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ABSTRACT 

My Doctoral thesis is dedicated to the structural and functional characterization of contractile 

injection systems, a recently defined class of multicomponent biological assemblies that is based 

on common ancestry of its members: bacteriophages with contractile tails, R-type pyocins, type 

VI secretion system (T6SS), Photorhabdus virulence cassette and the Serratia entomophila 

antifeeding prophage. The accumulating body of evidence suggests that the structure of the main 

components of all contractile tail-like systems is conserved, thus resulting in a similar 

morphology and mechanism of action. The aim of this work was to characterize features 

common to all the class members by means of modern bioinformatic tools and to determine the 

structure of the key proteins/protein complexes for some contractile systems. 

This structural information can be of a great importance for theoretic applications: to prove 

bioinformatic findings and to use the resolved structures as models to characterize other 

members of the class. On the other hand, structural findings about the membrane-puncturing 

needles and the tail fibers employed by all contractile systems and extensively studied in this 

work, are crucial for understanding of such fundamental biological processes as virus attachment 

to the host cell, cell envelope penetration, and translocation of large protein complexes across 

lipid membranes. This knowledge is key to the development of new methods for antibacterial 

therapy that is required for the treatment of diseases caused by antibiotic resistant bacteria.  

R-type pyocins that are used by Pseudomonas aeruginosa in intra-species competition were of 

great interest in this research work for two reasons: 1) their potential medical application for 

antibacterial treatment; 2) being the simplest members of the contractile ejection system family 

they perfectly match the role of a model system. R2 pyocin structure was characterized by means 

of CryoEM and X-ray crystallography. A CryoEM reconstruction of the pyocin baseplate and a 

tail fragment was calculated. The structures of the R2 and R1 pyocin receptor binding fibers 

(which are disordered in CryoEM reconstructions) were determined by X-ray crystallography 

thus completing structural characterization of the host-binding part of the pyocin particle. 

The structure of the T4 cell-puncturing device fragment was characterized in great detail, 

revealing interesting and previously unknown features such as, for example, the presence of fatty 

acid molecules inside the beta-helical domain of gp5. The identity of the mysterious cell-

puncturing device capping protein, whose existence was predicted more than 10 years ago, was 

determined, and its crystal structure has been solved.  
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The knowledge obtained from studying phage and pyocin structure and function was applied to 

the type VI secretion system leading to the discovery and characterization of the exceptional role 

of PAAR-repeat proteins which function to sharpen and diversify the central spike of the T6SS 

organelle. These findings allowed to propose new, improved model of T6SS machinery and shed 

light on previously unknown mechanisms of the T6SS effectors’ translocation the into the prey 

cells. 

 

Keywords: type VI secretion system, T6SS, R-type pyocin, bacteriophage, T4, cell-puncturing 

device, contractile injection systems, CryoEM, X-ray crystallography. 
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RESUME 

Mon travail de thèse de doctorat a été dédié à la caractérisation structurale et fonctionnelle des 

systèmes d'injection contractiles, une classe récemment définie, basée sur l'ascendance commune 

de ses membres: les bactériophages à queue contractiles, pyocins de type R, le système de 

sécrétion de type VI (SST6), cassette de virulence de Photorhabdus et le Serratia entomophila 

antifeeding prophage. La structure des composantes principales de tous les systèmes avec une 

queue contractile est conservée, ce qui se traduit par une morphologie et un mécanisme d'action 

similaire. Il était important de caractériser tous les traits communs pour tous les membres de ce 

groupe, employant des outils bioinformatiques modernes ainsi que de déterminer la structure des 

composantes clés pour certains des membres. 

Cette information structurale peut avoir une grande importance du côté théorique : pour prouver 

les résultats bioinformatiques et pour utiliser les structures déterminées en tant que modèles pour 

caractériser d'autres membres de la classe. D'autre part, les découvertes concernant la structure 

des aiguilles de perforation de la membrane et des fibres de queue, présentées dans cette thèse, 

sont cruciales pour la compréhension du processus vital et hautement complexe de l’infection de 

bactéries par des bactériophage. Il en est de même pour l'attachement à la cellule hôte et la 

pénétration de l'enveloppe cellulaire. Cette information est la clé pour le développement des 

nouvelles méthodes de thérapie antibactérienne comme le traitement par thérapie bactériophage 

des maladies causées par des bactéries résistantes aux antibiotiques lesquelles sont actuellement 

en émergence. En outre, cette connaissance peut être étendue sur la relation bactérie-pyocin qui 

permet de développer les pyocins comme une nouvelle approche dans la conception de 

médicaments antibactériens. 

Les pyocins de type R ont été d’un grand intérêt pendant cette recherche, non seulement pour 

leur application médicale potentielle pour le traitement antibactérien, mais aussi parce qu'ils sont 

les membres les plus simples de la classe et répondent parfaitement au rôle du système de 

modélisation. La structure de la pyocin R2 a été caractérisée par des moyens de microscopie 

électronique et cristallographie aux rayons X. Une reconstruction CryoEM de la semelle de 

pyocin et un fragment de la queue ont été calculé. Les structures des fibres de pyocin R1 et R2 

(qui sont mal définis dans la carte CryoEM) ont été déterminées par cristallographie aux rayons 

X et caractérisées. 

La structure du fragment du dispositif cellulaire de ponction du bactériophage T4 a été 

caractérisée en détail, révélant des caractéristiques intéressantes jusqu'alors inconnues. La 
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structure et l'identité de la protéine qui couvre le dispositif cellulaire de perforation du 

bactériophage T4, dont l'existence a été prédite il y a plus de 10 ans mais identifiée seulement 

maintenant, a finalement été dévoilée. 

Les connaissances accumulées dans le domaine du phage T4 ont été utilisé pour comprendre le 

système de sécrétion de type VI et ces notions ont conduits à la découverte et à la caractérisation 

du rôle exceptionnel des protéines PAAR dans le  SST6 qui aiguisent et diversifient sa pointe. 

Ces découvertes permettent de proposer maintenant un modèle amélioré de la machinerie du 

SST6 et éclaire d’un jour nouveau les mécanismes jusqu’ici inconnus de la translocation 

d'effecteurs de SST6 dans les cellules scibles. 

 

Mots-clés: système de sécrétion de type VI, SST6, pyocin de type R, bactériophage, dispositif 

cellulaire de ponction, T4, systèmes d'injection contractiles, CryoEM, cristallographie aux 

rayons X. 
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 1 

1 INTRODUCTION. OVERVIEW OF CONTRACTILE INJECTION 

SYSTEMS 

R-type pyocins, bacteriophages with contractile tails, type VI secretion system (T6SS) of Gram-

negative bacteria, the Photorhabdus virulence cassette and the Serratia entomophila antifeeding 

prophage belong to the recently defined class of contractile injection systems based on common 

ancestry (Bönemann, Pietrosiuk and Mogk 2010), (Leiman and Shneider, Contractile tail 

machines of bacteriophages 2012), (Pukatzki, et al. 2007) (Figure 1.1). 

 
Figure 1.1 Organization of the contractile injection systems class. 
Key members of the contractile injection systems class with identification of their targets and main components. The 
figure adapted from (Bönemann, Pietrosiuk and Mogk 2010). 

A contractile injection system contains (at a minimum) a baseplate, a tail tube, an external 

contractile sheath and a central tail spike. 

The baseplate contains proteins responsible for host cell recognition and attachment. During 

phage/pyocin attachment to the host cell baseplate changes its conformation (Kostyuchenko, et 

al. 2003), which triggers contraction of the sheath resulting in disruption of the cell envelope by 

the central spike protein and insertion of the tail tube into the prey cell. Similarities between 

phages with contractile tails and pyocins will be discussed in detail in chapter 2 of this thesis. 

Analysis done in (Leiman, Basler, et al. 2009) revealed structural and functional similarity of the 

Hcp (the hemolysin-coregulated-protein) protein from T6SS to the bacteriophage T4 gp19 tail 
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tube protein. Bioinformatic analysis showed homology between the T6SS VgrG (valine-glycine 

repeat protein G) proteins and T4 gp5-gp27 protein complex, also known as T4 cell-puncturing 

device (Pukatzki, et al. 2007). One of the smallest T6SS proteins E.coli c3402 was found to be 

homologous to gp25 in T4 – one of the most conserved proteins in all phages with contractile 

tails. These bioinformatic findings were further confirmed by Pseudomonas aeruginosa VgrG – 

T4 gp5-gp27 and Pseudomonas aeruginosa Hcp1 – T4 gp19 structure comparison (Leiman Lab, 

unpublished data), (Leiman, Basler, et al. 2009). 

Based on all these findings and on extensive bioinformatic analysis (Leiman and Shneider, 

Contractile tail machines of bacteriophages 2012) proposed the model of the structure of the 

simplest contractile tail (Figure 1.2). The model represents a minimal set of the proteins, 

required to construct a contractile injection system that functions as a bacteriophage tail. 

 
Figure 1.2 Structure of the simplest contractile tail. 
The proteins are labeled with the names of their T4 phage orthologs and colored in distinctive colors. Figure adapted 
from (Leiman and Shneider, Contractile tail machines of bacteriophages 2012). 

According to Leiman and Shneider (Leiman and Shneider, Contractile tail machines of 

bacteriophages 2012) a minimal baseplate is composed of gp6, gp25, and gp53. Proteins that 

attach the baseplate to the host cell (also called receptor binding proteins, RPB) emanate from 

the baseplate. A contractile ejection system also contains a set of proteins that required for the 
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assembly of its middle part: tail tube initiator, tape measure protein, tail terminator complex, tail 

tube and the sheath. 

The findings summarized above show that the structure of main components of all contractile 

tail-like systems is conserved, resulting in a conserved morphology and a common mechanism of 

action. Moreover, Leiman and Shneider (Leiman and Shneider, Contractile tail machines of 

bacteriophages 2012) came to the conclusion that the presence of just two proteins – orthologs of 

T4 gp25 and gp27 – in a phage-like cluster of genes is a required and sufficient condition to 

define this cluster as a contractile tail relative. 
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2 STRUCTURAL STUDIES OF R-TYPE PYOCINS 

2.1 Introduction and objectives 

At least 500 million acute infections per year require antibiotic therapy. Under this selective 

pressure, genes responsible for antibiotic resistance are spreading through all types of common 

bacterial pathogens at an ever increasing rate. Recent CDC and WHO reports show that more 

than 60% of Staphylococcus aureus that cause infections are methicillin resistant (MRSA), more 

than 30% of Enterococci are vancomycin resistant (VRE), and more than 30% of Pseudomonas 

aeruginosa are fluoroquinolone resistant (FQRP). The current high rate of antibiotic resistance 

acquisition by bacterial pathogens makes development of new antibiotics financially infeasible 

for private companies. Instead, several natural agents that can lyse bacteria are being 

investigated as antimicrobials. Many of them are derived from bacterial viruses (bacteriophages). 

In particular, endolysins (phage lytic enzymes) are extremely effective against a broad range of 

Gram-positive bacteria (e.g. S. pneumoniae) (Fischetti 2006), (Hermoso, Garcia and Garcia 

2007), whereas phages and their virion components are being tested as antimicrobials against 

Gram-negatives (Watanabe, et al. 2007), (Scholl and Martin 2008), (Williams, et al. 2008) and 

(Scholl, Cooley, et al. 2009). 

Many aspects of bacteriophage-bacteria-eukaryotic organism interactions have to be addressed 

before phage becomes a reliable therapeutic tool. Many phages carry toxin genes (Herold, Karch 

and Schmidt 2004), (Hayashi, Baba, et al. 1990) and, due to the diversity of phage genomes, 

about 50% of genes in well-studied phages have unknown functions and potentially can be toxic 

(Miller, et al. 2003). Therefore DNA-free phage components such as tails and enzymes involved 

in host cell recognition and attachment (RBPs) represent good candidates as new antimicrobials. 

It is essential to understand the function and structure of these components at the atomic level of 

detail, similar to the level of knowledge attained today for small molecule antibiotics. 

One of the promising DNA-free bactericidal agents is the pyocin, a natural killer of the important 

human pathogen Pseudomonas aeruginosa. The pyocin DNA resides silently in the bacterial 

genome until it is activated with a UV or mitomycin C treatment (Nakayama, et al. 2000). 

Assembled particles of R- and F-type pyocins consist of about 10 different protein species in 

multiple copies and resemble contractile and non-contractile phage tails, respectively. A pyocin-

lysogenized bacterium can produce up to 200 pyocin particles that leave the host by causing its 

lysis. Each of the newly released particles can bind to a bacterium and form a pore in its 

envelope causing depolarization of the cytoplasmic membrane and resulting in host death. 
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Like phages, pyocins are very potent bacteriocins and one pyocin particle is enough to kill a 

bacterial cell. However, pyocins have a very narrow host spectrum, which is limited to several P. 

aeruginosa species or even strains. Therefore, tools for manipulating the pyocin’s killing 

spectrum are required in order to make it into a tunable antibacterial tool. This is impossible to 

achieve without detailed bioinformatic and functional characterization of the pyocin particle, and 

phage is instrument in this analysis. 

The relationships between bacteriocins and phages have been considered since 1952 (Jacob and 

Wollman 1952, Kabsch 2010). The physiological similarities, such as the mutagenic agents 

induction, bactericidal action and the necessity for a receptor were observed. But, at the same 

time it was noticed that the pyocins do not replicate themselves in the sensitive cells. Later, the 

electron microscopy investigations showed that that R-type pyocins resemble the contractile tail 

of bacteriophages (Ishii, Nishi and Egami 1965) whereas the F-type pyocins are similar to the 

non-contractile bacteriophage tails (Takeya, et al. 1967). 

These observations were taken as a starting point in the search for possible phage ancestors of 

these pyocins. It was found that some phages are neutralized by antipyocin sera: phages PS3 (Ito 

and Makoto 1970), PS17 (Kageyama, et al. 1980), UCTX (Hayashi, Matsumoto, et al. 1994) are 

neutralized by anti-R sera, and phage KF1 by anti-F sera (Kuroda, Kagiyama and Kageyama 

1983), (Nakayama, et al. 2000). Also were found sequence homologies between pyocins and 

phages. 

The analysis of the DNA sequence of R2/F2 pyocins gene cluster of the PAO1 strain of 

Pseudomonas aeruginosa (the region between trpE and trpGCD genes) containing R2 (16 

ORFs) and F2 (16 ORFs) genes with those of phages P2 and λ, respectively was reported (Figure 

2.1). Among the 16 ORFs from the R2 pyocin-specific region, 12 ORFs show significant 

similarities with the tail genes of P2 phage. And 8 ORFs of the F2 pyocin region show 

similarities with the tail genes of λ phage, moreover, the order of these genes was conserved. 

These observations demonstrate that R2-type pyocins are relatives of the P2 phage and F2-type 

of λ phage. The G + C content of the sequences of R- and F-types pyocin genes are very similar 

to that of the P. aeruginosa chromosome (66.6%). However some ORFs corresponding to the tail 

fibers are AT rich, which could mean that they may come from other genomes. This observation 

suggests that R- and F-type pyocins became evolutionarily specialized as bacteriocins, rather 

than being simple remnants of phages (Nakayama, et al. 2000). 
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Figure 2.1 Comparison of genetic organization between the R2/F2 pyocin gene locus and 
the P2 and λ phage genomes. 
Figure adapted from (Nakayama, et al. 2000). 

Host specificity of phages (and, therefore, the pyocins) is determined by the tail fibers and/or 

tailspikes, which appear to have a set of conserved, N-terminal, tail-binding domains and a rather 

wide pool of C-terminal, host cell receptor-binding domains. Phages expand their host range by 

exchanging these modules, although these events are rare because they result from non-

homologous recombination. Therefore, non-homologous recombination can be exploited in 

designing new pyocin fibers provided the structure or at least the borders of the N- and C-

terminal domains of the fiber are known precisely. It should be possible to engineer tail fibers 

and tailspikes with any desired host specificity that can be used to complement fiberless pyocins. 

This can be achieved by fusing the N-terminal domain of the pyocin fiber with the C-terminal 

receptor-binding domain of the fiber from the phage with the desired host specificity. 

Pioneering practical reports of these ideas were presented relatively recently by (Williams, et al. 

2008), (Scholl, Cooley, et al. 2009). In the first work, using the above described techniques of 

fusing the C terminal part of the P2 tail fiber to the N terminus of R2 pyocin tail fiber (gene 

PA0620 or prf15), they have changed the spectrum of R2 pyocin to kill Escherichia coli strain C 

and several uropathogenic E. coli (UPEC) strains, which are targeted by P2. By a similar 

approach they have created pyocins that kill Yersinia pestis.  
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It is now clear that phage fibers require a chaperone ‘module’, which is encoded at or near the C 

terminus of the fiber. The module might be part of the fiber and form its C-terminal domain, or 

can comprise a separate gene product, which is located next to the 3’ end of the fiber gene in the 

genome. Scholl et al. found that pyocin and phage tail fibers often require the cognate chaperone 

for proper folding, i. e. the folding chaperone has some specificity towards its folding partner. 

Scholl et al. also found that for some fusion constructs, the cognate chaperone alone was not 

sufficient for fiber attachment to the particle, and the original pyocin fiber chaperone gp16 

(PA0621) is also required (unpublished data). These results show an importance of the inclusion 

of the pyocin and/or phage tail fiber/spike chaperone into the expression construction. 

Another important fact about the fusion of the N-terminal tail-binding domains with the C-

terminal host cell receptor-binding domains is that the initial attempt of replacing the R2 tail 

fiber with the P2 tail fiber done by Scholl and co-authors was unsuccessful. This construct did 

not result in a functional pyocin particle even when the P2 chaperone gene was coexpressed. The 

problem was in the impossibility to predict any particular junction that might be suitable for 

forming properly folded chimeric tail fibers using secondary or tertiary structural analysis 

programs. However, the solution was found by fusing a large number of different N-terminal 

parts of R2 prf15 to different portions of gene H encoding the C-terminal part of the P2 tail fiber. 

The analysis of a large series of fusions between R2 prf15 and gene H of P2 led to the 

identification of a tentative ‘universal’ acceptor site on the prf15 gene, located near residue 140.  

In the second work (Scholl, Cooley, et al. 2009), the authors focused on changing of the pyocin 

specificity by using the tail spike of phage φV10, which belongs to the Podoviridae family and 

infects the pathogenic E. coli strain O157. The reason behind this was to expand the range of 

target bacteria, particularly to strains that produce thick surface polysaccharide structures, such 

as, for example, E. coli O157. The AVR2-V10 chimeric pyocin was created, which retains the 

catalytic O-antigen-degrading activity of the donor phage tail spike, a peculiarity not known in 

any natural phage tail-like bacteriocin. The chimeric fiber was created using the fusion sites 

close to that found in the previous work. Different C-terminal portions of the φV10 tail spike 

were tried, and it was noted that not all N-terminal domains, which worked well before, resulted 

functional particles.  

Fusions that gave active pyocin particles were tested on bacterial lipopolysaccharides (LPS). 

