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Abstract

We consider a fading AWGN 2-user 2-hop network where the bkeoefficients are independent and identically
distributed (i.i.d.) drawn from a continuous distributiand vary over time. For a broad class of channel distribstion
we characterize the ergodic sum capacity to within a constamber of bits/sec/Hz, independent of signal-to-noise
ratio. The achievability follows from the analysis of andrference neutralization scheme where the relays are
partitioned intoM pairs, and interference is neutralized separately by eadhqgb relays. WhenM = 1, the
proposed ergodic interference neutralization charaterihe ergodic sum capacity to withirbits/sec/Hz for i.i.d.
uniform phase fading and approximatelyr bits/sec/Hz for i.i.d. Rayleigh fading. We further show tthiais gap
can be tightened td logm — 4 bits/sec/Hz (approximatel9.6) for i.i.d. uniform phase fading and — 410g(3”)
bits/sec/Hz (approximately.1) for i.i.d. Rayleigh fading in the limit of IargeME

Index Terms

Amplify-and-forward, approximate capacity, ergodic ceipa fading, interference neutralization, two unicast,
two-user two-hop networks.

. INTRODUCTION

In recent years, there has been significant progress towsadisrstanding fundamentals of multi-source single-
hop networks([1]- [3@ Following up on these successes for single-hop networkse mexent and emerging work
has consideredhulti-source multi-hop networl@]—[8]. For multi-source multi-hop networks, interfe@ncan be
cancelled by aligning multiple paths through the networkeehnique referred to asterference neutralizatian
Proper exploitation of such interference neutralizatiorthie key for an approximate capacity [4] and the optimal
degrees of freedom (DoF) characterization [5]-[8]. Relgefdr 2-user2-hop networks, interference neutralization
combining with symbol extension was used to show that twayekuffice to achieve the optimal DAFE [5]. In spite
of recent progress in this area, the best known capacityactexization for fully connectegtuser2-hop networks
is to within o(log(SNR)) bits/sec/Hz[[5], which can be arbitrarily large as the signanoise ratio (SNR) increases.

The aim of this paper is téighten the capacity gap d-user 2-hop networks to within a constant number
of bits/sec/Hz, independent of SNBur achievability is based oergodic interference neutralizatiof], which
is similar to ergodic interference alignment [3] applied nwlti-source single-hop networks. Suppose that the
sources transmit their signals at timehrough the first-hop channel matrid[t]. Then the relays amplify and
forward their received signals with an appropriate detaghrough the second-hop channel mat€{¢ + 7] such
that G|t + 7]H[t] becomes an approximately diagonal matrix with non-zergahal elements. This approach can
completely neutralize interference in the finite SNR regime

Assuming independent and identically distributed (j)ichannel coefficients, the proposed ergodic interference
neutralization characterizes the ergodic sum capacityitieirwa constant number of bits/sec/Hz for a broad class
of channel distributions. For instance, when the numberet#ys L is equal to two, it achieves the ergodic sum

This work has been supported in part by the European ERCirgtd®rant 259530-ComCom.

The material in this paper was presented in part at the Irdtom Theory and Applications Workshop (ITA), San Diego, GAebruary
2012 and the IEEE International Symposium on Informatioedri (ISIT), Boston, MA, July 2012.

S.-W. Jeon, C.-Y. Wang, and M. Gastpar are with the School@h@iter and Communication Sciences, Ecole Polytechniga&rale
de Lausanne (EPFL), Lausanne, Switzerland (e-r{adngwoon.jeon, chien-yi.wang, michael.gast@epfl.ch).

M. Gastpar is also with the Department of Electrical Engiimgeand Computer Sciences, University of California, Bdely, CA, USA.

Throughout the papetpg(-) denotes the logarithm of base two.

2Unless otherwise specified, we assume Gaussian networksgtiout the paper.


http://arxiv.org/abs/1210.2182v1

TABLE |
NEW APPROXIMATE CAPACITY RESULTS AND THE EXISTINGDOF AND APPROXIMATE CAPACITY RESULTS

K-user 2-user2-hop network K-user2-hop network K-user K-hop network
interference channel with 2 relays with L relays with K relays at each layer
Generally unknown Generally unknown
K i —
DoF 2 2 2[5l K if i%ﬁ(i(ool[)lt—)’i 1) K for isotropic fading[6]
Ergodic capacity Generally unknown
for uniform Exact capacity[[11] 4 bits/sec/Hz gap 2.6 bits/sec/Hz gap Unknown
phase fading if K=2andL — oo
Ergodic capaci Generally unknown
9 capacity 1.3K bits/sec/Hz gap| 4.7 bits/sec/Hz gap 3.1 bits/sec/Hz gap Unknown
for Rayleigh fading it K =2andl — oo

capacity to within4 bits/sec/Hz for uniform phase fading and approximately bits/sec/Hz for Rayleigh fading.
As L increases, we narrow the corresponding gap in our analgsiscifically, this gap is given aslogm — 4
bits/sec/Hz (approximatel®.6) for i.i.d. uniform phase fading and — 4log(3§) bits/sec/Hz (approximatel$.1)

for i.i.d. Rayleigh fading in the limit of largel.. We also notice that a similar analysis is applicable for the
K-user interference channel and show that ergodic interéerealignment in[[3] characterizes the ergodic sum
capacity assuming that all sources employ uniform powercation across time to withi(% log 6) K bits/sec/Hz
(approximatelyl.3K) for i.i.d. Rayleigh fading. Tablg | summarizes the new apgnate ergodic capacity results
of this paper and the existing DoF and approximate capaegults.

A. Related Work

1) Degrees of freedomnin seminal work([2], interference alignment has been prefds achieve the optimal DoF
of the K-user interference channel with time-varying channelftciehts. The concept of this signal space alignment
has been successfully adapted to various network envirotene.g., see [10], [12]-[18] and the references therein.
It was shown in[[19],[[20] that interference alignment casoabe attained on fixed (not time-varying) interference
channels.

In spite of recent achievements on interference channetsutti-source single-hop networks, understanding of
multi-source multi-hop networks is still in progress. Therw[5] has exploited interference alignment to neutralize
interference at final destinations, which is referred to lagnad interference neutralization, and showed that the
optimal 2 DoF is achievable foR-user2-hop networks with2 relays. This result has been recently generalized
to two unicast networks [7]/[8]. For more than two unicakg pptimal DoF is in general unknown except for a
certain class of networks. For tHé-user2-hop network withL relays, interference can be completely neutralized
if L > K(K —1)+ 1 [9]. Similar concept of ergodic interference alignment &en proposed for interference
neutralization in[[6] showing that ergodic interferenceutnalization achieves the optimal DoF &f-user K-hop
isotropic fading networks with< relays in each layer.

