space of A — put in vector form.

The row-space of A contains signals which are linear combinations of eigenfunc-
tions of the filtering by a operation

x € range (A”) & T = Zagwg ,
¢

st. xpxa = Ap-xy, M #0, andxy, o, ... are linearly independent.

Basic algebra tells us that orthogonal projection into the kernel of a linear operator
is the orthogonal complement of the projection into its row-space

projker(A) =1I- projrange(A*)’

We know the kernel of A from the definition of the annihilating filter itself : it
is spanned by complex exponentials which radices are the roots of the annihilating
filter.

The orthogonal projection into the kernel of A is thus simply the orthogonal
projection into the subspace spanned by these complex exponentials. In the time-
domain, it is the orthogonal projection into the subspace spanned by Dirichlet kernels
(of corresponding bandwidth) shifted by the phase of the roots of a.

Therefore, the function f can be interpreted in the time-domain as the residual
obtained after correlation with the path estimates. This interpretation is similar to
the one found in the family of Rake receiver algorithms, in which the energy of the
residual is minimized by updating the paths estimates — “moving the fingers of a
rake”.

4.2.2 Dimensionality : a curse or a blessing?

The optimization on the K dimensional space has a satisfying time-domain inter-
pretation, why would one want to perform it in a space twice as large? — usually
the number of local minima in a non-linear optimization problem increases with the
dimension of the space to be searched. As a simple counter-example, for K = 1, the
number of critical points does not decrease when r — the modulus of the annihilating
filter root — is added as an optimization variable, but the nature of these critical
points changes in such a way that the number of local-minima seems to reduce down
to one, providing sure convergence for second-order methods [92].

From minima to saddles The unusual potential benefit of additional dimensions
is illustrated in Figure 4.3. This figure shows for K = 1 the value of the objective
function as a function of the root re’*.

By inspection on Figure 4.3, the projection of this curve on the unit-circle has
N —1 local minima. Using the time-domain interpretation, these local minima simply
correspond to the shifts for which the side-lobes of a Dirichlet kernel align with the
path ToA. Local minima pose a serious threat to any descent algorithms, as they may
become the point of convergence.
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Figure 4.3: LS residual after annihilation on 15 DFT samples of a single phasor of
radiz eI/,

g Example 4.b — Avoiding local minima with overparametrization

To verify the intuition developed in Figure 4.3, we perform a simple tracking test on a signal
containing only one path which ToA (vertical axis) follows a sampled Brownian motion :
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Figure 4.4: Tracking of a single path in AWGN. The correct ToA is indicated
by . and its tracking estimation by .

The top-row shows tracking of a single-pulse using Levenberg-Marquardt algorithm (de-
tails in Section 4.2.3) over a unidimensional space — i.e. considering a unique annihilating
filter root of unit-modulus. In the second-row, the modulus of the root is considered as an
unknown augmenting the dimensionality of the problem by one. This additional dimension
yields a more robust estimation at very high SNR (+o00) and, surprisingly, at low SNR
(—5dB). The visible improvement is that the algorithm recovers from a mistracking quickly
in the 2-dimensional space, which could be explained by the ability to “move around hills”
in the objective function thanks to the fact that its level-sets in R* are path-connected [90]
while they are not in R.

- J

On the other hand, the same curve in Figure 4.3 considered over the disk of radius
2 shows a single local minimum which corresponds to the true parameter values.
What appeared as local minima on the unit-circle are now saddle points. Second
order descent methods such as Newton-Raphson method or Gauss-Newton method
converge surely to a minimum even in the presence of saddle points. We study the
critical points of the objective function for K = 1 in Appendix D.1. By a simple
inspection of Figure 4.3, the objective function seems to have a single minimum.

The existence of local minima when the parameter space is restricted to the unit-
circle prevents tracking from working properly in the noiseless case — as seen in
Figure 4.4. When the parameter space is enlarged to the whole complex-plane, con-
vergence to the true time of arrival is achieved.

Regarding local minima, the perturbation introduced by the noise proves to be
beneficial, and this can be seen in Figure 4.4 where the performances are better for
an SNR of 5dB than for an infinite SNR. This leads to the following constatation

e The noise permits to overcome the shallow local minima when optimization is
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done over the unit-circle,

e Slow variations of the ToAs ensures starting from the same attraction basin from
one frame to the next, making local minima less threatening to convergence,

which, for a specific application, leaves open the question of whether or not the
optimization in the larger space is to be preferred or not.

Time-domain interpretation of the overparametrization To the best of our knowl-
edge, this overparametrization does not correspond to any known algorithm in the
time-domain. Indeed, varying the magnitude of the roots modulus varies the de-
cay rate of the pulse shape in the time-domain [11] which does not lend itself to an
interpretation similar to the rake receiver or other correlation based methods.

4.2.3 Solving the minimization problem

Non-linear Least-Square problems are non-convex. It is quite obvious that the objec-
tive in the channel estimation problem possesses several local minima in general, e.g.
shifts corresponding to the side-lobes of the pulse autocorrelation function are local
minima.

Numerical methods for non-linear least-squares optimization fall into two cate-
gories for the most part :

e Differential methods, such as the Gauss-Newton algorithm, Levenberg-Marquardt
algorithm, Gradient descent, Conjugate gradients descent, ...

e Simulation based methods Monte-Carlo simulations, simulated annealing,
particle swarm methods, Tabu search, ...

Differential methods evaluate the topography of the objective function around
a current estimate, and move it towards a promising direction. This operation is
repeated until a local minimum (or a saddle point for some methods) is reached.

Simulations methods follow a stochastic process to search for an optimal solution.
The probability measure of the process evolves towards a point-mass over time. The
initial randomness of simulation methods make them less sensitive to local minima
than differential methods.

Ideally, signal tracking assumes a good estimate of the global optimum is known
a priori. If so, differential methods may converge to the global optimum — if not, the
methods developed in Chapter 2 are indicated. For this reason, we do not include
simulation algorithms in this study.

Levenberg-Marquardt algorithm The Levenberg-Marquardt algorithm [78; 83| can
be seen as a Gauss-Newton method regularized by a gradient descent term. A tuning
parameter allows to adjust the importance of the Gauss-Newton term relative to the
gradient-descent term. The goal is to provide a short overview of the algorithm in
order to understand the whereabouts of solving (4.5) numerically; and it is by no mean
a comprehensive study of the subject, which can be found in optimization textbooks
[56; 92].
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As a short reminder, the Gauss-Newton method tries to minimize a quadratic
norm ||g(8)||°, where g is a real-valued multidimensional function of a real-valued
vector of parameters 0. For example, we would cast the optimization (4.5) in this
framework by taking g to be the concatenation of the real and imaginary parts of f
and @ = [wi, ..., wg]T or @ = [wi, ..., Wk, "1, ..., "x]T — whether the roots
of the annihilating polynomial are restricted to have unit-modulus or not.

Using the multidimensional Taylor expansion of g, we write

g0+A) = g0)—JA+O(|AI*) -1,

where J is the Jacobian matrix of g, i.e. [J]mn = %ﬁe).

Then, for A small, one can make the first order approximation

lg(6+A)|* = ||lg(0)]* —29(8)" JA + ATITJA . (4.6)

The derivative of the error with respect to A should vanish when a (bounded)
optimum is reached. Thus, setting the derivative of (4.6) to O yields the Gauss-
Newton normal equation

JTIA = J7g(6) ,

which can be efficiently solved using Choleski or QR type factorizations.
A regularization term is added to this normal equation in order to obtain

(J"T +X-diag(D"D)) A = J"g(6), X >0, (4.7)
which is the update equation of the Levenberg-Marquardt algorithm.

Scaling the regularization term by diag(DT D) in (4.7) ensures it is scaled pro-
portionally with the gradient of g for each of its dimensions.

For a small value of A, the algorithm behaves like the Gauss-Newton algorithm,
which is preferable if the error decayed rapidly in the previous iterations. For a
large value of A, the algorithm behaves like a weighted gradient descent, which is to
be preferred if the error decayed slowly in the previous iterations. The tuning of A
dynamically during the optimization process is a well-studied topic, and we point to
[92] for a review.

4.3 Detection for tracking : Update, Validate and
Add

One of the strength of tracking is the ability to recover paths which have faded
enough not to be accurately recovered by a memoryless estimation procedure, but
not so much so that their recovery with a locally focused algorithm is still beneficial
for equalization.

The issues introduced by the exploitation of a temporal correlation are two folds

1. On which grounds should a tracked path be discarded from the model?

2. On which grounds should a new path be added to the model?
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Figure 4.5: A combination of Update/Reject/Add steps for a dynamical tracking of a
SCS signal. A dashed box indicates the operation is optional. Different configurations
are realizable.

These two questions are detection related and we propose to adjust the criteria
developed in Chapter 3 to cope with them. A possible solution is to split the detection
in two stages which consist in first rejecting spurious paths followed by the addition
of a new path if necessary. Each of these stages can be preceded and/or followed by
an update of the estimate.

Updating an estimate From an initial estimate ag of the annihilating filter coeffi-
cients, apply Levenberg-Marquardt algorithm using the evolution equation (4.7) until
convergence.

Validation of a path To reject a potentially spurious detection a simple test is to
estimate the amplitudes for each path in each channel and reject if observing greater
or equal magnitudes can be attributed solely to the noise with a probability exceeding
a predefined false positive rate cueject- In the presence of AWGN, this procedure was
shown in Proposition 3.3. To have robustness to a temporary fading of a path, one
could use the weighted sum of the estimated path energy over time — e.g. average
the path energy of the current and previous frame. This provides a trade-off between
being robust to temporary fading and adapting quickly to a changing CIR.

Addition of a path After an estimate @op; of the solution of (4.4) is obtained, one
is left with the residual error f(@opt) (f is defined in Proposition 4.1).

The inspection of this residual may provide valuable information about the ade-
quacy of the estimated model order. In Appendix D.2 a statistical test is outlined.

A more straightforward approach is to increase the model order by a predefined
number and process the result with the validation algorithm.

The addition of a single path can be done by finding the maximum correlation
between the residual and the pulse shape for different shifts (extremum of the matched
filter output).

Summary of the tracking process The complete tracking procedure is a succession
of “Update”, “Reject” and “Add” steps. Figure 4.5 shows a potential flow graph.
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4.4 Numerical results

Preliminary study Previously in this chapter, we used the Levenberg-Marquardt
algorithm? to solve (4.5) on the unit-circle and on the complex-plane.

The plots in Figure 4.4 showed the tracking of a single path which trajectory is a
sampled Brownian motion.

The existence of local minima when the parameter space is restricted to the unit-
circle prevents tracking from working properly in the noiseless case. When the pa-
rameter space is enlarged to the whole complex-plane, convergence to the true time
of arrival is achieved. This simple observation confirms the conclusions made in Sec-
tion 4.2.2.

Regarding local minima, the perturbation introduced by the noise proves to be
beneficial, and this can be seen in Figure 4.4 where the performances are better for
an SNR of 5dB than for an infinite SNR. This leads to the following constatation

e The noise permits to overcome the shallow local minima when optimization is
done over the unit-circle,

e Slow variations of the ToAs ensures starting from the same attraction basin from
one frame to the next, making local minima less threatening to convergence,

which, for a specific application, leaves open the question of whether or not the
optimization in the larger space is to be preferred or not.

Tracking test We simulate a Rayleigh fading® set of P = 4 SCS channels. The
tracking algorithm follows the simple rule

Update — Validate — Add 1 — Validate.

Validation is based on a threshold which targets a false detection rate of magnitude
close to 1/2 — see Proposition 3.3.

Each channel has K = 5 paths of amplitude [1, 0.5, 1, 0.7, 0.4]. The paths ToA
either drift by a constant amount from one frame to the other or vary according to a
sinusoidal trajectory as shown in Figure 4.6.

The results are shown and commented in Figures 4.7-4.8.

4.5 Conclusion

We studied jointly iterative estimation and tracking, even so one does not reduce to
the other. Iterative estimation was derived from the annihilating equation. It was
shown that the modification of the error measure in the annihilating equation leads to
a more robust yet non-linear estimation. A connection with correlation methods such
as the Rake receiver was made, and it suggests that an overparametrization may help
to overcome some local minima encountered by these methods. Numerical simulations

"Namely, the implementation provided by the MATLAB (R2012a) function 1sqnonlin().

8The correlation between antennas was set to Jo(m) =~ —0.3 (narrow scatterers, see (1.4) in
Chapter 1).
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time (snapshot)

Figure 4.6: The evolution of five paths over time. FEach path follows a linear or
a sinusoidal trajectory. The horizontal axis represents snapshots (successive OFDM
frames), and the vertical axis represents the period over which is recorded each frame.
The data points represent the time of arrival of each path.

showed that at low SNR, the local view of a tracking algorithm made the detection
and estimation more robust, as they happened in streaks, despite the independence of
noise and fading between frames. The incorporation of a global detection/estimation
step and of a validation step into the algorithm provided the responsiveness required
by transient nature of mobile communications channels.

The subject of channel tracking is vast, and this chapter only considered a few of its
aspects, principally to show how the methods developed in Chapter 2 and Chapter 3
naturally apply to this subject.
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SNR = -10 dB

time (snapshot)

SNR = -5 dB

time (frame)
o

time (snapshot)

Figure 4.7: Tracking at a lower SNR. During validation, a path which energy is
below the threshold is discarded only if its energy average with the previous frame is
below the threshold. Paths are paired from one frame to the next if they are closer
than four times the inverse bandwidth of the pulse shape — i.e. pairing is done
over a distance which can be interpreted as “tracking”. This simple “Markov-chain”
type of dependency already introduces robustness against fading as correct estimations
happen in streaks (visible on the top panel) despite the fact that the paths energy are
independently distributed over time. The fact that only one path can be added from
one frame to another is not optimal and could be iterated as proposed in 4.5.
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Figure 4.8: Tracking at higher SNR. The noise is low enough so that the 5 paths are
always detected. The proportion of spurious detections does not change between 0 dB
and 5 dB. This is to be expected since we chose the threshold such as to yield a constant
false detection rate. This could be mitigated by introducing a notion of dynamic range,
which necessitates not only the knowledge of 0% but also some information about the
distribution of the paths energy. We did not introduced this notion. The observed false
detection rate is approximately 0.25.
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Part 11

FUNDAMENTAL LIMITS ON
PERIODIC LOCALIZATION
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vingts jours !...
Phileas Fogg avait gagné son pari de vingt mille livres !

Et maintenant, comment un homme si exact, si métic-
uleux, avait-il pu commettre cette erreur de jour ? Com-
ment se croyait-il au samedi soir, 21 décembre, quand il
débarqua & Londres, alors qu'il n’était qu’au vendredi,
20 décembre, soixante dix neuf jours seulement aprés son
départ ?

Voici la raison de cette erreur. Elle est fort simple.

Phileas Fogg avait, « sans s’en douter », gagné un jour
sur son itinéraire, — et cela uniquement parce qu'il avait
fait le tour du monde en allant vers Uest, et il ett, au
contraire, perdu ce jour en allant en sens inverse, soit
vers l'ouest.

En effet, en marchant vers I'est, Phileas Fogg allait au-
devant du soleil, et, par conséquent les jours diminuaient
pour lui d’autant de fois quatre minutes qu’il franchis-
sait de degrés dans cette direction. Or, on compte trois
cent soixante degrés sur la circonférence terrestre, et ces
trois cent soixante degrés, multipliés par quatre minutes,
donnent précisément vingt-quatre heures, — c’est-a-dire
ce jour inconsciemment gagné. En d’autres termes, pen-
dant que Phileas Fogg, marchant vers l'est, voyait le
soleil passer quatre-vingts fois au méridien, ses collégues
restés a Londres ne le voyaient passer que soixante-dix-
neuf fois. C’est pourquoi, ce jour-la méme, qui était le
samedi et non le dimanche, comme le croyait Mr. Fogg,
ceux-ci I'attendaient dans le salon du Reform-Club.
Jules Verne — Le tour du monde en 80 jours.

1)
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world in eighty days!

Phileas Fogg had won his wager of twenty thousand
pounds!

How was it that a man so exact and fastidious could
have made this error of a day? How came he to
think that he had arrived in London on Saturday, the
twenty-first day of December, when it was really Fri-
day, the twentieth, the seventy-ninth day only from his
departure?

The cause of the error is very simple.

Phileas Fogg had, without suspecting it, gained one
day on his journey, and this merely because he had
travelled constantly eastward; he would, on the con-
trary, have lost a day had he gone in the opposite
direction, that is, westward.

In journeying eastward he had gone towards the sun,
and the days therefore diminished for him as many
times four minutes as he crossed degrees in this direc-
tion. There are three hundred and sixty degrees on the
circumference of the earth; and these three hundred
and sixty degrees, multiplied by four minutes, gives
precisely twenty-four hours—that is, the day uncon-
sciously gained. In other words, while Phileas Fogg,
going eastward, saw the sun pass the meridian eighty
times, his friends in London only saw it pass the merid-
ian seventy-nine times. This is why they awaited him
at the Reform Club on Saturday, and not Sunday, as
Mr. Fogg thought.

Jules Verne — Around the world in 80 days.
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Chapter 5

Time-Frequency localization
in periodic domains

5.1 “Where?’ — from linear to periodic

The estimation of periodic parameters leads to estimators with periodic distributions.
Localization of periodic phenomena is not straightforward. Interpreting them in a
linear way by “unwrapping” them is bound to create confusion. To get a taste of
these issues, we can simply look at world maps. As we can see in Figure 5.1, everyone
wants to be the center of the world and one’s view of the world will be quite different
if one is japanese, french or american — or even australian for a more disturbing
‘upside-down” view!.