Incubation of LPS with AVR2-V10 resulted in the degradation of LPS. Another important fact 

was discovered during this work. The Shiga toxin production, which is often induced by the 

antibacterial antibiotic treatment, was not increased during the pyocin treatment at any 



 8 

concentration of the AVR2-V10 particles, suggesting that pyocins might have therapeutic 

applications in the future. A schematic showing different steps in the engineering and retargeting 

procedure of the pyocins is shown in Figure 2.2. 

 
Figure 2.2 Schematic representation of the pyocin structural studies plan, leading to 
engineering of the pyocins with desired host specificity. 
AVR2-P2 and AVR2-V10 successfully created chimeric pyocin particles, active in a killing way (Scholl, Cooley, et 
al. 2009). 

One of the most important observations characterizing all pyocins carrying foreign fibers is that 

these chimeras are unstable and lose their killing capacity upon storage much faster than the wild 

type pyocin. Thus, the trial-and-error methods for creating new fibers that is derived from 

bioinformatic studies is a good proof-of-the-concept technique, but its applicability is limited 

when a technologically and medically relevant product is required. 

One of the main goals of this thesis was to obtain structural data about the overall organization 

of the pyocin particle and detailed information on the structure of the pyocin fiber that could 

facilitate design of stable chimeras. The overall structure of the pyocin was studied by cryo-

electron microscopy. The atomic structure of the receptor-binding part of the fiber was 

determined by X-ray crystallography. 
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2.2 CryoEM reconstruction of the R2 pyocin 

Pyocin sample for data collection was prepared by Dr. Dean Scholl (Avidbiotics Corp., S. San 

Francisco, USA), data collection and micrographs scanning were done in the laboratory of Prof. 

Hong Zhou (UCLA). My task was to process raw micrograph data, box the particles and to 

calculate a 3D model. 

2.2.1 Materials and methods 

The micrographs of R2 pyocins were recorded at the Electron Imaging Center for NanoMachines 

(EICN) directed by Prof. Hong Zhou on a Titan Krios 300 kV FEG transmission electron 

microscope (TEM). Data was acquired with following parameters: aberration 2.86, 

magnification x59000, pixel size 2.14 Å/pix. Scanned digitized micrographs were binned 2x2 

resulting into 4.28 Å/pix pixel size to reduce the impact of read noise on the signal to noise ratio 

(SNR). For binned micrographs contrast transfer function (CTF) parameters were found using 

CTFFIND (Mindell and Grigorieff 2003). Binned micrographs were Wiener filtered for noise 

suppression and better visibility of the pyocin particles with simultaneous application of earlier 

found CTF parameters. This step together with binning was crucial as CryoEM images are 

known for producing low specimen contrast (Figure 2.3). Particle picking was done manually 

due to the very low contrast produced by pyocin particles. BOXER from Eman program package 

with 192 voxel size was used (Ludtke, Baldwin and Chiu 1999). The data was further processed 

with the SPIDER software package (Frank, et al. 1996). A total of 2017 particles were selected 

for reconstruction. A geometric object consisting of solid cylinders was used as the initial model 

(Figure 2.4 a)). The structure resulted after the first reconstruction round (Figure 2.4 b)) was 

used for reference projection creation followed by particle class averaging. Additional noise 

reduction was applied at the latest reconstruction rounds. The final contrast transfer function 

corrected reconstruction has a resolution of 28 Å, based on the Fourier Shell Correlation (FSC) 

with a cutoff value of 0.5. Alternatively used FSC cutoff of 0.143 gave the resolution of 23 Å 

(Figure 2.5). FSC was calculated by Sergey Nazarov after 60 iterations in FREALIGN 

(Grigorieff 2007). 
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Figure 2.3 Fragment of the pyocin microphotograph binned 2x2 and Wiener filtered. 
a) original “working” micrograph fragment; b) fragment a) modified in graphic editor. Red boxes show the 
reconstructed part of the particle. 

  
Figure 2.4 R2 pyocin initial model a) and the model after the first refinement cycle b). 
 

 
Figure 2.5 Resolution versus FSC plot for R2 pyocin reconstruction.  
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2.2.2 Results and discussion 

A single particle 3D CryoEM reconstruction of R2 pyocin in the extended conformation at 28 Å 

resolution (FSC cutoff 0.5) was calculated (Figure 2.6). 

 
 

 

  
Figure 2.6 Projections of 3D reconstructed R2 pyocin particle. 
a) particle side view; b) end-on view (bacteria binding end); c) tilted side view exposing membrane piercing spike; 
d) cut-away side view. The map is colored in a red-white-blue pattern starting from the center (red) to the periphery 
(blue).  
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Resolution of the current R2 pyocin reconstruction allows characterizing main features of the 

particle. The R2 pyocin baseplate is much simpler than T4 baseplate (Kostyuchenko, et al. 

2003). The baseplate contains six tail fibers of a single type (PAO620). Only the N-terminal part 

of the fiber (about ¼ of the total length) can be seen in the final reconstruction. The C-terminal 

receptor-binding part is disordered because it is likely to have different orientations in different 

particles (Figure 2.6, colored in blue, Figure 2.7, segment colored in green). The X-ray structure 

of the C-terminal fragment of PA0620 covers this lack complementing the CryoEM model 

Figure 2.7 (the structure of PA0620 will be described in great details in 2.2). 

The central part of the baseplate in T4 phage particle is composed of 3 proteins in multiple 

copies: (gp25)6-(gp6)12-(gp53)6 (starting from the particle center and going to the periphery). 

Comparison of the T4 and R2 baseplate structures along with bioinformatic analysis suggests 

that the R2 baseplate is composed of the following proteins (PA0617)6-(PA018)12-(PA0619)6 

(Figure 2.7, colored in magenta). The pyocin proteins are smaller then their T4 orthologs (108 

residues in PA0617 against 132 in gp25; 295 residues in PA0618 against 660 in gp6; 177 

residues in PA0619 against 196 in gp53). Unfortunately, the resolution of the reconstruction is 

not high enough to precisely determine and segment separate proteins from the assembly. 

PA0616 forms the central membrane-puncturing needle of the pyocin (colored in coral red in 

(Figure 2.6, Figure 2.7). Its N-terminal OB-fold domain is plugged into a donut-shaped trimer of 

PA0628 (Figure 2.7, in blue). The pointy C-terminal domain of PA0616 is protruding from the 

plane of the baseplate outwards. PA0628 connects the 3-fold symmetrical cell-puncturing device 

with the 6-fold symmetrical baseplate. The PA0628-PA0616 complex is analogous to the T4 

cell-puncturing device composed of gp27-gp5-gp5.4.  

PA0622 (386 residues) is an ortholog of gp18 (659 residues) from T4 that forms the contractile 

sheath around the tail tube gp19. Individual subunits of the sheath (PA0622) can be 

distinguished in the pyocin reconstruction (Figure 2.6, Figure 2.7). T4 gp19 is orthologous to 

PA0623, which comprises the central tube that represents an empty channel and could be 

observed in the cut-away views of Figure 2.6 d) and Figure 2.7, colored in pale red and gray, 

respectively. 

PA0626 (329 amino acids) is the tail tube initiator protein (Figure 2.7, colored in gold). It is 

situated between PA0628 and PAO623. Its T4 ortholog is gp54 (Kostyuchenko, et al. 2003) 

(Leiman and Shneider, Contractile tail machines of bacteriophages 2012). 
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Figure 2.7 Segmentation and main components assignment on the 3D reconstruction of the 
R2 pyocin particle (side view and cut-away side view). 
Different proteins/protein assemblies are colored in distinct colors and labeled. Known pyocin structures or their T4 
orthologs are shown as ribbon diagrams and assigned to their corresponding densities. The first label (PA0XXX, 
where XXX is a number) stands for gene number from the P. aeruginosa PAO1 genome (that contains R2 pyocin 
gene cluster). The label in parentheses (gpXX, where XX is a number) represents gene number for T4 orthologs. 
Labels in bold indicate that the structure is available. (Aksyuk, Leiman and Shneider, et al. 2009), (Aksyuk, Leiman 
and Kurochkina, et al. 2009), (Kanamaru, et al. 2002), Leiman lab, unpublished data. 
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2.3 Crystallographic studies of the R1 and R2 receptor binding fibers 

2.3.1 Introduction 

Biochemical work with tail fibers whose function is to anchor a pyocin particle to the cell 

surface is not a trivial task. These proteins have evolved to be sticky: their N terminus is attached 

to the pyocin baseplate whereas their C terminus binds to a receptor on the host cell surface. 

These properties predispose pyocin fibers to non-specific aggregation. Nevertheless, we set an 

ambitious goal to determine the structure of the fiber by X-ray crystallography, which required 

producing a large amount of pure protein.  

Experiments performed by Dean Scholl and colleagues (Williams, et al. 2008) were extremely 

useful in understanding the domain organization and functional requirements of the pyocin fiber. 

Scholl and colleagues (Williams, et al. 2008) noticed that phage P2 and pyocin fibers (gpH and 

PA0620, respectively) have 21% sequence identity overall and more than 40% in the N-terminal 

region (Figure 2.8). They proceeded to fusing several N-terminal fragments of the pyocin fiber to 

C-terminal fragments of the P2 fiber that had different lengths. Fiberless pyocin particles were 

complemented with these chimeric fibers and their killing activity was tested on E. Coli C, 

which is infected by P2, but completely resistant to the pyocin (Figure 2.9). Two fusion regions 

resulted in active pyocin particles (Figure 2.9). We used this information to create a series of 

deletion mutants of the pyocin fiber having different lengths. 

Similar to the P2 fiber, the pyocin fiber requires a chaperone for assembly (Williams, et al. 

2008). The chaperone gene for both fibers (gene H in P2 and gene PA0621 in the pyocin) is 

situated immediately downstream from the fiber gene (Figure 2.10) (Köhler, Donner and van 

Delden 2010).  

There are 5 types of pyocins (R1 through R5) each of which has a narrow spectrum limited to the 

strains of P. aeruginosa strains that have similar surface LPS (Figure 2.11). The five types of the 

pyocins are virtually identical even down to the DNA level. The only significant difference in 

these pyocins is the fiber and its chaperone, which is clearly related to their different hosts. The 

fiber sequences can be divided into two clades with the first one containing the R1 and R5 fibers 

and the second – R2, R3 and R4. The clades are nevertheless close to each other and, for 

example, the R1 and R2 sequences show 85.9% sequence identity and 92.8% similarity. 

Therefore, the domain organization of the R1 fiber is similar to that of the R2 fiber.  
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Figure 2.8 Sequence alignment of the P2 tail fiber (gpH) with the R2-type pyocin fiber 
(PA0620). 
Colors and symbols definition according to ClustalW version 2 (ClustalW2) (Goujon, et al. 2010). Fragments 
yielding bactericidal particles are mapped on the alignment. Numbers on top correspond to P2 gpH, bottom numbers 
correspond to R2 pyocin PA0620. 
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Figure 2.9 Killing activity of various fusions of the R2 pyocin fiber to the P2 phage tail. 
The boxes highlight the fragments that lead to bactericidal activity. The figure was adapted from (Williams, et al. 
2008). 

 

 

 
Figure 2.10 Amino acid sequence identity of selected proteins comprising R-pyocins 
encoded by PAO1 (type R2) and LESB58 (type R1). 
Genes corresponding to the pyocin tail fiber and its chaperone are in bold. Figure was adapted from (Köhler, Donner 
and van Delden 2010). 
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Figure 2.11 LPS structure of P. aeruginosa PAO1 (serotype O5). 
Specificity of different pyocins from R family to LPS constituting monosaccharides is shown. Figure adapted from 
(Köhler, Donner and van Delden 2010) 
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2.3.2 Materials and methods 

2.3.2.1 Construct engineering and cloning 

All constructs used in this study were designed and created by Dr. Mikhail Shneider.  

We first expressed the full length PA0620 fiber and two of its deletion mutants called d1 and d2 

in the presence of its chaperone PA0621. The size of the mutants was chosen to correspond to 

the length of the P2 fiber fragments that could be fused with the pyocin fiber successfully 

(Figure 2.9). The PA0620d1 mutant contained residues 173 – 691, and PA0620d2 – residues 124 

– 691. Note that both mutants had intact C-terminus. 

The PA0620d2 mutant was insoluble. The full-length protein was soluble but showed a tendency 

to aggregation and therefore was unsuitable for a large-scale purification. The PA0620d1 mutant 

was soluble and behaved well enough to be eventually subjected to crystallization, although the 

crystals diffracted poorly (see below). We treated the full-length protein with trypsin and 

analyzed the resulting products by mass spectrometry. A fragment containing residues 322 – 691 

was identified and mapped onto the trypsin cleavage map calculated by PeptideCutter (Artimo, 

et al. 2012). We called this deletion mutant PA0620d3. It was successfully crystallized and its 

structure determined. We used a fragment of similar size (residues 323-701) to determine the 

structure of the R1-type fiber (UNP: B7V4K6, strain LESB58, gene PLES_06171). 

2.3.2.2 Protein expression and purification 

2.3.2.2.1 R2 pyocin fiber full length protein, d1 and d2 deletion mutants 

The full length PA00620 protein, PA0620d1 and PA0620d2 deletion mutants were cloned into 

pESL plasmid (kanamycin selection). The vector was designed to express fusion constructs 

containing an N-terminal His-tag, a SlyD protein (FKBP-type peptidyl-prolyl cis-trans isomerase 

and folding chaperone), a linker, a TEV cleavage site and the fragment of interest. PA0621 was 

expressed in pACUC plasmid (chloramphenicol selection). Both plasmids were transformed into 

B834 (DE3) strain of E. coli competent cells. The transformed cells were grown at 37 °C in the 

LB medium, complemented with kanamycin and chloramphenicol at the concentration of 100 

and 34 μg/ml, respectively, until the optical density reached the value of 0.6 at 600 nm. The 

medium was cooled on ice to the temperature of 18-20 °C followed by expression induction by 

addition of IPTG to a final concentration of 1 mM. After further incubation at 18 °C overnight 

(approximately 16 hours), the cells were harvested by centrifugation at 5180 g, 4 °C. The cell 

pellet was resuspended in 1/50th of the original cell volume in a 20 mM Tris-HCl pH 8.0 buffer 
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complemented with 300 mM NaCl, 5 mM imidazole (Im) and 0.02% NaN3. The cells were lysed 

by sonication. The cell debris was removed by centrifugation at 35000 g for 15 minutes at 4 °C. 

Cells, pellet and supernatant were analyzed with the SDS-PAGE. Analysis revealed that full 

length protein expressed insoluble; deletion mutant d2 showed problems with folding and 

aggregated shortly. Further procedure was continued with d1 mutant. The supernatant was 

loaded onto the Ni2+-precharged 5 ml GE HisTrap FF Crude column (GE Healthcare Life 

Sciences) that was equilibrated with 20 mM Tris-HCl pH 8.0, 300 mM NaCl. Protein was eluted 

in two steps: 1) with buffer containing 20 mM Tris-HCl pH 8.0, 300 mM NaCl, 50mM Im – to 

remove nonspecific bounded proteins and 2) with 20 mM Tris-HCl pH 8.0, 300 mM NaCl, 250 

mM Im buffer – actual protein elution. SDS-PAGE analysis of the eluted fractions and the flow 

through showed poor binding of the fusion construct to the metal affinity column. Nevertheless, 

most of the protein came out in the flow through, thus the purification till certain degree was 

achieved due to the non-specific binding of expression side products to the column resin. 

Purification was continued with the flow through material. It was set up for overnight His-tag 

and SlyD digestion with TEV protease against 10 mM Tris-HCl pH 8.0, complemented with 3 

mM DTT, 1.5 mM EDTA. After His-tag and SlyD were removed part of the target protein 

aggregated. Digested protein was further purified with ion-exchange chromatography (GE 

MonoQ 10/100 GL column connected to an AKTApurifier 100 system) in 20 mM Tris-HCl pH 

8.0 buffer using 0 to 1 M NaCl linear gradient. Relevant fractions were further purified by size 

exclusion chromatography using a GE HiLoad 16/60 Superdex 200 PG (GE Healthcare Life 

Sciences) column connected to the AKTApurifier 100 system (GE Healthcare Life Sciences). A 

10 mM Tris-HCl pH 8.0, 200 mM NaCl buffer was used. 

2.3.2.2.2 Native and SeMet derivative of R2 pyocin PA0620d3 deletion mutant 

The PA0620d3 deletion mutant was cloned together with PA0621 (downstream of PA0620d3) 

into pTSL plasmid (ampicillin selection). The expression construct had same composition as 

pESL described in 2.2.2.2.1. The same purification protocol was used as for PA0620d1 mutant. 

The only difference was the type of growth medium used (2xTY for the native protein and 

SelenoMet Medium (Molecular Dimensions) for the SeMet derivative). The growth medium 

contained ampicillin at a concentration 200 μg/ml and chloramphenicol at 34 μg/ml. 

2.3.2.2.3 R1 pyocin fiber fragment 

The fragment of the R1 pyocin fiber (residues 323-701) was expressed and purified following 

the same procedure as for PA0620d3. 
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2.3.2.3 Crystallization, data collection and structure determination 

2.3.2.3.1 R2 pyocin fiber 

PA0620d1 and d3 were brought to concentrations of 9 and 11 mg/ml, respectively. The initial 

crystallization screening was carried out by the sitting drop method in 96 well SWISSCI 2-lens 

MRC plates using Jena Bioscience crystallization screens. Optimization of crystallization 

conditions was performed in 24 well-plates (Jena Bioscience) by hanging drop vapor diffusion. 

Crystallization drops of the 24-well plate setup contained 1.5 μl of the protein solution in 10 mM 

TrisCl pH 8.0, 150 mM NaCl (200 mM for PA0620d1) mixed with an equal volume of the well 

solution. Best crystals of the PA0620d1 were obtained with the protein having the initial 

concentration of 5 mg/ml and equilibrated against 750 μl of the well solution containing 8-9% 

PEG 4000, 100 mM Hepes pH 7.0, 200-300 mM KH2PO4 at +18◦C. Best PA0620d3 crystals 

were obtained with the protein at 7 mg/ml and equilibrated against 750μl of the well solution 

containing 3-5% PEG 6000, 100 mM Tris·HCl pH 8.5, 160-210 mM KCl at +18◦C Figure 2.12. 

 
a) 

 
b) 

Figure 2.12 Crystals of the PA0620d1 a) and PA0620d3 b). 
 

For data collection, the crystals were dipped for 20-45 seconds into cryo solutions containing 

either 25% of PEG 4000 for PA0620d1 or 25% of ethylene glycol for PA0620d3 in addition to 

the well solution components and flash frozen in a vaporized nitrogen stream at 100 K. Crystals 

of PA0620d1 showed anisotropic diffraction up to 3.5 Å in the best direction (Figure 2.13 a)). 

Attempts to improve the quality of PA0620d1 crystals failed and the work with PA0620d1 was 

stopped. 

