Electrostatic Spray Ionization Mass Spectrometry Imaging

Liang Qiao¹, Elena Tobolkina¹, Andreas Lesch¹, Alexandra Bondarenko¹, Xiaoqin Zhong¹, Baohong Liu², Horst Pick³, Horst Vogel³, and Hubert H. Girault*¹

1. Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland

2. Chemistry Department, Fudan University, 220 Handan Road, 200433 Shanghai, China

3. Laboratoire de Chimie Physique des Polymères et Membranes (LCPPM), Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
Figure SI-1. (a) ESTASI MS signal of 15 µM Ang I in 50% methanol, 49% water and 1% acetic acid obtained under a frequency of the square wave high voltage (0 to 9 kV) as 40; (b) ESTASI MS signal of 15 µM Ang I in 50% methanol, 49% water and 1% acetic acid obtained under a frequency of the square wave high voltage (0 to 9 kV) as 5. The analyte was delivered by a fused silica capillary under a flow rate of 60 µL/h. TIC – Total Ion Current chromatogram.
Figure SI-2. Schematic representation of the relative wetting capillary movements with respect to the moving substrate in ESTASI MSI for (a) x line scan, (b) y line scan and (c) 2D imaging.
Figure SI-3. (a) ESTASI MSI line scans over NO₂-Ang I spots (2 mm in diameter) with various sample amounts as indicated on the figures. (b) The averaged relative peak intensity of NO₂-Ang I within the 2 mm sample spots regions as a function of the amount of NO₂-Ang I in the sample spots. Error bar shows the standard deviation calculated from three experiments. The NO₂-Ang I spots were dried from droplets of NO₂-Ang I (1 µL) in methanol. The S/N ratio in the labelled region in Figure SI-3(a) is bigger than 3. \(I_{\text{NO2AngI}} \): integrated ion current from \(m/z \) 448.0 to \(m/z \) 449.0; \(I_{\text{AngI}} \): integrated ion current from \(m/z \) 433.0 to \(m/z \) 434.0. Solution in the wetting capillary 1: Ang I (15 µM) in 50% methanol, 49% water and 1% HAc. Experimental conditions: solution flow rate 60 µL/h, step size 50 µm, delay time 1s and translation rate 5 mm/s.
Figure SI-4. ESTASI MSI line scan over a NO₂-Ang I spot. The NO₂-Ang I spot was dried from a droplet of NO₂-Ang I (1 µL, 2 µM) in methanol. The S/N ratio in the labelled region is bigger than 3. \(I_{NO2AngI} \): integrated ion current from \(m/z \) 448.0 to \(m/z \) 449.0; \(I_{AngI} \): integrated ion current from \(m/z \) 433.0 to \(m/z \) 434.0. Solution in the wetting capillary 1: Ang I (15 µM) in 50% methanol, 49% water and 1% HAc. Experimental conditions: solution flow rate 60 µL/h, step size 50 µm, delay time 1s and translation rate 5 mm/s.
Figure SI-5. (a) ESTASI MSI line scan over a sample spot containing 25 pmole of NO$_2$-Ang I and 1 nmole of NaCl. (b) ESTASI MSI line scan over a sample spot containing 25 pmole of NO$_2$-Ang I and 10 nmole of NaCl. The labelled region in Figure SI-5(a) has S/N bigger than 3, while the region in Figure SI-5(b) is used for comparison. The NO$_2$-Ang I spots were dried from droplets (1 µL) of NO$_2$-Ang I and NaCl in methanol. $I_{NO2AngI}$: integrated ion current from m/z 448.0 to m/z 449.0; I_{AngI}: integrated ion current from m/z 433.0 to m/z 434.0. Solution in the wetting capillary 1: Ang I (15 µM) in 50% methanol, 49% water and 1% HAc. Experimental conditions: solution flow rate 60 µL/h, step size 50 µm, delay time 1s and translation rate 5 mm/s.