What is lost there is the perfect symmetry of the sphere, one has to choose a
reference point from which to elaborate the desired projection. One of the issue, is
the appearance of boundaries — e.g. in Figure 5.1, the Pacific ocean or the Atlantic
ocean are cut in half and the fact that different countries use different cuts shows that
this boundary is rather artificial.

A proper periodic localization should not presuppose any reference point, and is
similar— by analogy — to the computerized mapping tools where the cursor is the
reference rather than a fixed point.

The matter of this chapter is joint-work with R. Parhizkar, with elements from [94].

1Fortunately, the rotation axis of the earth made it so that no one proposed a “slanted” map (with
a vertical axis pointing in the south-east direction for example). .. yet.
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Figure 5.1: The world as it is seen from (a) Australia, (b) France, (c) the USA or
(d) Japan. The dashed line is the vertical centered fold of the map.

The confusion may turns into an analytical nightmare. For example, if one takes
the Greenwich meridian as a reference and a linear time shift (the phase of the prin-
cipal angle, it is an approximation of the time-zone system), a rather troublesome

discontinuity appears somewhere in the pacific ocean? :
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If one can perfectly accomodate with that for travelling purposes, it causes some
serious problems to differential calculus, which we will see later.

Keeping these considerations in mind, we can start the study of a fundamental
property on the localization of periodic functions (waveforms) : the relationship be-
tween their spread — the variance of the localization — and the total energy of their
variations — the variance of the momentum. For non-periodic functions, the most

2This discontinuity is not caused by taking a fixed reference point but rather by the way a relative
position is computed
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classical result is the Heisenberg uncertainty principle [66], which lowerbounds the
product of these two variances, and there exists an extension to periodic waveforms
[35], which we will study carefully.

The question can also be posed only in term of “spread” in the time and frequency
domains — the time-domain momentum being the localization in the frequency do-
main and the mapping from one to the other being unitary®. This time-frequency
duality also allows us to look at the problem from the perspective of sequences, since
periodic functions can be seen as the discrete time Fourier transform (DTFT) of se-
quences. So, by convention, we choose the frequency domain to be periodic and the
time domain to be discrete.

We adopt this point of view since its discrete nature of sequences lends itself better
to numerical analysis.

In opposition to sequences, the notions of time and frequency spreads are well
defined and established for continuous-time signals [66; 134] and their properties are
studied thoroughly in the literature. For a continuous-time signal, we can define the
time and frequency characteristics of a signal as in Table 5.1. Note the connection
of these definitions with the mean and variance of a probability distribution function
l2(t)|2/ |lz]|*>. The value of AZ is considered as the spread of the signal in the time
domain while Aic represents its spread in the frequency domain. We say that a signal
is compact in time (or frequency) if it has a small time (or frequency) spread.

The Heisenberg uncertainty principle [66] states that continuous-time signals can-
not be arbitrarily compact in both domains. Specifically, for any x(t) € L?(R),

1

where the lower bound is achieved for Gaussian signals of the form z(t) = 'ye*atz, o>
0 [134]. The subscript ¢ stands for continuous-time definitions. We call 7. the time-
frequency spread of x.

Although the continuous/non-periodic Heisenberg uncertainty principle is widely
used in theory, in practice we often work with discrete-time signals (e.g. filters and
wavelets), or periodic signals. Thus, equivalent definitions for discrete-time sequences
and their periodic spectra are needed in signal processing. In the next section we
study two common definitions of center and spread available in the literature.

Note that we consider periodic, analog spectra (continuous frequency domain),
i.e. spectra of infinite sequences. For discrete spectra Donoho & Stark studied the
uncertainty linked to the fp-norm, [84] studied it with respect to the fo-norm and
[102] with and information measure (entropy).

For infinite sequences and their periodic analog spectra, results can be found in
[35] and [136]. The most comprehensive work on the uncertainty relations for discrete
sequences is found in [100]. The authors show that 1/4 is a lowerbound on the time-
frequency spread, which can only be achieved asymptotically as the sequence spreads
in time. With our approach, we will obtain constructively the achievable lowerbound
on the time-frequency spread for any given frequency spread.

30ne should normalize the Fourier transform properly.
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domain center spread

time = W Jicw tl(t)]?dt A2 = W Joer (t = pe)?[x(t)[dt

frequency Huoe = Al = W Joer(W = 1)1 X (w) [Pdw
Sela]? Jwer @I X (W) dw

Table 5.1: Time and frequency centers and spreads for a continuous time signal z(t).

domain center spread

time Hn = Wznezn‘xnp A721 = Wznez(n_uny'xnlg

frequency /Lwl _ - = AZM = ﬁ fjﬂ(w — po)?|X (%) Pdw
W fiTrW|X(€‘7 )| dw

Table 5.2: Time and frequency centers and spreads for a discrete time signal x,, as
extensions of Table 5.1 [184].

5.1.1 Uncertainty principles for periodic waveforms and sequences

An obvious and intuitive extension of the definitions in Table 5.1 for discrete-time
signals is presented in Table 5.2, where

X(e?¥) = Z Tpe " weR, (5.2)
nez

is the discrete-time Fourier transform (DTFT) of x,.

Using the definitions [134] in Table 5.2, we can also state the Heisenberg un-
certainty principle for discrete-time signals. Under the condition X (e/™) = 0, the
following holds

1
2 A2 2
ne=A; A e xn € 05(Z), (5.3)

4 )

where the subscript £ stands for linear in reference to the definition of the frequency
spread. Note the extra assumption on the Fourier transform of the signal. This
assumption is necessary for the result to hold.

~ Example 5.a — Beating the i barrier

Take Tn = 0n + Tn—1 + 20,—2. The Fourier transform of z.,, is shown in Figure 5.2.
Observe that | X (e/™)| = 0.22 # 0, which violates the condition X (¢’™) = 0. The linear
time-frequency spread of this signal according to Table 5.2 is 7, = 0.159 < 1/4.

The dependency of the uncertainty limit on the value of the waveform at e/™
is a consequence of the discontinuity of the “saw-tooth” function w which is used
for localization in the periodic frequency domain. Because of this restriction on the
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Figure 5.2: A signal that violates X (/™) = 0 and does not satisfy the linear Heisen-
berg uncertainty principle (n; = 0.159 < %)

domain center spread
: _ 1 .12 2 _ 1 2. |2
time Hn = Tzl Znezn‘ln| AL = Bk ZnEZ(n — fin)?|Tn|
f 1 2 _ 1-lr(@)? lel>  |*_ 4
requenc =1l—-7(x = ) = = -
q y M,y (z) wp [7(x)|? Doz ®n T

Table 5.3: Time and frequency centers and spreads for a discrete time signal x,
using circular moments, where T(x) is defined in (5.4).

applicability of the Heisenberg uncertainty principle, the definitions in Table 5.2 do
not fully capture the periodic nature of X (e/*) for the frequency center and spread. In
the search for more natural properties, we can adopt definitions for circular moments
widely used in quantum mechanics [35] and directional statistics [81]; and we will
study and motivate these definitions in the next section.

For a sequence x,,, n € Z, with a 27 periodic DTFT, X (e/*) as in (5.2), the first
trigonometric moment is defined as [99; 100]

o) = — / " X ()| 2w (5.4)

2r |2l S s

The first trigonometric moment was originally defined for probability distribu-
tions on a circle. With proper normalization, this definition applies also to periodic
functions.

Using (5.4), the periodic frequency spread is defined as [35]:

2
1= ]|

1@
“r ‘T(z)|2 ZTLEZ Tn $:L+1

~1 (5.5)

The definition of A2 remains unchanged as in Table 5.2. These definitions are
summarized in Table 5.3.
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Figure 5.3: The time-frequency spread of the wrapped gaussian (its Fourier series
are samples of a gaussian) only tends to the Heisenberg limit (0.25) as A2 — 0.

5.1.2 Chapter outline

We address the fundamental yet unanswered question : If someone asks us to design
a sequence with a certain frequency spread (Af)p fixed), can we return the sequence
with minimal time spread A2?

Answering this question, can be formulated as the equation

2 T 2
AL opt = minimize  AJ

o (5.6)
subject to AZ,, = fixed.

The solution of (5.6) is called a mazimally compact sequence and its spectrum is
in turn a maximally compact periodic waveform.

For non-periodic functions, gaussians are the well-known solutions of this problem,
and they reach the Heisenberg limit of 1/4 regardless of their spread. To make the
transition from non-periodic functions to waveforms, one may try as a first guess to
periodize the gaussian function by wrapping it — which corresponds to sampling its
Fourier transform uniformly. We show the result in Figure 5.3. For narrow wave-
forms, the wrapped-gaussian tends to the Heisenberg limit — agreeing with [100].
However, as the variance of the wrapped gaussian is increased, its time-frequency
spread increases and saturate at the value of 1/2.

Framing the design of maximally compact sequences as an optimization problem,
we show that contrary to the continuous case, it is not possible to reach a constant
time-frequency lower bound for arbitrary time or frequency spreads. We further de-
velop a simple optimization framework to find maximally compact sequences in the
time domain for a given frequency spread. It means that we can design exactly pe-
riodic waveforms of a given spread having a minimal time-frequency spread. As a
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corollary, it provides a sharp uncertainty principle for sequences and periodic wave-
forms since the optimal can be computed — see Figure 5.6 for an illustration.

We also show that maximally compact waveforms can all be formed from a tem-
plate which is Mathieu’s harmonic cosine of order 0.

5.2 Localization and its effect on time-frequency un-
certainty

The choice of A2 as an angular variance must be motivated. The most thorough
study on the subJect in [35] provides many heuristic reasons. If these reasons all have
their merits, we would also like to show that the definition of a frequency spread
is unambiguously linked to a pseudo-differential operator, providing a simple and
unique selection criterion. We will show that A2 corresponds to the finite difference
operator which is the simplest among discrete dlfferentlals

The Heisenberg uncertainty principle is rooted in particle physics, and there-
fore thought in terms of position-momentum uncertainty rather than time-frequency
spread as in the signal processing community. These two interpretations are equiva-
lent, but the intuitions behind them are useful to make the transition from continuous
to discrete time.

5.2.1 Uncertainty Principle for Linear Operators

Consider a Hilbert space H with the inner-product (-, -) and the induced norm ||| = ef

v/ {x, x). Define linear operators L, M : H — H, and the mean-value

pr (@) € (La, z) /.

If L is self-adjoint, pr, (x) € R.
For any pair of linear operators, the commutator

L, M Ly — ML,

vanishes if and only if its arguments commute [38].
With these definitions, the Heisenberg uncertainty principle is

Theorem 5.1. (Schriodinger 1930 [9; 111])
For L and M self-adjoint,

(L = pz @)all* |(M = par (@)z]* = il([Lv Mlz,z)]* . (5.7

Proof.
Using Cauchy-Schwarz inequality and the self-adjointness of L and M,
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(L = gz )l (M = poag (@)l 2 (M = pag (@), (L= oo (@)}
:)LMx x uL(m),uM(m)Hﬂ\Z ’

i

(LM — ML)z, x)

l\)\»—l

(LM + ML)z, z)

l\J\)—

—pz (@) par () ]|

The two halves within the modulus are respectively imaginary and real,

therefore with the anticommutator {L, M} = ©E M+ ML, one obtains the
Schrédinger uncertainty principle

2 2 1 2
1L = pr @) ]" (M = par (@)™ = 7KL, M]z, )|
1
+ 7ML, MYz, 2)
0|2
—=2pr () par (@) )7
from which the weaker Heisenberg uncertainty principle follows. O
Remark :  The self-adjointness of the operators can be relaxed a little. For exam-
ple, a multiplication by a number of modulus 1 could be applied to localization or
momentum to make them self-adjoint. Also, in particular cases — as in [35] — the

same inequality may hold even though one of the operator is not self-adjoint.

5.2.2 The journey from continuous to discrete

We apply the general uncertainty relation (5.7) to continuous and discrete-time signals
to make some connections explicit. In particular, we study two schemes to make the

transition from continuous-time to discrete-time.

Continuous time-frequency uncertainty

Let z(t) € Lo(R), the localization L and momentum M operators are

La(t) ¥t 2(t)

def dx
Ma(t) ).



5.2 Localization and its effect on time-frequency uncertainty 103

Moreover, because of the similarity between the continuous-time domain and the
CTFT domain, localization and momentum are Fourier dual of each other :

X e
CE G ) MX ()

Mz(t) D5 jwX(w) ¥ LrX(w).

Lx(t)

This duality shows that the localization-momentum and time-frequency localization
interpretations are the sides of the same coin.
With the evaluation of

4
(t,d/dt]x , x) = |l=|”
where the square brackets indicate the commutator and the use of Parseval’s equality
_— 2 2 — 2 2
12X /117 = (| age]|”/ ]
the uncertainty relation (5.7) yields the continuous-time Heisenberg uncertainty prin-
ciple (5.1)

1
APAZ > =
we =40

where At? = HI_}xHQ/ | =]|* and A = ”L_}-XHZ/ | X||* as found in Table 5.1.

First attempt at discrete-time uncertainty: the DSP point of view

In the same way that we defined the localization and momentum in time and frequency
for continuous-time signals, we define them for sequences. The process can be seen
either from the time-domain as a discretization or from the frequency domain as a
periodization.

If we follow the time-frequency interpretation, it is natural to discretize L and
periodize Lx

Designed Localization: Implied Momentum:
def . iw def iw
Len = n-ap DTFT J%(ej ) = MrpX(e)
LeX () % 5. x(edw) sz, € Ma,

(5.8)
where @ represents the sawtooth wave with period 27. The implied frequency-
domain momentum Mz has the properties one would expect for momentum as it
measures the variation of the spectrum locally by differentiation; on the other side,
the implied time-domain momentum M does not lead to an easy interpretation.
This choice of operators not only causes interpretation problems. The uncertainty
relation is

AZA2 > 1 | X (e7™)|” — 2Re { X' (/™) X* (™) }

2 X7 | )

where A2 &ef L]/ ||z||* and AZ, et |ILFX|* /| X]|]?, as found in Table 5.2.
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Figure 5.4: Two ways to obtain an uncertainty principle for sequences. On the left side a)—by periodization—one obtains
the definitions of Table 5.2, on the right side b)—by discretization—one obtains the definitions of Table 5.3. Note that periodization
and discretization yield the same result for the top plane, but not for the bottom plane.
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Under the condition X (e/™) = 0, the uncertainty principle (5.3) is obtained

1 )
MLz, X =0,
However the necessity of a root at 7 severely reduces the utility of this result, ex-
cluding sequences such as the discretized gaussian kernel, binomial filters, etc. Also
natural periodic features such as shift invariance in frequency (modulation) or scaling
invariance are lost.

Second attempt at discrete-time uncertainty: the physicist point of view

Failure of the first attempt can be pinned down on the definition of the frequency-
domain localization. Instead of designing both localization operators, we may design
both time-domain operators. The task is thus to discretize localization (already done)
and momentum. For the latter, the finite difference filter is a natural candidate

Designed in the time-domain Implied in the frequency-domain
def . : def .
Lp = n-an DTFT JE () = MpX(el)
Mz, % z,-z, (1—e ). X(e7¥) < LrX(e¥)
(5.10)

The implied operator Lz has intuitive properties. For example,

s
ILXIP =2 [ (1 cos(e)) [X () do
-
shows that the spread is measured with respect to the smooth kernel 2(1 — cos(w))
instead of w? in (5.8).

Note that 2(1 — cos(w)) = w? + O(w?), so the two definitions of spread coincide
for w — 0, and should yield asymptotically equal results for sequences with a narrow
spectrum.

The operators M and Lr are the ones most often used in directional statistics
[81].

In [35], the same uncertainty principle as (5.7) is shown to hold for this particular
choice of operators?, and the right-hand side of the inequality evaluates to

([1—e, jd/dw) X, X)|* = | X|*|r(@)]” - (5.11)
For 7(z) # 0 the corresponding uncertainty relation [35] is therefore
1
ANAL >3, T(@) #0, (5.12)

— 2
dof % and A2 are as found in Table 5.3.

The study of continuous and discrete uncertainty principle shows that the defini-
tions of time and frequency spreads found in Table 5.3 are not arbitrary and follow
from the most natural discretization of the continuous-time definitions found in Ta-

ble 5.1.

where A2
»

41t is not a corollary of (5.7) since one operator lacks self-adjointness.
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5.3 Maximally compact waveforms and sequences

The main objective is to design maximally compact waveforms/sequences as solutions
of (5.6). Thus we are interested in solving

2 _ e 2
Aj opt = minimize  Aj

o (5.13)
subject to Af}p =02,

where o2 is the fixed, given frequency spread of the sequence. We saw in (5.12)
that the time-frequency spread of such sequences is naturally bounded from below by
the Heisenberg uncertainty bound. Prestin et al. in [99] show that the lower bound
in (5.12) is achievable only asymptotically when the frequency spread of the sequence
tends to zero. Thus, the question is “what is the minimal achievable uncertainty for
sequences with a given frequency spread?". The answer to this question lies in the
solution of (5.13).

We start with some properties of maximally compact sequences. These properties
will greatly facilitate the task of solving (5.13).