Best crystals of PA0620d3 diffracted to better than 1.7 Å resolution. Unfortunately, it was 

impossible to collect such high resolution data even when using the largest available PILATUS 

6M detector (424 x 435 mm2, 2463 x 2527 pixels) because of excessive spot overlaps due to the 

crystal having a long axis and a relatively high mosaicity (Figure 2.13 b)).  
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The structure was solved by single-wavelength anomalous diffraction (SAD) technique using a 

SeMet derivative (Hendrickson and Ogata 1997). The SAD data were collected at the 

wavelength of the maximum Se adsorption (K-line) thus maximizing the anomalous signal. 

PA0620d3 crystals belonged to P212121, #19 space group with a = 56.12, b = 126.35 and c = 

431.25 Å unit cell parameters. Data collection was carried out at the X06SA PXI Pilatus beam 

line of the Swiss Light Source (SLS) at the Paul Scherrer Institute (SLS, Villigen, Switzerland) 

at the wavelength of 1 Å. The diffraction data was indexed, integrated, and scaled with XDS 

(Kabsch 2010). Assuming that the protein is trimeric the Matthews coefficient (Matthews 1968) 

was calculated. The program did not give a definitive answer: two possibilities, having 2 (3.22 

Å3/Da with total probability of 0.21) or 3 (2.15 Å3/Da with total probability of 0.78) trimers were 

further considered. The Se sites were located with SHELX_CDE program from CCP4 program 

package (Winn, et al. 2011). SHELXC anomalous signal strength statistics is given in Table 2.1. 

Table 2.2 shows SHELXD phasing statistics for typical correct and incorrect solutions. There are 

6 methionine residues per polypeptide chain, giving in total 36 methionones in case of 2 

molecules per asymmetric unit and 54 in case of 3. A total of 50 sites were found with a sharp 

occupancy drop off after 30 (from 0.49 for site #30 to 0.21 for site #31, Figure 2.14). Visual 

inspection of Se site positions showed that there the asymmetric unit contained 2 molecules. The 

first 30 sites were then given to the program SOLVE (Terwilliger, Automated structure solution, 

density modification and model building 2002) for further refinement and phasing. The phases 

were improved by NCS averaging and solvent flattening with the program RESOLVE 

(Terwilliger, Automated structure solution, density modification and model building 2002). 

ARP/wARP (Lamzin, Perrakis and Wilson 2001) was used for automated model building. 

Further refinement of the atomic model was performed with Coot (Emsley and Cowtan 2004), 

Refmac5 (Winn, et al. 2011) and PHENIX with TLS (Adams, et al. 2010). Details of data 

reduction and refinement are given in the Table 2.3. 
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a) 

 
b) 

Figure 2.13 Diffraction pattern of PA0620d1 and and PA0620d3 crystals. 
a) Anisotropic diffraction up to 3.5 Å in the best direction of PA0620d1 crystal (0.5-degree oscillation). b) 
Diffraction pattern of PA0620d1 crystal and its zoomed region (0.25-degree oscialltion). 
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Figure 2.14 Refined occupancy against peak number for SHELXD location of the 36 
Se atoms from R2 pyocin fiber SAD data. 
 

 

Table 2.1 SHELXC anomalous signal strength statistics on R2 pyocin fiber SAD data. 
N(data) – number of reflection; <I/sigI> – mean intensity over intensity standard deviation within a resolution shell; 
%Compleate – reflections completeness for a resolution shell; <d"/sig> – mean anomalous dispersion over 
anomalous dispersion standard deviation within a resolution shell. 
* For a non-random anomalous dispersion signal <d"/sig> must be greater then 0.80. 

 Inf-8.0 8.0-6.0 6.0-5.0 5.0-4.0 4.0-3.5 3.5-3.1 3.1-2.9 2.9-2.7 

N(data) 1922 2333 3666 10600 11720 15648 10535 13107 

<I/sig> 63.3 52.6 53.8 51.1 43.1 31.7 21.5 15.2 

%Complete 52.0 49.0 62.5 81.1 89.5 90.3 83.7 79.8 

<d"/sig>* 3.08 2.27 1.96 1.70 1.56 1.32 1.03 0.88 
 

Table continuation 
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 2.7-2.5 2.5-2.3 2.3-2.12 

N(data) 17109 25488 23122 

<I/sig> 10.6 7.1 5.2 

%Complete 77.2 83.9 61.8 

<d"/sig> 0.74 0.66 0.69 
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Table 2.2 SHELXD phasing statistics on R2 pyocin fiber SAD data. Examples of typical 
correct and incorrect solutions. 
R – R factor, Rcryst=(ΣIIEoI-IEcII)/ΣIEoI; Min. function – minimal function, a measure of the mean-square 
difference between the values of the triplets calculated using a particular set of phased and the expected probabilistic 
values of the same triplets as given by the ratio of modified Bessel functions; <cos> – cos (ΦH,K), a parameter of a 
minimal function, amplitudes of known heavy atoms. Ra – R factor based on anomalous data; CC all – correlation 
coefficient calculated with all data CC weak – correlation coefficient with only the weaker E-values that were not 
used in the dual-space recycling  PATFOM – Patterson figure of merit. 

 Typical correct solution Typical incorrect solution 

R 0.314 0.439 

Min. function 0.428 0.557 

<cos> 0.361 0.193 

Ra 0.336 0.530 

CC all 48.56/48.59 19.36/48.59 

CC weak 28.77/28.90 7.31/28.90 

PATFOM 5.31/5.31 0.89/5.31 
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2.3.2.3.2 R1 pyocin fiber 

For crystallization, the R1 fiber fragment was concentrated to 9 mg/ml. The initial crystallization 

screening was carried out by the sitting drop method in 96 well SWISSCI 2-lens MRC plates 

using Jena Bioscience crystallization screens. Optimization of crystallization conditions was 

performed in 24 well-plates (Jena Bioscience) by hanging drop vapor diffusion. Crystallization 

drops of the 24-well plate setup contained 1.25 μl of the protein solution in 10 mM TrisCl pH 

8.0, 150 mM NaCl mixed with an equal volume of the well solution. Best crystals were obtained 

with the protein having the initial concentration of 7.4 mg/ml and equilibrated against 500 μl of 

the well solution containing 4% PEG 4000, 100 mM PIPES pH 6.1, 140 mM Na2(mal) at +18◦C. 

These crystals diffracted to 2.3 Å resolution and belonged to P212121, #19 space group with a = 

144.08, b= 154.46 and c = 198.83 Å unit cell parameters. Data collection was carried out at the 

X06SA PXI Pilatus beam line of the Swiss Light Source (SLS) at the Paul Scherrer Institute 

(SLS, Villigen, Switzerland) at the wavelength of 1 Å. The diffraction data was indexed, 

integrated, and scaled with XDS (Kabsch 2010). A Matthews coefficient of 2.33 Å3/Da 

(Matthews 1968) was calculated with total probability of 0.98 for 2 molecules in asymmetric 

unit.  

The structure of the R1 pyocin fiber was solved by molecular replacement with PHASER 

(McCoy, et al. 2007) using the PA0620d3 structure as a search model. The PA0620d3 structure 

had to be split into 2 fragments of about equal lengths because the R1 fiber showed a significant 

bent in the middle. This was caused by the crystal packing that was different to that of the R2 

fiber Figure 2.16. Coot (Emsley and Cowtan 2004) and PHENIX with TLS (Adams, et al. 2010) 

were used for the refinement of the atomic model. The details of data reduction and refinement 

are given in the Table 2.3. 
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Table 2.3 X-ray data collection and refinement statictics for R2 and R1 pyocin fiber 
structures. 
Data in parenthesis represent statistics for the highest resolution shell. 

Data collection 
R2 fiber SeMet 

derivative 
R2 fiber native R1 fiber native 

Wavelength 0.97965 Å 1.0 Å 1.0 Å 

Number of frames 1440 780 720 
Frame width (°) 0.25 0.25 0.25 

Space group P212121 P212121 P212121 

Cell dimensions (Å) 

a = 56.20, 

b = 126.82, 
c = 433.43 

a = 56.12, 

b = 126.35, 
c = 431.25 

a = 144.08, 

b = 154.46, 
c = 198.83 

Number of trimers per asymmetric unit 2 2 2 
Resolution (Å) 49.9 – 2.4 50.0 – 1.9 49.0 – 2.2 

Rmeas 0.071 (0.18) 0.13 (0.55) 0.11 (0.61) 
<I / σI> 20.84 (8.2) 8.77 (2.6) 8.8 (2.1) 

Completeness (%) 99.3 (96.1) 99.6 (98.5) 99.2 (96.2) 
Redundancy 6.71 (6.17) 3.8 (3.8) 3.4 (3.2) 

    

Refinement    

Number of reflections    

    Working  246067 192452 
    Test  3691 9610 

Rwork / Rfree  0.171 / 0.214 0.190 / 0.226 
B-factor (Å2)  23.5 40.0 

R.m.s. deviations    
    Bond lengths (Å)  0.020 0.006 

    Bond angles (°)  1.105 0.698 
Number of atoms    

    Protein  16894 16836 
    Non-protein (solvent and ligands)  4087 2021 

Ramachandran plot (%)    
   Most favored   97.2 96.7 

   Additionally allowed  2.8 3.2 
   Outliers  0.0 0.1 
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2.3.3 Results and discussion 

2.3.3.1 Morphology overview and crystal packing of the R2 and R1 pyocin fiber 

structures 

The R2 and R1 fibers have a similar domain organization and overall structure. Each protein is a 

240 Å-long fiber formed by three intertwined polypeptide chains and that contains five domains. 

The N-terminal domain is a short rod that is built by a repeating alpha-helix-turn motif. It is 

followed by two tandem knob domains that have similar structures. The two knobs are followed 

by a shaft domain that is ~ 97 Å long and contains a buried Fe ion approximately in the middle. 

The C-terminal domain is a globular structure with a lectin-like fold (Figure 2.15). 

 
Figure 2.15 Domain organization of the R2 and R1 fibers. 
 

 

Figure 2.16 Crystal packing of the R2 a) and R1 b) pyocin fibers. 
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2.3.3.2 Analysis of the N terminal and shaft domains 

The fold of the N terminal rod domain is somewhat similar to that of the shaft domain. Three 

polypeptide chains extensively intertwine with each other to form a structure with complex 

topology Figure 2.17 a), b). The fold of the polypeptide chain could be characterized by a helix-

plus-linker motif: short fragments of α-helices mainly composed of 3 residues alternate with 

linkers of different length (from 2 to 7 residues) Figure 2.17 c), d). After each α-helix the 

polypeptide chain non-regularly changes its run direction that eventually results in clockwise 

twisting of the chain and makes the intertwining of chains possible. 

This motif is topologically similar to the helix-turn-helix motif of the stem domain of the phage 

phi29 head fiber (Xiang and Rossmann 2011). However, the phi29 stem domain is highly 

regular: each repeat unit corresponds to a 45° turn and a translation of 19.5 Å along the helical 

axis Figure 2.17 e). 

 
Figure 2.17 Helix-plus-linker motif of the fiber N-terminal domain and the shaft. 
a) Ribbon diagrams of the fiber shaft; b), the N-terminal domain; c) single chain of the N-terminal domain; key 
residues are numbered. For a) and b) three chains of the trimer are colored in yellow, green and orange; d) 
schematic representation and detailed topology of the helix-plus-linker motif for the fragment, depicted in c); e) 
helix-turn-helix motif of the stem domain fragment of phage phi29 head fiber. R2 fiber model and numbering was 
used for illustration.  
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2.3.3.3 Analysis of the fiber knob domains 

The tandem knob domains (residues 359-440 and 444-530, Figure 2.18) have a similar fold that 

is formed by an antiparallel β-sheet containing 5 strands that are connected by loops containing 

as many as 17 residues. Six residues out of these 17 form a short α-helix. The two domains show 

only 19.7 % sequence identity on superposition with 71 aligned C-alpha atoms (out of 82) and 

RMSD of 2.1 Å. These domains have clearly evolved from a single ancestor as a result of an 

ancient gene duplication event. The inter-strand loops form the outer part of the knobs whereas 

the β-sheets constitute their core. 

 
Figure 2.18 Ribbon representation of two mirroring knob domains. 
Key residues are numbered (R1 fiber model and numbering were used in this figure). 
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2.3.3.4 Localization and analysis of metal ions buried inside the fiber’s core 

There are two metal coordination sites within the fiber’s core. One of them is responsible for 

coordination of an iron ion and the other – for coordination of a hydrated calcium ion. The iron 

binding site is situated approximately in the middle of the shaft domain. [Ca(H2O)6]2+ is situated 

in the very beginning of the C-terminal domain (Figure 2.19 a)). The iron binding site is 

characterized by a double histidine motif (HxH) in the amino acid sequence (residues H361 and 

H363 for R1; H362 and H364 for R2 fiber). Each of the three polypeptide chains contributes 

both histidines of its HxH motif resulting in the octahedral coordination of the centrally 

positioned iron atom (Figure 2.19 b)). The average Fe-His (Nε2) bond distance is 2.16 ± 0.08 Å 

in the R1 fiber structure and 2.22 ± 0.05 Å in the R2 structure. The average value of all iron 

binding sites with a coordination number of 6 found in all structures contained in the PDB and 

determined with a resolution of 2.2 Å or better is 2.09 ± 0.12 Å (MESPEUS_10, (Hsin, et al. 

2008)). 

The hydrated calcium ion has an octahedral geometry as well – Ca(H2O)6
2+. It is coordinated by 

three symmetry-related D613 residues (Figure 2.19 c)). The average Ca-H2O bond distance is 

2.27 ± 0.05 Å in the R2 fiber and 2.38 ± 0.03 Å in the R1 fiber. This is again in agreement with a 

database value of 2.46 ± 0.22 Å calculated for a coordination number of 6, a resolution limit of 

2.2 Å by MESPEUS_10 (Hsin, et al. 2008). 

Consistency of bond lengths and geometries with the database values and temperature factors 

with those of surrounding waters and amino acid atoms suggests that metal identities were 

determined correctly. 

The functions of the buried metal ions is most likely related to the folding of the proteins. They 

might form reference points for three nascent protein chains that are about to fold into a trimer. 

A similar iron and calcium binding sites are found in other fibrous proteins, for which a similar 

function was proposed. There is no experimental data to support this hypothesis at this point. 

(Browning, et al. 2012), (van Raaij, Mitraki, et al. 1999). The metal-binding sites also likely to 

contribute to the elastic properties of the fiber because the long iron-containing shaft domain 

clearly displays certain amount of flexibility, as the R1 and R2 fibers can bend in the middle due 

to crystal packing (see 2.2.2.3.2, Figure 2.16 b)). 
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Figure 2.19 Location of the metal ion coordination sites. 
a) Position of the metal ion sites in the overall structure; details of the iron b) and calcium c) coordination site in 
pyocin fibers; Numbers for the key residues are given (R2 fiber model and numbering were used in this figure). 
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2.3.3.5 Analysis of the C-terminal receptor binding (RB) domain and putative RB sites 

Residues 596-691 and 595-701 comprise the C-terminal receptor-binding (RB) domain of the R2 

and R1 fibers, respectively. The polypeptide chain forms two β-sheets stacked on top of each 

other. Both β-sheets are antiparallel and contain 3 and 5 strands of different lengths (Figure 

2.20). The folds of the R1 and R2 fiber domains are very similar and the two structures can be 

superimposed with a RMSD of 1.4 Å between 87 equivalent atoms out of 96 used in the 

alignment. The sequence identity of this superposition is 42% (Figure 2.18). Nevertheless, the 

surfaces of the R1 and R2 C-terminal RB domains are markedly different. 

The loops connecting the β-strands in both structures have different geometry and create surface 

cavities that coordinate metal ions. Each of the three symmetry-related cavities of the R2 fiber 

contains a potassium ion, whereas the R1 cavities coordinate sodium ions. The potassium cavity 

of R2 is located on the interface of two subunits and is much deeper than the sodium cavity of 

R1, which is formed by residues belonging to the same polypeptide chain. The cavities are 

located at different places on the RB surface and the distance between their centers, which is 

found upon superimposing the two domains onto each other, is about 8 Å (Figure 2.22).  

The identification of metal ion was based on the analysis of the coordination geometry and 

temperature factors (Hsin, et al. 2008). The findings are consistent with the composition of 

crystallization solutions: the R2 fiber was crystallized in the presence of K+, whereas the R1 

fiber – in the presence of Na+ (see 2.2.2.3). 

The symmetry-related coordination spheres were heterogeneous because some of the water 

molecules comprising the coordination polyhedron were missing in several sites (especially in 

the R1 structure) thus complicating the analysis of the sites’ geometry. The metal ion 

coordination polyhedron in both structures can be described as a twisted trigonal (or triangular) 

prism containing 6 ligands on average (Figure 2.21, Table 2.5). The potassium ion of the R2 

fiber is significantly more solvent exposed than the sodium ion of R1. There are at least 3 water 

ligands in the coordination sphere of the potassium ion, whereas the sodium sphere of the R1 

fiber contained only 1 water molecule. 

A search for structures with folds resembling that of the R2 fiber using the Dali server (Holm 

and Rosenström 2010) identified hits only for the C-terminal domain (Table 2.4). The most 

similar structures were those of Discoidin-I and Discoidin-II, which are galactose- and N-

acetylgalactosamine-binding lectins, respectively; Helix Pomatia agglutinin – oligosaccharides 

lectin-binding protein, and phage receptor binding protein – the tail spike of phage SF6. All 
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identified proteins (besides being trimeric), which are structurally similar to the RB domain of 

the pyocin fiber, are trimeric and function to bind saccharides. It is therefore likely that the C-

terminal domain of the pyocin fiber is responsible for binding to the sugar portion of LPS 

receptor. 

Discoidin-I binds a sugar molecule in one of its surface groves that is somewhat negatively 

charged. The negatively charged metal-binding cavities on the pyocin surface are part of 

prominent groves. In the crystal structures reported here, a major part of the groves is occupied 

by hydrated metal ions that are likely to have originated from the crystallization solution. (Figure 

2.22). In the R2 C-terminal head domain, the groves or cavities are grouped together thus 

creating a “supercavity” at the domain extremity around the 3-fols axis. In R1 fiber, the groves 

start at 3-fold axis and extend towards the N terminus of the domain similar to the discoidin-1 

lectin-binding domain, which was crystallized with a ligand molecule bound to it (Figure 2.22 

c)). Summarizing the observations reported above, we propose that residues that coordinate the 

metal ions in R1 and R2 RB domains are responsible for recognition and attachment to the sugar 

moiety of the bacterial LPS receptor. 

 

Table 2.4 Results of Dali database structural similarity search for R2 and R1 pyocin fibers. 
First number corresponds to the hits for the structure of R2 pyocin fiber, second number – to the structure of R1 
fiber. Z-score – amount of structural similarity; RMSD – RMSD of structure fragments superposition; lali - number 
of residues was used in superposition; #res – number of residues in the compared structure from PDB; %id – percent 
of sequence identity in compared structures. 