2) Beyond degrees of freedorhe DoF discussed previously is a fundamental metric ofirsolirce networks
especially for high SNR, which characterizes capacity tthiwio(log SNR) bits/sec/Hz. Depending on the opera-
tional regime, however, the gap oflog SNR) bits/sec/Hz in practice can be significant and achievingoiamal
DoF may not be enough. For thieuser interference channel, for instance, time-sharingvéen the two users
can also achieve the optimal one DoF. On the other hand, aesihlgn—Kobayashi scheme can tighten the gap
to within one bit/sec/Hz [1], which provides an arbitrarirger rate compared with the time-sharing for a certain
operational regime and channel parameters. Consequeetigral works have recently established tighter bounds
on the gap from capacity [4]l [21]-[26] to provide a univérparformance guarantee, independent of SNR and
channel parameters.

A similar flavor of such bounds on the gap from capacity comgdime-varying channel models. The recently
proposed ergodic interference alignment.in [3] makes fietence aligned in the finite SNR regime and, as a result,
provides significant rate improvement compared with theveotional time-sharing strategy in the finite SNR
regime. Ergodic interference alignment was shown to aehibe ergodic sum capacity of thfé-user interference
channel for i.i.d. uniform phase fadingl[3]. For thé-user finite field interference channel (with time-varying
channel coefficients), the idea of ergodic interferencgnatient was independently proposed by Nazteal. [11]]



TABLE I
SUMMARY OF NOTATION

AT (ora”) Transpose ofA ( or a)
AT(oral) Conjugate transpose & ( or a)
det(A) Determinant ofA
I Identity matrix
J V-1
re(a)( or im(a)) Real (or imaginary) part of
lal Absolute value ofu
a* Complex conjugate of
la] Floor of a (|a] = max{z € Z|z < a})
card(A) Cardinality of A
CN (1, 0%) Circularly symmetric complex Gaussian distribution wittean ;. and variancer>

and Jeon and Chung [27] in two slightly different versioms[28], ergodic channel pairing was applied to tighten
the gap from the ergodic capacity for fading multihop nekgoshowing a gap depending only on the number of
nodes in a layer, instead of the total number of nodes in aarktw

B. Paper Organization

The rest of the paper is organized as follows. In Sedtibn & ,imrroduce the fading-user2-hop network model
considered in this paper and formally define its ergodic sapacity. In SectiofTll, we first state the main results of
the paper, approximate ergodic sum capacities of fadinger2-hop networks. In Section 1V, we explain ergodic
interference neutralization and its achievable rate. laoti8e[V, we prove the approximate ergodic sum capacity
results in Section Il based on the achievability in SeclidhFinally, we conclude in Section VI and refer some
technical proofs to the appendices.

[I. PROBLEM FORMULATION

In this section, we explain our network model and define ita sapacity. Throughout the paper, we will use
a, and. A to denote a matrix, vector, and set, respectively. The iootatsed in the paper is summarized in Table
(Il

A. Fading2-User 2-Hop Networks

We study the2-user2-hop network depicted in Fid] 1 in which each source wishesaonsmit an independent
message to its destination with the helplofrelays, wherel. > 2. The input—output relation of the first hop at
time ¢ is given by

yr(t] = H[t]x[t] + zg[t], 1)
where
hialt]  haalt]
hoalt]  hopolt]
Hlf=| : ®)
hL,l[t] hL,Q[t]
is the L x 2 dimensional complex channel matrix of the first hop at timgr[t] = [yr1[t], - ,yr.L[t]]T is the
L x 1 dimensional received signal vector of the relays at time[t] = [z1[t], z2[t]]T is the 2 x 1 dimensional
transmit signal vector of the sources at timeandzg[t] = [2g1[t],- - ,zrL[t]]T is the L x 1 dimensional noise
vector of the relays at time Similarly, the input—output relation of the second hopimuett is given by
ylt] = G[tlxg[t] + =[t], @)
uhere 1] ool 0
G[t] = 91,1 91,2 9g1,L 4)

g2.1(t] g22[t] -+ go,L[t]
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Fig. 1. Gaussiarz-user2-hop network withL relays.

is the the2 x L dimensional complex channel matrix of the second hop at timeft] = [y1[t], y=[t]]” is the
2 x 1 dimensional received signal vector of the destinationsna¢ t, xg[t] = [zr1[t], - ,zr o[t]]T is the L x 1
dimensional transmit signal vector of the relays at timandz[t] = [z1[t], z2[t]]” is the2 x 1 dimensional noise
vector of the destinations at timte We assume that the elementszgf|t] andz[t] are i.i.d. drawn fromCA/ (0, 1).
Each source and relay should satisfy the average powerraonsp, i.e., E[|z;[t]|?] < P for i € {1,2} and
Ellwr,[t]2] < Pfor j € {1,--- , L}.

We assume thathannel coefficients are i.i.d. drawn from a continuousriistion f(z), = € C, and vary
independently over timéwithout loss of generality, we assume tH&th; ;[t]|*] = 1 and E[|g;;[t]|*] = 1 for all
ie{l,---,L} andj € {1,2}. We further assume that the sources do not know any charatel isformation
(CSI) and the relays and the destinations know global CSat T¢) at timet, each relay and destination knows
H[t] and G[t].

B. Ergodic Sum Capacity

Based on the network model, we consider a set of lengtleck codes. LetiV; be the message of source
i uniformly distributed over{1,--. ,2"%} whereR; is the rate of source. A rate pair(R;, Ry) is said to be
achievableif there exists a sequence (" 2"%: n) codes such that the probabilities of error #6% and W,
converge to zero as increases. Notice that since channel coefficients are wadying over time, an achievable
rate pair(Rp, R2) is given as in the ergodic sense, i.e., the expectation auedtom channel coefficients. The
ergodic sum capacitf’s., is defined as the maximum achievable ergodic sum rate. Uokisswise specified,
an achievable sum rate or the sum capacity in this paper meachievable ergodic sum rate or the ergodic sum
capacity, respectively.

I11. M AIN RESULTS

In this section, we first introduce our main results. Rét:= L%J. As will be explained in Section IV, we only
use2M relays among the total numbér of relays for the achievability. That is, the achievabilisybased on an
even number of relays. Without loss of generality, we asstiraerelayl to relay2M are used for relaying. The
achievability follows from ergodic interference neutealiion based on amplify-and-forward relaying in whizh/
relays are partitioned intd/ pairs and interference is neutralized separately by eatchopaelays. In order to

describe the proposed ergodic interference neutralizagind its achievable sum rate, for € {1,--- , M}, we
denote \ 0 )

Hm t| = 2m—1,1 2m—1,2 :| .

2 [ ham,1[t] hom,2[t] )

and

_ | 912m—1[t] g22m-1[t]
Gon[t] ._[ dromlt] gaamlt ] (6)



which are the2 x 2 dimensional channel matrices at timdérom the sources to relaysn — 1 and2m and from
relays2m — 1 and2m to the destinations, respectively.