5.3.1 Properties of Maximally Compact Sequences

In the definitions of time and frequency spreads in Table 5.3 we considered complex
sequences and their DTFTs. In the following, we establish two lemmas that make
the search for maximally compact sequences easier. In the following we assume that
]l = 1.

Lemma 5.1. For any fized A2 or Af_,p,

Ty, mazimally compact = |x,| mazimally compact.

Proof.
See Appendix E.1.1. |

Consider also the shift operator

o RALIY X (%), v ER, (5.14)

whose principal effect is to shift the time center of a sequence

tin(Tnv) = pn(z) — V. (5.15)

Notice that v might be non-integer, in which case x,_, is a shorthand for sinc
resampling on a grid shifted by v in the time-domain.
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Lemma 5.2. If x is a maximally compact sequence, then x,,_,, () s also maz-
imally compact.

Proof.
See Appendix E.1.2. O

Lemmas 5.1 and 5.2 greatly reduce the complexity of the problem, and from here
on we only consider — without loss of generality — real, positive sequences z, with
pn(x) =0 and ||z]|? = 1.

5.3.2 The computation of maximally compact waveforms & se-
quences

Theorem 5.2. For finding the solution of (5.13), it is sufficient to solve the
following semi-definite program (SDP)
mz‘n;‘(mz‘ze tr(AX)
subject to tr(BX) =« (5.16)
r(X)=1, X >0,

where o = \/1_1‘_7 Further, X°P', the solution to (5.16) has rank one and

Xort = gort gort™ with goPt the solution of (5.13). Matrices A and B are
defined as

22 0 & 0
1 1
12 2 03
_ _ 1 1
A= 0 , B= 7 0 5
1 1
12 LU
2 .
0 2 o |
Proof.
See Appendix E.2. O

The SDP in (5.16) can be solved to an arbitrary precision by using existing op-
timization toolboxes; for example using the cvx software package [61]. This gives a
constructive way to design sequences that are maximally compact in the time domain
with a given frequency spread.
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Figure 5.5: An example solution of (5.16). The output of the SDP in (5.16)
with 0? = 0.1 using cvx in Example 5.b. The optimal value for A2 is found to be 2.62
which results in a time-frequency spread of 1, = 0.262.

7~ Example 5.b — Computing a maximally compact sequence with cvx —

Take 0 = 0.1 to be the fixed and given frequency spread of the sequence. We can use cvx
to solve the semi-definite program (5.16) and find the optimal value of A2 = 2.62. This
results in the time-frequency spread of 1, = 0.262. The code in MATLAB is:

cvx_begin
variable X(n,n);
minimize (trace (A*X))
subject to

trace(BxX) == alpha

trace(X) ==

== gemi-definite(n)

cvx_end;

Note that contrary to continuous-time signals, we cannot reach the 0.25 lower bound
for sequences. The resulting sequence and its DTFT are shown in Figure 5.5.

. J
The dual of SDR (5.16) is [34]:
maximize al+ Ao
A1,A2 (517)

subject to A— )\ B—-)XI1>0

Lemma 5.3. For the primal problem (5.16) and the dual (5.17), strong duality
holds.

Proof.
We refer the reader to Appendix E.3 for the proof. a

Thus, for finding the time-frequency spread of maximally compact sequences, solving
the dual problem suffices.
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Note that although Theorem 5.2 provides a constructive way to find maximally
compact sequences, it does not specify the closed form for these sequences. One
would be interested to see if—in analogy to continuous-time—sampled gaussians are
maximally compact? The answer is negative as the spectrum of maximally compact
sequences is related to Mathieu functions as shown by this theorem:

Theorem 5.3. The DTFT spectrum, X (e/*) of maximally compact sequences
are Mathieu functions. More specifically,

X(e7%) = 70 - ceg(—2A1 ; (w— wp)/2)e?H | (5.18)
where |yo| = ||ceo(—2A1 5 (w — wo)/2)|| 71, wo, p are shifts in frequency or time
and A1 is the optimal solution of the dual problem (5.17). ceg(. ;.) is Mathieu’s
harmonic cosine function of order zero.

For the proof of the theorem and further insights about Mathieu functions, we refer
the reader to Appendix E.4.

Using the constructive method presented in Theorem 5.2, we can find the achiev-
able (and tight) uncertainty principle bound for discrete sequences. This is shown
and discussed more in Section 5.4 and Figure 5.6. However, a numerically computed
boundary may not always be practical, and even though the numerical solution ex-
actly solves the problem, its accuracy may be challenged. Therefore, we characterize
the asymptotic behavior of the time-frequency bound:

Theorem 5.4. If x,, is maximally compact for a given Aip =02, then

2
_ A2 A2 2 v

Proof.
See Appendix E in [94]. |

This fundamental result states that for a given frequency spread, we cannot design
sequences which achieve the classic Heisenberg uncertainty bound. We will see how
this curve compares to the classic Heisenberg bound in Section 5.4.

The lower bound in (5.19) converges to 1/2 as the value of o2 grows, and “pushes
up” the time-frequency spread of maximally compact sequences towards 1/2 which is
also an asymptotic upper bound on the time-frequency spread as Aip — o0. Indeed,

one may construct the unit-norm sequence m,(f) = &0pt1+V1— 2620, +£d,_1, which
verifies lim. o 7,(2(®)) = 1/2.
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Theorem 5.5. For small values of o2, mazimally compact sequences satisfy

2 V1 2 1
my=A2A2 <2 [ VIt 1) (5.20)
P 8 \WVl+o2—-1 2
Proof.
See Appendix F in [94]. O

For small values of o2, the upper bound in (5.20) converges from above to 1/4, thus
“pushing down" the time-frequency spread of maximally compact sequences towards
the Heisenberg uncertainty bound 1/4 from above.

Finite-Length Sequences

The theory that we have provided so far holds for infinite sequences. For computa-
tional purposes, we have to assume finite length for the sequences in the time domain,
which is not an issue if the sequence length is chosen to be long enough such as to
truncate samples below machine precision. As a side benefit, a length constraint on
the sequence may be put at will to meet design requisites.

5.4 Simulation Results

In order to show the behaviour of the results obtained in Theorems 5.2, 5.4 and 5.5, we
ran some simulations. To this end, we assumed that the designed filter is finite length
with 201 taps in the time domain (the length is long enough not to pose restrictions on
the solution). For different values of Aip = o2, we solved the semi-definite program
(5.16) using the cvx toolbox in MATLAB.

The resulting values of A?L are then multiplied with the corresponding Aip to pro-
duce the time-frequency spread of maximally compact sequences. The time-frequency
spread of maximally compact sequences versus their frequency spread is shown with
the solid curve in Figure 5.6. This means—mnumerically—that any time-frequency
spread under this curve is not achievable. The dotted line in this figure shows the
classic Heisenberg uncertainty bound. Comparing the two curves shows the gap be-
tween the classic Heisenberg principle and what is achievable in practice. The dashed
lines represent analytical lower and upper bounds for the time-frequency spread of
maximally compact sequences.

Further, to give an insight on how the time-frequency spread of some common
filters compare to that of maximally compact sequences, we plot their time-frequency
spread together with the new uncertainty bound in Figure 5.7. By changing the length
of each filter in time, we can find its time and frequency spreads which results in a
point on the figure. We observe that as shown by Prestin et al. in [100], asymptotically
when the frequency spread of sequences are very small, sampled Gaussians converge
to the lower bound for maximally compact sequences.
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Figure 5.6: New wuncertainty bounds. The solid line shows the results of solv-
ing the SDP in (5.16). The dotted line shows the classic Heisenberg lower bound.
The dashed lines show the lower and upper bounds found in Theorems 5.4 and 5.5,
respectively.

5.5 Conclusion

In this chapter, we have seen that localization in a periodic domain is not as straight-
forward as one would initially think. It was shown that the adoption of a localization
with a discontinuity made the definition of a meaningful time-frequency localization
lowerbound difficult.

The localization operator used in circular statistics and quantum mechanics over-
comes this difficulty, and we motivated its choice by showing its Fourier series corre-
sponds to the simplest discretization of a derivative.

By working on the Fourier series of periodic waveforms, we derived a numerical
procedure to compute sequences which have a minimal time-frequency spread. In an
unusual way, the analysis of the numerical formulation yielded an analytical formula.

We conclude that although wrapped gaussians are not maximally compact pe-
riodic waveforms, they are extremely close contenders, and could be considered so
for applications. This settles the question which was posed in Figure 5.3 about the
nature of the gap between the wrapped gaussian and Heisenberg principle. With a
better understanding of periodic phenomena, we will apply the same line of reasoning
to obtain lowerbounds on the variance of periodic estimates in the next chapter.
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Figure 5.7: Time-frequency spread of common FIR filters. By changing the
length of the filters in time, we compute the time and frequency spreads for each
type of the filters. For small values of frequency spread, Gaussian filters are good
approzimations of Mathieu functions (as shown also in [100]).



Chapter 6

From uncertainty to
estimation error

Determination of the minimal error achievable by an estimator based on a given
measurement model is not only of interest to benchmark the performances of an
algorithm, it can also be useful for operational purposes to assess whether or not the
result of an estimation can be trusted.

In this chapter, we use the insight gained on the notion of localization in Chapter 5
to derive estimation lowerbounds of the Cramér-Rao family. The first contribution is
to take into account periodic parameters (supported on [—m, 7[) and not just aperiodic
parameters (supported on R). Path locations in OFDM transmissions (Chapters 1-4)
or bearings are examples of periodic parameters. Simply thinking about the estima-
tion of a wind direction should motivate the formulation of periodic lowerbounds on
the variance of an estimator. Indeed, if the difference between a true direction of
0° and an estimated direction of 359° is taken to measure the estimation error, one
obtains a distance of 359° which defies common-sense. If one tries to get around this
issue by shifting the parameter interval so that 359° becomes —1°, the same problem
is still there for parameter values close to the interval boundaries.

Taking into account the periodicity of the parameter space from the beginning
does not make the derivation of estimation lowerbounds harder, rather, it simplifies
many aspects. For example the existence of unbiased estimators is compromised by
the existence of boundaries at the end of the interval, and this issue is related in the
introduction of [149].

To obtain a periodic formulation of the Cramér-Rao bound (CRB), we first show
that the CRB, in general, can be formulated as Heisenberg’s uncertainty principle.
The immediate consequences are not only on the level of the interpretation, but also on
the level of the application. We saw in Chapter 5 two ways to make the transition from
an aperiodic uncertainty principle to a periodic one. We experimented that the choice

113
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of the periodic localization played an important role. Having a similar formulation
for the CRB, we can make the transition from the aperiodic to the periodic in the
same way with very little efforts.

The periodic Cramér-Rao bound (CRB) we will obtain is very similar in its form
to the CRB for aperiodic parameters (the “classical” CRB), so estimation of periodic
parameters with aperiodic and periodic nuisance parameters is readily available. The
practical implication is that this kind of lowerbounds directly applies to the joint
channel estimation problem we studied in Chapters 1-4, where the times of arrival
are periodic and the paths amplitudes are not.

We then shift our attention to a slightly different problem. To exploit the similar-
ities between Heisenberg principle and the CRB, we can think in terms of localization
and momentum. The choice of the localization operator induces a definition for the
bias and the variance of an estimator, and we already chose a periodic localization
operator when deriving the periodic CRB. The function to which we applied this op-
erator is dictated by probability distribution of the measurements, and so we are in
a setup quite different from Chapter 5 where we chose the function which made the
uncertainty inequality as tight as possible. What is left for us to use is the momentum
operator. The CRB adopts the classical definition of momentum which is the first
order derivative, but we are not limited to this particular choice. The path to follow
is now clear; which linear operator should we use in place of the derivative to make
the lowerbound as tight as possible?

Replacing the derivative by a linear shift invariant filtering operation was proposed
by Barankin [13]|, who proved — non constructively — that an infinite stream of
properly chosen delta functions “made the most” out of the inequality!. We design
analytically a filter which achieves Barankin result. Rather than relying on an infinite
stream of delta functions we adopt the approach developed by Swerling [122] for
aperiodic parameters.

All of the key concepts discussed in this chapter are present in an univariate setup
(one parameter) — with the exception of the multivariate CRB formula for mixed
periodic and aperiodic parameters. Therefore, we will in general only consider the
estimation of a single parameter.

6.1 Some history

We will first review the history of Cramér-Rao bounds (CRB) and Barankin bounds
(BB), and see their range of application and their limitations.

6.1.1 The Cramér-Rao bounds

In 1946 H. Cramér introduced a lowerbound for unbiased estimators [48].

Let §X be an estimator of § € R based on the random measurements X. The
measurements follows the probability distribution pg. The bias of fx is defined as

1We voluntarily avoid to say it makes the application of the Cauchy-Schwarz inequality tight, as
it could be interpreted that the obtained lowerbound is tight.
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bias;(0) / (@ — Opo(@)da = E [fx 0],
x
To derive the CRB, we make the assumption that 0 x is unbiased

bias;(0) = 0, V0.
We then proceed to compute

di‘lebias§(9) = /X (gmfﬁ)%pg(m)dmf /X po(x)dx . (6.1)

—_————
=1

With the unbiased assumption, the left hand side of (6.1) is null, and rearranging the
remaining terms of the equation yields

~ <o
Ex/o (QXG)-CZ;} = 1.
—_——— ——

u v

Cauchy-Schwarz inequality states
E[luP|E[ll?] = B,

therefore (we have shown above that |E [uv]|> = [1]%),

2

~ 2 a4

E Uex fa] ] >E (W“) def (6.2)
Po

The denominator in the right-hand side of (6.2) is called the Fisher information and is
noted Jy. Because we assumed that the estimator is unbiased, it is also a lowerbound
on the variance.

7~ Example 6.a — Single pulse estimation
Consider the measurements
Tn = sg[n] +o0°en, —-M<n<M, 0¢cl[-n, (6.3)

where

2
sg[n] = Dum (W&an) ,

and D) is the Dirichlet kernel of bandwidth N, and {e,,} are realizations of iid standard
normal random variables.
The value of 6 is estimated from @ using the maximum-likelihood estimator Oyr..
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Figure 6.1: MSE of the maximum-likelihood (ML) estimator — or variance
since the ML estimator is unbiased — and the inverse Fisher information.

The ML estimator minimizes the variance asymptotically as the noise vanishes [132]. As

the SNR tends to —oco dB, the lowerbound diverges to +o0, which causes interpretation
issues for an estimation where the unknown parameter is known to be in a finite interval.

J

In Figure 6.1, the MSE of the maximum-likelihood (ML) estimator is optimal
above 2 dB of SNR. It is rather troubling that the CRB diverges to infinity as the
SNR goes toward —oo dB. The distance fx — 6 is upper-bounded by 27 — or «w
whether we consider the distance modulo 7 or not. Fatally, the CRB is not a valid
lowerbound below a certain SNR as it does not take into account the boundedness
or the periodicity of the parameter space into account. More radically, it could cast
a doubt on the validity of the bound regardless of SNR. However, as the SNR tends
to +oo the distribution of reasonably good estimators concentrates around ¢ and the
approximation of the parameter space by the infinite line is adequate.

As a conclusion, since physical quantities are bounded or periodic, the CRB can
only be used in the high SNR regime where the estimation error is local.

.

6.1.2 Improvement : Barankin’s bound

To derive the CRB, one starts with differentiation of the bias as in (6.1) and then
applies the Cauchy-Schwarz inequality to the result. But, instead of the derivative

d%, a linear shift invariant filter can be applied to the bias :

~

(g * biasy)(0) = /X (8 — 0)(g(2) * py())(6)dez — / g(t)t /X pi(x)dzdt,  (6.4)

=E {(ﬁx —0) - M} + (g(t) = t)(0). (6.5)
Po

The corresponding MSE lowerbound is

E “é\x - 0’2] > |(g(t) ¥ )(0)]* - E

9 —1
} . (6.6)
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This lowerbound is not the Barankin lowerbound per se, but our own construction
which makes it easier to introduce Barankin’s idea. The freedom we have gained by
using a linear filter is the ability to choose its impulse response g such as to maximize
the right-hand side of (6.6).

To this end, some intuition can be gained from euclidean geometry. For any two
non-zero vectors v and v in a euclidean space, the Cauchy-Schwarz inequality applied
to this pair of vectors becomes an equality iff u and v are collinear

full - 0ll2 = [(u, o), iff uwand v are collinear.

Using this notion of collinearity, Barankin showed that the sequence of filters

gn(t) = zn: apd(t —ty)
k=0

will maximize? the right hand side (RHS) of (6.6) for appropriately sequentially
chosen parameters (o, tx) as n — oco. Le., the difference between the maximal RHS
obtained with g and the RHS obtained with g tends to 0 as k grows.

The merit of Barankin’s result is to pose the design of g as a greedy procedure
making the search complexity manageable. In practice, this procedure is hard to
apply for numerical stability reasons [1; 45; 147|, and finding a solution to this problem
— called Barankin bound approximation — has been an open topic for many years
[8; 1; 86; 147]. Another open question is that there is no quantification of the rate of
convergence with k, the number of delta functions. So, stopping the procedure early
because of numerical instability or using different filters opens the question of how
close is the lowerbound from the optimal.

6.1.3 Other parameter spaces: manifolds, periodicity, ...

So far, we assumed ¢ € R. Many estimation problems involve parameters supported
on finite intervals (e.g. speed estimation — < 3-10%m/s™ "), semi-finite intervals (e.g.
sampled variance estimation — > 0), periodic domains (e.g. paths localization in
OFDM communications, or in CDMA where the pseudo-random sequences are long
but periodic), euclidean manifolds, . ..