Z score RMSD lali # res % id Hit description 

7.9/7.9 3.2/7.7 94/100 254/253 14/14 Discoidin-1, Subunit A; GalNAc-binding lectin 

7.8/7.8 3.2/4.8 92/96 255/256 13/16 Discoidin-2; GalNAc-binding lectin 

6.7/8.1 2.4/2.5 72/80 100/99 15/18 Helix pomatia agglutinin; oligosaccharides binding lectin 

6.5/6.1 5.3/5.4 111/114 511/509 7/13 Tail spike of bacteriophage SF6, RBP 

4.2/- 6.6/- 114/- 263/- 4/- p2 lactococal phage RBP 

-/5.1 -/3.4 -/92 -/205 -/8 C-terminal head domain of the adenovirus short fiber 
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Figure 2.20 Structural details of the fiber C-terminal domain. 
For the fold tracing simplicity one of the chains is colored in green. Key residues are numbered (R1 fiber model and 
numbering was used for illustration). 
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Figure 2.21 Analysis of the potassium coordination sphere in R2 RB domain. 
Protein polypeptide chain showed with ribbon representation is colored in gold. Side chains are showed for residues 
coordinating potassium ion (in violet) or water molecules from potassium ion’s inner coordination sphere. Ideal 
trigonal prism configuration of potassium ion coordination bonds is showed with violet-blue arrows. Short contacts 
(H-bonds and coordination bonds) are showed with dash lines. 

 

Table 2.5 Bond length and probable geometry analysis within potassium coordination 
polyhedron. 
Output is generated by UCSF Chimera (Pettersen, et al. 2004). 
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Figure 2.22 Surface representation of R2 a), R1 b) pyocin RB domains and discoidin-1 
lectin-binding domain c) with mapped coulombic coloring. 
K+ and Na+ ions are colored in magenta. Molecular surface is colored according to coulombic surface charge with 
blue, white and red corresponding to the most positive, neutral, and negatively charged patches, respectively. 

.  
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Köhler et al. (Köhler, Donner and van Delden 2010) described sugar moiety-binding specificity 

of different pyocins allowing us to derive saccharide-specificity of pyocin fibers (Figure 2.11). 

We purified bacterial LPS from Pseudomonas strains that are sensitive to R1 and R2 pyocins and 

set up co-crystallization and soaking experiments with these LPS and with monosaccharides that 

mimic sugar moieties of LPS from R1 and R2 sensitive strains. The L-rhamnose residue if LPS 

appeared to be critical for the R1 pyocin binding and the α-glucose – for the R2 pyocin. 

Therefore, we set up co-crystallization experiments for both types of fibers with the following 

sugars: L-rhamnose, D-glucose, D-galactose (that represented a sensitive monosaccharide and 

two controls). 

Unfortunately, neither R1 fiber crystals that grew in the presence of L-rhamnose (3, 5 and 10 

mM) nor R2 fiber crystals produced in the presence of glucose and galactose (3, 5 and 10 mM) 

contained any monosaccharide bound to the fiber molecules. Co-crystallization experiments of 

R2 pyocin fiber with bacterial LPS purified from a sensitive Pseudomonas aeruginosa strain 13s 

gave negative results as well (this LPS was purified by Dr. Dean Scholl, Avid biotics Corp., 

South San Francisco, USA). To overcome the problem of competition between the K+/Na+ ions 

and LPS/monosaccharides for receptor binding sites a series of experiments including 24 hours 

preliminary soaking of LPS/monosaccharides with the protein material was done, but this did not 

result in binding of the substrate to the fiber in the crystals. Unfortunately, no other 

crystallization condition lacking K+/Na+ ions was found. 

(Figure 2.23 a)). Note, that this pyocins bind to different P. aeruginosa strains. Analysis of all 13 

available at the GenBank pyocin fiber sequences (types R1 through R5) (Figure 2.23 b)) showed 

two divergent regions also located on the C-terminal and knob domains. 

We propose that during infection the pyocin fiber and the baseplate functions similar to those of 

T4, in which the baseplate is activated by reorientation of the fiber. Clearly, two sites that are 

located at different part of a long fiber are needed for a reorientation, assuming that the first 

binding event occurs stochastically. In this model, both binding sites (either on the C-terminal 

domain or on the knob domain) can serve as a primary recognition site. 
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Figure 2.23 Structure conservation in pyocins and closest homologues. 
a) map of structure preservations within R-type pyocin family: R2-R3-R4. Conservation threshold is 0.66; b) map of 
structure preservations within pyocins R1-R2-R3-R4-R5 and 13 closest homologues. Conservation threshold is 0.95. 
White color corresponds to fully conserved residues, blue to non-conserved. Blue-white gradient corresponds to a 
given residue conservation. Structure conservations are mapped onto surface representation of the R2 pyocin fiber. 
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3 CRYSTALLOGRAPHIC STADIES OF THE CELL-PUNCTURING 

DEVICES IN CONTRACTILE INJECTION SYSTEMS 

3.1 Refined structure of bacteriophage T4 gp5 β-helix 

3.1.1 Introduction 

Bacteriophage T4 (Figure 3.1 a)) is a double-stranded DNA virus, which infects Escherichia 

coli. It belongs to the Myoviridae family of phages with long contractile tails. A 172 kbp 

genome, more than 40 structural proteins in multiple copies makes T4 one of the most complex 

viruses (Kutter, et al. 1990). It is also one of the best genetically and biochemically studied 

phages. The T4 virus particle consists of a 5-fold-symmetric head containing the genomic DNA, 

a 6-fold-symmetric bilayered contractile tail, and six long tail fibers attached to the baseplate 

(Eiserling and Black 1994). Bacteriophage T4 has a very efficient mechanism for infecting cells 

(Goldberg, Grinius and Letellier 1994). The key component of this process is the baseplate, 

located at the end of the phage tail, which regulates the interaction of the tail fibers and the DNA 

ejection machinery. The central part of the baseplate is a complex of gene product (gp) 5 

(63kDa), gp27 (44kDa) and gp5.4 (10kDa) – a protein, whose existence was predicted more than 

10 years ago but the identity has been established only recently by us (Kostyuchenko, et al. 

2003) (Figure 3.1 b)). This complex is required to penetrate the outer cell membrane of E. coli 

and to disrupt the intermembrane peptidoglycan layer, promoting the subsequent entry of the 

phage DNA into the host. The structure of the gp5-gp27 complex has previously been 

determined using X-ray crystallography to 2.9 Å resolution (Kanamaru, et al. 2002), presenting 4 

functional domains: 1) gp27; 2) gp5 N-terminal OB-fold domain; 3) gp5 lysozyme domain and 

4) gp5 C-terminal β-helical domain (Figure 3.1 c)). By far the most remarkable of the above is 

the β-helical domain (Figure 3.1 d)), which was proposed (but not yet proven) to puncture the 

cell membrane during tail contraction (Kanamaru, et al. 2002). 

Gp5 belongs to the class of trimeric fibrous proteins. There are only four known motifs among 

such kind of proteins, namely: the collagen triple-helix (Traub and Piez 1971), (Bella, et al. 

1994), the α-helical coiled coil (other oligomers are possible, dimers, tetramers, and pentamers) 

(Lupas 1996), the triple β-spiral/shaft (van Raaij, Mitraki, et al. 1999) and the intertwined triple 

β-helix (van Raaij, Schoehn, et al. 2001), (Kanamaru, et al. 2002). The unique properties of 

oligomeric fibrous proteins, such as varying length, stability and oligomerization make them 

suitable scaffolding units for controllable production of one, two- or three-dimensional 

biological macroassembles. Collagens and alpha-helical coiled coils are well studied structures 
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and widely found in living organisms, unlike triple β-helices, which were discovered recently 

and require detailed studies on their structural organization, folding properties and stability. 

 
 a) b) c) d) 
Figure 3.1 T4 cell-puncturing device placement in the phage particle. 
a) general view of T4 phage; b) baseplate cut-away view; c) gp5-gp27 complex; d) gp5 β-helical domain. Figure 
was adapted from (Kostyuchenko, et al. 2003) and (Kanamaru, et al. 2002). 

Recent attempts to express soluble and correctly folded isolated β-helical fragments failed 

indicating the necessity of an extra-oligomerization domain (chaperone), either native or 

artificial (Papanikolopoulou, et al. 2004). Also, no data existed on folding of isolated triple β-

helix. 

At least ten crystal structures containing an extended triple β-helix are known, all of them have 

been discovered in phages (Bernstein, et al. 1977), (Browning, et al. 2012) and Leiman lab, 

unpublished data. Out of all them, gp5 is the most perfect, longest and regular structure of 

trimeric β-helix. 

The previously resolved structure of the gp5-gp27 complex highlighted many structural details, 

especially for gp5, however many details remained uncharacterized or characterized incorrectly. 

To improve on this, Dr. Sergei Budko in Andreas Engel’s laboratory created several deletion 

mutants of gp5, comprising different parts of the C-terminal β-helical domain. These mutants 

were very stable SDS-resistant trimers. Sergei then moved to Michael Rossmann’s lab, where he 

found crystallization conditions for one of these mutants, called gp5R483 – a C-terminal 

fragment, consisting of residues R483-G575 (Figure 3.2). This mutant represents the whole 

solvent exposed part of the β-helix domain. Gp5R483 crystals, produced by Dr. Budko diffracted 

to better than 2 Å resolution. I continued this project – refined initial crystallization conditions 
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which resulted in crystals diffracting up to 1.3 Å resolution and allowed to obtain a much more 

precise description of the remarkable intertwined β-helical structure. 

 
Figure 3.2 Map of the gp5R483 fragment. 
In red are shown fragment borders. Figure adapted from (Kanamaru, et al. 2002). 
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3.1.2 Materials and methods 

3.1.2.1 Construct engineering 

Gene encoding gp5R483 deletion mutant was PCR amplified and cloned into the pHisTrx2 

(Kammerer, et al. 1998) vector using restriction sites BamHI and EcoRI. The vector was 

designed to express fusion constructs containing an N-terminal His-tag, a thioredoxin A, a linker 

with a thrombin cleavage site and the fragment of interest. The DNA inserts were verified by 

Sanger dideoxy DNA sequencing. 

3.1.2.2 Protein expression and purification 

The recombinant protein was expressed as fusion construct at 37 °C in E. coli BL21 (DE3) host 

strain (Novagen) after IPTG induction at final concentration of 1 mM. The Selenomethionine 

(SeMet) mutant of R483 was expressed in modified M9 medium in the presence of SeMet using 

the B834 (DE3) strain of E. coli. Purification of the fusion proteins was carried out by 

immobilized metal affinity chromatography on a HisTrap HP column (Amersham Biosciences) 

and the separation of gp5 mutants after thrombin cleavage was carried out as described in the 

manufacturer's instructions. Before thrombin cleavage, the fusion proteins were additionally 

purified on an anion exchange HiTrap Q HP column (Amersham Biosciences). The cleavage was 

performed at 20 °C for 16 hours with thrombin (Novagen). 

3.1.2.3 Crystallization, data collection and structure determination 

Crystallization, data collection and structure determination for SeMet derivative of gp5R483 

were done by Dr. Sergei Boudko. 

The crystallization conditions for both, native and SeMet derivative proteins, contained 0.02M 

Calcium chloride, 0.1M Sodium acetate (pH 5.2), 15% 2-methyl-2,4-pentanediol (MPD). 

Despite the small amount, the presence of calcium was crucial for crystallization. The SeMet 

derivative crystals grew to a size of 0.6 mm x 0.6 mm x 0.6 mm in hanging drops after about one 

to two weeks at 20 °C. The crystals were briefly dipped into a cryoprotectant solution containing 

0.02M Calcium chloride, 0.1M Sodium acetate (pH 5.2), 30% MPD and then flash frozen in a 

vaporized nitrogen stream at 100 K. 

SeMet crystals were used for a three-wavelength, MAD data collection procedure (Hendrickson 

and Ogata 1997) at APS synchrotron (Argonne, Chicago). The programs DENZO and 

SCALEPACK were used to process the diffraction data sets (SeMet and native) (Otwinowski 
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and Minor 1997). The program SOLVE (Terwilliger and Berendzen, Automated MAD and MIR 

structure solution 1999) was used to compute the phases based on the 6 Se atoms per 285 

residues. The phases were then improved by solvent flattening, and an atomic model (about 80% 

of all residues) was built with the program RESOLVE (Terwilliger, Automated structure 

solution, density modification and model building 2002), ARP/wARP 6.1 (Lamzin, Perrakis and 

Wilson 2001), and manually using the program XtalView (McRee 1999). The program Refmac5 

(Winn, et al. 2011) was used for the refinement. 

The native protein crystallization conditions were further fine-tuned by varying the pH of the 

buffer (between 4.6 and 5.4), the concentration of CaCl2 (0.05 and 0.06 M) and the concentration 

of MPD (between 9 and 11 %) using the hanging drop method (2 μl drop size) in 24 deep-well 

plates. For crystallization, the protein was brought to the concentration of 20 mg/ml. The best 

conditions (0.05M calcium Chloride, 0.1M Sodium acetate (pH 5.2), 11% MPD) yielded native 

crystals of 0.3 mm x 0.2 mm x 0.5 mm after 4 days of incubating at +18 °C (Figure 3.3 a)). The 

mother liquor served as a cryoprotector for data collection in a vaporized liquid nitrogen stream 

at 100 K. Crystals belong to C2221, #20 space group with a = 57.61, b = 72.76, c = 130.49 Å 

unit cell parameters with one gp5R483 trimer in the asymmetric unit. Diffraction data were 

collected at the SLS (Villigen, Switzerland) PXIII beamline using a wavelength of 0.9 Å. The 

diffraction extended up to 1.3 Å resolution with a very clean diffraction pattern and exhibited X-

cross, which is a characteristic of a helical structure (Figure 3.3 b)). The first layer line could be 

seen at approximately 4.7 Å resolution, corresponding to the spacing between β-strands. The 

structure was solved by molecular replacement using a MOLREP program from CCP4 program 

suit (Winn, et al. 2011). The structure of gp5R483 SeMet served as a search model. The structure 

was initially refined by Refmac5. The final refinement was done with SHELXL (Sheldrick 

2008). Details of data reduction and refinement are given in the Table 3.1. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 3.3 Gp5R483 crystallization and data collection. 
a) crystals of gp5R483 grown in the presence of Ca2+; b) diffraction pattern of the gp5R483 crystals a), diffracting 
up to 1.3 Å resolution; crystals of gp5R483 grown in the presence of Sr2+ c) and Zn2+ d). 

To determine the origin of the metal cation incorporated into the hydrophobic core of the protein 

several other bivalent cations were tried for crystallization (Mg2+, Sr2+, Zn2+, Ni2+ and Mn2+). 

Their initial concentration was derived from that of CaCl2 (10, 30, 50 and 70 mM) multiplied by 

a coefficient of difference in solubility of the hexahydrates (or, the most stable hydrates) 

according to the formula: 

(New metal concentration) = (CaCl2 concentration) * (solubility of MeCl2) / (solubility of CaCl2) 

Only conditions containing Sr2+ (0.06-0.1M SrCl2, 11% MPD, 0.1M NaAc, pH 5,4) resulted in 

crystals suitable for X-ray data collection (Figure 3.3 c)). Zn2+ containing conditions (0.011-

0.015M ZnCl2, 11% MPD, 0.1M NaAc, pH 5,4) resulted in very thin needles that were not 

suitable for crystallographic studies) (Figure 3.3 d)). Unlike the earlier experiments with CaCl2 

grown crystals, the mother liquor was a poor cryoprotector for SrCl2 grown crystals. A good 

cryoprotector was obtained by increasing the concentration of MPD to 25%. The crystals were 

briefly washed in this solution before flash freezing in a vaporized nitrogen stream at 100 K. X-
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ray excitation spectrum was recorded for all types of crystals. The SrCl2 grown crystals showed a 

clear presence of the Sr in the X-ray fluorescent emission spectrum. Diffraction data was 

collected at the wavelength corresponding to the Sr absorption edge (λ = 0.769 Å). 

Three data sets using identical inverse beam data collection parameters were collected for: 1) a 

CaCl2 grown crystal and CaCl2 containing cryoprotector; 2) SrCl2 grown crystal, SrCl2 

cryoprotector; 3) SrCl2 grown crystal, CaCl2 cryoprotector. The latter combination was used to 

remove the unbound Sr cations. All gp5R483 derivatives crystallized in P212121 or C2221 space 

groups with very close unit cell parameters to those of the 1.3 Å resolution structure collected 

earlier (Table 3.1). Indexing, integrating and scaling were done using HKL2000 (Otwinowski 

and Minor 1997). The refined model of gp5R483 was used to solve the phase problem of the Sr 

derivatives by molecular replacement employing PHASER (McCoy, et al. 2007). Anomalous 

map calculations were done with FFT program from CCP4 program package (Winn, et al. 2011). 

Data collection and data processing statistics are given in Table 3.1. The structure of gp5R483 

mutant was deposited in the Protein Data Bank under accession number 4JJ2. 
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3.1.2.4 Mass spectrometry analysis 

In order to determine the molecular weight of the inclusion compounds, few sets of ESI-Q-TOF 

MS experiments were performed by Dr. Laure Menin at the mass spectroscopy service at EPFL, 

BCH 1525 on Q-TOF Ultima (Waters) instrument. The first set of experiments was made using 

the gp5R483 protein in the conditions used for crystallization with a concentration of 20mg/ml. 

To reduce the low molecular weight impurities, for the rest MS experiments, gp5R483 was first 

crystallized, the crystals were then collected, washed in the crystallization solution free from 

protein, and dissolved in distilled water. Afterwards, the crystals were dialyzed against distilled 

water by 3 repeated buffer exchanges using a Millipore microconcentration device (Merck 

Millipore) with the cutoff of 10 kDa. The final concentration of thus purified protein was 3.9 

mg/ml and 6.7 mg/ml for the 2nd and 3rd MS experiments respectively. In the first and second 

experiments the increasing of the sample cone voltage was chosen as the denaturation-in-source 

method. The heating was used for the third experiments as the denaturation-in-source method 

because in the previous two experiments a large amount of the trimer could still be observed. 

3.1.2.5 Gp5R483 inclusion compounds extraction 

To extract the inclusion compounds from the gp5R483 trimer a modified Folsch procedure was 

applied (Folsch, Lees and Sloane Stanley 1957). Aqueous solution of gp5R483 crystals, 

approximate volume 300 μl, was mixed in a 1.5 ml low-bind reaction tube (Eppendorf) with 

750μl of the extraction mixture composed of dichloromethane and methanol, 2:1 v/v ratio. The 

tube was vortexed at 16,000 RPM for about 3 minutes. Then organic phase was removed using a 

syringe (Hampton), transferred to another tube and dried under vacuum until a resulting volume 

of approximately 150 μl. This sample was then used for GC-IE-MS and GC-CI-MS analysis 

using EI/CI-1200L (Varian) GC-MS, equipped with Capillary column VF-5ms (5% phenyl-

methyl 95% dimethylpolysiloxane column, 0.25mm x 30 m). 
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Table 3.1 X-ray data collection and refinement statistics of gp5R483. 
* Two acquisitions, for high and low resolution; same crystal was used. 
** Main task was BDF synthesis. 
*** Number of peaks above the noise threshold. 
Data in parenthesis represent statistics for the highest resolution shell. 