A. Achievable Sum Rate
The following theorem states an achievable symmetric rathenfading2-user2-hop network.

Theorem 1:For the fading2-user2-hop network withL relays,

P2 (S | det(B1,,)] )

R, =E |l 1
‘ o8 + 1 —i—aim

()

. , _ M
is achievable foi € {1,2}, whereM = L%J-’Y =4/ H%- Uzsz,i =72 Zm:l(‘hZ(m—l)-l-S—i,S—i‘2+’h2(m—1)+i,3—i‘2)'
and the expectation is over the channel coefficients.

Proof: The proof is in Section V. [ |

The most important aspect is that there is no residual erenice after ergodic interference neutralization,
meaning that interference can completely be neutralizefihité SNR. Moreover, from the block-wise coherent
combining gain shown a(sznjvle |det(H,,)|)? in (@), the received signal power increases as the numbeaics p
M increases. Although there is noise amplification due to dyahd-forward relaying given asim. in (@), this
additional noise results in a constant number of bits/seddds for a broad class of channel distributions, which
will be proved in Section V.

For notational convenience, let

P (S | det ()] )

7
L+o03p,

2
Ry, = Z Ellog |1+ ) (8)
i=1

which is the achievable sum rate from Theotdm 1. For compayrise consider the ergodic capacity of the multiple-
input multiple-output (MIMO) channel from the sources te tfelays, that is

Rinimo = E [log det(I + PHH! )} . 9)

Since the channel coefficients are i.i.d. and the sourcentd@mow CSI,Cy,,, is upper bounded bR imo [29].
The following example illustrate®;,, and R,imo for i.i.d. Rayleigh fading, i.e.f(z) follows CN (0, 1).

Example 1 (Sum rate: Rayleigh fadingyigure[2 plotsR;, and Ry,im. for i.i.d. Rayleigh fading. Two important
aspects can be observed in the figure. First, for a fixed nuoflyetaysZ, the sum rate gapmimo — Rin appears to
be upper bounded by some constant independent of pBwehich suggests that the proposed ergodic interference
neutralization can achieve the ergodic sum capacity toimvdhconstant number of bits/sec/Hz independenPof
Second, for a fixed?, the sum rate ga@imo — Rin appears to decrease with increasiigwhich suggests that
this approximate capacity characterization can be tighteas the number of relays increases.

Both observations in Exampld 1 are established in this papdrshown to hold beyond the case of Rayleigh
fading for any fading model for whiclf(x) is only a function of|xz|. The following two subsections describe our
approximate capacity results characterizing the ergodiic sapacity to within a constant number of bits/sec/Hz,
independent ofP.

B. Approximate Ergodic Sum Capacity for= 2

In this subsection, we assunie= 2. We first consider i.i.d. uniform phase fading in whikh; [t] = exp(36; ;[t])
and g;;[t] = exp(yp;(t]), wheref; ;[t] and ¢;;[t] are uniformly distributed ovef0,2x) for all 7,5 € {1,2}.
Although uniform phase fading violates the channel assiompn Section[Il-4, i.e., f(x) is continuous over
x € C, we can slightly modify the proposed ergodic interferene@tralization and show that Theordm 1 still
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Fig. 2. The achievable sum rafe,, and its upper bound.imo for i.i.d. Rayleigh fading wherl, = 2, 4, 16, 64.

holds. The detailed modification is given in Appendix |. Thaldwing theorem characterizes an approximate
ergodic sum capacity for i.i.d. uniform phase fading.

Theorem 2:Consider the fadin@-user2-hop network withL = 2 relays. If h; ;[t] = exp(y0; ;[t]) and g;;[t] =
exp(g¢;.i(t]), whered; ;[t] andy; ;[t] are uniformly distributed ovej0, 27) for all 7, j € {1,2}, then

C’sum - Rin < 4 (10)
for any P > 0.
Proof: The proof is in Section V-A. [ |

Example 2 (Gap foi. = 2: Uniform phase fading):Figure[3 plotsR,imo — Rin With respect toP for i.i.d.
uniform phase fading (the closed forms Bf,;.,o and Ry, are given by[(3l7) and (38), respectively). As proved by
Theorem 2, the proposed ergodic interference neutraizatchievess,,, to within 4 bits/sec/Hz for i.i.d. uniform
phase fading. This theoretical gap coincides with the dgfap Ryimo — Rin @t high SNR, i.e.limp_, oo { Rinimo —
Ri,} =4.

Based on the bounding techniques used in proving Thebieme2¢characterize an approximate ergodic sum
capacity for a class of channel distributions satisfyingt th(z) is only a function of|x|. Specifically, for a given
set of channel amplitudes, we first upper bound the Bap., — Rin by averaging out the effect of phase fading.
Then we further apply additional bounding techniques ta@imban upper bound, independent of power

Theorem 3:Consider the fading-user2-hop network withZ = 2 relays. If f(x) is only a function of|z|, then

VA(A + B?) )

At V=) +2 (11)

Csum — Rin < 2E llog (
B

for any P > 0, where
A = |hy 1P |hao* + [hiol*hea|?,
B = ‘h171‘2 + ‘h271‘2 + 2,
G = 2|h1 1|1 2]|h21]h2,2], (12)
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and the expectation is over the channel coefficients.

Proof: The proof is in Section V-A.

The presented gap in Theordrh 3 only depends on the amplitistiébdtion of channel coefficients, which
provides universal performance guarantee regardlesswémpB. The following example evaluates the presented

gap for i.i.d. Rayleigh fading.

Example 3 (Gap foll = 2: Rayleigh fading): Figure[4 plotsR.im, — Rin With respect toP and also plots its
upper bound in Theorei 3 for i.i.d. Rayleigh fading. Sincer¢his no closed form, we evaluate the bound in
Theorem[ B by simulation, which approximately provide$ bits/sec/Hz gap. Simulation result shows that the
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proposed scheme achieves at |eaist, 79%, 84%, 87%, and89% percent of the ergodic sum capacity at SNR
20, 30, 40, 50, and60 dB, respectively.

C. Approximate Ergodic Sum Capacity &s— oo

In this subsection, we focus on an approximate ergodic sypadty as the numbel of relays increases. Again,
we first consider i.i.d. uniform phase fading and then camrsalclass of channel distributions satisfying tlfiét)
is only a function of|z|.

Theorem 4:Consider the fading-user2-hop network withL relays. Ifh; ;[t] = exp(36; ;[t]), g;.i[t] = exp(3;.i[t]),
and@; ;[t] and;;[t] are uniformly distributed ovej0, 27) for all i € {1,--- ,L} andj € {1,2}, then

lim {Cyym — Rin} < 4logm —4 (13)
L—oo
for any P > 0.
Proof: The proof is in Section V-B. [ |

Example 4 (Gap ag — oo: Uniform phase fading):Figure[% plots the gaR,imo — Rin for i.i.d. uniform phase
fading with respect tal. As shown in the figure, this gap decreased.aimcreases and eventually converges to
4log ™ — 4 (approximately2.6) regardless of?, which was proved in Theorelm 4. Therefore the proposed @god
interference neutralization characterizés,, to within 4logm — 4 bits/sec/Hz in the limit of largd.. Compared
to 4 bits/sec/Hz, the sum capacity gap for= 2 in Theoreni 2, the result shows that the sum capacity gap can be
tightened ag. increases.