Most of the CRBs developed for these problems only concern cases for which the
parameter space can be assimilated to the infinite real-line. For example, a loose
definition of N-dimensional euclidean manifolds is that they look “locally” like the
classical euclidean space R, allowing for a linear approzimation as long as the lower-
bound is low enough. In this case the error is local and similar to what would happen
in the classical euclidean space.

In the periodic case, using the aperiodic approximation is not good enough to yield
a reliable Barankin bound approximation. Indeed, the CRB evaluated the derivative
around the true parameter value 6 ensuring the result depends only on the local
neighborhood of #. For the Barankin bound, this is not the case as the impulse
response of the filters g, may spread over the whole parameter space.

2Majorization of the lowerbound does not imply tightness !
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To the best of our knowledge, one recent contribution [106] proposed a periodic
CRB which is of interest in the field of communications. One limitation of this result
is that it requires the knowledge of the distribution of an estimator minimizing the
MSE to compute the periodic CRB. One would argue that knowing this distribution
limits the application of a MSE lowerbound, as a the minimal MSE is directly available
from it. In Appendix F.5, we show how it can be avoided (paying the price of a non
closed-form formula).

6.1.4 Problem summary

After this brief review, it appears the challenges are two-folds to obtain good lower-
bounds for periodic parameters estimation

1. Include the periodic nature of the parameter into the lowerbound formulation.

2. Quantify the strength of Barankin’s bound approximation for periodic param-
eters or give an explicit exact formula.

It turns out these two problems are linked, as a proper periodic formulation will
yield a closed form formula for Barankin’s lowerbound.

A similar formula was derived by Swerling [122] in 1959 for an aperiodic parameter,
but it found surprisingly little echo in the literature.

6.2 An uncertainty-like inequality for estimators

The connection between the CRB and the Heisenberg principle is known to some
extent. In [50] it is shown that the CRB and Heisenberg’s uncertainty principle are
equivalent for random measurement vectors which depend linearly on the parameters
([50], p.16-17). In the more general case where the dependency is non-linear, equiva-
lence is shown between Heisenberg’s uncertainty principle and a Bayesian CRB? ([50],
p.17-18).

The parallel between the classical CRB — i.e. a lowerbound on the variance of
an estimator with no bias (or a constant bias) for a deterministic value of § — and
the Heisenberg principle is not immediate. In fact we could not derive the CRB from
the Heisenberg principle.

Nevertheless, a similar a formula with the same structure as the Heisenberg un-
certainty principle exists under mild conditions on the bias, but it will be proven
directly from the Cauchy-Schwarz inequality (without Stam’s inequality as in [50] for
the bayesian CRB).

Preliminary definitions We define the localization and momentum operators

Definition 6.1. Localization multiplies the probability density with a function
loc(0x,0), measuring a difference between 0x and 0

3The Bayesian CRB was derived originally by Van Trees [132].
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Lpy < loc(fx,0) - pe.

The momentum operator M is a linear operator depending only on 6 and
independent of the measurements.

This definition of localization is broad enough to be applied to aperiodic and
periodic parameters alike. The definition of momentum includes, of course, derivatives
of various order (necessary for the CRB and the Bhattacharyya bound [57]), and linear
shift invariant filtering (necessary for the Hammersley-Chapman-Robbins bound [44]
or the Barankin bound [13| among others).

Then we define an inner-product

Definition 6.2. For a bounded, strictly positive probability distribution pg and
linear operators L and M as in Definition 6.1,

Lpg(Mpg)*

(Lps, Mps) < E [ !
Py

| = [ t@ @)y @de. 61
Define also the norms

ILpell> = (Lpe, Lpe), and | Mpg|* = (Mpg, Mpp).

Note that this inner-product may not be well-defined for any pair of arguments,
and its application must be handled with care?. The inverse of the probability density
function p, 1 is the positive definite® kernel of the inner-product.

As in Chapter 5, we also define the mean of L and M

1 (0) % (Lpy . po) = / loc(T, 0) - po(x)da | (6.8)
X

which is a generalization of the bias of §X. The use of loc will allow us to adopt
different definition of localization for periodic parameters and choose the most suitable
one.

For the momentum, remembering that M is only function of 6, we obtain

par(0) ' (Mpy . pg) = /XMpe(w)dm =M1, (6.9)

which is the application of M to the constant function 1. For shorthand, we
will often write pz and pps, omitting 6. From (6.8) and (6.9), we draw natural
interpretations for py, =0 and py =0

pur =0 & Unbiased estimator ,
1227

o

= M kills constants.

4In doubt, read [33] with 1g of aspirin.

5We assumed a probability density greater than 0 everywhere.
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A prototype lowerbound Cauchy-Schwarz inequality implies

(L = pr)po . (M — puar)po)|®

I(L = pr)poll? > 7 (6.10)
(M — /lM)p9||2
and is indeed an inequality on the variance of ) x as
~ 2 ~ 2
(L — pr)pol® = E Umc(ex,e)) ] . ]E [Ioc(@X,H)” L var, (6). (6.11)

This inequality does not yet bear any resemblance with an uncertainty principle.
It can be transformed into one if some conditions are put on py, and ppy.

Lemma 6.1. For L and M as in Definition 6.1, uy a constant function of 0

and ppr = 0

(L, M]ps , po)|*
1M |*

vary() > (6.12)

Proof.
See Appendix F.1. a

The requirement of a constant p, is a constraint on the estimator weaker than being
unbiased (p, = 0). Moreover we will see that unbiasedness may not always be a
sensible requirement while a constant bias is.

Lemma 6.1 will serve as a base from which we will derive several bounds on the
variance (or the MSE) of estimators, which structure is broadly speaking of the form:

Lack of commutation between L and M

Estimator Variance > e o -
Fisher-like” information measure

The main advantage of using the uncertainty-like form (6.12) instead of (6.10) is to
use results from Chapter 5 as intuitions, and to realize that the lack of commutativity
between L and M is crucial to obtain strong lower bounds. The main drawback is
the condition put on py and ppr; so whenever we will feel limited by them, we will
go back to (6.10).

~ Example 6.b — A trivial lowerbound

It is well-known [45] that choosing M to be the identity — Mpy = pg — yields the trivial
lowerbound varg(#) > 0. The interpretation of this result in the light of Lemma 6.1 is that
M and L commute, so that the numerator of the RHS in (6.12) vanishes.

We can now outline a plan to obtain meaningful and practically computable
bounds from (6.12) using insight from Chapter 5 :
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1. Design the localization operator L such that

e The implied estimator variance and MSE definitions are meaningful,

e The RHS of (6.12) can be evaluated in closed-form. No dependency on the
estimator itself, except its first moment (unbiasedness, ...).

2. Find the operator M which maximizes the RHS of (6.12).

6.2.1 Preliminary example : the aperiodic and periodic CRB

Before diving into the two steps plan, we grind our teeth on the CRB, i.e. on the

def
case where Mpy = d%pe.

First, one obtains a generic formulation of the CRB for a localization operator as
in Definition 6.1.

Theorem 6.1. (generic CRB)
An estimator 0x with constant bias

nL = / loc(é\w,e) -po(x)dx = constant ,
X

has its variance lowerbounded by
I~ 2
’fx (d%loc(ﬂm,@)) pg(m)dm‘
> )
> 7

varg(6) (6.13)

which is the CRB.

Proof.

First notice that ups = 0, therefore we can apply Lemma 6.1.
The denominator in the RHS of (6.12) is Fisher’s information

<dfép9>2/pg} def (6.14)

For the numerator, one obtains

1Mpol® = E

~

(imc(em, 9)) po(z)dx (6.15)

e Mmool = [ (5

X

Theorem 6.1 applies immediately to various type of parameters :

Aperiodic parameter The usual localization operator is

|OC(§X,0) = §X —9,
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and so Theorem 6.1 implies
varg(0) > ng,
which is the classical CRB on the variance of an estimator.

Periodic parameter We assume 0 € [—m, 7[. Several choices can be made for lo-
calization. Because of the similarity with the Heisenberg principle, one can infer
that

|0C(§X,€) = (é\X _e)modﬂ'a

would lead to a dependency on the value of the distribution 7] x at § = 7 in the
commutator, and so the lowerbound would depend on the estimator distribution at
0 = m, which is problematic. This foresighted problem was observed in [106], and
yielded a lowerbound dependent on the value of the estimator’s CDF.

To avoid this issue, we will choose the localization definition (5.10) in Chapter 5
since it was shown to have many desirable properties

loc(fx,0) = 1 — el @x=0), (6.16)

We define the centered first angular moment of py as

0) < /X ¢ Bo=0)p, () da, (6.17)

B un(8) = E [loc(éx,e)} = 1-1(0).

It is important to note that assuming 1 — 7(#) = 0 is nonsensical. This leads to
think of what motivates the unbiasedness assumption in the classical derivation of
the CRB. If we assume the estimator distribution is centered on 6 regardless of its
value — which was the motivation behind the unbiased requirement in the aperiodic
parameter case— then 7(0) is real-valued and constant. If the estimator deviates
from @ by a constant amount, then 7(8) is constant and complex valued.

Hence, the substitute notion for “unbiasedness” with the localization (6.16) is to
have a constant, real-valued, centered first angular moment. The substitute for a
“constant bias” is to have a constant centered first angular moment, i.e. to have
d%T(G) =0.

We now have a truly periodic definition of the CRB

Corollary 6.1. (The periodic CRB)
Let 0x be an estimator of 0 based on measurements X with a constant centered
first angular moment 7(0) = 7 defined in (6.17). Then

1
var; = 1—|7|° >

6.18
0 1+ Jg’ ( )
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where Jy is the Fisher information of the measurements X about 0 :

(i) /]

Proof.

varg(f) =E Ul — ej(gx_e)ﬂ - ‘E [1 — ej(ﬁx—e)} ‘2
* * 2
=l-7-—1m+1-(1-7—75+I[")
=1- |T|2 5
Then applying (6.13) from Theorem 6.1

e BB e

This inequality upperbounds |7'|2 which yields a lowerbound on the peri-
odic variance 1 — |7|? :

2 o _Jo
T 14+ Jy
As a side observation, we got extremely lucky since the numerator in
the RHS of (6.13) — which includes the commutator of L and M — had a
dependence on 0 which is function of its variance only. Therefore, we were
able to “resorb” it in the variance itself. In general, this is not the case for
any definition of L, as we have seen previously for the “modulo” definition of
localization. U

7]

The interest of Theorem 6.1 is its similarity with the classical CRB. The periodic
variance ranges from 0 for a point-mass distribution to 1 for the uniform distribution
among others.

The lowerbound is the inverse of the Fisher information regularized by the addition
of 1 to avoid singularity, therefore the lowerbound ranges from 0 for an infinite amount
of information (Jp — o0) to 1 if no information is present at all (Jy = 0).

Since 1/(1+t) =5 1/, the periodic CRB tends to the classical one as the amount
of information increases. This is to be expected as good estimators’ distribution will
concentrate around the true parameter value, making the real-line parameter space
approximation relevant.

This is also consistant with the definition of the periodic variance. Indeed, we saw
in Chapter 5 that

11— =12+ Oo),

which implies that the aperiodic and the periodic variance are similar for narrow
distributions.
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(

— Example 6.c — Single pulse estimation (ctd.)

In the continuation of single pulse estimation example (Example 6.a), we estimate the
centered first angular moment of the ML estimator
TML = mean {ej<9ML_9)} ,
where mean{ e } is the sample mean of a random variable.
The Fisher information is then [31]

a2
Y
0 = PORE
Corollary 6.1 provides two inequalities to assess the dispersion of the ML estimator

2 1 1-— |’7'1\/[L‘2
1 ‘TML' 2 1 ¥ Jg ) |TML|2
The first one concerns what we defined as the periodic variance. It ranges from 0 to
1, which makes it intuitive to work with. The second inequality concerns the unbounded
periodic variance. Having a definition of variance spanning R for a parameter ranging from
[—m, m[is not the most practical, but it is lower-bounded by the inverse Fisher information,
just as in the aperiodic case.

> J, b,

102 E T T T — T E!

c A3 .

1 \F@rjodic CRB: 1|7 > 1| i

10" E . =

s = ]

S e ]

100 F N " |

E =—— =

- *:‘ =

= \\‘\“ B

107! = \ =

H— \} ]

1072 1 '} i

| 1+ J0) |

10-3 % " =" mean {(§ML - 9)2} é

LAl |

1077 =

0 Flana 1=FuLl? S

B [7mr|? i
10-° I I | | L

—50 —40 —30 —20 —10 0 10

SNR [dB]

Figure 6.2: The periodic variance of an estimator 1 — |7|° is a measure of
spread well-suited for both a rigorous analysis and an intuitive interpretation
of a periodic estimator’s performances.
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Mixed multivariate estimation : Periodic & Aperiodic parameters The classical
multivariate CRB establishes a lowerbound on the covariance matrix of a multivariate
estimator by the inverse of Fisher’s information matrix.

We derived a CRB for the periodic variance 1 — |7'\2 and also for a normalized
definition of the variance

L—|rf*
2
7]

Since it has the exact same structure as the CRB for aperiodic parameters, a CRB
on a heterogeneous collection of parameters ought to exist in a similar form

Theorem 6.2. (Mized aperiodic/periodic multivariate CRB)

Let 0} be an estimator of @ a vector of K parameters. Each parameter 0y, is
either periodic (0) € [—m, 7[) or aperiodic (0 € R), and for each parameter, we
define its localization as

1—ed (X, —0k)

= def i(0x k—0K)
loc(0x 1, 0r) = E[e ]
Ox. — Ok Ok is aperiodic

0k is periodic

If 111.(0) f g [/oc(é\xyk, 9;@)} is constant with respect to @ for all k, then®
cov {/oc(éx,e)} T P (6.19)

where cov {/oc(gx7 0)} 1s the covariance matriz with entries

[cov {/oc(éX,B)H ) [(/oc(@XJC,B) = uk(e)) : (/Oc(gx,bek) - W(ek))*} .

k.0

Proof.
‘ See Appendix F.3. 0

Evaluation of each of the diagonal coefficients of Jy ! yields a lowerbound on the
estimator variance for the corresponding parameter. For aperiodic parameters, this is
the usual definition of the variance, but for periodic parameters, this is the periodic

. Since there is a one-to-one map between the periodic

variance normalized by ‘Tgk

variance and its normalized counterpart, it follows that

6The relation A = B means (A — B) is positive semidefinite.
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Corollary 6.2. For a periodic parameter 6;, and é\k an estimator with constant
centered first angular moment 5,

2 1

def
> -
T 1+ [y ek

vary(0) = 1—

(6.20)

4,

This corollary makes it possible to use the periodic CRB in the presence of mul-

tiple nuisance parameters which have either a periodic or aperiodic support. The
estimation of the multipath model developed in Chapter 1 is an example of a model
combining periodic parameters (the time of arrivals) and aperiodic parameters (the
path amplitudes).

b Example 6.d — Multipath channel estimation

We consider a 2-paths with AWGN measurement model — i.e. a model with four unknown
parameters, two aperiodic and two periodic — defined as

T = se[n]+0°en, 0<n<2M+1,
where

2 2
Sa[n] = 03D (Wﬂ:ﬁ—ln — 91) + 04Dm (ﬁn — 92) s

and D), is the Dirichlet kernel of bandwidth 2M + 1 = 31, and &,, are realizations of iid
standard normal random variables.
The Fisher information matrix is [31]

1 _. def [8s s
Jo = @@, @ % [ﬁ 693].

We first set @ = [0.2, 1, 1, 1]7 such that

0.0128  —3.85E-5 1.75E-4 0.0164
—3.85E-5  0.0128  —0.0164 —1.75E-4
1.75E-4  —0.0164  1.0212 0.0142 |’
0.0164 —1.75E-4  0.0142 1.0212

then, with Theorem 6.2 and Corollary 6.2

=1 _ 9
Jg =0

CO
X 1417835/0%

varg, = varg, 21.0212-0° .

varg, = varg,

In this example, the gap between each pulse is large enough so that the joint estimation
error is almost the same as in the univariate scenario

(Jo Tk = 1/[Jo]k k-

~N
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This is obviously not the case if this gap is made much smaller as shown in Figure 6.3.

In this case the multivariate bound in Theorem 6.2 is absolutely necessary. It is now
clear that the fact that both the periodic and the aperiodic CRB are proportional to the
inverse Fisher information is not just a nice to have property since it made possible to treat
jointly periodic and aperiodic parameters.

10° = =
R . 102
107" =
10-2 | 4, 0
3 v et S
7 103k 47 =5
E = 10
107 E
- - 1074
10-° L \ \ \ \ | \ \ \ \
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1
A A

Figure 6.3: The signal model is the one developed above with @ = [0.2, 0.2+
A, 1, 1]. The inverse bandwidth of the pulse shape is 27 /31 ~ 0.2, and a rule
of thumb in communications is to consider twice the inverse bandwidth — i.e.
0.4 — to be the distance at which interferences between paths are negligible.
The dashed line is the CRB for independent estimation, i.e. if the values of
the other parameters are known exactly.

.

