000196201 001__ 196201
000196201 005__ 20190316235833.0
000196201 0247_ $$2doi$$a10.1007/s10107-011-0478-7
000196201 022__ $$a1436-4646
000196201 037__ $$aARTICLE
000196201 245__ $$aRobust resource allocations in temporal networks
000196201 260__ $$c2012
000196201 269__ $$a2012
000196201 336__ $$aJournal Articles
000196201 520__ $$aTemporal networks describe workflows of time-consuming tasks whose processing order is constrained by precedence relations. In many cases, the durations of the network tasks can be influenced by the assignment of resources. This leads to the problem of selecting an ‘optimal’ resource allocation, where optimality is measured by network characteristics such as the makespan (i.e., the time required to complete all tasks). In this paper we study a robust resource allocation problem where the task durations are uncertain, and the goal is to minimise the worst-case makespan. We show that this problem is generically NP -hard. We then develop convergent bounds on the optimal objective value, as well as feasible allocations whose objective values are bracketed by these bounds. Numerical results provide empirical support for the proposed method.
000196201 6531_ $$aRobust optimisation
000196201 6531_ $$aTemporal networks
000196201 6531_ $$aResource allocation problem
000196201 6531_ $$a90-02
000196201 6531_ $$a90B15
000196201 6531_ $$a90C25
000196201 700__ $$aWiesemann, Wolfram
000196201 700__ $$0247589$$g239987$$aKuhn, Daniel
000196201 700__ $$aRustem, Berç
000196201 773__ $$j135$$tMathematical Programming$$k1-2$$q437-471
000196201 8564_ $$uhttp://link.springer.com/article/10.1007%2Fs10107-011-0478-7$$zURL
000196201 909C0 $$xU12788$$0252496$$pRAO
000196201 909CO $$qGLOBAL_SET$$pCDM$$ooai:infoscience.tind.io:196201$$particle
000196201 917Z8 $$x112541
000196201 937__ $$aEPFL-ARTICLE-196201
000196201 973__ $$rNON-REVIEWED$$sPUBLISHED$$aOTHER
000196201 980__ $$aARTICLE