Theorem 5:Consider the fadin@-user2-hop network withL relays. If f(x) is only a function of|z|, then

Llim {Csum — Rin} < 4 — 4log (E[| det(Hy)[]) (14)
—00
for any P > 0.

Proof: The proof is in Section V-B. [ |

Example 5 (Gap ag. — oc: Rayleigh fading): Figurel5 plotsR,im.— Rin for i.i.d. Rayleigh fading with respect
to L. Thatis, f (z) follows CA/(0, 1). For this case, it can be shown tiatdet(H;)|] = 2F and, thus, the theoretical
limit in Theoren®% Ieads—zllog(%”) (approximately3.1). The detailed proof oE[| det(H;)|] = %’T is in Appendix
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Fig. 6. Block-wise ergodic interference neutralizatiorsdxh on amplify-and-forward relaying.

II. As shown in the figure Rmimo — Rin Quickly converges to the theoretical limit dsincreases. Considering that
the sum capacity gap is approximately given4y bits/sec/Hz wherl. = 2 (Theoreni B and Examplé 3), the sum
capacity gap can be tightened Adncreases.

D. Approximate Ergodic Capacity for Fading Interferenceahel

We notice that a similar analysis used in Theoréms 2 [dnd 3 pdicaple to show an approximate ergodic
capacity for fadingK-user interference channel. The achievability followafrergodic interference alignment in
[B]. Assuming that all sources employ uniform power allamatacross time, we show that ergodic interference
alignment characterizes an approximate ergodic per-usgadaity, i.e., ergodic sum capacity divided B, for
a broad class of channel distributions. The detailed s&téns given in Theorerh]6 in Appendix Ill. For i.i.d.
Rayleigh fading, for instance, our analysis characterihesergodic per-user capacity to WithljriogG bits/sec/Hz
(approximatelyl.3 bits/sec/Hz).

IV. ERGODICINTERFERENCENEUTRALIZATION

For the achievability, we propose ergodic interferencetnadimation using an even number of relays. L\dt:=
L%j. Then we can choos®\/ relays among the total numbeérof relays and apply the proposed ergodic interference
neutralization by using thes®V/ relays. For simplicity, we assumk is even in the rest of this section. That is,
L=2M.

A. High-Level View

Before the detailed description and analysis, we begin loyiging a high-level view of the proposed ergodic
interference neutralization. Consider lengthsequences of matricegH ¢}, and {G[t]}}~,, drawn i.i.d. ac-
cording to a certain probability density function. We pi#oti these sequences judiciously into pairs of matrices
(H[t1], G[t2]) such thatGlts] and F'(HJt;]) are almost equalwhere F'(-) is a cleverly chosen mapping to be
discussed below. The main argument is that by consideriog@er and longer sequence of matrices, we can make
these two matrices arbitrarily close. The formal and tec&indetails of this argument can be found in Sections
IV-Bland[IV-Cl. For notational convenience, we introduce tlwgationG|te] ~ F'(H]t;]) for the two matrices that
are almost equal.

As pointed out in[[6], a simple amplify-and-forward schemighwan appropriate delay € Z, can neutralize
interference by lettindgz [t + 7|H[t] approximately a diagonal matrix with non-zero diagonahredats. To satisfy
this condition, we first partitior. relays intoM = é pairs and neutralize interference separately by each pair o
relays. Figuré6 illustrates the main idea of the proposé@me. ForA = {a; ;} € C2*2, define

| a22 aip
Fy(A) = [ toy a1y ] . (15)
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The relays then amplify and forward with delaysuch thatG,,, [t + 7| ~ F»(H,,[t]) for all m € {1,--- ,M}. For

- : - g et (H,. [t])* det(H,.[t])*
relaying, relay2m — 1 and2m amplify and forward with the amplification facto doi(Hn[l Et)]l and —fym,
respectively. Herey = H% is needed to satisfy the average power constr&iniThen the effective channel
matrix of themth pair is given by

det(H,,[t])* 1 0 det(H,,[t])* 1 0

——————— G|t H,|t| >y—————FH,,|t H,

Maee@ i ST o -1 | Bl = e, 2D | o oy [ Hell
1 0
—laet(Ea ]| O | (16)

As a consequence, the effective channel gain from each edordts destination is approximately given by
V(M | det(H,,[t])])?, as can be seen in the rate expression in Thedfiem 1. One ciy sfesv that the
additional noise power at destinatiomiue to this amplify-and-forward relaying is given @%;. ;, as shown in the
rate expression in Theorem 1. Lastly, since the probahilégsity functions of the paired channel states are the
same, i.e.,

fag(E] - HY) = fop(F(Hy),- - F(Hu)), (17)

almost all channel instances can be utilized for this erg@diiring as the block length increases. Hence, the
ergodic rate in Theorem 1 is achievable in the limit of large

There are two crucial facts to be observed: 1) the intendgabsipower received at each destination is non-zero
while the interference power decreases arbitrarily closeero at any finite poweP; 2) the intended signal power
received at each destination increases quadratically initteasingZ. These facts make approximate capacity
characterization possible for a broad class of channetilolisions.

Although finding a pair of channel instances having exacsgibed values is impossible, such a pairing can be
done approximately by partitioning the channel space ohédexp and then pairing the partitioned channel spaces
between the first and second hops. In the following subsgotie first explain channel space partition and pairing
and then explain the detailed scheme.

B. Block-Wise Ergodic Interference Neutralization

1) Partitioning and pairing of channel spac&Ve partition the channel space of each hop,C#Y*? space for
the first hop andC2*2M space for the second hop. First, consider the channel sgabe @irst hopC?*2, For
N € Z, andA > 0, define

Q1 :={A € A(Z*M*2 4 j72M*2)||re(a; ;)| < AN, [im(a; ;)| < AN
forall i € {1,---,2M} andj € {1,2}}, (18)
whereA = {a; ;}. Here, N and A are related to the number of quantization points and the tiqpadion interval.
For a quantized channel matr@ € Q;, define

A A A ,
A1(Q) ::{A € CHM2) 3 < re(a; ;) — re(gij) < 3 and — 3 < im(a; ;) —im(g; ;) <

v >

forallie {1,--- ,2M} andje{1,2}}, (19)

whereA = {q; ;} andQ = {¢; ;}. FigurelT illustrates the channel space partitioning withpect tor; ; € C. We
can defineQ, and.A,(Q) for the second hop as the same mannelrin (18) [add (19) by suingtiA c A (Z2*2M +
gZ¥*My and A € C?*2M | respectively. We will only use the first-hop channel ins@inUqeo, A1(Q) and the
second-hop channel instancesligco,42(Q) for transmission.