J

6.3 Replacing momentum to maximize the lowerbound

In Theorem 6.1, we obtained the CRB for a periodic parameter. It is of interest to see
if this lowerbound can be made stronger by using a different “momentum” operator,

as done in Barankin’s work and its followings. Our starting point will be

Lemma 6.2. A periodic estimator with constant centered first angular moment

T verifies
=i o= gty (621)
LA TOR IO |
for any square integrable impulse response g.
Proof.
See Appendix F.2. O
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b Example 6.e — The periodic Hammersley-Chapmann-Robbins bound (HCRB) —

The HCRB [44] was originally proposed as an alternative to the CRB for measurements
distributions pg lacking derivability with respect to §. The idea is to use a pseudo-differential

filter in Lemma 6.2
) def Ot — 0t-A
ga A )
implying
(9a = (0) = L= 102

Therefore as A — 0, one obtains the CRB if it exists. By choosing A such as to maximize
the RHS” in (6.21), a lowerbound at least as tight as the CRB is obtained

1—|r? > max |fe(1 - ejt)gA(t)dﬂQ
7P T A E[ (90 «p)O)F/ 5]
|1 = ejA|2

- 12 T
E[(M) } 1
Po

The expectation in the denominator can be evaluated by numerical integration in general.
For the AWGN measurement model (6.3) used in the previous examples, it has a simple
form® which yields

(6.22)

1— |72 1_ 22
L 5 [1-e 2} . (6.23)
I7] A€ |lso=so-ally/o? _
This periodic lowerbound is to be compared with the aperiodic HCRB [44]
= =~ 2 2
E [(ox - 0)2] ) [ex - 9] > max A . (6.24)
A€© 6”55—59,A||2/U2 _1

As expected from Chapter 5, the localization kernel A? is replaced with its periodic
counterpart |1 — ejA|2 = A? + O(A"). Therefore for A small enough, the RHS of both
equations coincide, and they both tend to the inverse Fisher information.

As in (6.3) the signal s¢ is the normalized sampled Dirichlet kernel of bandwidth
N = 2M + 1 such that

def sin((2M + 1)A/2)

lso —so-all; = 2-(A1=Du(8)) . Du(8) = Grr ay A oy

(6.25)
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So, for the signal model (6.3) specifically, the HCRB on the periodic variance is

) 20Dy (a)/e® _ 17\ 7
1-— > |1 i . 6.26
I = * Aco 2(1 — cos A) (6.26)
10 £ s
10° = === E|
= RSN .
B . i
[ . o
107 % =
- L) =
[ + .
- A } -
I L} |
A
107% - 4 E
= 1 =
107° | — periodic CRB =
E = periodic HCRB (6.26) E
1074 E linear HCRB (6.24) i
F o1 GYiak )
-5 \ \ | | |
107" 50 ~40 30 ~20 ~10 0 10

SNR [dB]

Figure 6.4: The HCRB is by construction tighter than the CRB, and a thresh-
old SNR is visible. This threshold SNR is significantly lower than the threshold
SNR of the ML estimator.

Note that a multivariate HCRB for a set of K aperiodic and periodic parameters can
be easily obtained following the same line from Lemma 6.2, this is left as an exercise. The
only difference is that the optimization of A is now done over a K-dimensional space which
can become difficult for large values of K.

- J

6.3.1 Finding the optimal filter (“momentum”) with collinearity

The task is to find the impulse response g which maximizes the RHS of (6.21). It
may not be feasible analytically for any distribution py as the RHS of (6.21) depends
on an expectation taken with respect to the measurements. Numerical integration or
Monte-Carlo methods can solve this problem in general. More specifically, for AWGN
measurements an analytical solution can be found.
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Lemma 6.3. Let 0 be a periodic parameter and x be measurements corrupted
by additive gaussian noise with distribution

po(z) € Ne(ss, T),

where sqg is a vector depending deterministically on 6 and X is the noise covari-
ance matriz. Then

e[l 2)@)F /2] = [ atomo -0 (6.27)
-/g*(t/)m(e,e—t’)’ln(e—t,e—t’)dt/dt,
€]

where
K (t, t) def _Hst_st/”Z):—l/z'

Proof.
See Appendix F.4. O

The quantity in (6.27) can be seen as a generalization of Fisher information.

It shows that for measurements corrupted by AWGN, the generalization of the
Fisher information can be computed via a closed-form formula. We can combine this
expression with Lemma 6.2 and use the property of the Cauchy-Schwarz inequality
for collinear arguments to make the lowerbound as tight as possible. This results in
solving a simple integral equation

Theorem 6.3. The impulse response’q solution of

(1—e9t) k(0 —t,0) = /g(t')n(e,a—t')*ln(a—t,o—t’)dt', (6.28)
©)

an Harmonic Fredholm integral equation of the first kind, maximizes the RHS
of (6.21). This equation can be solved numerically using Galerkin’s method or
finite elements. Then

7|2 !

> = 1 — > 6.29
varz T|" > 1—}—%(6‘0—6',1)_17 ( )

where G, % DTFS{g}[n] = 5= Jo g(t)e ™ dt.

9We use the same symbol g for the optimal filter and an arbitrary one to avoid a cluttered
notation, beware!
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Proof.
With the expression (6.27), the RHS of (6.21) is

Jo 9()(1 — )|’
Jo 9k (0 —1,0)"" [ g* ()6 (0,0 — ') 'k (0 —t,0 — t')dt'dt

This fraction is maximized when the numerator is the squared magnitude of
the denominator'®which implies

1= ok (6—1,0)" / G W) (0,0 — )k (0 — 1,0 — ).
(S

Scaling the magnitude of g does not change the value of the lowerbound,
so without loss of generality, equality can be sought in the previous equation
instead of proportionality, yielding (6.28) by taking the conjugate.

With g, the RHS of (6.21) is equal to [ g(t)(1 — e7*)dt, which is real-
valued and positive. O

Theorem 6.3 provides a constructive way to obtain the Barankin bound for a periodic
parameter. Its structure is remarkably similar to the CRB, here ﬁ(G0 -G_) !
replaces Fisher’s information.

6.3.2 An analytical solution for shift-invariant signals

Solving a Fredholm equation — as (6.28) — is numerically an ill-conditioned*! but
well-understood problem [65; 64|, and the literature about Ritz-Galerkin methods is
abundant!2.

Despite these features, an analytical solution is of interest to gain insight on the
inner-workings of the maximization problem.

If the kernel s is a convolution kernel — i.e. if w(t,t') = wx(t' —t) —'2 the
eigenfunctions of the Fredholm equation (6.28) are the DTFT basis functions (DTFS’
dual basis functions), and so the equation is analytically solvable in the DTFS domain.

10This principle is a consequence of the fact that Cauchy-Schwarz inequality is an equality for
collinear inputs

LA small perturbation in the left hand side of (6.28) may drastically change the solution.
12See [59] for a remarkable historical perspective.

13We abused the notation by using the same symbol & twice.
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Corollary 6.3. In the setup of Theorem 6.3, if k is a periodic convolution kernel,
k(t,t') =k (t' —t), then

1
KTZL+1 -1
I+ (ZZ Kn 1)

varg >

(6.30)

where I, ¢ DTFS{r}[n] = & [, & (eI,

Proof.
The equation (6.28) becomes

(1—e M. k(t) = / gtk (—t) "k (t—t)at,
o —--——
a(t)
= (g*r) (1)
PR Ky —Kny1 =21-Gp - Ky, (6.31)

=~ (Km - Km+1) : Kmfn
where G, = Z G K_(n-m) = o K, .

mez meZ
Therefore,

1
G() = ﬁ Z K,, _Km+1 = 0.
mEeZ

1 K2 1 1 K2
G| =—— mtl Kpi1 = —— mdl )
-1 27 K,, + 2 Z + 2 = K,,

meZ meZ
——

=r(0)

Plugging these values in (6.29) proves the result. O

~ Example 6.f — Single pulse estimation (ctd.)

In the continuation of the univariate example (Example 6.a), we can use Corollary 6.3 to
obtain an exact computation of Barankin's bound — we showed in (6.25) that ||sg — so—||2
is function of ¢ only, and so r (t,t') = k (¢’ — t). Using Corollary 6.3 we obtain
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Figure 6.5: The dominating lowerbound is the strongest lowerbound that can
be achieved by replacing the derivative operator in the periodic CRB by an
arbitrary LS| filtering operation. The threshold SNR is higher than the one
of the HCRB, but still significantly lower than the threshold SNR of the NL
estimator.

It is an open question of whether or not the lowerbound can be achieved in practice.
Nevertheless, it is shown in [131] that on this particular problem, the MSE performances
between the MAP (which is equivalent to ML if the prior distribution is uniform) and the
MMSE estimators with a uniform prior on the parameter are similar. It indicates that the
\ gap is not entirely explainable by a deficiency of the ML estimator.

b Example 6.g — Modulated pulse estimation

We have just seen that the Barankin bound falls short of detecting the transition between
the small and large error regimes. Another type of transition can happen when the signal
possess features with different resolutions. For example consider the model used in the
single pulse estimation examples, but the pulse shape is now modulated with a phasor of
known frequency fo significantly larger than the bandwidth of D) the Dirichlet kernel of
bandwidth 2M + 1

. I o 2
se[n] = eI fo (i n—0) - Dy (ﬁn—@) , n=20,...,2M,

in which case
llso — so+ell; = 2- (1 — cos(fot) - D (2)).

Hence, the kernel k is a convolution kernel, therefore we can use Corollary 6.3 to compute
the lowerbound obtained with an optimal filter g.
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Figure 6.6: The estimation has an additional regime at high SNR where the

error depends on the frequency of the modulation.

The intuition is that the signal now has an autocorrelation oscillating at fo and shaped
by Das. For a low enough noise level, the rapid oscillations of the autocorrelation function
can be exploited to pin-point more accurately the exact location. As the noise power
increases, errors start to be made between adjacent oscillation peaks, and the shape of Dy
dictates the estimation accuracy. Finally, for a large enough noise, large spurious errors
appears as in the previous example.

The CRB is based on the second derivative of the likelihood function with respect to
6 around the true parameter value, and so it is mostly influenced by the fast oscillation of
the cosine.

The bound proposed in Corollary 6.3 and the HCRB is not limited to this extremely
local view of the signal and has the ability to detect — loosely — the aforementioned
transition.

The slight difference between the HCRB and the optimal filter bound makes it relevant
to consider the HCRB for signals which do not lead to a convolution equation.

. J

6.3.3 Discussion about the “gap” between the Barankin bound
and the ML estimator

The two examples illustrating the use of Corollary 6.3 seem to indicate there is a gap
between the accuracy achievable in practice and lowerbounds based on the Cauchy-
Schwarz inequality. A comparison is necessary with a minimum MSE (MMSE) es-
timator to judge definitively this hypothesis. We point to [131] for a comparison
between the ML and MMSE estimators in times of arrival estimation. In [131] p.8 ,
the MMSE estimator is shown to have only a marginally lower MSE compared to the
maximum a-posteriori (MAP) estimator'® on the estimation of a modulated pulse as
used in Example 6.g. So the gap between the Barankin bound and feasible estimators
is not an artefact.

14The test uses a uniform prior for the parameter, therefore the MAP and ML estimators are the
same. Note also that the localization operator is simply the difference, which does not cause an issue
for the detection of the threshold SNR.
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Figure 6.7: Estimation error distribution, for the estimation of a single time of
arrival 0. The SNR is —5dB, and corresponds to the regime where a gap is visible
between the MSE of the maximum-likelihood estimator and the MSE of the CRB or the
proposed Barankin bound. The fitted distributions are a gaussian distribution which
variance matches the Barankin bound and a uniform distribution approximating the
large scale errors. This approximation is crude, and does not capture the ripples
visible on the empirical data.

Inspecting the distribution of the ML estimator reveals that it can be approxi-
mated as a mixture of a gaussian like distribution and a uniform distribution — see
Figure 6.7. The uniform distribution modelizes the large errors which are unrelated
to the signal.

In an informal way the gap between the optimal filter lowerbound and the perfor-
mances of the ML, (or MMSE) estimator can be explained by looking at the first two
DTFS coefficients of the estimator distributionlf.

Let Pajo be the distribution of an estimator ¢ with constant first angular moment

and {P,}z its DTFES coeflicients. Its variance is

vary = 1 — I7]? = 4x? (|PO|2 - \P1|2> >

The coefficient Py of a probability distribution is ﬁ by definition, and the lower-
bound states that

27T‘P1| g \/1—’7,

15This is not a proof, rather an interpretation.
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i.e. , that the DTFS coefficients must drop by at least (1 — /1 —+)/27 around

the origin. A sharp decay of the DTFS spectrum implies a “wider” time-domain

distribution, and so the lowerbound rules out distributions which are too concentrated.
Assume the distribution meets the lowerbound, i.e.

2P| = VI—7,

then the addition of large scale errors yields a mixture with a uniform distribution.
The resulting DTFS coefficients are

~ 1 ~
P():(l—)\)P()-‘r)\/Qﬂ':? 5 })1:(1—)\)1317
s

where A controls the weight of the uniform distribution. For A > 0 we have P < Py,
which means the lowerbound is not met.

Hence if at some point the noise is such that the large scale errors are not negligible,
the distribution will not meet the lowerbound. To detect the transition, one must
take into account the large scale errors as in [146] or (indirectly) as in the Ziv-Zakai
lowerbound [149] where the knowledge of an optimal binary hypothesis test error
distribution is required.

6.4 Conclusion
In this chapter, we observed that

e Bounds of the Cramér-Rao family can be computed for the periodic case only
using an assumption on the bias as classically done for aperiodic parameters —
i.e. without resorting to the distribution of the MMSE estimator or Bayesian
interpretations.

e Using collinearity to tighten the application of the Cauchy-Schwarz inequality
did not yield a tight lowerbound on the tested signals — i.e. Barankin-type
lowerbounds seems to not always be tight

e The simple and versatile periodic Hammersley-Chapman-Robbins bound showed
to be almost as tight as the Barankin bound on the tested signals, so it may be
used as a simpler alternative.

e Deterministic bounds on the variance of an estimator can be written in a form
similar to Heisenberg’s uncertainty principle. Sufficient requirements for this
analogy are to have a constant bias and to use a “momentum” operator which
kills constant signals (such as derivatives or pseudo-derivatives of various or-
ders). It shows that the lack of commutativity between the localization opera-
tor (linked to the measure of error) and the momentum operator (chosen when
designing the bound) is key.

It is an open question whether or not momentum operators other than linear filters
could yield a tighter bound.



Conclusion

Part |

We have seen that a robust joint estimation of multipath channels can be achieved
in a time which his superlinear with respect to the number of measurements. This
property becomes decisive when the number of measurements exceeds the number of
degrees of freedom in the model by at least one order of magnitude.

To apply parametric estimation techniques successfully in an ever changing envi-
ronment, we proposed model selection criteria which use different properties of the
signal and the noise. The selection of a particular detection method depends on the
mismatch between the proposed model and the measurements E.g. we may use spe-
cific properties of an additive white gaussian noise (AWGN) if we are confident that
the signal is corrupted by a similar enough noise.

We saw that highly specific models, such as the sparse common support model,
have by definition a restricted but relevant range of application. So we had to reduce
our playing field (in terms of bandwidth, physical distances, ...) which is not pleasant
in scientific research, where universal abstractions are sought after. Nevertheless, a
clear definition of the range of application of a model may be worth as much as
the model itself. We obtained a preliminary validation of the proposed models and
algorithms for mobile communications by testing them on CIR measurements with
the addition of AWGN; further tests would be required.

Further work

Since a single class of channel models cannot fit all plausible realizations, the selection
of a model among different classes — e.g. SCS models, models with sample sparsity in
the time-domain and time limited models — could have an important impact on the
actual performances of channel estimation. We only tried to combine the SCS channel
model with the time limited channel model in Section 3.5 (if the detection criterion
failed, the estimation used the time limited model). Also, heterogenous models could
be formed, e.g. a SCS channel model with the addition of a residual with sparse
samples in the time domain.
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Part Il

We studied the notion of localization for periodic phenomena, starting with the time-
frequency product of periodic waveforms. We constructed analytically and numer-
ically periodic waveforms which have a minimal time-frequency product. By doing
so, we noticed that the use of the phase (angle) was troublesome for localization as
it has a discontinuity, and we adopted a complex-valued definition to avoid this dis-
continuity. This definition was already well-known in the domain of time-frequency
analysis.

Then, we showed that the Cramér-Rao bound (and bounds of the same family)
and the Heisenberg uncertainty principle are formally similar'®. We thus obtained
new lowerbounds on the variance of unbiased estimators of periodic parameters by
transposing the knowledge available in the time-frequency analysis literature.

The localization/momentum formulation of uncertainty principles provides much
freedom in the design of the associated linear operators. For a single periodic pa-
rameter, we designed a linear shift-invariant (LSI) filter (the momentum operator)
which maximizes the lowerbound among all possible LSI filters, and observed that a
significant gap may still be visible between the lowerbound and the best estimator
achievable in practice.

Further work

The bridge made between estimation error lowerbounds of the Cramér-Rao family
and the Heisenberg uncertainty principle could lead to interesting generalizations.
For example, an uncertainty principle for graphs was recently proposed in [3] and it
would be of interest to see if it leads to interesting lowerbounds on the localization
error on graphs'”. Unfortunately, time did not permit to include such a study in this
work.

16We do not say they are equivalent as they have different prerequisites.

17The first candidate would be a Cramér-Rao bound for graphs which would derive the momentum
operator from the Laplacian of the graph.