Data collection a) CaCl2/CaCl2 ** b) SrCl2/SrCl2** c) SrCl2/CaCl2** d) CaCl2/CaCl2 

Beamline PXII (SLS) PXII (SLS) PXII (SLS) PXIII (SLS) 

Wavelength (Å) 0.769 0.769 0.769 0.975 

Oscillation angle, step (°) 0-100, 180-280, 1 0-100, 180-280, 1 0-100, 180-280, 1 0-360, 0-360, 1* 

Number of frames 200 200 200 720 (360 + 360)* 

Space group P212121, #19 C2221, #20 C2221, #20 C2221, #20 

Cell dimensions: 

a, b, c (Å) 

57.40, 72.14, 

129.59 

57.43, 72.34, 

129.66 

57.42, 72.19, 

129.16 

57.61, 72.76, 

130.49 

Number of trimers per 

asymmetric unit 
1 1 1 1 

Resolution (max) (Å) 1.7 1.5 1.7 1.3 

Rmerge (%) 0.066 (0.34) 0.075 (0.415) 0.064 (0.328) 0.069 (0.299) 

<I / σI> 7.6 9.1 12.3 11.3 

Completeness (%) 97.24 (98.7) 97.79 (85.5) 94.18 (96.3) 99.59 (87.0) 

Redundancy 8.5 (8.4) 7.7 (5.5) 8.8 (8.6) 10.2 (4.3) 

     

Refinement     

Number of reflections     

    Working    69991 

    Test    4689 

Rwork / Rfree    0.1527/0.1777 

B-factor (Å2)    19.4 

R.m.s. deviations     

    Bond lengths (Å)    0.0169 

    Bond angles (°)    0.0413 

Number of atoms     

    Protein    2259 

    Solvent and ligands    388 

Ramachandran plot (%)     

    Most favored    97.4 

    Additionally allowed    2.6 

    Outliers    0.0 

Number of anomalous 

scatterers (asymmetric unit) 
0*** 13*** 13*** – 
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3.1.3 Results and discussion 

3.1.3.1 Crystal structure of gp5R483 

The centered orthorhombic crystals of the gp5R483 mutant contain one molecule of the trimer 

(chains A, B and C) per asymmetric unit. Each chain resembles a corkscrew consisting of 12 

beta-strands. Three such corkscrews intertwine and form a triangular prism, whose faces are 

represented by 3 parallel β-sheets (Figure 3.4). Based on the inner core packing the structure 

could be visually separated into two approximately equal halves, the amino- and carboxy-

terminal halves. The amino-terminal half has a hydrophobic inner channel about 10 Å in 

diameter in which three elongated density moieties were found, whereas the carboxy-terminal 

half is tightly packed with large hydrophobic residues such as tryptophans and methionines. 

There is a metal ion, sandwiched between these large residues. It was initially identified as 

potassium (Kanamaru, et al. 2002). 

Two gp5 trimers interact with each other with their C-terminal parts to form a dimer. In the area 

of close contact, the distances between the closest Cα atoms of the neighboring trimers within 

the dimer are in the range of 4.6-4.9 Å (Figure 3.8). The high resolution structure of the C-

terminal fragment of the gp5 β-helix showed a great deal of flexibility with about 15% of 

residues showing double conformations, especially near the C terminus. The main chain of three 

C-terminal terminal residues for one of the chains had a double conformation in addition to that 

of the side chains. 
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Figure 3.4 Ribbon diagram of the gp5R483 structure. 
Three polypeptide chains are colored in red, green and blue. N- and C-termini are indicated. Inclusion compounds 
such as fatty acid molecules and Mg2+ cation are also shown. 

  



 50 

3.1.3.2 Analysis and identification of the buried metal ion 

The C-terminal half of the protein contains a buried ligand that is sandwiched between large 

hydrophobic residues (Figure 3.5 a)) and coordinated by three symmetry-related glutamates 

Glu552 (Figure 3.5 b)). The 1.3 Å resolution structure of gp5R483 allowed a clear analysis of 

the coordination sphere of this ligand. The ligand consists of a centrally positioned atom – most 

probably a metal ion – that is hydrated by 6 water molecules (Figure 3.5 b), Figure 3.6). Metal 

geometry analysis in Chimera (Pettersen, et al. 2004) (Table 3.2) showed that the coordination 

polyhedron could be described as a slightly distorted octahedron with a RMDS of 0.24 Å (Table 

3.3) (Figure 3.6). 

In order to establish the identity of the metal cation, the X-ray excitation spectra of several 

crystals were recorded at the SLS and APS synchrotrons. None showed any signature lines for 

metals. An attempt was made to establish the identity of the metal by placing a light metal ion 

into the putative metal site position and performing the crystallographic refinement. Na+, K+, 

Ca2+ and Mg2+ ions were tried. Taking into account the coordination bond distances, the 

geometry of the coordination polyhedron and the coordination number, the choice was narrowed 

down to Ca or Mg – two very close analogues. With all other equal parameters, coordination 

bond lengths were closer to the value for Mg: the experimental value is 2.16 ± 0.06 Å; database 

Mg2+–H20 = 2.17 ± 0.15 Å comparing to Ca2+–H20 = 2.46 ± 0.22 Å (MESPEUS_10 was used for 

this analysis (Hsin, et al. 2008)). Temperature factor refinement was less conclusive but it 

appears to favor Ca (Table 3.4). Unfortunately, the absorption edges for either Mg or Ca are not 

easily accessible at synchrotron beamlines (Ca K-edge = 4.0381 keV, Mg K-edge = 1.3050 

keV). Therefore there are no decisive means of proving that the metal is Mg using spectroscopic 

techniques. Notably, there is only one Mg atom per trimer comprised of 2010 non-hydrogen 

atoms, further complicating the analysis. 
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a) 

 
b) 

Figure 3.5 Metal ion buried inside the gp5R483 core. 
a) water coordination polyhedron, buried deep into the hydrophobic core; b) hydrated Mg2+ ion, coordinated by 
three glutamates (Glu552). 
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Figure 3.6 Coordination polyhedron geometry analysis of buried magnesium ion. 
Outer coordination sphere (Glu residues) and inner (water molecules) are shown. In purple is shown idealized 
octahedral bond configuration for Mg2+ ion. 

 

Table 3.2 Bond length and probable geometry analysis within magnesium coordination 
polyhedron. 

 
 

Table 3.3 Magnesium coordination polyhedron bond angles analysis. 
Angle Value Ideal 

value for the 
octahedron: 

180o 

O41 Mg O38 169.39o 

O9 Mg O29 165.04o 

O13 Mg O25 165.34o 

 

Table 3.4 B-factors (Å2) of Mg2+ and Ca2+ions, surrounding waters and the Glu552 O1 and 
O2 atoms. 
Atoms GLU Value Atoms W Value 
O1A 21.74 O29W  29.57 
O2A 19.12 O38W  27.05 
O1B 22.15 O41W  25.52 
O2B 20.47 O13W  22.32 
O1C 20.33 O9W  22.05 
O2C 18.74 O25W  23.81 
Mg2+ 19.36   
Ca2+ 25.53   
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The role of the buried metal ion is to neutralize the charge of the three buried Glu residues 

suggesting that this metal ion is present in the structure from the moment the protein folds into a 

trimer. However, CaCl2 was used in the crystallization conditions at the concentration of about 

50 mM and therefore it might have substitute the original ion during crystallization. We 

therefore decided to set up a set of crystallization experiments in the presence of different 

bivalent metal salts (see 3.1.2.3). Two additional sets of crystallization conditions were obtained 

which gave crystals, the first one containing Sr2+ (a close analogue of Ca and Mg) and the other 

one – Zn2+ (Figure 3.3). The crystals grown in the presence of Zn2+ were too thin to study by X-

ray single crystal diffraction. 

We then collected diffraction data at the wavelength corresponding to the Sr absorption peak (λ 

= 0.769 Ǻ) using the Ca-grown crystals and Sr-grown crystals and calculated Bijvoet difference 

Fourier (BDF) maps. The Sr-grown crystals were washed in the cryoprotector solution, 

containing Ca2+, instead of Sr2+ (to remove unbound/non-specifically bound Sr2+ and reduce the 

noise level of anomalous map). 

The Bijvoet difference Fourier (BDF) synthesis showed very prominent peaks for the Sr cations 

(Figure 3.7 a), b)), which bind to the exterior of the molecule. We found that clusters of strong 

Sr anomalous sites are formed at the C-terminus–C-terminus contact area of two neighboring 

gp5R483 trimers that form a dimer of trimers (Figure 3.8). Not surprisingly, no significant peak 

was found in the Ca grown/Ca cryo dataset. In addition to the strong peaks, many weaker peaks 

were found in the BDF maps of the Sr-grown/Sr-cryo and the Sr-grown/Ca-cryo datasets. Sr 

binds to protein molecules non-covalently, and the distribution of Sr binding sites occupancies 

does not have a sharp falloff (Figure 3.9). The Sr site was considered to be above the noise level 

if it satisfied the following criteria: 

1. Strong peak in BDF synthesis; 

2. Strong peak in 2Fo-Fc map; 

3. Proper chemical environment (appropriate distance to the protein molecule). 

We found that both, Sr-grown/Sr-cryo and the Sr-grown/Ca-cryo datasets contained a peak close, 

but not precisely overlapping with the buried Mg cation. This peak was 17th and 12th in height in 

the Sr-grown/Sr-cryo and the Sr-grown/Ca-cryo datasets, respectively. In both of these datasets, 

the peak is at or below the noise level of the map. 

This proves that the buried metal cation does not diffuse into or out of the protein during 

crystallization, but instead is present from the moment the protein folds into a trimer in the cell 

cytoplasm.  
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a) 

b) 
Figure 3.7 Sr anomalous peaks in the Bijvoet difference Fourier (BDF) synthesis. 
a) Cα trace diagram of the gp5R483 with 2Fo-Fc map (blue, contoured at 2.3 σ) for the protein and associated 
ligands and BFD map (purple, contoured at 6.0 σ) of the Sr cations bound to the exterior of the protein in the Sr-
grown/Ca-cryo dataset; b) zoomed region showed in a) with a dotted line. 1 – exterior Sr anomalous peaks; 2 – 
Mg2+ polyhedron density). 
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Figure 3.8 Gp5R483 dimer and Sr2+ sites. 
Ribbon diagram (top trimer) and Cα trace (bottom trimer) representation of gp5R483 dimer. Exterior Sr anomalous 
peaks are colored in magenta. Buried Mg ions are colored in green and labeled. 
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Figure 3.9 The occupancy distributions for Sr2+ anomalous peaks. 
Black, red and green curves correspond to peaks from Sr-grown/Sr-cryo, Sr-grown/Ca-cryo and Ca-grown/Ca-cryo 
datasets, respectively. The dashed line is the noise level. 
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3.1.3.3 Identification of the internal extended compounds 

The N-terminal part of the β-helical prism (residues 484 to 521) is hollow and forms a large cage 

with hydrophobic walls. There are three symmetry-related, ~20 Å long density moieties inside 

this compartment. The electron density and Uppsala natural small molecule database (Kleywegt 

2007) search suggest that this density might correspond to a fatty acid molecule with a tail of 15-

18 carbon atoms and the MW between 240 and 290 Daltons (Da) (Figure 3.10 a)). An attempt 

was made to establish the identity of these molecules using various mass-spectrometry (MS) 

techniques. The MS experiments show that the difference between the mass of the gp5R483 

trimer, containing these inclusion compounds (family of peaks K), and the mass of the monomer 

times three (“empty” trimer, family of peaks D, that was predominating) is 757 Da, which might 

correspond to the mass of 3 inclusion fatty acids – 252 Da per each molecule, provided they are 

the same (Figure 3.11). Considering the existence of these two forms of gp5R483 trimer (with 

and without inclusion compounds) and nonconcluding analysis of the low MW zone of the 

spectra, was decided to conduct MS experiments in denaturation conditions. The screen for these 

conditions was done and included an increase of the sample cone voltage (SC) and the collision 

energy (CE), sample heating and usage of a denaturation buffer (formaldehyde, water, and 

acetonitrile in proportion 1:49:50 v/v). Each of these methods resulted into a trimer dissociation: 

intensity of the peak, corresponding to the gp5R483 trimer decreases when intensity of the peak, 

corresponding to the monomer dramatically increases (Figure 3.12 shows such dissociation 

achieved by increasing of the SC and CE), but, most probably, due to the dissociation of the peak 

D, corresponding to an empty trimer, as no significant peak stands out in the low MW zone. 

Some MS experiments were also performed in the negative mode (results were not informative, 

data not shown). 

The low MW zone of the spectra was analyzed for each MS experiment as well (Figure 3.13). 

Initially, MS analysis was conducted on the protein sample previously used to set up 

crystallization trials. The spectra showed peak at 235 Da (Figure 3.13), which is near to the area 

of the expected mass value and a second peak at 339 Da, which was not a satisfactory value for 

the expected mass range, calculated from the electron density. On the other hand were found 

peaks (245 Da, 272 Da, 282 Da, and 301 Da) whose intensities are dependent on the applied 

cone voltage and the collision energy, suggesting that they might result from denaturation of the 

protein, which occurs as the cone voltage and collision energy are increased. The peaks stand out 

dramatically in comparison to 235 and 339 Da peaks as seen in Figure 3.13 bottom spectra, 

where the highest sample cone voltage and collision energy were used (SC = 100 V, EC = 15V)). 
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However, the spectra in this region are highly contaminated with impurities. Therefore a precise 

determination of either of the above listed signals corresponding to one of the inclusion 

compounds was impossible. 

To reduce the low molecular weight contamination, the MS experiment was run on the protein 

purified by crystallization. Was crystallized a large amount of the protein, crystals were 

collected, washed in the protein-free crystallization solution and dialyzed against pure water (see 

2.1.2.4). This sample was then used for the MS experiments. The resultant low MW spectrum is 

shown in Figure 3.14. This time noticeable peaks were observed for the fragments with the MW 

of 269 and 338 Da. The height of these peaks dramatically increased after incubation of a sample 

during one hour at 95 °C. The 269 Da peak was also observed during another round of analysis 

along with 295 Da peak Figure 3.15. However both of them were lost in the high level of the 

background noise that stood out after an increase of the SC and CE. 

Poor reproducibility of the peaks in the low MW zone, heterogeneity of the peak corresponding 

to the trimer + inclusion compounds (McCoy, et al. 2007) (McCoy, et al. 2007) suggest that the 

composition of the inclusion compounds is heterogeneous. Different dissociating conditions 

were tried were insufficient to unfold the trimer completely and liberate enough of the inclusion 

compounds for further MS/MS experiments. The same problem was encounted by the authors in 

(Potier, et al. 2003). They found the possibility to overcome these difficulties by carrying an 

organic extraction of the inclusion compounds followed by GC-MS analysis of the extract. This 

allowed them to determine the composition of the heterogeneous mixture. A modified Folsch 

procedure (see Materials and methods, 2.1.2.5) was applied for the dissolved gp5 crystals 

sample. The chromatogram obtained during the experiment had 5 significant peaks, which were 

in the area of fatty acids elution. The mass spectra of these peaks contained the fingerprints 

corresponding to the 16:0, hexadecanoic acid (palmitic acid) with probability of 72.4 %, peak 1; 

18:0 octadecanoic acid (stearic acid) with probability of 70.0 %, peak 2_1; 18:1 octadecenoic 

acid and isomers (oleic acid) with probability (sum) of 32.64 %, peak 2_2; esters of the 

hexadecanoic acid, probability (sum of the main ones) > 90.0%, peak 3 and esters of the 

octadecenoic/octadecenoic acid, peak is broaden, and most probably contains 2 non-resolved 

peaks of each type of esters. 

These findings prove that the inclusion compounds are a mixture of a few fatty acids with 26-28 

Da mass difference, which leads to a heterogeneous mass distribution of the peak corresponding 

to the gp5R483 trimer with inclusion compounds. 
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As a final step, the atomic models of the stearic, oleic and palmitic acids were built, placed into 

the corresponding electron density inside the hydrophobic channel of gp5 and refined. Taking 

into account that the electron density corresponding to the inclusion compounds was weaker than 

for the protein residues, the refinement may be considered as successful – no peaks above 3.5 

RMSD in Fo-Fc map were detected, the geometry and density fit for the ligands are correct 

(Figure 3.10 b), c)). Mapping the refined fatty acid models into the cavity of the gp5R483 

(surface representation) shows that 3 fatty acids fill the cavity space very well (Figure 3.10 d)). 

It could be hypothesized, that the function of these inclusion compounds is to stabilize the 

hydrophobic core of the protein, to constitute some sort of hydrophobic rod of rigidity, especially 

considering how difficult is to denature the trimer containing these molecules. 

  



 60 

a) b) 

c) d) 
Figure 3.10 Identification of the internal extended compounds. 
a) initial, model-free Fo-Fc map (green), which shows the inclusion compounds; b) three fatty acids, fitted into the 
density of 2Fo-Fc map; c) the model of the three fatty acids inside of the internal cavity of the β-helix (cut away 
view, ribbon diagram representation for protein polypeptide chains); d) top view of the inclusion compounds inside 
the β-helix cavity; protein polypeptide chains are represented with grey semi-transparent molecular surface and Cα 
trace (red, green and glue), inclusion compounds are represented with cyan molecular surface. 
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Figure 3.11 The mass-spectra, containing the information about different forms of 
gp5R483. 
Peak A corresponds to the mass of the monomer, peak D (Ax3) to the mass of the trimer and peak K to the mass of 
the trimer with inclusion compounds. 
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Figure 3.12 Mass spectra of gp5R483 trimer dissociated in-source. 
The sample cone voltage (SC) and collision energy (EC) were used to promote gp5R483 trimer dissociation. 

 
Figure 3.13 Gp5R483 mass spectra low MW zone analysis. 
The sample applied cone voltage (SC) and collision energy (EC) were step increased from top to bottom: 1) SC = 35 
V, EC = 4 V, 2) SC = 50 V, EC = 10 V, 3) SC = 100 V, EC = 15V.  
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Figure 3.14 Mass spectra of gp5R483 denatured by heating. 
Sample was prepared from the protein purified by crystallization. Low MW zone of the spectra obtained by heat 
dissociation of the sample. 

 
Figure 3.15 Mass spectra low MW zone analysis of gp5R483 dissociated in-source. 
Sample was prepared from the protein purified by crystallization. Low MW zone of the spectra obtained by 
increasing of the SC/EC voltages applied to the sample. 
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Figure 3.16 Gas chromatography of gp5R483 organic extract. 
Peak 1: 16:0 Hexadecanoic acid (palmitic acid); probability = 72.4%. 
Peak 2_1: 18:1 Octadecenoic acid (oleic acid); probability (sum) = 32.64%. 
Peak 2_2: 18:0 Octadecanoic acid (stearic acid); probability = 70.0%. 
Peak 3: Esters of the hexadecanoic acid; probability (sum, main ones) > 90.0%. 
Peak 4: Esters of the octadecenoic/octadecenoic acid; probability (sum, main ones) > 50.0%. 
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3.2 Structure of gp5G484-gp5.4 complex 

3.2.1 Introduction 

Various phages with contractile tails solve the cell membrane piercing problem differently. P2 

and other P2-like phages carry out cell membrane piercing using a sharp, spike-like trimeric 

protein, which is armored with an Fe ion coordinated by six histidine residues (double histidine 

motif (2xHis) per each chain of the trimer) (Browning, et al. 2012). For other phages, including 

T4 phage, one of the best studied bacteriophages, cell-puncturing proteins/protein complexes are 

known as well, but they do not have spike-like shape of the tip (Kanamaru, et al. 2002). 