Now consider the channel space pairing betwggQ) and A»(Q). For A € C2M*2, define

F(A) = [F2(A1), Fa(A2), -+, Fa(An)], (20)

where A = [AT AT ... ATT and the definition off;(-) is given by [I5). ForH[t] € A1(Q), the relays will
amplify and forward with delay- € Z, satisfyingG[t + 7] € A>(F(Q)). Hence the channel subspade(Q) of

the first hop is paired with the channel subspae€F'(Q)) of the second hop. The detailed transmission scheme
is given in the following subsection.
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Fig. 7. Channel space partitioning with respect to the cbhoaefficienth; ; € C.

2) Transmission schemé/e first divide a lengths block into B sub-blocks having lengthp = 7 each. At
the first sub-block, the sources transmit their first messagehe relays (the relays do not transmit). At tke
sub-block,b € {2,--- , B — 1}, the sources transmit theith messages to the relays and the relays amplify and
forward the received signals of tl{g— 1)th sub-block to the destinations. At the last sub-block,rélays amplify
and forward the received signals of the — 1)th sub-block to the destinations (the sources do not trahsHence,
the number of effective sub-blocks is equalfo— 1. Since we can set bothg and B as large as desired as
increases, the fractional rate Io%s becomes negligible as increases. For simplicity, we describe the proposed
scheme based on the first message transmission and omitliHeosk index.
ForQ € Oy, define71(Q) := {t € {1,--- ,np}|/H[t] € A:(Q)}, which is the set of time indices of the first hop
whose channel instances belong4p(Q). Similarly, forQ € Q;, 72(Q) := {t € {np + 1,--- ,2np}|G[t] € A2(Q)},
which is the set of time indices of the second hop whose chamstances belong tal2(Q). The encoding, relaying,
and decoding are as follows.
« (Encoding) The sources transmit their messages using (@aussdebook with lengthz and average power
P.

« (Relaying) For allQ € 9, the relays amplify and forward their received signals tate received during
T71(Q) using the time indices ifV2(F(Q)). Specifically, fort; € 7:(Q), the transmit signal vector of the
relays is given bykgr(ts] = T'ygl[t1], Wwherets € T5(F(Q)). Here

det(Qu)* ... T
Taei@r 0 0
det(Qz)* .
T = 0 Vaer@a A ' : 1)
' » C deQu)’
L 0 ’7|det(QM)\A _

T+2P’
all-zero matrix.

« (Decoding) The destinations decode their messages bashdipreceived signals duringe {np+1,--- ,2ng}.

v = /155, and A = [[1,0]70, -1]7]7, whereQ = [QT,--- ,QT,]T and 0 denotes the x 2 dimensional

C. Achievable Rate Region
In this subsection, we prove Theoréin 1. We first introducefeliewing two lemmas.

Lemma 1:For anyQ € Q;,
P[H[t] € 41(Q)] = P[G[t] € A2(F(Q))]- (22)
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Proof: Let fy(-) and fgp(-) denote the probability density functions Ht] and G[t], respectively. Then

PHf € A(Q) = / frag(A)dA

AcA(Q)

_ /A e 11 flai;)dA

iE{17"'2M}7jE{172}
(@)

2 / fe(F(A))dA
AcA(Q)

e o) (A)dA"
A A (F(Q))
=P[G[t] € A(F(Q))], (23)
whereA = {qa; ; }. Here(a) follows from the definition off’(A)) and(b) follows by a change of variabla’ = F(A)
whose Jacobian is one aoth(F(Q)) = {F(A)|A € A;(Q)}. Therefore Lemmall holds. [
Lemma 2: The probability that
card T
AN b e 4@l < 5 (24)
e aT3(Qy)
car
# —P[G[t] € A2(Q2)]| <6 (25)
for all Q; € Q; andQ, € Q, is greater than — (card Q;) + card Qz))/(2npd?).
Proof: We refer to Lemma 2.12 iri_[30] for the proof. [ |

Suppose that the sources transmit at time 7;(Q) and the relays amplify and forward their received signals at
time ¢t € T2(F(Q)), whereQ € Q;. For this case, froni{1) andl(3), the received signal vectdh® destinations
is given by
y[tg] = G[tz]FH[tl]X[tl] + G[tQ]FZR[tl] + Z[tz], (26)

where we usexg[ts] = Tyg[t:]. DenoteH[t;] = H = [HY,---HT|T and G[tz] = F(H) + A, where A =
[A1,---, Ayl is the quantization error matrix with respect &§H). From [26),

M
ylta] = ((’Y > !det(Hm)\> A+ AFH) x[t1] + (F(H) + A)Tzg[t] + z[t2], (27)

where we usé (H)TH = (v M_ | det(H,,)|)A. Thus, the received signal-to-interference-and-noise (8INR)
of destinationi is given by

Pl (v T, | det(8,))) + [ATH],[

Ly S (I Hps—is—i + [Amliil? + [Hplis—i + [Anlisi]?) + P|[ATH]; 3|2
Define R;(Q) = minac 4, (q) log(1 + SINR;). Then an achievable rate of destinatiois lower bounded by

SINR; =

(28)

Ri> - 3" Ri(Q)min{card7i(Q)),card Ta(F(Q))). @)
Qe
From Lemmag]l and 2,
card(73(Q) = np(PIHIY € A (Q)) - ) (30)

and

card(T3(F(Q))) > np(P[G[t] € As(F(Q))] - )
— np(P[H[ € A(Q)] - ) (31)
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for all Q € Q; with probability greater than — Z¥* ™" where we useard(Q;) = card(Qs) = (2N + 1)3M.

Then

B> S R | € A1(Q)] - 0)
Qe
> Ry( t] € A(Q)] — 02(2N + 1)* max R; 32
> (Q)] = 022N +1)* max 1(Q) (32)
Qe
is achievable with probability greater than— @YU By setting A = ng/CFM N = /G2 ang
0= nBl/?’ the following condition can be satisfied:
A= n;/(?"ZSM) — 0
AN = ni/(3'25M) — 00,
62(2N +1)3M Ri(Q) <2-38MN8M§ R
(2N +1)"" max R;(Q) < tax Fi(Q)
(a)
< 2-33MNM510g(1 4+ 2 MAZN?P)
= 2. 33Mp VO 0g(1 + 24 Mn )/ G M p) 5 0,
8M SM N\ 8M

npd? ~  npd?

asnp increases, wheréa) follows since|h;;|?> < 2A%(N + 3)? < 22A?N? for the channel instances using the
transmission (see Fig@l 7).
Hence,

P2 (S | det(H,p)1 )

R, =E |log | 1+ (34)
1+92 M (Ihagn-1)43-i3—il® + |hagn-1)+i3-i]%)
is achievable with probability approaching one fof {1,2}, where we use the fact that
2
P32 (S0 | det(H) )
lim SINR; = (35)
A—0

1++2 Zr]‘r/{:l(’h2(m—1)+3—i,3—i 2+ |Po(m—1)4i,3-il?) '
In conclusion, Theorernl 1 holds.