Appendix A

Spatial correlation formula for
fading channels

A.1 Azimuthal scatterers density distribution

N (g, o)

Figure A.1: Azimuthal density of reflections at a receiving antenna

The reflection density of each scatterer is normally distributed with mean py
(its position) and covariance matrix o7l (its “girth”) as seen in Figure A.1. The
number of reflections within a scatterer is assumed to be large enough to warrant
their approximation by their continuous probability density function. The azimuthal
density is the integral of the scatterer’s pdf over I'y the straight path from the receiving
antenna at an angle! ¥:

p(9; pr, O'I%) = /2 f((éD)(w — pi)Lzer, dex.
r2 O

IWithout loss of generality the scatterer origin is at azimuth 0, and the antenna is located at
position 0
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Reparametrization in polar coordinates yield:
P(9; by o) = foz (|| e sin (9 / foz (r = [lpr || cos(9)) Jo (7, 0)dr

—aﬁf(¢2»mw0‘/}J T sl cos)

K}, cos(d
. <s +1/K cos(19)> oids

such that x}, = ||pux||?/0? and Jg(r,9) = r is the Jacobian of the cartesian to polar
transformation. We performed the change of variable s = r — \/k}, cos(?). Hence, the
distribution has only one degree of freedom, and after some calculus:

Py (V) :f(\//?fcsinﬂ)- [\/>cos19 F(fcosﬁ)f(\/%cosﬁ)} . (A1)

The circular distribution (A.1) is well approximated by a Von-Mises distribution of
scale Ky:

eﬁkcosﬁ
="
4 (V) = )

where Iy is the 0" order modified Bessel function of the first kind. Asymptotically,
K}, "2 k)., and the approximation K} = (1—e~3%%/1) ) was found to be empirically

accurate for all xy (K-L divergence between p,, and g, is less than 0.02 bits).

A.2 Derivation of the correlation matrix formula

Considering the setup of Figure 1.4, and from [110]:

E Ck,mcf n ™ we
|: k, i| _ / U, (19 ek ) dm n sSin ﬁd’l?
\/E“Ck,m”E“Ck,nH -7

Then, gy, is expanded in terms of spherical harmonics via the Jacobi-Anger expansion

[2](9.1):

Qi (VOkmn) = 1{ o(—jkk) +Z] Ji(—jky)cos [I(9 — kan)}},

27r]0(/ik) =
LS ) cos [0 — )]
- o 71'[0(/’{&) 1(Rk) COs k,m.,n )

=1

where the second equality is obtained with I;(jx) = j'.J; () [2](9.6.3, 9.1.35).
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We now have a series with [*" term:

Il(’ik) / coS [l('l? o ek,m,n)] ej%dm'" sin ’L9d19

wlo(Ki)
@ FIIZ(S’;::) {cos {l (ek,m,n — g)] . /7: cos [0 e “Fdm.ncosV g9
+ sin [l (Gk — Omon — g)} ./7” Gin 10 ¢ ZEdmn cos? g9 }
@ 2]{)[((::)) I (j%dm,n> cos [l (ek,m,n - g)}
© 2];0[{}2:;)‘]1 (%dm,n) cos [l (Hk,m’n — g)}

Equality (a) is obtained with some standard trigonometric identities and a shift by
—7% of the variable of integration. Equality (b) follows from the standard integral
representation of I; ([2] 9.6.19). The second integrand is antisymmetric which leads
the integral over the unit-circle to vanish. Finally (¢) is a consequence of [;(jz) =
jlJy(x) again. Hence, with A\, = ¢/w,:

= Jo T— +
VE[[CrmE[[Crnl] Ac

Qijl 1{;((?;)) Ji (27sz"> - oS {l (Qk,m,n — g)] .

=1
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Appendix B

Estimation algorithms

B.1 Further numerical tests

For simulations we use the fading SCS channel model. Its characteristics are listed
in Table B.1. We assume 63 pilots which are uniformly spaced in frequency, one
every 8. The transmitted frame is circularly padded such as to guarantee circular
convolution of the transmitted signal with the CIR. Results are derived from three
different experiments:

A The medium has two paths separated by 27". The second path’s expected ampli-
tude is 1/10" of the expected amplitude of the first path. The receiver possesses
1, 2, 4 or 8 uncorrelated antennas. The channels have exact SCS (¢ = 0).

B The medium has two paths separated by T or 27. Both paths have the same
expected amplitude. The receiver has 4 uncorrelated antennas. The channels
have either exact SCS (¢ = 0) or non-exact SCS (¢ = T7'/50 = 1ns). The
discrepancy in the ToA between antennas is uniformly distributed in [—¢ €]. A
time lapse of 27'/50 corresponds to a path length difference of 60 cm.

(a) (b) A (c) 5
200 14 b
Tx 5 |
150 =
= <
] g 08
A 1 =
— 100 o 2 4
< < g
g« C Z < 5 06
& 50 = c D
= B g o6 v 0.4
S E %
@’ A <,
Rx = 02
-50 g9
0z g 0
D I =
-100k | | | : | : : : | 0 Zs
450 100 -50 O 50 100 150 200 250 300 ] 05 0 05 T2 5 7 5 T 2 s s
West /East [m] time [ps] Antenna index Antenna index

Figure B.1: (a) The physical layout of the channel for Exp. C . The channel has four
scatterers labeled A, B, C, and D. (b) The expected CIR of the channels. (¢) Matriz
entry (i,7) is the modulus of the fading correlation between antenna i and antenna j.
FEach matriz corresponds to a given scatterer.
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Table B.1: Simulation parameters

Parameter Symbol Value
Sampling step T 50ns
Bandwidth B 20MHz
Center frequency fe 2.6GHz
Frame duration (without padding) T 25.55us
Samples per frame Ntrame 511
Pilots per frame N 63
Pilot gap D 8
Delay spread A 1.6us
(a) first path (b) second path
10
[ — 1 antenna

2 antennas

dashed: ESPRIT-TLS + Cadzow
plain: CRB

10 0 1 0 20
Global input SNR [dB] Global input SNR [dB]

Figure B.2: (Exp. A ) For the same global input SNR, a system with more antennas
estimates the ToAs more accurately and is more resilient to noise. This is a conse-
quence of the increased receiver diversity. The second path has 1/10" the amplitude of
the first path and is thus quickly buried into noise as SNR decreases. The estimation
reaches the Cramér-Rao bound as long as it correctly identifies the path.

C This experiment is more realistic from a physical standpoint. The receiver has 5
antennas equi-spaced on a circle of radius 10 cm. The propagation medium con-
tains 4 scatterers (Figure B.1.(a)). The expected CIR modulus is represented in
Figure B.1.(b). We use the spatial correlation model derived in Proposition 1.2.
Also the channels do not have exactly a common support, with a maximum
delay of e = T'/50 = 1ns between channels.

Results were obtained on 400 independent noise and fading realisations.

B.1.1 Results on Exp. A

Figure B.2 shows that the SCS-FRI algorithm efficiently estimates the ToA down to
a certain SNR where the recovery breaks down. This breaking point is pushed lower
as spatial diversity increases, which is to be expected. Figure B.3 compares the use
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. (a) Block ESPRIT-TLS + Cadzow (b) Block Prony-TLS + Cadzow
10° ¢ N
# iterations «veesens 0 k # iterations «evevess ) === 2
(Cadzow) «=m- >1

15| =5

0 5 10 0 5 10
Global input SNR [dB] Global input SNR [dB]

Figure B.3: (Exp. A ) Part (a) shows the performances of ESPRIT-TLS with or
without Cadzow denoising. In this setup, the gain obtained with the denoising is rel-
atively small and is achieved after one iteration. Part (b) shows the performances
of annihilating filter-TLS with or without Cadzow denoising. As expected, the per-
formance of Prony’s algorithm without denoising is very poor. After 3 denoising
iterations, performances of Annihilating Filter-TLS and ESPRIT-TLS are indistin-
guishable.

) [ta—t| = 2T

\ CRB
— true

----- separable approx.

ESPRIT-TLS + Cadzow
——¢c =0 (exact SCS)
——e=T/50 (SCS)

0 10 20 30 |-10 0 10 20 30

Global input SNR [dB| Global input SNR [dB]

Figure B.4: (Exp. B ) This figure shows that the proposed algorithms behave as
expected in the presence of ToA mismatches between antennas. Part (b) motivates
the separability assumption to compute the CRB of paths located more than 2T apart,
while Part (a) shows its inadequacy for a smaller delay T. The “true” estimate is
obtained via Monte-Carlo simulations.

and combination of the various subspace identification techniques discussed earlier.
The conclusion is that the performances of Block-ESPRIT TLS or Block-Prony TLS
are exactly the same on a signal denoised with the Block-Cadzow algorithm. However
Block-ESPRIT TLS requires fewer to none Block-Cadzow iterations than Block-Prony
TLS to reach the optimum. It is well-known that Prony TLS is not robust to noise
[31; 129].
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Figure B.5: (Exp. C ) Using the sparse and common support properties, the SER
is decreased by a factor 5 above 10dB of SNR compared to the conventional mon-
parametric approach. Sparsity alone provides a significant SER improvement, which
shall be combined with the common support property below 30dB of SNR. At wvery
high SNR, independent channel estimation across antennas become preferable as the
channels only approzimately have the common support property. However, below 15dB
of SNR the effect of this approximation are undetectable. Another advantage of joint
sparse estimation is the reduction of pilots, it allows to halve their number while
retaining performances superior to lowpass interpolation.

B.1.2 Results on Exp. B

Figure B.4 shows that the single path CRB given in [26] (9) is a good approximation of
the true bound computed via[26] (10) for multiple paths separated by more than twice
the inverse bandwidth of the channel. This experiment also verifies the usefulness of
the SCS assumption when ToAs are slightly perturbed from one antenna to another:

thp =tk + Erp , Epp~U([—eg]), 1id

The error caused by the random perturbation Ej, , is of the order of the perturbation
itself, and thus we may say SCS-FRI is robust on non exact SCS channels.

B.1.3 Results on Exp. C

All estimation algorithms use the fact that the delay spread is much shorter than the
frame length. The difference between lowpass interpolation and other techniques is
the use of the sparsity property. Using this property alone, the SER is halved at a
SNR of 5dB as shown in Figure B.5. The addition of the SCS property proves to be
valuable, at 5dB of SNR the SER is decreased by a factor 3. At high SNR, the SCS
property provides a factor 5 of improvement over lowpass interpolation. At very high
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SNR the error due to the approximate SCS nature of the channels diminishes this
gain, and eventually the SCS assumption becomes detrimental.

It also shows that the number of pilots can be halved while having SER per-
formances superior to the non-parametric approach (we retained half of the original
pilots closest to the carrier frequency). For lowpass interpolation, this cannot be
done without introducing aliasing. Reducing the number of pilots below “Nyqvist” is
relevant at high SNR where little redundancy is required for denoising, leaving some
additional spectrum for data transmission. In favorable transmission conditions, it
would be possible to reduce the number of pilots down to the rate of innovation of
the channel to maximize the data throughput.

B.2 Proof of Theorem 2.2
Decompose the data matrix as
T = Tsig + Tnoise P

where Thoise is the data matrix obtained from the sequence E[m].
Therefore the autocorrelation matrix can be seen as the noiseless autocorrelation
plus a perturbation

* * * * *
7T = Tsig + Tnoise + Tsig + noiseT‘noise .

sig sig noise

e g (perturbation)

Then, the following Lemma holds

Lemma B.1. Forallm e {1,...,M + 1},

)\m(T*T) < /\m(T‘;;gTsig) + ||E|| .

Proof.
One may use Corollary 6.3.4 in [68] together with Weyl’s theorem (Theo-
rem 4.3.1 in the same book). O

The spectrum of Ts”i‘gTsig The data matrix T, has a Vandermonde decomposition
as defined in Definition 2.2, therefore

% * 9% *
GeTig = > Vi DpVir Vi DpVisia
p

Moreover, the columns of the Vandermonde matrix Vy; 1 form asymptotically an
orthogonal set as M grows. More formally, if v; and v; are two such column vectors,

ONLCIEL ) R
Moo [[vg ] [v; ]
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It implies that asymptotically as M — oo, the Vandermonde decomposition of Ty,
is a unitary diagonalization— with the proper normalization by 1/(M + 1). Hence

(M+1)2-% ) |Crpl? k<K,

B.1
0 , else. (B-1)

M — o0

lim /\g(Ts’;g sig) = {

The norm of the perturbation To prove the desired result, an upper-bound on || E||
is enough.

The matrix norm for square matrices is sub-additive and sub-multiplicative [68§],
therefore

HE” S ‘|Ts>|i<gTHOiS€|| + ||Tr>1koiseTSigH + ||Trtoiseﬂ10156|| ’

< Z 2 HTsig,p” ||Tn0ise,p|| + ”T;:oise,pH HTnoise,pH .
P

Meckes established in [88] the divergence rate of the spectral norm of square
Toeplitz matrices! with iid subgaussian entries in the generator. Applying this result,
we obtain

| Thoise,pll ~ O(VMlog M) ,
which implies for P fixed
|E| < O(M>3?1log M). (B.2)
Plugging equations (B.1) and (B.2) in Lemma C.1 concludes the proof.

1The main result in [88] studies real symmetric matrices, An extension to complex and non-
symmetric matrices is confirmed in Section 3 of the same paper.



Appendix C

Detection for sparse common
support channels

C.1 Proof of Proposition 3.2

Lemma C.1. Define the hermitian symmetric Toeplitz matriz

_
E=—(E+E"

Sl

2
Then
<|E|, E[E|<E][E|

1 _
7 12| E
and E is o random symmetric Toeplitz matriz with iid entries (on non-
matching diagonals) with distribution N¢ (0,1).

Proof.

The lowerbound on the spectral norm is a simple consequence of the triangle
inequality

IE| < V2| E|.

The symmetry and the distribution of the entries of E holds from the
basic properties of normal random variables.
Recall that
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[(e0 €1 .9 ... ... E_pi1]
€1 €0 E_1
E— €9 €1
E_1 E_9
€1 €0 E_1
lEn—1 €9 €1 IS

For the upper bound on the spectral norm, we embed E in a circulant
matrix C of size 2n x 2n, as done in [112] for symmetric Toeplitz matrices

E FE
C—[E, E} , Y€C,

0 €n—1 En—2 €1
E_n+1 0 En—1
where K/ = |Z7nt2 Sondl

En—1 En-2

E_n+1 0 En—1

L €—1 E_n+2 E—n+1 0

The matrix C' is diagonalized by the unitary DFT matrix W
C=W*'DW.
With the orthogonal projection matrix
I, O E 0
=" , one obtains cQ = ,
S R

which spectrum is the spectrum of E with n additional null eigenvalues,
therefore the two matrices have the same spectral norm. Since the spectral
norm is invariant under unitary similarities

|E| = |PDP||, P < wWQw.

The next step is to split the matrix PDP into a symmetric and an
antisymmetric part. This is done by taking the real and imaginary parts of
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D. Then, using the triangle inequality on the spectral norm, one obtains
|BII* < 2 max (| PR{D}PI , |PS{D}P).

By construction, R{D} and I{D} are identically distributed.

Both PR{D}P and P3{D}P are symmetric random circulant matri-
ces” with normally iid distributed entries with variance 1/2. Therefore, the
non-null spectra of PR{D}P and P3{D}P have a distribution identical to
E/\/2. Taking the expectation proves the result. |

“Note that taking the real and imaginary parts of the eigenvalues of a non symmetric
Toeplitz matrix does not result in Toeplitz matrices!

Since the measure of the spectrum of random Toeplitz matrices concentrates as

E ) =
n — oo [39] and \/%”gn ~ O(1), we may ask to which value \/%

Such a result is known for random symmetric Toeplitz matrices

converges to.

Theorem C.1. (Sen et al. 2011 [112])

limﬂzlf,

n—oo \/nlogn

where F ~ 0.8288---.

Proof.
The proof is found in [112] for real valued symmetric matrices, and it applies
to hermitian symmetric matrices alike. 0

Using Lemma C.1, we obtain the inequalities for the non-symmetric case.

C.2 Proof of Proposition 3.3

The criterion between the path amplitude estimates and pyax is

Y

0.2

(2M +1) pz::l \E;g7p|2 > 5 Pmax w.p. 1 —a.

Define P 2

M
def 72 Jm 2161711
< E E E
& o2(2M + 1) ¢ plmll

p=1|m=—M

the set {& }r=—ns,... a is a set of iid random variables with

&~ Xop s and Pl (P2M+1) =  max & .

yeees
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The extremal distribution of the maximum in a set of iid x2, random follows a
Gumbel distribution [63] as the cardinality of the set tends to infinity. For our finite
set size 2M + 1, computing the cumulative distribution of pf . is easy, thanks to the
independence between the random variables. The probability to have the maximum
less than some value t is simply the product of the probabilities to have each random
variable less than ¢, and so

2M+1
V(P t/2)
Pl <t = (o) )
which is simply the cdf of a x3, random variable raised to the power 20 + 1.
By setting Pr[p],.. <t] = 1 —a, we solve (C.1) for ¢ to obtain

P t/2) = (P—l)]'(l—a)ﬁ‘

To truely characterize which correlation can be due to the noise, it is necessary
to link pl, . t0 pmax. Invoking Parseval’s theorem, an intuitive relation can be found
in the time domain where multiplication with a phasor of a given frequency is the
energy of the correlation with the Dirichlet kernel of corresponding bandwidth and
shift. For a fixed value pl,.., the largest difference with py.,, is obtained for the
optimal w falling at equal distance between adjacent discretized values, and so

2
/ < < ™
pmax —_ Pmax —= 4 pmax ’

which is illustrated in Figure C.1. With a uniform prior over the interval [— NN [
for pl ..., numerical integration yields

E [pinax] ~ 0.7737 - E [pmax} .