Analyzing the cryoEM reconstruction of the T4 phage baseplate (Kostyuchenko, et al. 2003) one 

observes that below T4 cell-puncturing device (expanding from the C terminus of the gp5 β-

helix – the outward facing domain) is an extra density that might accommodate another protein 

or protein complex (Figure 3.17). Also, the analysis of the high resolution crystal structure of the 

C-terminal gp5 β-helix fragment (see 3.1.3.1) shows that the distal end of the T4 cell-puncturing 

device ends with the blunt end and possesses a surface that can accommodate this protein/protein 

complex. This structure also revealed a high level of disorder of the residues at the gp5 C 

terminus (up to the model main chain split for alternative conformations), which suggests that 

cell wall piercing is unlikely to be carried out by only the gp5-gp27 complex, but requires 

another protein to stabilize and sharpen its tip. This critical piece of information regarding this 

and other similar spikes has been missing for years. 

Analysis of genomes of a large number of bacteriophages (even evolutionary distant) had 

revealed a group of proteins that were mainly found downstream of the gp5 protein (T4 genome 

terminology) and seemed to be genetically linked. Considering a large family of T-even phages, 

ORFs homologous to the gp5.4 protein from T4 were always found near gp5-like proteins. This 

allowed hypothesizing that gp5.4 caps the gp5-gp27 complex. Gp5.4 is a 97 amino acid long 

protein (GenBank ID AAD42485.1). 
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 a) b) c) 
Figure 3.17 T4 cell-puncturing device caping protein placement. 
a) general view of the T4 phage; b) baseplate cut-away view; in red is circled an unannotated density; c) gp5-gp27 
complex a.k.a the T4 cell-puncturing device; in yellow is circled its blunt end. Figure adapted from (Kostyuchenko, 
et al. 2003) and (Kanamaru, et al. 2002). 
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3.2.2 Materials and Methods 

3.2.2.1 Construct engineering 

The knowledge about structure and properties of the C-terminal deletion mutant of gp5 β-helix 

containing residues R483-G575 was of great help in working with gp5.4. Gp5R483 behaved and 

crystallized well and thus it was chosen as a co-expression partner for gp5.4, as its carrier. Also 

the gp5R483 structure could be used as a search model for molecular replacement. The gp5 β-

helix fragment was modified by removing R483 to avoid having a bulky residue at the N 

terminus as it was disordered in the 1.3 Å structure and could potentially have interfered during 

crystallization of the gp5–gp5.4 complex. This gave rise to a new mutant, gp5G484. It was 

cloned together with gp5.4 into a pEEva2 plasmid (a derivative of pET23a). Gp5G484 was 

genetically modified to contain a histidine-rich (His6, His-tag) extension via TEV-cleavage site 

(ENLYFQG) and SGS linker at the N-terminus. Dr. Mikhail Shneider did construct engineering 

and cloning. 

3.2.2.2 Protein expression and purification 

The pEEva2 plasmid carrying gp5-gp5.4 DNA complex was transformed into the BL21 (DE3) 

strain of E. coli. The transformed cells were grown at 37 °C in the LB medium, complemented 

with ampicillin at the concentration of 200 μg/ml until the optical density reached the value of 

0.6-0.8 at 600 nm. The medium was cooled on ice to the temperature of 18-20 °C followed by 

induction the gp5-gp5.4 complex expression by addition of IPTG to a final concentration of 1 

mM. After further incubation at 18 °C overnight (approximately 16 hours), the cells were 

harvested by centrifugation at 5180 g, 4 °C. The cell pellet was resuspended in 1/50th of the 

original cell volume in a 20 mM Tris-HCl pH 8.0 buffer complemented with 300 mM NaCl, 

5mM imidazole (Im) and 0.02% NaN3. The cells were lysed by sonication. The cell debris was 

removed by centrifugation at 35000 g for 15 minutes at 4 °C. The supernatant was loaded onto 

the Ni2+-precharged 5ml GE HisTrap FF Crude column (GE Healthcare Life Sciences), which 

was equilibrated with 20 mM Tris-HCl pH 8.0, 300 mM NaCl. Protein was eluted with 20 mM 

Tris-HCl pH 8.0, 300 mM NaCl, 250mM Im buffer using two-step gradients on an 

AKTApurifier 100 system (GE Healthcare Life Sciences): 1) 15% (37.5 mM) Im – to remove 

nonspecific bounded proteins and 2) 100% (250 mM) Im – actual protein elution. Upon 

completion of the chromatography run, the fractions of the elution peak were pulled together and 

dialyzed overnight with simultaneous TEV His-tag cleavage against 10 mM Tris-HCl pH 8.0, 

complemented with 1ml of TEV-protease (at the concentration of 1mg/ml), 3 mM DTT, 1.5 mM 



 68 

EDTA for His-tag removal. Digested protein was further purified with ion-exchange 

chromatography (GE Mono Q 10/100 GL column connected to an AKTApurifier 100 system) in 

20 mM Tris-HCl pH 8.0 buffer using 0 to 1 M NaCl linear gradient Figure 3.18 a). Selected 

fractions of the ion-exchange chromatography were analyzed on SDS-PAGE gel Figure 3.18 b). 

Components 1 and 2 (Figure 3.18 b)) were further purified by size exclusion chromatography 

using a GE HiLoad 16/60 Superdex 200 PG (GE Healthcare Life Sciences) column connected to 

the AKTApurifier 100 system (GE Healthcare Life Sciences). A 10 mM Tris-HCl pH 8.0, 150 

mM NaCl buffer was used. 

 
 a) 

  
  b) 
Figure 3.18 Purification and fraction analysis of the gp5-gp5.4 complex. 
a) ion-exchange purification of the complex; b) purification analysis with SDS-PAGE. In red are frames bands, 
corresponding to the Components 1 and 2. 

  

2A2 2A6 2B7 2B3 2C3 2C8 
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3.2.2.3 Crystallization, data collection and structure determination 

3.2.2.3.1 Component 1 

Judging from the unannotated EM density at the very tip of gp5, the MW of gp5.4 was expected 

to be around 30 kDa (3x10kDa) and have a structure somewhat similar to gp5 – an intertwined 

triple β-helix or coiled coil or gpV/gp138 apex tip-like structure (Browning, et al. 2012). 

Gp5G484-gp5.4 complex was expected to run in the range of 58-60 kDa on the SDS-PAGE gel 

(29kDa – trimer of gp5G484 together with 30 kDa for gp5.4 trimer). The highest MW band, 

present on the gel corresponds to 45-46 kDa Figure 3.18 b), Component 1. Previously it was 

observed that the tight trimer of gp5R483 runs on a SDS gel in a lower MW range then was 

expected (data not shown). Considering this fact it was believed that the observed band of 45-46 

kDa may correspond to the complex of interest and proceeded with crystallization. 

The protein complex was brought to the concentration of 22 mg/ml in 10 mM Tris-HCl pH 8.0, 

150 mM NaCl buffer. Initial crystallization screening was carried out employing the method of 

sitting drop in 96 well SWISSSCI MRC 2 plates using Jena Bioscience crystallization screens. 

Optimization of initial hits from the successful crystallization conditions was carried out in 24 

well plates employing the method of hanging drop vapor diffusion. Crystals were obtained by 

mixing 1.25 μl of purified protein complex with 1.25 μl of reservoir solution and allowed to 

equilibrate against 500μl of 22% PEG 4000, 200 mM Li2SO4, 100 mM Tris-HCl pH 8.5 at 18 

°C. Prism-like crystals appeared in about 5 days and continued to grow for another week 

reaching dimensions of 0.2 mm x 0.15 mm x 0.1 mm (Figure 3.20 a)). Crystals appeared to be 

exceptionally sensitive to the temperatures above 20 °C as they did not survive a 3 hours 

synchrotron trip and handling at the beamline, thus dissolved while being handled. Crystals re-

appeared within a week or two in the same drops, were flash-frozen in the liquid nitrogen and 

transported frozen to the beamline. They belong to the P21, #4 space group with a = 110.29, b = 

73.79, c = 111.60 Å, β = 113.39o unit cell parameters. Data collection was carried out at the 

X06SA PXI Pilatus beam line of the Swiss Light Source (SLS) at the Paul Scherrer Institute 

(SLS, Villigen, Switzerland) at the wavelength of 1 Å. Best crystals diffracted to better than 2 Å 

resolution. The diffraction data was indexed, integrated and scaled with XDS (Kabsch 2010), 

details are summarized in Table 3.5. The Matthews coefficient (Matthews 1968) at 2.40 Å3/Da 

suggested with total probability of 0.86 that the asymmetric unit accommodates 3 molecules of 

gp5-gp5.4 complex. The structure of the Component 1 was determined by molecular 

replacement using the program PHASER (McCoy, et al. 2007), with the 1.3 Å structure of 

gp5R483 deletion mutant as a search model. Structure solution revealed that the crystallized 
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Component 1 is a dimer of two solo gp5G484 trimers (totaling of 58 kDa). The model was built 

manually with Coot (Emsley and Cowtan 2004) and refined with REFMAC5 (Winn, et al. 2011) 

using NCS. 

3.2.2.3.2 Component 2 

Despite the negative outcome with Component 1 there was another peak from the ion-exchange 

purification step. A mass spectrometry analysis on the material from this peak revealed a mass, 

precisely corresponding to the MW of gp5.4 without first Met residue (Figure 3.19). There was 

no evidence of gp5G484. Nevertheless gp5-gp5.4 complex formation was not confirmed by mass 

spectrometry (or by any other means) purification of the Component 2 continued, followed by 

crystallization. 

 
Figure 3.19 ESI-TOF mass spectrometry analysis of the gp5-gp5.4 protein complex. 
Deconvoluted MW of the family of peaks A (framed in red) corresponds to the mass of the gp5.4 protein without 
first methionine residue. 

The protein complex was brought to a concentration of 20 mg/ml in 10 mM Tris-HCl pH 8.0, 

150 mM NaCl buffer. Initial crystallization screening was carried out employing the method of 

sitting drop in 96 well SWISSSCI MRC 2 plates using Jena Bioscience crystallization screens. 

Optimization of crystallization conditions was carried out in 24 well plates employing the 

method of hanging drop vapor diffusion. Crystals were obtained by mixing 1.25 μl of purified 
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protein complex with 1.25 μl of reservoir solution and allowed to equilibrate against 500μl of 

26% PEG 2000, 80 mM MgCl, 100 mM Tris-HCl pH 8.5 at 18 °C. Crystals appeared in about 3 

days quickly reaching their maximum dimensions of 0.6 mm x 0.1 mm x 0.05 mm forming 

quartz-like clusters Figure 3.20 b). For data collection, the crystals were dipped for 20-30 

seconds into the cryoprotectant solution containing 25% v/v of ethylene glycol in additional to 

the crystallization solution components and flash frozen in a vaporized nitrogen stream at 100 K. 

Crystals belonged to P21, #4 space group with a = 46.30, b = 49.33, c = 84.06 Å, β = 96.19o unit 

cell parameters. Data collection and fluorescence scan were carried out at the X06SA PXI 

Pilatus beam line of the Swiss Light Source (SLS) at the Paul Scherrer Institute (SLS, Villigen, 

Switzerland) at the wavelength of 1 Å. Best crystals diffracted to better than 1.2 Å resolution. 

The diffraction data was indexed, integrated and scaled with XDS (Kabsch 2010), details are 

summarized in Table 3.5. As oligomeric state of the gp5.4 was unknown the Matthews 

coefficient was not of a great use. The structure of the Component 2 was determined by 

molecular replacement using the program PHASER (McCoy, et al. 2007). The 1.3 Å structure of 

the gp5R483 deletion mutant was used as a search model. Based on the unit cell parameters was 

made an assumption that the asymmetric unit accommodates 1 molecule of gp5-gp5.4 complex, 

thus a search request was specified to find one copy of the gp5G484 trimer. This assumption was 

further confirmed by the Matthews coefficient of 2.40 Å3/Da with total probability of 1.0. 

Structure solution revealed that crystallized Component 2 is the complex of interest and consists 

of a gp5G484 trimer and a monomer of gp5.4 (totaling of 40.4 kDa). The model was built 

manually with Coot (Emsley and Cowtan 2004) and refined with SHELXL (Sheldrick 2008). 

 
a) 

 
b) 

Figure 3.20 Crystals of Components 1 and 2 resulted from gp5-gp5.4 complex purification. 
a) Component 1 (gp5G484 dimer) and b) Component 2 (gp5G484-gp5.4 complex) crystals (the scale bar length is 
200μm). 
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Table 3.5 X-ray data collection and refinement statistics of Component 1 (gp5G484 dimer) 
and Component 2 (gp5G484-gp5.4 complex). 
Data in parenthesis represent statistics for the highest resolution shell. 

Data collection Component 1 Component 2 

Wavelength 1.0 Å 1.0 Å 

Number of frames 990 1440 

Frame width (°) 0.25 0.25 

Space group P1 2(1) 1 (#4) P1 2(1) 1 (#4) 

Unit cell parameters: 

a, b, c (Å) 

α, β, γ (°) 

110.29, 73.79, 111.60 

90, 113.39, 90 

46.30, 49.33, 84.06 

90, 96.19, 90 

Biologic assembly Dimer of trimers 
Tetramer (trimer + 

monomer) 

Number of biological assemblies per 

asymmetric unit 
3 1 

Resolution (Å) 60.0 – 2.0 46.0 – 1.15 

Rmeas 0.095 (0.363) 0.057 (0.436) 

<I / σI> 6.7 (2.4) 12.1 (2.3) 

Completeness (%) 96.6 (95.9) 95.2 (81.3) 

Redundancy 2.4 (2.5) 3.2 (2.5) 

   

Refinement   

Number of reflections   

    Working 110537 124490 

    Test 5818 4516 

Rwork / Rfree 0.219/0.279 0.127/0.171 

B-factor (Å2) 35.3 22.9 

R.m.s. deviations   

    Bond lengths (Å) 0.019 0.013 

    Bond angles (°) 1.849 0.030 

Number of atoms   

    Protein 12217 2893 

    Solvent and ligands 992 638 

Ramachandran plot (%)   

   Most favored  98.9 95.2 

   Additionally allowed 1.1 4.5 

   Outliers 0.0 0.3 
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3.2.3 Results and discussion 

3.2.3.1 Morphology overview and dimer formation peculiarities of the gp5G484 dimer 

The structure of the gp5 β-helix was initially analyzed by (Kanamaru, et al. 2002) and its C-

terminal fragment, gp5R483, was analyzed in greater detail in paragraph 3.1 of this manuscript. 

This paragraph will focus on the analysis of the surface contacts of two gp5G484 trimers, 

forming a dimer of trimers. Similar oligomer formation was already observed for gp5R483 – it 

formed pseudodimers via Sr2+ sites (see 3.1.3.2). 

In the crystallographic unit cell three dimers of trimers are present, totaling 6 gp5G484 

molecules. Dimerization occurs via the C termini of the trimers. Four out of six trimers have 

same fold of the gp5 C terminus as previously reported by (Kanamaru, et al. 2002) and in 

paragraph 3.1. Two of these “usual” gp5 fragments form one type of dimers of trimers (Figure 

3.21 a)). Two other “usual” β-helix fragments form two pairs of dimers with gp5G484 trimers, 

whose last β-strands (residues 571-575) fold backwards, into antiparallel manner, stacking on top 

of the preceding β-strand (Figure 3.21 b)). This fold became available due to reorientation of the 

R571, which has become a part of the tight turn along with conventional S570. For both forms of 

dimer of trimers the side chain of the R571, which was oriented towards the outside of the 

protein molecule and disordered in free gp5R483, is oriented towards the negatively charged site 

of the opposite gp5G484 molecule, formed by G569, D568 and G575. In this configuration the 

R571 guanidinium group is fixed by H-bonds formation with backbone O from G569, Oε1 from 

D568 and G575 OXT. R571 side chain is well ordered and can be easily modeled (Figure 3.22). 

No other amino acid side chain pairs, forming H-bonds were detected. However, in the close 

contact area present an H-bond network between the opposite dimer main chains, typical to β-

sheet structures. 
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a) 

 
b) 

Figure 3.21 Two forms of the gp5G484 dimer of trimers. 
Semi-transparent molecular surface with ribbon diagram representation of the polypeptide chains for each type of 
dimers. For clarity a single pair of polypeptide chains forming intertrimer contacts are colored in yellow and red for 
a) and magenta and acid green for b). 

 

 
Figure 3.22  “New” orientation of the R571 in gp5G484 dimer of trimers. 
H-bond network stabilizing R571 side chain is showed with dash line. Residues, forming H-bond network are 
numbered. 2Fo-Fc map is contoured at 1.5σ. 
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3.2.3.2 Morphology overview of the gp5G484-gp5.4 structure 

The structure of the gp5G484-gp5.4 complex was determined by molecular replacement and 

refined to 1.15 Å resolution. Three polypeptide chains of gp5 fragment constitute an intertwined 

triple β-helix, however remarkably gp5.4 turned out to be a monomer that is folded into a 

triangular pyramid that decorates the blunt end of the gp5 β-helix. The overall shape of the 

gp5R484-gp5.4 complex reminds of a sharpened pencil of 102 Å long and 28 Å wide. The 

gp5G484 forms the “pencil’s” body and gp5.4 – its sharpened tip. 

Spike proteins from P2 and φ92 consist of 3 domains: OB-fold, β-helix and apex domains 

(Figure 3.23 b), c)) whereas the T4 cell-puncturing device has additional two domains: gp27 and 

gp5 lysozyme domain (Figure 3.1 c)). Gp27 is situated above an OB-fold domain that crowns 

full-length β-helix, and suits as an interface linker between the hexameric baseplate and trimeric 

gp5 (Kostyuchenko, et al. 2003). Gp5 lysozyme domain spans along the faces of β-helix and 

meant to digest bacterial peptidoglycan. The gp5G484-gp5.4 fragment of T4 injection machinery 

comprised only from a β-helical domain and an apex. The structure was deposited in the Protein 

Data Bank under accession number 4KU0. 

3.2.3.3 β-helix comparison in gp5, gpV and gp138 

The full-length T4 β-helix is much longer compared to those of P2 and φ92: 110 Å against 60 

and 41 Å in gpV and gp138 respectively; the gp5G484 fragment is 52 Å long. Each face of the 

gp5 β-prism starts with a 5-strended antiparallel β-sheet. Then the structure becomes fully 

intertwined with each chain of the trimer wrapped between the other two (Figure 3.24 a)). The 

gpV completely follows the trend of gp5 – starts with an antiparallel 3-stranded β-sheet followed 

by 12-stranded intertwined structure (Figure 3.24 b)) whereas in gp138 β-helix is composed of 

three antiparallel β-sheets, two of which lay along the same face of imaginary trigonal prism, and 

the third one, C-terminal β-sheet, is clockwise shifted around the threefold axis of the protein 

(Figure 3.24 c)). 
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 a) b) c) 
Figure 3.23 Morphology overview and comparison of T4 gp5G484-gp5.4 a), P2 gpV b) and 
φ92 gp138 c). 
Ribbon representation is used. Different polypeptide chains are colored in different colors. 