V. APPROXIMATE CAPACITY CHARACTERIZATION

In this section, we prove Theoremk 2[ib 5, the approximateditgsum capacity characterization results. We
will deal with the difference betweeR,,i.,, and R;,, which are given by[(8) andl(9) respectively. Throughout
this section, we assume a class of channel distributionis that f (=) is only a function of|z|. That is, for given
amplitudes of the channel coefficients, their phases ack uniformly distributed ovef0, 2x). For instance, this
class of channel distributions includes i.i.d. uniform pédading and i.i.d. Rayleigh fading as special cases. We
omit the time index in this section for notational convenience.

A. Approximate Capacity fof, = 2

We first consider the case whefe = 2. In order to deal with i.i.d. random phase in the rate expoesm
Theorem[ L, we introduce the following lemma showing the exatution of E4 [log (1 — z cos ¢)] for |z < 1
when ¢ is uniformly distributed ovefo, 27).

Lemma 3:Let ¢ be a random variable uniformly distributed oJeér2x). For |z| < 1,
Ey [log (1 — z cos ¢)] = log (1 +v1- ac?) -1 (36)

Proof: We refer to the equation (4.224 12) in [31]. [ |
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1) Proof of Theorerhl2From (8),

a 2P2%(1 — cos )
R (:) 2Ey |:10g (1 + cos )]

1+4+4P
2P 2P?
—210g<1+ 4P>—|—2E9 [lo <1 17 1P+ 2p° cos@)}
®) 2P2 2P2 2
=21 1 21 1 11— ——————— -2 37
Og( Tirap) T 1+ 4P +2P? ’ 37)
wheref = 01 1+ 6029 — 012 —021. Here,(a) follows since| det(H)|? = 2(1 — cos 6) andaAF = 1_25,3, (b) follows

sinced mod [27] is uniformly distributed ovef0,27) and from Lemmal3 witHW| < 1. Similarly, from

@.
Rimimo = By [IOg((l + 2P)2 - 2P2(1 + cos 9))]

2P2
— 2 _
=log(l1+4P +2P%) + Ey [log(l T iP 2P200$9>]
9 2 P2 2
=log(l + 4P +2P*) + 1 1+l - — — 1. 38
og( ) +log <1+4P+2P2> (38)

Then, from [[37) and (38),

(14 4P)? 2.2 2
Ruimo — Rin =log [ ———— 2 ) log [1+44/1— [ — 1
0g<1+4P+2P2 st 114ap2p2) |

(@) (1+4P)?
< -~ =z
< log <1+4P+2P2> 1

< 4, (39)

where (a) follows since|%| <1 for any P > 0 and (b) follows since
1+4P)? 1+ 4P)?
10g<(+ )2>§log< (1+4P) )
1+4P +2P 14+ 2V/2P + 2P2

2l <ﬂ>
T\ 11 vap
<3, (40)

where we use the fact thasg (%) is an increasing function oP > 0 andlimp_,, log (%) =3 In
conclusion, Theoreri] 2 holds.
2) Proof of Theoreril3:Since f(x) is only a function of|z|, h;; can be represented as; exp(36; ;), where
a;; > 0 andé,;; € [0,2r) are independent of each other. Moreo@eg is uniformly distributed ovel{O 2m).
To simplify the notation, we denote = {a;1,a12,a21,a22}, A = al 1a22 + a12a2 L Bl = al 1+ a2 1t 2,

Bg—a12+a22—|—2 G—2a11a12a21a22, andS—a11+a12+a21+a%2
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From [8),

(@) 2(A — Gcosf)
Rin = Y Ea [Ee [bg( TP, :

i€{1,2}
P2A P2G cos 6
— Z 3[10g<1+1+p3>]+'z Ea[EG[IOg<1_1+PBi—|—P2A>H
ie{1,2} ie{1,2}
2
() 3 [ < P2A ( PG
) Ea[log (1+——— log — 5 —2
oo 1+ PB 6{1 2} 1+ PB; + P2%2A
(e) P2A VAZ -2
all 1 2E, 1 -2
> Z {og<+1+PB + [g<+ )
_ Z [log< )}Jr [log< Bi + PB2+ P2AB; >]
_ a 2 2
o o Bi + P(A+ B?) + P2AB;

2 _ (2
+2E, [log(l—i—%) —2

(;) Y Ea [log <1+];’?>} > Ea [log(Af2B2>]

1€{1,2} ie{1,2}

I 7 (2

wheref = 6 1+ 022 — 01 2 — 02 1. Here(a) follows from the facts thaa and {6 1,61 2,621,622} are independent
of each other angldet(H)|? = A — G cos 8, (b) follows sinced mod [2r] is uniformly distributed ovef0, 27) and

from Lemma[B with %‘ < 1, (c) follows since 555 < § for any P > 0, and(d) follows since

log <01+02 > log< ) for c1,c9,c3 > 0 andey < c3.

ci1+c

From [9),

—2, (41)

Rimo 2 Ea [Ey [log det(T + PHET) |
= Ea [Eg [log (1+ PS + P?(A — G cos 9))]]

PG
— 2 _
= Ea [log(1 + PS + P?A)] + Ea [E@ [log (1 T PS4 P2A < 9)))”
(®) 9 B P2Qq 2
Ea[log(l—l—PS-l-PA)]—i-Ea[log(l—k\/l <—1+PS+P2A 1
Ea [log(1+ PS + P?A)], (42)

where (a) follows from the fact thata and {6; 1,61 2,621,622} are independent of each othéb) follows since
¢ mod [27] is uniformly distributed oveif0,27) and from Lemmal3 an%\ < 1, and(c) follows again

smce\m] < 1.
Let

PA
A =log(l+PS+P*A)— > log (1 + —) (43)
i€{1,2}
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Then

A = log <B1Bz> +log 14+ PS+ P%A
A Bl 4 P(By + By) + P2A
<o (172). (44)

where the inequality follows sincB; B> > A and B; + B, > S. Therefore, from[(41) to(44),

B2 A2 — G2
. —R.< — E 2 — [
lemo Rln > Ea[A] ‘ Ea [log <A I BZ>:| 2 Ea llog <1 + A ) + 2
ie{1,2} g
A(A+ B3)(A + B3) )]
< E; |l + 2
B [og <BlB2(A+\/A2—G2)2
VA(A+ B?)
=2E; |1 + 2. 45
[Og <B1(A+\/A2—G2) 49)

In conclusion, Theoreiinl 3 holds.