This value has a negative bias since the maximum is more likely to correspond
to a shift for which pl .. is close to ppmax. Therefore, we introduce a scaling factor
0.77 < ¢g (= 0.9) < 1. Putting the elements together yields the result.

Pmax

Squared

Dirichlet kernel
of bandwidth N

Pl e Unknown distribution
on [-w/N, 7/N].

2

_pmax

T F—sampling step —
T gy amPIngsER T

Figure C.1: The random variable pmax is by definition greater than pl... The
distribution of the shift between the value w yielding the maximal correlation energy
Pmax ond the discretized value pl . is unknown. The uniform distribution is not
adequate since mazimezation of pl.... favors a shift closer to the middle of the interval.
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Tracking of SCS channels

D.1 Tracking of a single path

For K =1, the parameter space is representable as the complex plane.

Proposition D.1. Let assume that only a single channel is present, and the
DFT coefficients of the signal are

y = [1, e“r, ..., ej‘“l(an]T.
In these circumstances the optimization in (4.5) is equivalent to
max 77 Tr/ ||r]* (D.1)
W

where v = [1, v, ..., 7N "YT and [T,,]m.n = cos[(w1 — w)(m —n)].

153



154 Tracking of SCS channels

Proof.

Let z % (1, red@, ..., erlej“’(Nfl)], where 7e/* is the root of the generator

of the Toeplitz matrix A, then

2 2
Hprojrange(A*)yH = Hy : projker(A)yH )

=(y—zy 2/ =) - ="y -2/ |2l
1

2
=]
One obtains |y*z|> = > mm pminei(wi=w)(m=n) The imaginary part of

the double summation cancels out by antisymmetry, and writing the result
in a vectorial form yields

2.

2
= llyll” -

ly*z|> = rTT,r.

To conclude the proof, ||z|> = |r/>. O

The objective function in (D.1) is unfortunately not polynomial in the unknown
r, and finding its critical points is not an easy task. A necessary condition for a point
to be critical is that

Proposition D.2. The derivative with respect to r of the objective function in

(D.1) is 0 iff

1
i T, [D,re"r =0, (D.2)
r
0 -
(0)
1 0
where D 2 ,
(@)
i N-—-1 0]

and [D , ’I"I‘T] ©C DrrT — #rTD s the commutator of D and rrT.

Proof.
This is a simple development of the derivative with respect to r of (D.1). O

One can verify that for three values of r the condition (D.2) is verified

e D and rrT commute only for r — oco.
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e Forr =0, [D , TTT} r vanishes.

e For r = 1, the vector r is the all-one vector, and [D , rrT} 7 is an antisymmetric
vector.

The matrix T}, is a rank-2 Toeplitz matrix with an antisymmetric and a sym-
metric eigenvectors since for n = [0, ..., N — 1]T it is written as

T, =% [ejwl—w)%ej(wl—w)(n—%) (6j(w1—w>%ej<w1—w><n—%>>*} 7

.
(n—5)]cos [(wr —w) (n = )]

+ sin [(w — w) (n — %)] sin [(w1 —w) (n — %)]*,

such that cos [(w1 —w) (n — &)] L sin [(w1 —w) (n— §)].

Note that these two vectors may not have the same norm, and so the non

zero eigenvalues of T}, are not equal in general. We conclude that for » = 1,

(D.2) holds since T, is multiplied by a symmetric and an antisymmetric vector

respectively from the left and the right.

= cos[(w —w)

Numerical experiments seem to indicate these are the only solutions of (D.2),
though we cannot prove it.
Assuming this supposition is true, then for » = 1 the point (1,w) can only be a

2
local maximum of (D.1) if (Zg;ol cos((wy —w)(n — %)) > N. If this condition is
not met, then the objective in the maximization problem (D.1) at this point is strictly

lower than the value at » = 0 and r — oo and any critical point can either be a local
minimum or a saddle.

D.2 Addition of a path

def ~
Let € f(op).
The statistics of e depends on the statistics of the estimate @ope, Which is itself
dependent of the algorithm used to solve (4.4).
To make the modelization of the residual e tractable, we need to make a few
assumptions

Definition D.1. (Noise/Data independence)

e The subspace spanned by the annihilating filter is independent of the noise
in the data.

e The energy of the residual is less than the energy of the residual obtained
with perfect estimation of the tracked paths.

The second assumption is likely to be fulfilled when the paths are accurately tracked.
If it were not the case, a perfect estimation of the roots would yield a lower residual
energy, and it would likely be the local minimum the iterative estimation converges
to.
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Hence, the residual energy observed after the estimation is completed should be
inferior to the residual energy obtained after projection the noise only samples on the
subspace spanned by A def Toeplitz(a).

The first assumption implies that the noise is independent of ﬁ, and so, the
projection of the noise in the span of A is the projection of a vector of 0-mean
gaussian random vector in a deterministic K-dimensional subspace. The linearity of
the projection operator implies the result is also a 0-mean, gaussian random vector.
Namely, for a (complex-valued) AWGN of power o2

€noise ™~ N(C (07 U2HP & (A\TA\)) ) (D3)

where & is the Kronecker sum.

To decide on the absence of additional paths — under the Noise/Data indepen-
dence assumptions) — one could test if the residual follows the probability law (D.3)
using Pearson’s x? test for example.

A weaker criterion is to compare the residual energy to the expected energy of
€noise- We know from the second assumption in Definition D.1 that the expected
energy of epise sShould dominate the residual, which immediately provides a statistical
hypothesis. Using the elementary properties of the trace,

E | lleasisel3] = o*P- (N = K).

More specifically, the energy of epoise is x2 distributed

2 2 9
Pl ”enoiseHz ~ X2P.(N-K) *

Knowing the distribution of the residual energy, the hypothesis of having no ad-
ditional signal path in the residual can be rejected if the probability of a residual

greater than or equal to the observed value falls below some threshold.



Appendix E

Time-Frequency localization
in periodic domains

E.1 Proof of Lemmas 5.1 and 5.2
E.1.1 Proof of Lemma 5.1

Let 2 be maximally compact for a given time-spread A2 (z). Then,
AL(z) = A(Jl),

and
—2
—1

)

AL, (lzl) =

Z |$n|‘xn+1|

nez

2 : *
xn$n+1

nez

-2

< -1 = A2 (a). (E.1)

For maximally compact sequences, if A2 strictly monotonically varies in function
of Aap, then fixing A2 or Aip is equivalent and proves the lemma. In the following

lemma we show that for maximally compact sequences A2 changes monotonically
with Ai,,'

Lemma E.1.
For mazimally compact sequences, A2 is a decreasing function of Aip.

Proof.

For proving this lemma, we use the dual formulation in (5.17). The feasible
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0<a<k
A

N

N\
A—-\B-XI*>0 \

Figure E.1: The feasible set of the dual problem (5.17) and the range of
supporting line angles for finding its mazximum. As « increases, we need to
elevate the line more to support the feasible set, which means that the optimal value
of A2 increases.

region of the dual problem is shown in Figure E.1. We can write the dual as

maximize ¢
1,A2

subject to Ao =c—a A, (E.2)

A-—NB-XI>0

Note that a changes between 0 and 1 (shown in Figure E.1 with the gradient
region). For a fixed o, the maximum c°P is found by elevating the corre-
sponding line Ay = ¢ — aA; until it supports the feasible set (it is tangent to
it). Since the feasible set is convex, as a grows (which means Aap decreases),
we need a higher elevation of the line to support the convex set, thus P
(equivalently A2) increases. O

E.1.2 Proof of Lemma 5.2
Consider the shift operator in (5.14). Since the shift operation does not change the

norm of a sequence, we will assume a unit norm sequence without loss of generality.
We can show that
<j% (e*j“”X(ej“)) ,e*j“”X(ej“’)>
P (Tn—y) = o
(X (), X () | v(X(e/), X(e/))
= +
2m 2T
— () + v, (E.3)

where we used the DTFT domain definition of the time center [100]:

o = X (), X (7))
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The proof for Lemma 5.2—trivial for v € Z—is not obvious for arbitrary shifts.
Let x be maximally compact with time center p,(x), then according to (E.3), z,_,
is centered at p,(z) 4+ v and

2wAL (2,-,) =2 |:Z n?(zp-0)° - ﬂn(zn—v)2}

neZ

= <j%e_j“”X(ej“),j%e‘j“”X(ejw)> =27 |pn () + 1/|2
= (—jvX(e7) + X' (1), —juX () + X' (7)) — 27 | () + v|?
=2m [v|? (X (), X (%)) + (X' (e?), X' (7))
+ (—juX(e/), X' (7)) + (X' (e/¥), —jv X (e!°)) — 27 | pn(z) + v|?
=2m [u” + (X'(e7%), X' (7)) + 21 Real|p, (2)v*] — 27 | o (z) + v|?
= (X'(e/), X' (e/*)) — 2 | ()
=21AZ%(x). (E.4)
This shows that time shift does not affect the time spread of a sequence. Thus, if z is

a maximally compact sequence, then x,,_, () is also maximally compact (note that
time shift does not change the frequency characteristics of the sequence). O

E.2 Proof of Theorem 5.2

By using Lemmas 5.1 and 5.2, we can write problem (5.13) as

2 - L. 2 2
AL opt = minimize E n-x:
" nez

1
TpTptl = —F—, (E.5)
nez L+ o?

in:l.

neL

subject to

We can rewrite (E.5) in a matrix form as a quadratically constrained quadratic
program (QCQP) [34]

minimmize xl Az
subject to "Bz = «, (E.6)
2T =1 ,
where A and B are defined in Theorem 5.2 and o = 1/ V1 + o2. This problem can
be further reformulated as follows:
minimmize tr(AzaxT)
)

subject to tr(Bza’) = a
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Replacing za” by X, we can write equivalently
mingnize tr(AX)

subject to tr(BX) = «
tr(X) =1
X ~ 0, rank(X) =1.

We further relax the above formulation to reach the semi-definite program
min;(mize tr(AX)
)

subject to tr(BX
tr(X)=1, X >0.

=«

In Lemma E.2 we show that the semi-definite relaxation is tight.

Lemma E.2. The semi-definite relazation (SDR) in (5.16) is tight.

Proof.

Shapiro and then Barvinok and Pataki [115; 29; 98; 79] show that if the SDP
in (E.7) is feasible, then

rank(X°P*) < |(vV8m +1—1)/2], (E.9)

where m is the number of (trace-product) constraints of the SDP, and X °P*
is its optimal solution. For our semi-definite program in (5.16), m = 2. Thus,
(E.9) implies that the solution has rank 1. Using this fact, one can see that
the semi-definite relaxation is in fact tight. Note that from the nature of the
problem, (E.7) is clearly feasible; we can always find a periodic signal in the
Fourier domain with a unit norm and a desired frequency spread, although
not having an optimal time spread. O

E.3 Proof of Lemma 5.3

We use the following Lemma for the proof:

Lemma E.3. [125; 128] For a semi-definite program and its dual: If the primal

is feasible and the dual is strictly feasible, then strong duality holds.

As it was already mentioned in the proof of Lemma E.2, the primal is feasible. For the
dual, one can use the Gershgorin’s circle theorem and show that a sufficient condition
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for A— Xy B — X I = 0 to hold is Ay < —A; and Ay > 0. Thus, the dual problem is
strictly feasible. O

E.4 Proof of Theorem 5.3

If a sequence is a solution to the dual SDP problem (5.17), the dual constraint is
active. Therefore, maximally compact sequences lie on the boundary of the quadratic
cone

A— N B—-XI>0.
A maximally compact sequence x is thus solution of the eigenvalue problem

where \; and A, are the dual variables of the SDP problem, and A5 is also the minimal
eigenvalue of A — A\; B and z is the associated eigenvector (this can be also seen by
forcing the derivative of the Lagrangian in (E.6) to zero).

This explicit link between the dual variables and the sequence, yields a differen-
tial equation for which the DTFT spectrum of maximally compact sequences is the
solution. In the DTFT domain (E.10) becomes

—X"(e7) — A cos(w) X (e7%) = A X (&),
s X"(e) 4+ (Mg + A cos(w)) X (e7¥) = 0, (E.11)

which is Mathieu’s differential equation ([2]§ 20.1.1). The solutions of Mathieu’s
equation are called Mathieu functions, and they assume an odd and even form

Mathieu’s Cosine (even) ce(a, ¢;w) , (E.12)
Mathieu’s Sine (odd)  se(a, ¢;w) . (E.13)
Taking into account the periodicity of (E.11), it appears not all pairs of parameters

(a,q) will lead to a periodic solution. Mathieu functions can be restricted to be 2w
periodic:

Definition E.1. The solutions of Mathieu’s harmonic differential equation—
equation (E.11) with X 2m-periodic—are defined as

Mathieu’s harmonic Cosine (even) — cepm(q; w) = ce(am(q),q; w), m € N.
(E.14)

Mathieu’s harmonic Sine (odd) — sey(q; w) = ce(bn(q),q; w) , m € NT.
(E.15)

It is immediately visible that the spectrum of maximally compact sequences may
only have the form

X(e) =10 cem (=21 ; w/2) + 7 - sem(—2A1 5 w/2), for m € N*,
X(e7%) =g - cepm(—2A1; w/2), for m =0, (E.16)
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for any constants vy and 7; such that || X (e/“)|| = 1. More specifically, for any \; > 0,
the dual SDP problem can be posed and any solution would have the form (E.16).
Characteristic numbers of Mathieu’s equation are ordered [53], such that

ao(—2/\1) < (11(—2)\1) < bl(—QAl) < bg(—Q)\l) < az(—2)\1) < - ,)\1 > O7
(1,0(—2>\1) < bl(—Q)\l) < al(—2)\1) < b2(—2>\1) < ag(—2)\1) < - ,)\1 < O,

Since a,,(—2A1) = 49 and Ag is the minimal eigenvalue, we conclude that m = 0.

Therefore we have found the real-valued maximally compact sequence up to scaling
and shift. For modulation, one should simply notice that for a maximally compact
sequence the following property must hold

Tpxy o = |Tn||Tny1]e??, © €0, 27), Vn € Z,

Since ceg is strictly positive, we assume |z,| > 0 for all n. Then, it only allows

to obtain complex-valued maximally compact sequences from a real-valued one as a
modulation or multiplication by a complex scalar.

O



Appendix F

From uncertainty to error

F.1 Proof of Lemma 6.1

Since py, is constant and M kills constants (uyr = 0)
<MLP0 ) p6’> =M <Lp0 ) p9> = 07
—_——
1227
and
(LMpg , po) = (Mpo , L"ps)” = (Lpy, M"pe) ,

= ((L—pr)pe s (M — pnr)*po) A1oiins — LM — PLIM -
——
0

where the first equality is obtained because L acts as a multiplier. Hence

([, M]pe. pe)l> = [{(L— puz)pe, (M — par) o),

and one can use Cauchy-Schwarz inequality (with the adjoint of M — )

(L — pr)pe, (M — NM)*p9>|2.

(L — pr)pel® >
(M — par)*poll®

Since par = 0, |(M — puar)*poll> = || Mpo||?, which proves the lemma.

F.2 Proof of Lemma 6.2

We cannot use Lemma 6.1 since the best possible operator found after optimization
may not have pp; = 0. Therefore we go all the way back to Cauchy-Schwarz inequality

var- > (L — pr)pe , Mpe)|?
’ - | Mpo]|?

With Mf(0) = (g= f)(#) and py = [ g(t)dt, the numerator yields
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(L = pr)pe , Mpg) = / (1— e 1(6)) </® 9*(t)px|eft($)dt) dz,

X
= [ 50) | pxio-dle)dude - pu @i
e} X
v (=73,
Har
7/ e,jtg*(t)/ eI Oe=0=0)p o () da dt
@ X
T(0—t)=T

:T/(l—e_jt)g*(t)dt.
©

so that
2

(L — pur)pe » Mpg)|* = |7]*-

/(1 iy g(t)dt
€]

The denominator expression follows from the definition of the inner-product.

F.3 Proof of Theorem 6.2

To prove this theorem, we use a Cauchy-Schwarz inequality for random vectors [127]
which states for any two random vectors U and V' of compatible dimensions and finite
expected energy

E[UU*] = E[UV*]IE[VV*]TIE[VU*]. (F.1)

N 0
By setting Uy, = loc(0x k, 0k) — pix , and Vie = pt;laT)kp"

we obtain E[UU*] = cov {loc(éx,e)}, E[VV*] = Jp and

E [Ux V'] :/ |0C(0m,k79k;)7p9(w)dw—Hki/ pe(@)da,
o 00, 90, /.
%1,_/
9 B) _
= %Mk —/X 879@ {Ioc(@m,k,ek)} pe(x)d,

0

A [ej(@r(?z«)} = j, 0 is periodic

= 6k—l X oy
1, 0. is linear.