 

 
 a) b) c) 
Figure 3.24 Topology of the β-helix in a) T4 gp5G484-gp5.4 complex b) P2 gpV and c) φ92 
gp138. 
Ribbon representation is used. For clarity single polypeptide chain comprising β-helix is colored in sky blue. Gp5.4 
is colored in red.  
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3.2.3.4 Analysis of the gp5.4 protein structure and its comparison to the apex domains in 

gpV and gp138 

Gp5.4 protein is a monomeric protein. It belongs to the PAAR (Proline-Alanine-Alanine-

aRginine) repeat superfamily (the superfamily will be characterized in details in 3.3.3) and form 

a sharp conical extension of the gp5-gp27 protein complex, aka T4 cell puncturing device. Its 

polypeptide chain is folded into three loops of different length that slightly wrap around each 

other (Figure 3.26 a)). The first loop is composed of residues 2-29 and has an intermediate 

length, the second loop is the longest – residues 30-66 and the third loop is the shortest – 

residues 67-96 (Figure 3.26 b)). The interloop regions (residues 31-33 and 67-69) together with 

4 terminal residues (94-97) are 3 β-strands that form the “base” – a surface where gp5.4 attaches 

to gp5. Each β-strand of the “base” is parallel to the corresponding last β-strand from each chain 

of gp5G484. Close contact surfaces are composed of hydrophobic residues: Ile, Lys, Phe, Val, 

Arg. Figure 3.25 a) – a surface representation and coulombic surface coloring of gp5G484-gp5.4 

complex perfectly demonstrates a hydrophobic patch that lies on the border between gp5G484 

and gp5 and corresponds to the contact area between negatively charged gp5.4 and gp5G484. In 

the close contact area there are no pairs of charged residues, which would contribute to complex 

formation via side chain coulomb interactions. However, there are three peripheral plug – 

jackplug pairs (similar to the situation, described in paragraph 3.2.3.1 for gp5G484 dimer of 

trimers), resulting into 9 hydrogen bond formation (three per pair). These pairs are formed by 

backbone O from G569, Oε1 from D568 and OXT that belongs to G575 on one side and Lys 

residues (28, 66 and 93) on another. Also, there is an intermolecular main chain hydrogen bond 

network present, which is typical for β-sheet interaction. The network is composed of 11 H-

bonds. This analysis allows us to conclude that hydrophobic interactions along with a network of 

H-bonds are the forces that are required for the gp5G484-gp5.4 complex to be formed and 

stabilized. 

The apex domains in gpV and gp138 are trimeric and constituted of residues 191–211 and 216–

245 respectively (20 and 29 residues per monomer). In both structures, the apex domain tapers 

from about 23 Å to 9 Å in diameter. Residues D203-S203-G204 comprise the sharp turn of the 

gpV apex loops. In gp138 these residues are G231-T232-G233-G234-S235. Nevertheless the 

gp138 tip is composed of 5 residues per chain against 3 in gpV both tips have about the same 

width. The reason is that the tip of gp138 contains a well-defined apex residue E231, which 

points along the axis of the trimer and form the actual extremity. The gp5.4 tapers from 27Å to 

6Å against 9 Å in gpV and gp138 what makes it the sharpest amongst discussed spikes (Figure 
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3.25). This characteristic of the gp5.4 is achieved due to the morphology of the longest loop 

sharp turn and the fact, that the only this loop makes the protein extremity. The loop sharp turn is 

constituted only of 4 residues: K50-K51-P52-Y53. 

 
 a) b) c) 
Figure 3.25 Surface representation and columbic surface coloring for gp5G484- gp5.4 
complex, gpV and gp138. 
Molecular surface is colored according to coulombic surface charge with blue, white and red corresponding to the 
most positive, neutral, and negatively charged patches, respectively. 
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Figure 3.26 Detailed analysis of the gp5.4 architecture and its comparison to gpV and 
gp138 apex domains. 
a) ribbon diagram of gp5.4 and zoomed region, containing Fe coordination site; b) analysis of the loops composing 
gp5.4; c) ribbon diagram of gpV and gp138 apex domains. 

The most remarkable feature about all three structures is the organization of the apex interiors. 

There is an iron ion present in all three structures. In gpV and gp138 each of the three chains 

constituting the apex domain contains a double-histidine motif – two histidine residues that point 

into the structure interior with the spacing of one amino acid in between (H197 and H199, K198 

is the spacer in gpV; H223 and H225 with T224 as a spacer in gp138). Three pairs of these 

histidines create an octahedral coordination site for the iron ion positioned on the three-fold axis 

of the protein (Figure 3.26 c)). In gp5.4 iron ion coordination site is tetrahedral and constituted 

of an ensemble of three His (H13, H45 and H55) and a single Cys (C82) residue (Figure 3.26 a), 

b)). The average Fe-His (Nε2) bond distance is 2.01 ± 0.01 Å and Fe-Cys (Sγ) is 2.31 Å. These 

values agree with an average value of 2.16 ± 0.15 Å for Fe-His (Nε2) bond distance and 2.30 ± 

0.05 Å for Fe-Cys (Sγ) (for the average bond length values calculation were chosen the structures 
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with coordination number CN = 4 and tetrahedral geometry (max bond angle deviation from the 

ideal in tetrahedron was 20o), resolution limit 2.2 Å; MESPEUS_10 was used for analysis (Hsin, 

et al. 2008)). Each loop of gp5.4 (like each chain in gpV and gp138) donates a residue or two for 

coordination site constitution thus making out of the iron ion a hardness element that adds extra 

rigidity to the protein during bacterial cell membrane piercing. A possible other function of the 

iron ion is to be a protein folding reference point – to keep the loops in register to each other 

during the folding. (Browning, et al. 2012) Also propose these functions for the iron ion in gpV 

and gp138. 

Analyzing the gp5.4 protein family, it was established, that the only four amino acids, three 

histidines and a cysteine, are absolutely conserved in all gp5.4 orthologs (Figure 3.32 a)). The 

same applies for the family of proteins, where belong P2 gpV and ϕ92 gp138. Alignment of their 

amino acid sequences to the protein database shows strong conservation of the double-histidine 

motif – the residues that form metal coordination sites, but low sequence identity (Browning, et 

al. 2012). Considering the central spike structures of phages P2 and phi92, T4 and T6SS VgrG, 

as well as extensive bioinformatical study (Leiman and Shneider, Contractile tail machines of 

bacteriophages 2012) and (Browning, et al. 2012) it becomes evident that the architecture of the 

central spike proteins in all contractile systems is conserved. Nevertheless central spikes of 

phages, infecting the same host, are very diverse in terms of their sequences, they show a very 

high thermal stability even in the presence of denaturing agents (Leiman Lab, unpublished data, 

(Browning, et al. 2012)), arguing that they interact with the host cell membrane non-specifically 

and most likely act as membrane-piercing drills. 

 

In the Figures 3.20, 3.21, 3.22, 3.23 parts b) and c), depicting gpV and gp138, were adapted 
from (Browning, et al. 2012). 
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3.3 Type 6 secretion system (T6SS) warhead proteins 

Most of the following subchapter was adapted from the paper (Shneider, et al. 2013). 

3.3.1 Introduction 

The bacterial type VI secretion system (T6SS) is a large multi-component macromolecular 

machine that plays an important role in the ecology of many Gram negative bacteria. T6SS is 

responsible for translocation of a wide range of toxic effector molecules allowing predatory cells 

to kill both prokaryotic as well as eukaryotic prey cells. The T6SS organelle is a member of 

contractile injection systems and functionally analogous to contractile tails of bacteriophages and 

is thought to attack cells by initially disrupting cell membrane with a trimeric protein complex 

called the VgrG spike (Pukatzki, et al. 2007), (Leiman, Basler, et al. 2009). Neither the exact 

protein composition of the T6SS organelle nor the mechanisms of effector selection and delivery 

are known. Here below is reported that proteins from the PAAR (Proline-Alanine-Alanine-

aRginine) repeat superfamily form a sharp conical extension on the VgrG spike, which is further 

involved in attaching effector domains to the spike. 

Careful examination of VgrG sequences showed that a β-structural repeat, which is presumed to 

be responsible for β-helix formation (Pukatzki, et al. 2007), either extends to the very C terminus 

of the protein or terminates with a glycine/serine-rich stretch. The X-ray crystal structure of one 

full-length VgrG trimer revealed the glycine/serine-rich stretch bends the polypeptide chain 

away from the β-helix without disturbing its tip, and that all VgrG β-helices have blunt ends 

resembling that of T4 gp5 β-helix (Leiman Lab, unpublished data). Due to solubility problems of 

most tested VgrG and PAAR proteins, was used a soluble fragment of T4 gp5 β-helix (residues 

484-575), which is known to fold into a stable native-like trimeric structure, as a platform for 

creating β-helices mimicking the blunt end of various VgrG spikes. The last two β-strands at the 

tip of gp5 β-helix were replaced to mimic complementary VgrGs from Escherichia coli CFT073 

and Vibrio cholera V52. These gp5-VgrG chimeras were then co-expressed with PAAR proteins. 
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3.3.2 Materials and methods 

Dr. Mikhail Shneider designed the gp5G484-PAAR expression vectors and purified the proteins. 

3.3.2.1 Construct engineering and cloning 

The gp5 fragment containing residues 484-575 was cloned into the in-house designed expression 

vector pEEva2 (a derivative of the pET-23a plasmid (Novagen)). The T7-tag was replaced with a 

MGSSH6SSG His-tag followed by a TEV protease cleavage site (ENLYFQG) and SGS linker. 

Upon expression and after TEV cleavage, the gp5 fragment contained four residues (GSGS) 

upstream of residue 484. The C-terminal residues of gp5 were modified by performing PCR with 

long primers containing the required mutations to mimic corresponding VgrG tips. 

For expression in cis, PAAR genes were cloned downstream from the gp5 fragment. For 

expression in trans, PAAR genes were cloned into the pATE vector (chloramphenicol selection), 

a derivative of the pACYCDuet-1 expression plasmid (Novagen). The dual cloning site of the 

pACYCDuet-1 vector was replaced by the multiple cloning site from the pEEva2 vector. 

3.3.2.2 Expression and purification of gp5-PAAR complexes 

Gp5-PAAR complexes were expressed in E. coli B834 (DE3) cells grown in the 2xTY medium 

containing ampicillin at 100 μg/ml for the cis constructs and, additionally, chloramphenicol at 34 

μg/ml for the trans constructs. The cultures with a total volume of 2 liters were incubated at 37° 

C with shaking at 200 rpm until the culture optical density reached 0.6 (at 600 nm wavelength). 

The culture was cooled down to 18 °C, and the protein expression was induced by an addition of 

IPTG to a final concentration of 1 mM. The expression continued overnight. Cells were 

harvested by centrifugation at 5180 g at 4 °C for 15 min. The cell pellet was resuspended in a 

lysis buffer that contained 20 mM Tris-HCl pH 8.0, 300 mM NaCl, 5 mM Imidazole. The cells 

were lysed by ultrasonication on ice. The lysate was centrifuged at 35000 g, 4 °C for 15 min. 

The supernatant was loaded onto a Ni2+ precharged column (5ml GE HisTrap FF Crude), 

connected to the AKTApurifier 100 system (GE Healthcare Life Sciences). The non-specifically 

bound material was removed by washing the column with a washing buffer (50 mM Tris-HCl 

pH 8.0, 300 mM NaCl, 20 mM Imidazole). The affinity bound material was eluted with an 

elution buffer (20mM Tris-HCl pH 8.0, 300 mM NaCl, 250 mM Imidazole). The fractions 

containing the target protein were pulled together and set up for the His-tag overnight digestion 

with TEV-protease against 10 mM Tris-HCl pH 8.0, 3 mM DTT and 1.5 mM EDTA buffer. The 

digested protein was further purified by ion-exchange chromatography performed with a GE 
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Mono Q 10/100 GL column connected to an AKTApurifier 100 system. The sample was loaded 

onto the column, pre-equilibrated with buffer A (20 mM Tris-HCl pH 8.0) and eluted with a 

linear gradient against buffer B (20 mM Tris-HCl pH 8.0, 1M NaCl) using a linear gradient from 

0 to 65% of the buffer B concentration. Relevant fractions were combined and concentrated 

using Sartorius ultrafiltration devices with a molecular weight cutoff of 10,000 to a volume of ~5 

ml. This sample was then loaded onto a GE HiLoad 16/60 Superdex 200 size-exclusion column 

pre-equilibrated with 10 mM Tris-HCl pH 8.0, 150 mM NaCl. The fractions containing pure 

gp5G484-PAAR complexes were combined and concentrated to 25 mg/ml with the help of 

similar Sartorius ultrafiltration unit. The protein was stored in the same buffer at +4 °C until it 

was used for crystallization. All purification buffers and the final protein solution contained 

NaN3 at a concentration of 0.02% (w/v).  

3.3.2.2.1 Identification of gp5-PAAR complexes 

The experience with gp4G484-gp5.4 showed that two protein species – gp5G484-PAAR 

complex and gp5G484 (dimer of trimers) were accumulating during protein purification. The β-

helical fragment of gp5 does not fully denature in sodium dodecyl sulfate, and runs during SDS-

PAGE experiment as two species of ~27 and ~10 kDa (Figure 3.18 b), sample bands 1 and 2, 

2A2 and 2A6 fraction, respectively. PAAR proteins (MW ~9.7 kDa) have the same SDS-PAGE 

mobility as the fastest migrating band of gp5G484 (MW ~10 kDa). However, these species are 

separable by high resolution anion exchange chromatography (monoQ resin). The gp5 fragment 

is a highly negatively charged β-helix ( (Kanamaru, et al. 2002), Figure 3.25 a)) that binds to the 

monoQ anion exchange resin stronger than gp5G484-PAAR complex. Thus, proteins can be 

separated: gp5G484-PAAR complexes are eluted earlier than gp5 fragment (all oligomeric 

forms) Figure 3.18 a). 

3.3.2.3 Crystallization and structure determination of gp5-PAAR complexes 

The initial crystallization screening was carried out by the sitting drop method in 96 well 

SWISSCI 2-lens MRC plates using Jena Bioscience crystallization screens. Optimization of 

crystallization conditions was performed in 24 well-plates (Jena Bioscience) by hanging drop 

vapor diffusion. Crystallization drops of the 24 well-plate setup contained 1.25 μl of the protein 

solution in 10 mM Tris-HCl pH 8.0, 150 mM NaCl mixed with an equal volume of the well 

solution. Best crystals of the gp5G484-c1882 complex were obtained with the protein having the 

initial concentration of 13.5 mg/ml and equilibrated against 500 μl of the well solution 

containing 100-150 mM CaCl2, 13-15% PEG 3350, 100 mM MES pH 6.5 (Figure 3.27 a)). Best 
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crystals of the gp5-VCA0105 complex were obtained with the protein at 15 mg/ml and 

equilibrated against 500μl of the well solution containing 13-14% PEG 2000, 100 mM NaAc pH 

5.0 (Figure 3.27 b)). 

 
a) 

 
b) 

Figure 3.27 Crystals of the gp5_c1883-c1882 a) and gp5_VCA0018-VCA0105 b). 
 

For data collection, the crystals were dipped for 20-45 seconds into cryo solutions containing 

either 30% of glycerol for gp5G484-c1882 or 25% of 2-methyl-2,4-pentanediol for gp5G484-

VCA0105 in addition to the well solution components and flash frozen in a vaporized nitrogen 

stream at 100 K. Collection of diffraction data and fluorescent scans was carried out at the PXI 

and PXIII beam lines of the Swiss Light Source (SLS) at the Paul Scherrer Institute (Villigen, 

Switzerland), respectively, using X-rays with a wavelength of 1.000 Å for both crystals. Best 

gp5-c1882 and gp5-VCA0105 crystals diffracted to 3.4 Å and 1.9 Å resolution limits, 

respectively. The diffraction data was indexed, integrated, and scaled with XDS (Kabsch 2010, 

Kammerer, et al. 1998). The structure of the gp5-c1882 complex was solved by molecular 

replacement with PHASER (McCoy, et al. 2007) using the gp5R483 structure (paragraph 2.1) as 

a search model. As the asymmetric unit contained four gp5-c1882 complexes, non-

crystallographic symmetry (NCS) averaging was used to improve the electron density prior to 

model building. The model was built manually with Coot (Emsley and Cowtan 2004) and 

refined with REFMAC5 (Winn, et al. 2011) and PHENIX (Adams, et al. 2010) using NCS for 

torsion angles restraints. The structure of gp5-c1882 was subsequently used as a search model to 

solve the structure of the gp5-VCA0105 complex by molecular replacement with PHASER 

(McCoy, et al. 2007). There was only one complex per asymmetric unit. The structure was 

refined with PHENIX (Adams, et al. 2010, Ackermann 2003, Ackermann 2003, Ackermann 

2003) and Coot (Emsley and Cowtan 2004, Fischetti 2006). Details of data reduction and 

refinement are given in the Table 3.6. 
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Table 3.6 X-ray data collection and refinement statistics of gp5_VCA0018-VCA0105 and 
gp5_c1883-c1882 complexes. 
Data in parenthesis represent statistics for the highest resolution shell. 

Data collection gp5_VCA0018-VCA0105 gp5_c1883-c1882 

Wavelength 1.0 Å 1.0 Å 

Number of frames 720 480 

Frame width (°) 0.25 0.25 

Space group P4222 P6122 

Cell dimensions (Å) a = 113.70, c = 76.90 a = 187.16, c = 238.89 

Number of gp5-PAAR protein 

complexes per asymmetric unit 
1 4 

Resolution (Å) 80.4 – 1.9 48.6 – 3.4 

Rmeas 0.06 (0.37) 0.15 (1.01) 

<I / σI> 20.0 (4.9) 12.6 (2.1) 

Completeness (%) 99.9 (99.3) 99.8 (98.9) 

Redundancy 6.9 (7.0) 7.0 (6.7) 

   

Refinement   

Number of reflections   

    Working 40054 33366 

    Test 2007 1692 

Rwork / Rfree 0.16 / 0.21 0.184 / 0.243 

B-factor (Å2) 41.4 162.9 

R.m.s. deviations   

    Bond lengths (Å) 0.007 0.002 

    Bond angles (°) 0.995 1.039 

Number of atoms   

    Protein 2880 10848 

    Solvent and ligands 513 60 

Ramachandran plot (%)   

   Most favored  100.0 97.7 

   Additionally allowed 0.0 2.3 

   Outliers 0.0 0.0 
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3.3.3 Results and discussion 

3.3.3.1 Morphology overview and structure analysis of the gp5_VgrG-PAAR complexes 

The gp5-c1882 and gp5-VCA0105 complexes were purified and crystallized. The structures 

were solved by molecular replacement (Rossmann and Blow 1962) using the gp5R483 β-helix 

fragment as a search model. Structures of both complexes from T6SS are very similar to the 

gp5G484-gp5.4 complex structure from T4 phage, with minor differences. In all three complexes 

a single chain of the PAAR protein folds into a symmetrical cone-shaped structure with a sharp 

tip and a triangular base fully occupying the blunt end of the β-helix (Figure 3.28). The cone 

contains 9 short β-strands, three of which create its base and participate in binding to gp5 and six 

others form three β-hairpins that point toward the vertex of the cone, but have different lengths. 