B. Approximate Capacity aé — oo

In this subsection, we characterize an approximate ergadit capacity in the limit of large number of relays by
deriving limz,—, oo { Rmimo — Rin}. FOr K-user2-hop networks withZ relays, it was shown iri [9] that interference
can be completely neutralized K > N(N — 1) + 1, which indicates that foR x L x 2 networks interference
neutralization can be achieved without channel pairing i 3. However, maximizing the achievable sum rate
exploiting interference neutralization without channeliring presented in_[32] is non-convex and, as a result,
it is unclear how to determine the sum rate gap from the cutipper bound. By contrast, we now show that
our achievable rate expression from Theofdm 1 permits tivaler finite-gap result. The rate expressigg, in
(B) contains the sum of i.i.d. random variables, ig%zl | det(H,,)|, which approaches a deterministic value
M EJ|det(H;)|] almost surely as// — oo by the law of large numbers. The following lemma providesgomus
lower bound in order to deal witl®;, that holds for anyM .

Lemma 4:Consider a sequence of i.i.d. nonnegative random variapigsi € Z,}. Let S, = > ", X;. If
E[X1?] < oo, then for anye € (0,E[X;]) and anyc > 0,
E [log(1 + ¢S;,?)] > log (1 4+ em?(E[X1])?) — dm(c, E[X1], E[X17]), (46)
where

om(c, E[X1], E[X1?]) = E[mL;] log (14 em?(E[X1] — €)?)

em?e(2E[X1] — €)
— log <1 - cm2(E[B(1])2 ) 47)

is a positive sequence ofi, which converges to zero as— 0.
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Proof: We have
E [log(1 + cSin?)]
= E [log (1 + ¢Sin”) (L(is,./m—exi]j<c} + 118, /m—[x,]12c})]

(a)
> log (1 + cm2(E[X1])2 — 20m26 E[Xl] + Cm262)) E[l{\Sm/m—E[Xl}KE}]

(2’ log (1 4+ em?(E[X1])? — 2em?®e E[X1] + cm?€?)) <1 — Va;gl)>
(2) log (1 + em?(E[X1])* — 2em?e E[X1] + em?e?))
- Eq[jziﬁ] log (1 + cm?(E[X1])? + em?€?))
= log (1 + em?*(E[X1])?) — m(c, E[X1], E[X17)), (48)

where(a) follows sinceS,, > m E[X;]—me under the conditionS,,/m—E[X1]| < ¢, (b) follows from Chebyshev’s
inequality, and(c) follows sinceVar(X;) < E[X;?]. In conclusion, Lemma@l4 holds. [
By settingd,, arbitrarily small asm increases, Lemnid 4 provides that

E [log(1 + ¢Sy ?)] > log (1 + em?(E[X1])?) (49)

in the limit of largem. Note that this bound is asymptotically tight sinEelog(1 + csz)] < log(1 + cE[S,?])
from Jensen’s inequality ardg(1 + cE[S,,?]) is approximately given akg(1 + cm? E[X1]?) asm increases.
1) Proof of Theorerhl4Recall M = L%J. That is,L < 2M + 1. From [9),

Rmimo < 2log(1+ P(2M + 1)), (50)

where the inequality follows from Jensen’s inequality ahd fact thatlog det(-) is a concave function [33]. Here
we assumd. = 2M + 1 to obtain an upper bound.

From [8),
2
Rin = 2E(g, ... g} |log | 1+ 1+ P(2M +2)
® 18 p2ps? P 1
> 2log | 1 e —20M\ T B gy o 2 >t
- Og( +1+P(2M+2)> M<1+P(2M+2)’7T’ ) Y

whereb,,, = 02,11 +02m 2 —02m—1.2—02m,1. Here,(a) follows since| det(H,, )| = v/2 — 2 cos §,,, and(b) follows
sinced,, mod [27] is uniformly distributed ovef0, 2r) and from Lemma}4 with the facts th&t[\/2 — 2 cos 6;] =
4, andE[2 — 2cos 64] = 2. Then, from [5D) and{(51),

2
Rmimo_Rin < 210g <1+P(4M+3)+P (2M—|—1)(2M+2)>

1+ P(2M +2) + X p2)2
P? 4
20 _— — — 2. 52
- M<1+P(2M+2)’7r’ ) (®2)
Hence,lim /oo { Rmimo — Rin} < 4logm — 4 + €1, where

— gim 2 (A
Mo M\ 1 PRM +2)

™ 7'('2

which can be arbitrarily small asdecreases. In conclusion, Theorem 4 holds.
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2) Proof of Theorerhl5From (8),

Rin>2Ellog (1—|—P2(§:1det )2)]
s ($ )

() 22
D 1o [ LM E[| det(EL, )[])?
1+P(2M+2)

— 26y (P2 E[] det(HL)[J,E ||det(H1)P] ), (54)
where (a) follows from Lemmd& 4 and Jensen’s inequality. Hence, fro@) @nd [(54),

1+ P(4M + 3) + P?(2M + 1)(2M + 2))
1+ P2M?2 (E[| det(H;)]])?
+ 2631 (P2, E[| det (H; )], E [ydet(Hl)\2]> (55)

Rmimo - Rin S 2 IOg <

and

]\/}lm {Rmimo — Rin} < 4 — 4log (E[| det(H1)|]) + €2, (56)
—

where

2= lim 26y (P2, E[| det(H, )], E [[det(Hl)\QD

i (1 CE[detE)] 0
- 21g<l (E{]dot (1) )2 >>0’ 57

which can be arbitrarily small asdecreases. In conclusion, Theorem 5 holds.

VI. CONCLUSION

In this paper, we studied a fadirgyuser 2-hop network with Z relays where channel coefficients vary over
time. In spite of recent achievements in this area, the besivk capacity characterization is to withiflog SNR)
bits/sec/Hz from the ergodic sum capacity, which can betraridy large as SNR increases. For a broad class
of channel distributions, we tightened this gap to withincastant number of bits/sec/Hz, independent of SNR.
The achievability follows from ergodic interference nalization in which the relays are partitioned into several
pairs and interference is neutralized separately by eathopaelays. The proposed scheme makes interference
neutralized in the finite SNR regime and, at the same timejntemded signal power increased quadratically with
L, leading that the optimal log(LSNR) rate scaling is achievable, which cannot be captured by téequs DoF
work.

APPENDIX |
QUANTIZATION FOR 1.1.D. UNIFORM PHASE FADING

For i.i.d. uniform phase fadingy; ;[t] and g; ;[t] respectively are represented @ (y0; ;[t]) andexp(yp;.i(t])
fori € {1,---,L} andj € {1,2}. Hence we can quantize the channel space of each hop basedgtEs.a
Specifically, the channel space of the first hop can be parét as follows. FolN € Z., first defineQ; :=
{ exp(50), exp(3F), exp()3F), - - - ,exp(g%)}w[“. Let &/ denote the set of alt ¢ C satisfying |z| = 1.
For a quantized channel matr® € Q;, define4;(Q) := {A € U*M*%| — & < Za;; — Zg;j < & forall i €
{1,---,2M} andj € {1,2}}, whereA = {a;;}, Q = {¢;;}, and Zz denotes the angle of € U, i.e.,z =
exp(y£x). Figure[B illustrates the channel space partitioning weéthpect toh; ; € U. In a similar manner, we can
defineQ, and.A5(Q) for the second hop. Then we can show that there exists arasiogesequence d¥, which
is a function ofn g, such that[{l7) is achievable as; increases using similar steps in the proof of Theofém 1.
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Fig. 8. Channel space partitioning with respect to the chhoaefficienth; ; € U for i.i.d. uniform phase fading.