Hence E [UV*] is unitary and diagonal, so we conclude from F.1 that

cov {Ioc(é\xﬁ)} > ng.
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F.4 Proof of Lemma

The denominator from the right-hand side of the inequality (6.21) in Lemma 6.2 is
for additive gaussian noise with covariance matrix 3

" [|<g<t> *ptxe)?}

Ppo

_ / / a(B)g(t) /X Po-t(@o-v (@) 4o gy

po(x)
— [[ sttt st

/e—<||w—seff,\\;71+||a:—s9,,,/H;fl—||m—se\\;71)/2dmdtdt/7
X
_ /g(t)g(t’)ﬁ (0= 1,0 5 (0,0 — ')k (0 — 1,0 — ¢')dtdt,

where cst is the normalization constant of the multivariate gaussian pdf. The last
equality is obtained by a development of the norms, such that the dependence on
is factored out in a term yielding the gaussian pdf, which when integrated evaluates
to est™h.

F.5 Lowerbounds with modulo-27 localization

As an example of an estimation problem, consider the Phase Locking Problem (PLP):
a known periodic waveform is sampled at known times in the presence of noise, and
from this samples the time offset of the signal is estimated. Figure F.1 sets up an
instance of this problem: a periodic pulse is uniformly sampled over one period. The
samples are independently corrupted by a white gaussian noise. This simple problem
is very well understood [139; 104] — see [104] for the Maximum Likelihood (ML)
estimator, [149; 91| for MSE lowerbounds.

F.5.1 Problem setup

As shown in Figure F.1, a time offset 6 normalised on the interval Q = [-1/2, 1/2],
is estimated from a vector of N samples X

X[n] = sg[n]+ En], n=0,...,N—1 (F.2)
where sg[n] &ef s(n/N — 0) are uniform samples of a periodic waveform shifted by
0, and FE is a vector of iid gaussian random variables with variance Ny. Thus, for a
fixed value of 0, X follows a multivariate gaussian distribution of density

L lz—sol?/(280)

9 =
px([6) oV 2w
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Figure F.1: The phase locking problem (PLP) is the estimation of 6 with respect to
an arbitrary reference time fized by the acquisition device (acqu.) which performs a
uniform sampling. The signal waveform and its period are known. The estimation
relies on noisy samples (measurements) acquired over one (or several) periods.
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Figure F.2: The simple phase locking problem already raises two issues about the
Cramér-Rao bound (CRB): looseness and unboundedness.

The waveform s is periodic on 2. Therefore, the addition on the parameter space
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shall be periodical
0 ®0 < modg 0+,
00 <L modg 0 — .

This periodic group structure induces periodical statistics for an estimator 0: of 0

biasz (0) def Ex|o [9: @9] = /X(QA1 o 0)px (x|0)de,
MSEg (0) < Expo [(61 0 0)°] = /X (61 © 0)2px (x]0)da.

Keep in mind that 9: itself is a random variable, and its randomness comes from X.
Taking periodicity into account is crucial since close to the boundaries of 2 a small

error €2 may become (1 — €)? if the periodic structure of the group is omitted.
Above, the bias and MSE were defined in term of the distribution px of the

measurements, but they can also be defined in term of the distribution of the estimator

itself

bias; (0) = /Q(s@ 0)pg, (s|0)ds,

MSE; (0) = /Q(see)ng»l(s\e)ds,

both definition will be useful to derive results.

F.5.2 Computation of the MSE lower bound

Four steps are necessary to obtain the SOC constraint and the lower bound. We
will need to introduce a function g, which we will call a filter since it appears within
convolution products. In the third step, this undefined filter will be specifically set,
such as to obtain the strongest possible conical constraint. Therefore, its symbol ¢ is
not present in the final result. For a given value of 6:

1. Convolve the bias with an indefinite filter g. We use the word “filter” for a
function employed within a convolution product.

2. Apply Cauchy-Schwarz (CS) inequality to obtain a quadratic inequality, with
the MSE as one of its sides.

3. Compute the filter g°P* making the CS inequality tight. The filter g°P* depends
on the pdf of the estimator Pgi 10

4. Find the estimator pdf yielding the lowest MSE while verifying the SOC con-
straint — which is a second-order cone program (SOCP).

The procedure does not only provide a lower bound on the MSE, but also the
distribution of the estimator achieving this bound. Note that not every estimator
with a pdf lying inside the cone is feasible — but any pdf outside of the cone is
infeasible. Therefore the bound is a true lower bound, but it may not be tight.
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Filtering of the bias (step 1)
Filtering of the bias (g * biasz )() yields the equality

(9% h)(8) =Exo | (9% px)(0)/ pxja- (01 ©6) |,
—_— ——

such that
h(9) = / (15 Oy (110 © D). (F.3)
Q

Application of Cauchy-Schwarz inequality (step 2)

Cauchy-Schwarz inequality for random variables states that
E[jvf?] 2 |E [uv]|2/E [ful?] . (F.4)

So,

usey @) > — 0D OF (E:5)
E[|(9px)(0)/ x|

Notice that if one knows the estimator’s distribution pg, one also knows the MSE
of the estimator which seems to defeat the purpose of a lowerbound computation.
Nevertheless, a useful bound can still be obtained by minimization over all admissible
distributions pg. .

Another objection, is that the ideal estimator 6; =  satisfies (F.5) yielding an
MSE and a tight lowerbound of 0 ! This is a well-known caveat of deterministic
bounds. Two solutions are possible

1. Enforce the MSE inequality for different values of 6, and use a different measure
of error such as the average MSE over several values of # for which the estima-
tions are equally difficult (semi-bayesian approach). The trivial estimator 6; = 6
is no longer optimal in this case.

2. Use the circular symmetry of the problem to affirm that p (¢|0 © ¥) = pg. (t © 9|0),
i.e. that a shift of the input parameter causes the same shift in the estimator
distribution. The trivial estimator 1 = 6 does not verify this property.

We choose, the second solution as it simplifies the computations.
In our AWGN setup, the denominator of (F.5) can be explicitely computed yielding

A (g # 1) (0)°
MSES) 20000y = (@) = 409, 9)) () (0 (-6)

s.t.
g(9,9") < k(0,9 )k (9,0)51(0,9"),
k((9,0) % ellso—sarll®/2No,

which concludes step 2.
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From inequality to equality (step 3)

Leaving aside the determination of P, for the moment, a choice must be made about
which filter g to use. One solution is to plug-in various candidates, which would
lead to a result analogous to the Barankin bound approximation schemes [86; 147; 1;
103]. Another approach is to determine which filter ¢g°P* maximizes the right-hand
side of (F.6). To our knowledge this approach was pioneered by Swerling [122] and
surprisingly found little echo. Swerling used it on infinitely supported parameters, and
said under which conditions it provides an approximation to the finitely supported
case!. He also focused on shift invariant signals, which allows the use of Fourier
analysis.

The CS inequality is tight (equality) if and only if the functions « and v in (F.4)
are collinear. Collinearity can be identified in (F.6) as

h(9) = (g (') = q(0,9")) (). (F.7)

With this condition satisfied, the numerator in (F.6) is the square of the denominator;
thus any estimator with pdf p; must verify

MSE; > |(¢°P* % h)(0)] , (F.8)

where both sides of the equation depend on Dy
Equation (F.7) is a linear integral equation, and we will detail how to solve it
in general in the next section. However, we can see immediately that h must be in
the convolutional range of the kernel ¢ to have a solution. Moreover if ¢ is almost
singular, the solution may be unstable with respect to small variations in h. Since h
is a function of the estimator distribution, the later must be taken into account.
With this in mind, we shall go back to solve (F.7). We assume that

def
l[se — si0ll?/2No = [|so — s9l|?/2No = E,/No(1 = p(¥)), Vt,

which we call shift invariance. The function p is the normalised autocorrelation
— p(0) = 1 — of the sampled signal, and E,/Ny is the SNR. In that case, ¢ is a
convolution kernel

q(¥,9") = q(¥ =),

and the integral equation (F.7) can be solved by means of Continuous Time Fourier
Series (CTFS) expansion. Let g(9') & goP () - kTHO =),

h(9) = (g°P' (') % g( — 9')) (0)
& h@O)k() = /Q G0 k(9 — ) dv’

CTIFS

(H x K)[n] = Gn]- K][n]. (F.9)

INotably, Swerling’s result only apply to the high SNR regime.
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Then

MSE; =

/Q 9Pt (9) (6 — ﬂ)dﬂ‘

/Qg(ﬁ’)m(e —9)h(0 — ﬁ)dﬁ’

o [ * )]
=2 K (E-10)

where the last equality follows by substitution of G with (F.9).

It is immediately apparent, that if the elements specific to the estimator such as
the bias and its pdf pg, are neglected, H is the CTFS of a “sawtooth” function which
decays at a rate O(1/n).

If K decays at a faster rate, |(H * K)[n]|/|K[n]| is growing with |n|, therefore
the summation is unbounded. It shows that if periodicity is invoked to justify the
use of Fourier Series formalism, its consequences must be taken into account to avoid
a diverging lowerbound — and this at any SNR. In Figure F.6, we will show how
an apparently accurate but erroneous threshold detection can be achieved, if this
observation is neglected and suboptimal filters are used.

Plugging the estimator’s properties in (step 4)

Because of the symmetry of the problem, the distribution of the estimator is assumed
to be shift-invariant

ef
P (t10) = pg (1S 00) € ps(te ).

This property turns the definition of h in (F.3) into a convolution product between
the time-reversed sawtooth function and the estimator’s distribution

h(9) = /Q(t & 0)py (tE 0 D)dt,

CTiFS

_ ]_-{_t} [n]])[n]6—271'3977.6271'](9717

_ =
= — 2m Pln]. (F.11)

Therefore, the CTFS P of the estimator’s pdf acts as a damping factor. By
definition, the MSE expressed in the CTFS domain is

MSE; = Y F{t*}[n] - Plnl,

=Pl0]/12+ ) %P[n]. (F.12)
o
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Figure F.3: The reported bounds shall be classified in two types. The “geometrical”
bounds such as the CRB, HCR and the proposed one obtained with the conical con-
straint (SOC). Only the third one is truly a lower-bound, and the gap with the MLE
performances is due to the non-gaussian distribution of the MLE below the threshold
SNR. The R/D bound is an information theoretic bounds which simulates the mawi-
mal capacity that can be obtained with a channel of similar SNR. The distribution of
the corresponding estimator is in this case gaussian, which could explained the similar
threshold point with the proposed geometrical bound.

Putting together (F.10), (F.11) and (F.12), the admissible estimators have a pdf
verifying

(F P)x K
+22n2w2 1>Z'( (0710 o1 1

P[0] = 1 so that the total probabilities sum to 1 in the time-domain. As a quick
sanity check we verify the MSE is asymptotically correct: the uniform distribution,
P[n] = ¢[n], yields an MSE of 1/12, and the ¢ distribution, P[n] = 1, an MSE of 0
since Y . (—1)"/(nm)? = —1/12.

This condition is necessary for the estimator to exist but it is not sufficient.

The solution of the bounding problem is thus found by solving a quadratically
constrained linear problem:

mlngmze MSE; = — +Z

2n2 2

MSE, Z | f{t} P) *|K)[n]| 7 (F.14)
Pl0)=1, and F- 1{P} is non-negative.
The second line of constraints ensures P is the CTFS of a probability distribution.

This problem is a second order cone optimisation (SOCP) for which fast and efficient
solvers are readily available.

subject to
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F.5.3 Application
Dirichlet kernel in AWGN

With the signal model (F.2), assume the number of samples is odd N = 2M + 1 and
let the waveform be be the Dirichlet kernel with critical bandwidth Af. Its uniform
samples collected over 2 at rate 1/N are

sin (7mn)
= — < M.
il = gy Il <
Its normalised autocorrelation is also a Dirichlet kernel of bandwidth M, and the
CTFS of the autocorrelation sequence is

Rk = 1/N, VkeZ.

We could evaluate (F.11) and solve the SOCP problem (F.14) readily but first
some intuitive choices for P can also be tried out.

Since the MSE and the conic constraint are related to the “compactness” of the
estimator pdf in the time and frequency domain respectively, an educated guess is to
choose a gaussian-like distribution since it has a small time-frequency product. We
settle on the centered wrapped gaussian distribution with a single parameter ~. Its
characteristic function is

P,[n] = e~ /2,

By design, P, is the CTFS of a probability distribution. The monotonicity with
respect to 7y in (F.13), guarantees the optimum is reached only if the conic constraint
is active. Hence we solve for ~

(_1)ne—72n2/2
(_1)"6*’72”2/2 2mgn * K [TL]

%*Z DD ‘< K] - ®19)

N* Z

The obtained MSE is an upperbound to (F.14). Even though we picked a particular
family of estimator without optimisation the threshold indicated by the bound is
8dB away from the one of ML estimation as seen in Figure F.4. Since optimization
can only lower the bound, we conclude that accurate threshold characerization is not
achievable with this method alone.

We verified that the assumption of having a wrapped gaussian distribution is close
to what can be obtained numerically using Galerkin methods (with “hat” functions)
— see Figure F.5.

The gap can therefore be explained by the non-gaussian distribution of the ML
estimator below the threshold SNR: large scale errors are uniformly distributed on the
parameter’s support. When this floor probability goes to 0 at high SNR, or becomes
strongly dominant at low SNR, the ML error distribution is respectively a sharp or
flat wrapped normal distribution, making the bound tight. Correct estimation of the
probability of large errors is necessary to achieve good threshold estimation.
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Figure F.4: The ZZB requires the knowledge of the distribution of the optimal binary
decision estimator, and can therefore infer the distribution of the optimal estimator
implicitly, which gives it the best threshold prediction properties.

The impact of periodicity

As briefly mentioned in the introduction, neglecting the contribution of the estimator’s
pdf may lead to misleading results. In (F.13), neglecting periodicity corresponds to
consider an estimator with error distribution P[n| =1 and to use the right-hand side
of (F.13) as a lower bound on the MSE regardless of its admissibility.

The incorrect lowerbound is

|(F{t} * K)[n]|?
> LA S 2 ERieiall Vol | BN
MSE 2 O TTRRI
As L — oo, this lowerbound diverges. For L finite, the lowerbound exhibits a
threshold-like behaviour — shown in Figure F.6 — and diverges as the SNR dimin-
ishes. The conclusion is that Barankin bound approximation for threshold detection
can be extremely tricky, especially if the filters are chosen in a non-optimal way; the
threshold could be an artefact.

F.5.4 Conclusions

Lower bounds valid at any regime can be derived from the Cauchy-Schwarz inequality.
The knowledge of the optimal estimator distribution is not strictly necessary, since
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Figure F.5: Galerkin method’s followed by optimisation matches closely the result
obtained with the analytical method (based on the CTFS) and the sensible choice of a
wrapped-gaussian estimator distribution.

a solution is to use the MSE inequality as a conical constraint within a (convex)
minimisation problem. The caveat is that the minimal solution may be unachievable.
The use of a collinearity principle to make the cone as small as possible indicates
this limitation is not only apparent, and may require constraints on other moments.
Furthermore, inadequate treatment of periodicity proved to be deceiptive : coupled
with a heuristical design it can gives a false impression of threshold detection.
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Figure F.6: This figure shows the effect of not addressing periodicity correctly. At
any SNR, there exists a filter which drives the corresponding bound to infinity. How-
ever, if the filter is not optimal, an “artificial” knee appears, which could lead to a
false conclusion of threshold detection. The parameter L corresponds to the last index
of the CTFES coefficients considered (highest frequency).
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La lumiére de ’amour, propre a la foi, peut illuminer les
questions de notre temps sur la vérité. La vérité aujourd’hui est
souvent réduite a une authenticité subjective de chacun, valable
seulement pour la vie individuelle. Une vérité commune nous fait
peur, parce que nous l’identifions avec ’imposition intransigeante
des totalitarismes. Mais si la vérité est la vérité de l'amour, si
c’est la vérité qui s’entrouvre dans la rencontre personnelle avec
l"Autre et avec les autres, elle reste alors libérée de la fermeture
dans Uindividu et peut faire partie du bien commun. Etant la
vérité d’un amour, ce n’est pas une verité qui s’impose avec vi-
olence, ce n’est pas une vérité qui écrase lindividu. Naissant de
lamour, elle peut arriver au coeur, au centre de chaque personne.
1l résulte alors clairement que la foi n’est pas intransigeante, mais
elle grandit dans une cohabitation qui respecte l'autre. Le croyant
n’est pas arrogant ; au contraire, la vérité le rend humble, sachant
que ce n’est pas lui qui la posséde, mais c’est elle qui l’embrasse et
le posséde. Loin de le raidir, la sécurité de la foi le met en route,
et rend possible le témoignage et le dialogue avec tous.

D’autre part, la lumiére de la foi, dans la mesure ou elle
est unie a la vérité de l'amour, n’est pas étrangére au monde
matériel, car 'amour se vit toujours corps et ame ; la lumiére de
la foi est une lumiére incarnée, qui procéde de la vie lumineuse de
Jésus. Elle éclaire aussi la matiére, se fie & son ordre, reconnait
qu’en elle s’ouvre un chemin d’harmonie et de compréhension
toujours plus large. Le regard de la science tire ainsi profit de
la foi : cela invite le chercheur a rester ouvert a la réalité, dans
toute sa richesse inépuisable. La foi réveille le sens critique dans
la mesure otu elle empéche la recherche de se complaire dans ses
formules et l'aide a comprendre que la nature est toujours plus
grande.  En invitant & ’émerveillement devant le mystére du
créé, la foi €largit les horizons de la raison pour mieux éclairer le
monde qui s’ouvre G la recherche scientifique.

Franciscus PP XVI, Lumen Fidei, §34 — 29 juin 2013.
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