The PAAR proteins interact with the gp5 β-helix via a virtually flat hydrophobic patch and 14 or 

16 hydrogen bonds for c1882 or VCA0105, respectively (Figure 3.29). In both proteins, 12 

hydrogen bonds (11 in gp5-gp5.4 structure) between the main chain atoms of the tip of gp5 and 

those of the PAAR domain form a perfect triangle surrounding the central hydrophobic patch 

creating a unique binding platform (Figure 3.30). PISA software (Krissinel and Henrick 2007) 

shows that ~16.5% of the PAAR protein surface is buried in this interface and the free energy of 

interaction between the VgrG tip and c1882 or VCA0105 PAAR proteins is -5.5 kcal/mol or -3.4 

kcal/mol, respectively. 

The three loops of the PAAR proteins from T6SS are stabilized by a Zn2+ ion positioned close to 

the cone’s vertex, when in T4 gp5.4 the stabilizing is done by an Fe3+ ion (Figure 3.28 d). For 

gp5-VCA0105 was done a crystallographic refinement with all putative metal ions, which were 

fitted into the corresponding density and refined (Mn2+, Fe3+, Co2+, Ni2+, Cu2+ and Zn2+). Bond 

length, bond angles, B-factor and the height of the peak in difference map suggest that the metal 

ion is whether Zn2+ or Fe3+. To answer definitively on the coordinated metal ion identity 

question were done X-ray fluorescent experiments on the crystals of gp5-VCA0105 and gp5-

c1882. These experiments proved that the metal ion in both T6SS PAAR proteins is Zn2+ (Figure 

3.31). What made to rethink the conclusions for gp5.4. Following refinement of the gp5-gp5.4 

structure with a Zn2+ ion revealed a strong peak up to 4.7 RMSD in the Fo-Fc map (the noise 

level is at ~2.7 RMDS), when for the Fe3+ there is no such peak. This proves the accuracy of the 

earlier conclusions on gp5.4. 
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Figure 3.28 Crystal structure of the VCA0105 PAAR-repeat protein bound to its VgrG-like 
partner. 
a) schematic representation of the conserved domains comprising the VgrG-PAAR complex. The last strands of the 
β-helix that form the PAAR binding site are in light blue. Gray arrow shows the fragment roughly corresponding to 
the crystal structure; b) molecular surface representation of the gp5_VCA0018-VCA0105 complex crystal structure; 
c) ribbon diagram of the gp5_VCA0018-VCA0105 complex; d) the polypeptide chain of the VCA0105 PAAR 
protein is colored in rainbow colors with N terminus in blue and C terminus in red. Residues responsible for Zn 
binding are labeled as well as PAAR motifs are highlighted in magenta. 

  



 88 

 

Figure 3.29 Surface representation of gp5-PAAR complexes and VgrG-PAAR interface. 
Molecular surfaces are colored according to their hydrophobicity with sky blue, white, and orange corresponding to 
the most hydrophilic, neutral, and hydrophobic patches, respectively. 
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Figure 3.30 Main chain hydrogen bonding network of VgrG-PAAR interface. 
The three panels on the right show the main chain hydrogen within each face of gp5 β-helix. Side chains are not 
shown for clarity. 
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Figure 3.31 X-ray fluorescence spectra of gp5_VC0018-VCA0105 and gp5_c1883-c1882 
crystals and their cryoprotectant solutions. 
The excitation wavelength is 1.0 Å (~12.4 keV). 
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3.3.3.2 Conserved features of PAAR proteins 

A metal binding site in T6SS PAARs has the same composition as in T4 PAAR – it consists of 

three histidines and one cysteine. These four residues are very well conserved in close homologs 

(Figure 3.32 a)). In more distant homologs these residues are replaced with similar or 

complementary metal-binding residues (arginines, lysines and glutamines) suggesting that they 

also coordinate a metal ion roughly at the same position. 

The metal ion, being a natural ligand for this site, stabilizes the pointed tip of the PAAR domain 

and is likely to be important for its integrity during penetration of the target cell envelope. 

The PAAR motif sequence is also conserved, but with a lower degree of conservation than the 

metal (Zn) binding site (Figure 3.32 a)). The PAAR motif function is to stabilize the fold by 

forming the central scaffold of the structure where the three parts of the polypeptide chain meet 

and intertwine (Figure 3.32 b), c)). The modules of the three-PAAR-motif-scaffold are braced 

against each other through the main chain hydrogen bonds that are shielded by hydrophobic 

residues from all sides (Figure 3.32 d)). c1882 and VCA0105 show 25.8 and 29.0 % sequence 

identity with gp5.4 and 1.08 and 1.27 Å RMSD of Cα atoms positions of the backbone after 

models superposition, respectively. However, sequence identity between c1882 and VCA0105 is 

61.3 % and structure superposition RMSD (Cα atoms) is only 0.53 Å (Figure 3.33). 
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Figure 3.32 Conserved features of PAAR proteins. 
a) WebLogo35 sequence alignment of VCA0105 homologs identified with BLAST36. The conserved PAAR motif 
and residues forming the metal (Zn) binding site are labeled. Pseudotrimeric organization of the three interacting 
PAAR motifs in VCA0105 b) and c1882 c). 
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Figure 3.33 Superposition of VCA0105, c1882 PAAR structures onto T4 gp5.4. 
Residue numbers (T6SS PAAR) are given at strategic positions. 
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3.3.3.3 Bioinformatic analysis of PAAR proteins 

The PAAR-repeat proteins compose a diverse superfamily called CL15808 in the CDD database 

(Marchler-Bauer, Zheng and Bryant 2013) that contains three families PF05488, COG4104, and 

PF13665 (or DUF4150). The first two families are similar and describe PAAR domains that are 

on average ~95 residues long whereas the PF13665 family is somewhat more distant and its 

typical members contain ~130 amino acids. c1882, VCA0105 and gp5.4 are the representatives 

of the PF05488 family. Hundreds of hypothetical proteins in the database contain PAAR 

domains that are extended both N- and C-terminally. These extension domains are predicted to 

have various functions (Figure 3.34). The crystal structure shows that the termini of the PAAR 

domain are open to solution and thus can be extended without distorting the VgrG binding site 

(Figure 3.33). Very similar putative effector domains can be found fused to the C termini of 

VgrG proteins. Binding of these larger PAAR proteins to the tip of VgrG spikes would decorate 

the T6SS spike with a great variety of effector domains. 

VCA0284, the larger of the two V. cholerae V52 PAAR proteins, carries a transthyretin domain 

(TTR) at its C terminus, which is a very common architecture of PAAR proteins (Figure 3.34 

c)). TTR is an immunoglobulin-like domain that is known to form oligomeric structures in which 

these domains interact with each other or with other partners (Hamburger, et al. 1999). Thus, 

PAAR-associated TTR domains may act as adapters to further decorate the VgrG tip with 

effectors displaying TTR domains or serve to bind the spike to other TTR domain-containing 

proteins. 
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Figure 3.34 Bioinformatic analysis of PAAR proteins. 
a) Domain organization of all known bacterial (non-phage) PAAR proteins; b) Relative abundance of the seven 
distinct domain organizations; c) Predicted functions of the C-terminal domains. TTR stands for transthyretin 
domain. 
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3.3.3.4 T6SS machine multiple effector translocation VgrG (MERV) model 

c1882 and VCA0105 proteins as well as gp5.4, T4 PAAR protein cap the spike proteins of their 

contractile injection system. These proteins are VgrG in T6SS and gp5-gp27 protein complex in 

T4 phage. In addition to already proposed functions for T4 gp5.4 as sharpening and stabilizing 

the end of the spike β-helix during the initial piercing event of the target cell envelope, the 

structural and bioinformatic findings summarized above allow hypothesizing on additional 

PAAR-repeat protein functions. These functions are in close relation with T6SS feature of 

translocating the effector domains into the target cells. Because the crystal structures 

demonstrated that the canonical PAAR-repeat domain (~95 residues) can be extended N- or C-

terminally without distorting its structure or its VgrG β-helix binding site was made a prediction 

that large PAAR proteins carrying effector domains will probably also bind to VgrG spikes and 

be translocated into target cells by the T6SS organelle. Considering the findings reported here 

and other published data was proposed that there are five mechanisms by which effectors can be 

incorporated into the T6SS spike complex (Figure 3.35). Three of them: 1) C-terminal 

extensions of the VgrG spike (Pukatzki, et al. 2007); 2) binding surface features on the VgrG 

protein (Dong, et al. 2013), (Hachani, et al. 2011); and 3) N- or C-terminal extensions of the 

PAAR protein (Koskiniemi, et al. 2013); are supported by direct or indirect experimental 

evidence. Two others: 4) binding surface features or additional domains (for example, the TTR 

domain) on PAAR proteins and 5) incorporation into the cavity formed by the gp27 domain of 

VgrG, remain speculative. Thus, the T6SS machine may be capable of delivering a 

multifunctional ‘cargo’ or multiple effector translocation VgrG (MERV) spike into the target 

prey cell in a single molecular translocation event driven by T6SS sheath contraction. 
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Figure 3.35 T6SS machine multiple effector translocation VgrG (MERV) model. 
Effectors are predicted to be loaded onto the spike complex by five distinct mechanisms: 1) C-terminal extensions of 
the VgrG spike; 2) non-covalent binding to the VgrG spike; 3) N- or C-terminal extensions of the PAAR protein; 4) 
non-covalent binding to the PAAR protein or its extension domains; 5) incorporation into the cavity formed by the 
gp27 domain of VgrG. A single T6SS sheath contraction event translocates the VgrG spike with all of its cargo 
proteins into a nearby target cell. Other proteins making up the T6SS ‘baseplate’ (grey color) are not labeled but 
presumably reside within or attached to the inner and outer membranes and peptidoglycan layer (IM, OM, and PG, 
respectively). 
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3.4 Conclusions and perspectives 

This Ph.D. thesis was focused on studies of three contractile ejection systems: R-type pyocins, 

bacteriophage T4, and the type VI secretion system. Proteins, responsible for attaching these 

large macromolecular machines to the host cell surface or involved in disruption of the lipid 

envelope were studied.  

R-type pyocins are being developed into a tunable antimicrobial agent by our collaborators in 

AvidBiotics Corp. in S. San Francisco, CA, USA. Host specificity of a pyocin particle is 

determined by the fibers that emanate from the baseplate. The structure of the fiber is of great 

benefit for designing new chimerical pyocin particles that carry foreign fibers, which allow the 

pyocins to bind and kill specific pathogens. We have isolated the receptor-binding part of the 

fiber, and studied it using X-ray crystallography. Crystal structures of two distinct types of fibers 

that characterize all other fibers have been determined. Unfortunately, experiments aimed at 

finding the receptor-binding site on the fiber have been unsuccessful. Nevertheless, structural 

characterization and bioinformatic analysis allowed us to propose a function for the pyocin fibers 

that describes a mechanism by which the orientation of the fiber might trigger contraction of the 

pyocin particle.   

In addition to the crystallographic studies of the fiber, the structure of the R-type pyocin particle 

was studied by cryo-electron microscopy (cryoEM). The cryoEM structure showed that similar 

to phage T4 the pyocin particle carried a centrally position spike protein, which is responsible for 

membrane piercing during infection. The receptor-binding part of the fiber was disordered in the 

cryoEM map. Crystallographic studies of the receptor-binding part of the fiber complement the 

cryoEM studies thus giving a complete structure of the pyocin particle. This structural 

information makes it possible to design stable fusions of pyocin fibers with other phage tail 

fibers in other places besides the “sweet spot” around residue 140 found by the trial-and-error 

method by our AvidBiotics colleagues. 

Future aims in pyocin structural and functional characterization are the following: 

1. Determining the structure of the N-terminal domain of the fiber. This study is 

complicated because this domain shows a high propensity to aggregation and it does not 

fold when expressed on its own. It might be possible to create a fusion of this domain 

with a stable, well behaving (in terms of solubility and folding) fragment of a trimeric 

fiber or tailspike from other phage.  

2. Complete atomic-resolution structure of the baseplate. Such a structure, when combined 

with the fiber N-terminal domain structure, will explain how the receptor-binding signal 



 99 

is transferred to the baseplate and to the sheath triggering its contraction. Three proteins 

(PA0617)6-(PA018)12-(PA0619)6 form the major part of the baseplate, and it might 

possible to produce this complex in a form suitable for crystallization.  

The other focus area of this thesis work was the central spike proteins found in all contractile 

tail-like systems. We characterized the structure of the β-helical domain of the T4 spike protein 

gp5 in great detail. Perhaps, the most remarkable finding here was that long fatty acid molecules 

are buried inside the gp5 β-helix.  

We have been able to establish the composition and the structure of the complete T4 cell-

puncturing spike. The identity of the protein decorating the tip of the spike has remained 

unknown for many years. We have solved this puzzle and found that gp5.4 forms a sharp conical 

extension to the spike. Gp5.4 belongs to the family of Proline-Alanine-Alanine-aRginine 

(PAAR) repeat proteins, which are ubiquitous in phages and the type VI secretion system. The 

polypeptide chain of PAAR-repeat proteins has a complex topology and is organized around a 

buried iron or zinc ion. The structure of the gp5-gp5.4 complex was determined to a resolution of 

1.15 Å. 

One of the important aspects of this thesis was work related to the bacterial type VI secretion 

system. The central spike protein in T6SS is called VgrG and it is a T4 gp5 ortholog. Employing 

a fragment of gp5 β-helix as a bait, and modifying its gp5.4 binding interface to mimic the tip of 

various VgrG spikes we were able to purify and solve crystal structures of several complexes 

that contained a chimerical gp5 with different PAAR-repeat proteins bound to it (VCA0105 from 

Vibrio cholerae and c1882 from Escherichia coli CFT). Structural information along with 

bioinformatic analysis of the T6SS clusters revealed putative, previously unknown, means of 

effector delivering into pray cells involving PAAR domains. 

The topology of PAAR-repeat proteins resembles that of the apex domain of spikes containing 

the HxH double histidine motive found in P2 and ϕ92 phages (and their relatives). The latter also 

contain a centrally positioned iron ion. Combining all the data describing membrane-piecing 

spikes of contractile injection systems, it is evident that the architecture of the central spike 

proteins in all contractile systems is conserved. Furthermore, structural conservation with low 

sequence identity suggests that the central spikes of contractile systems interact with the host cell 

membrane non-specifically and most likely act as membrane-piercing drills. 

To the contrary, bioinformatics suggests that the central spike proteins from contractile tail-like 

systems that target Gram-positive bacteria have enzymatic domains associated with them, and 
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thus interact with the host cell surface in a specific way. This is an interesting direction of future 

research. 

Another interesting but challenging project is to verify whether multiple effectors can be 

attached to a single VgrG spike by means of their PAAR domains (or in any other way). Tools 

for expressing complexes containing several proteins – some of which are toxic – is a 

requirement in this project. Some of the proteins that bind to VgrG spikes contain more than 

2000 amino acids, making such a project extremely difficult but exciting. 
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3.5 Molecular graphics 

The following molecular graphics programs were used for preparation of the figures presented in 

this work. I would like to thank the people involved in the development and support of these 

programs. I am very grateful to the staff of UCSF Chimera project for supporting a very useful 

bulleting board and for creating excellent video tutorials and guides on program’s special 

features. 

Without such programs as Coot, PyMOL and UCSF Chimera it would be impossible to present 

the results of this thesis in a clear manner. 

Figure Program name 

2.4, 2.6, 2.7, 2.15, 2.17-22, 2.24, 3.5-7, 3.11, 

3.22, 3.24-27, 3.29-31, 3.33, 3.34 
UCSF Chimera (Pettersen, et al. 2004) 

2.16, 3.8, 3.11 Coot (Emsley and Cowtan 2004) 

3.9, 3.23 PyMOL (Schrödinger n.d.) 
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3.6 Description of author contribution to various projects during his Ph.D. work at the 

Laboratory of Structural Biology and Biophysics 

While a Ph.D. student at LBBS, the author of this thesis contributed to many projects 

some of which are discussed in this thesis and some have been or will be described elsewhere. 

Projects described in this thesis: 

Paragraph 2.2. CryoEM reconstruction of the R2 pyocin. 

Processing of scanned micrographs: CTF correction, filtering, particles boxing. Initial model 

creation, iterative refinement, intermediate results analysis and removal of bad particles. 

Reconstruction analysis and its graphical representation (segmentation of reconstruction, 

preparation of figures). 

Paragraph 2.3. Crystallographic studies of the R1 and R2 pyocin fibers. 

Expression and purification of the d3 deletion mutant of R1 and R2 pyocin fibers, initial 

screening and optimization of crystallization conditions, co-crystallization experiments, data 

collection and processing, structure solution and refinement, characterization of the structures, 

molecular graphics. 

Paragraph 3.1. Structure of the bacteriophage T4 gp5 β-helix. 

Optimization of initial crystallization conditions, crystallization experiments with different 

bivalent metal ions, data collection and processing of gp5 Sr derivative data, structure solution, 

anomalous maps calculations, samples preparation for mass spectroscopy (including organic 

extraction), mass spectrometry results interpretation (supervised by Dr. Laure Menin), structure 

characterization, molecular graphics. Structure deposition to PDB. 

Paragraph 3.1. Structure of gp5G484 dimer and gp5G484-gp5.4 complex. 

Protein expression and purification, initial screening and optimization of crystallization 

conditions, data collection and processing, structures solution and refinement, structures 

characterization, molecular graphics, deposition of gp5G484-gp5.4 structure to PDB. 

Paragraph 3.3.Type 6 secretion system (T6SS) warhead proteins (PAAR-repeat proteins). 

Initial screening and optimization of crystallization conditions, data collection and processing, 

structures solution and refinement, structures analysis and deposition to PDB. 
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Projects that have been or will be described elsewhere: 

Structural studies of bicyclic peptide ligands that bind to the human urokinase-type 

plasminogen activator protein. 

Optimization of crystallization conditions, data collection and processing, structure solution and 

refinement, structures characterization, deposition of structure to PDB. 

Structure and substrate specificity of the Acinetobacter baumannii phage AP22 gp54 

tailspike. 

Protein expression and purification, initial screening and optimization of crystallization 

conditions, co-crystallization with A. baumannii polysaccharide, data collection and processing, 

structures solution and refinement, structure characterization, molecular graphics. 

Structural studies of PA0618 – the largest protein of the pyocin baseplate. 

Protein expression and purification, initial screening and optimization of crystallization 

conditions, data collection and processing. 
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