APPENDIX I
CLOSED FORM OFE[| det(H1)|] FOR I.I.D. RAYLEIGH FADING

Let A be a2 x 2 matrix whose entries are i.i.d. circularly symmetric coexplGaussian random variables with
mean zero and unit variance aWdl := 2AAT. Let \; and Ay, A\; > )2, be the eigenvalues aV. Then the joint
probability density function of\; and \; is given by [34, Equation (3.11)]

1 1
f(A1, A2) = g &P <—§()\1 + Az)) (A1 = X2)%1 1y 50,501 (A1, Aa). (58)
Thus,
1
E[|det(HL)[) = 5 E [\/det(W)]
1
el
I 1
_ 5/ / Vg exp <—§(>\1 + A2)> (A1 = Ao)? dArd
o Jo
@1 / (u +v)(u — v) exp (—u) (20)* 2dvdu
— i </ v* vV u? — v? dv) exp (—u) du
0 0
1y
= Z/o e exp(—u)du
3T
= 59
3 (59)

where (a) follows by a change of varialte= (A; +2)/2 andv = (A; — A2)/2. In conclusion E[| det(H)|] = Z
for i.i.d. Rayleigh fading.

APPENDIXIII
APPROXIMATE ERGODIC CAPACITY FOR FADING INTERFERENCECHANNEL

A similar analysis used in Theorers 2 did 3 is applicableddmig interference channel. Specifically, consider
the K-user interference channel in which the input—output ie@tais given by

ylt] = H[t]x[t] + =[t] (60)
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and the elements oH[t] = {h;;[t]} are ii.d. drawn from a continuous distributiof(z), « € C, and vary
independently over time. The achievability follows frongedic interference alignment inl[3] showing that
1
R; = 3 Ellog(1 + 2|hyi|* P)] (61)

is achievable for ali € {1,--- , K} [3, Theorem 2]. Theorerml 6 characterizes an approximated&rgeer-user
capacity, i.e., ergodic sum capacity divided By assuming that all sources employ uniform power allocagiomss
time. For this case, the sum of any pair of achievable rateper bounded by

(Ihig* + |hig|*) P
: |hi 5|2
min {1, |hm|2}
forall i,j € {1,--- ,K}, i # j [3, Equation (99)]. From the lower bound {61) and the uppeuriob(62), we

characterize an approximate ergodic per-user capacityarfdllowing theorem.

Ri+R; <E|log |1+ (62)

Theorem 6:Consider the fadind(-user interference channel. L&Y, := ZZ 1 2 Ellog(1+2|h;, i|2P)] and Cyum
denote the sum capacity assuming that all sources empldgrompower allocation across time. Then

C(sum — Ria 1 3 1 |h1 1|2
L | — —E ]I : 63
K 2% <2>+2 H Og(!hm!Z (63)
for any P > 0.
Proof: Define
A(’hi7i‘27 ’hj,j‘2, ‘hi,j‘2)
hij* + |hii|2)P 1 1
= log 14-(‘ "+ 1hial) —log(1 + 2|h;;|*P) — = log(1 + 2|h; ;|*P). (64)
mind1 | 512 2 ’ 2 ’
> hyg?
Then, from [(61) and (62) and the fact that channel coeffisian¢ i.i.d.,
Csum — Ri 1
—sum _ Ha hial?, [hasol?, |h 65
i _2[(!11!\22\!12!)] (65)

The termA(|hy1[%, |hao2|?, |h12|?) can be expressed as
A(Jh1a]? [h2o]? [P12)

ha,o|? 1 1
=log <1 + max {1, | 2’2;2 } (‘h172’2 + ’hl,l‘z)P> 3 log(1 4+ 2’h1,1’2p) - = log(l + 2‘h272’2P)

|h
L 1—|—max{1 IZm' }(|h12|2+|h1 1% P L 1+maX{1 }Z” }(|h12|2+|h1 1*) P 66
3% 1+ 2/h1 1P o L+ 2/ PP - (09
The first term of [[(66) is upper bounded as
1 1 max {1, 220 (1 of? + [ )P
2% 1+ 2/hy1|PP
1 1+max{1, IZf’jz}]hLZ’?P—i—max{ }h }2\h11,2P
< ;log -
2 1—|—2|h171|2p

1 \h22\2} |h1 o { |hao|? })
< —log | max< 1, =—= : 4+ max 41, —

2 % < { |h12]? ) 2|k q[? |12

1 \h22\2 }) 1 ( ]h12]2 >

—log | max < 1, — + —log |1+ : . 67

2 % ( { |h1 2|2 2 % 2|h1 1|2 ©7)
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Similarly, the second term of (66) is upper bounded as

1—|—Inax{1 iZ”l }(|h12|2 |h1,1|2)P

-1
9 8 1+ 2|hg 2P

1 1+max{1 i 12l }2\h22]2P+max{ \h }’h11’2P
< ;log

2 1—|—2|h272|2p

1 \h12\2} { !h22!2} \h11\2>
—log [ max < 1, — 4+ max<{ 1, — :
2 % ( { |ha,2|? |hi2]? ] 2|hoof?
(@1 ( { |h12|2} { |h12|2} |ha1]? )
= —log [ max {1 + max < 1, — :
2 & |h2 2|2 |h2,2|2 2|hl,2|2
1 |h12|? }) 1 < |hia? )
= —log [ max <1, — + —log |1+ : , 68
2 g( { |ha,2]? 2 % 2|1 2/? (58)
where (a) follows sincea max{1,b/a} = bmax{1,a/b} for all a,b > 0. Therefore,

A(lhia %, hol?, hael)
g (el <o (1)
gt (e {1 ) b (1o
rqtoe (1 gt + g (14 )
51 g (1 + %) + % log (1 + %max { :Z::z, lZi;lz })
o (3) 5 o (i) |+ 206 G o {2 e )
v (3) + gl (5) 2 o ()|
Finally, combining [(6b) and_(69) shows the gap[inl(63), whicimpletes the proof. [ |

For i.i.d. Rayleigh fading channellz; ;|* has the exponential distribution and

1
(z+ 1)

‘h11‘2 /OO |log:n|
E | |1 d = —— L dx =2
H Og<|hl,2|2 o @+

and the gap in Theorel 6 is given §$og6 bits/sec/Hz (approximately.3 bits/sec/Hz).

Sihaa2 /i o2 () = (70)

for £ > 0. Therefore,
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