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The compound KTi(SO4)2·H2O was recently reported as a quasi-one-dimensional spin-1/2 compound with
competing antiferromagnetic nearest-neighbor exchange J1 and next-nearest-neighbor exchange J2 along the
chain with a frustration ratio α = J2/J1 ≈ 0.29 [G. J. Nilsen, H. M. Rønnow, A. M. Läuchli, F. P. A. Fabbiani,
J. Sanchez-Benitez, K. V. Kamenev, and A. Harrison, Chem. Mater. 20, 8 (2008)]. Here, we report a
microscopically based magnetic model for this compound derived from density functional theory (DFT) based
electronic structure calculations along with respective tight-binding models. Our (LSDA + Ud ) calculations
confirm the quasi-one-dimensional nature of the system with antiferromagnetic J1 and J2, but suggest a
significantly larger frustration ratio αDFT ≈ 0.94—1.4, depending on the choice of Ud and structural parameters.
Based on transfer matrix renormalization group (TMRG) calculations we find αTMRG = 1.5. Due to an intrinsic
symmetry of the J1-J2 model, our larger frustration ratio α is also consistent with the previous thermodynamic
data. To identify the frustration ratio α unambiguously, we propose performing high-field magnetization and
low-temperature susceptibility measurements.
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I. INTRODUCTION

For several decades, low-dimensional magnetism has
attracted great interest in solid state physics and chemistry.
Since the influence of quantum fluctuations becomes
especially pronounced for low-dimensional spin-1/2 systems,
these systems have been investigated extensively, both
theoretically and experimentally. Quantum fluctuations
become even more important in determining the ground state
and the nature of the low-lying excitations if the system under
consideration exhibits strongly frustrated interactions.

Whereas pure geometrical frustration, i.e., triangular,
kagomé, or pyrochlore lattices, can be realized by special
symmetries in two or more dimensions, frustration in one-
dimensional systems (linear chains) is generally realized
by competing interactions. The simplest frustrated one-
dimensional model is the J1-J2 model with nearest-neighbor
(NN) exchange J1 and next-nearest-neighbor (NNN) exchange
J2, where J2 is antiferromagnetic. The phase diagram of
this seemingly simple model is very rich. Depending on
the frustration ratio α = J2/J1, a variety of ground states
are observed in corresponding quasi-1D systems: (i) ferro-
magnetically ordered chains in Li2CuO2

1,2 (0 � α � −0.25);
(ii) helical order with different pitch angles in LiVCuO4,
LiCu2O2, and NaCu2O2

3–9 (α < −0.25); and (iii) spin-Peierls
transition in CuGeO3

10,11 (α � 0.2411), i.e., with both ex-
change couplings antiferromagnetic.

The possibility of subtle interplay between spin, orbital,
charge and lattice degrees of freedom due to the threefold
orbital degeneracy of Ti3+ in octahedral environments, makes
Ti3+ based oxides an interesting class of materials to study.
Exotic features like the orbital-liquid state in LaTiO3 and the
presence of strong orbital fluctuations in YTiO3 have been
reported.12,13 While an abundance of experimental work exists
on low-dimensional spin-1/2 cuprates (with Cu2+), materials
based on spin-1/2 titanates (with Ti3+) are rather sparse. A
well known example of low-dimensional titanates is the new

class of inorganic spin-Peierls materials TiOX (X = Cl, Br).14

Quasi-one-dimensional magnetism was observed in TiOCl
and TiOBr along with a first-order transition to a dimerized
nonmagnetic ground state (spin-Peierls-like) below 67 and
27 K, respectively. The main difference between S = 1/2
titanates and vanadates as compared to the cuprates (3d1 versus
3d9) is that the unpaired electron resides in the t2g complex
for the former, while occupying the eg complex for the latter.
This usually results in narrow bands at the Fermi level (EF ) for
the titanates and vanadates as compared to the cuprates, which
in turn leads to small values for the exchange couplings and
brings several experimental conveniences. Since the tempera-
ture scale for the magnetic contribution to the specific heat is
of the order of J , separating magnetic and phonon contribution
in the specific heat (Cp) measurements is thus relatively
easy. For the same reason, magnetization measurements can
reach the saturation moment in experimentally attainable
fields, thereby providing more information about the exchange
parameters and the frustration regime. Thus, in many respects,
spin-1/2 compounds with a singly occupied t2g orbital are
an ideal object to study the physics of quasi-one-dimensional
frustrated chains.

KTi(SO4)2·H2O, a new member in the family of titanium
alums has recently been synthesized.15 The titanium ions are
in the Ti3+(d1) oxidation state in this material. Specific heat
and susceptibility measurements suggest that KTi(SO4)2·H2O
is a S = 1/2 frustrated chain system. Fits to the susceptibility
data using exact diagonalization on up to 18 spins resulted
in estimates for leading exchanges J1 = 9.46 K and J2 =
2.8 K, both antiferromagnetic (AFM) with a frustration ratio
α = 0.29. In the well-studied J1-J2 frustrated chain model
with both interactions being AFM, the model undergoes
a quantum phase transition at α ∼ 0.2411 to a twofold
degenerate gapped phase, and for α � 0.2411 the system
will exhibit spontaneous dimerization.16–22 In light of this
result, KTi(SO4)2·H2O would be expected to occupy the highly
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interesting region of the phase diagram, with a small gap
� < J1/20.15,22

Here, we report the results of an electronic structure analysis
from first principles, carried out to obtain a microscopic
picture of the origin of the low-dimensional magnetism in
KTi(SO4)2·H2O. The magnetically active orbital is identified
using band-structure calculations followed by subsequent
analysis of the exchange couplings. The calculated J ’s have
the same sign as the experiments (i.e., AFM), but the estimated
frustration ratio α is considerably larger compared to the
experimental findings. We explore in detail the reasons for
this discrepancy and propose an alternative solution that fits
the experimental data, as well as being consistent with our
band structure calculations. To this end, we have simulated
the temperature dependence of magnetic susceptibility using
the transfer matrix renormalization group (TMRG) method to
unambiguously identify the exchange couplings that describe
the microscopic magnetic model for KTi(SO4)2·H2O. On
the basis of these results, we suggest performing high-field
magnetization measurements, which should be a decisive
experiment to identify the precise frustration ratio α. The
influence of crystal water on the observed ground state is also
discussed in detail.

The remainder of the manuscript is organized as follows.
The crystal structure of KTi(SO4)2·H2O is described in Sec. II.
The details of the various calculational methods are collected
in Sec. III. The results of the density functional theory based
calculations, including the band structure and the accordingly
derived microscopic model, is described in Sec. IV. The
outcome of the TMRG simulations is compared to the previous
experiment in Sec. V, which is followed by a discussion and
summary in Sec. VI.

II. CRYSTAL STRUCTURE

Throughout our calculations, we have used the recently de-
termined experimental15 lattice parameters in the monoclinic
space group (P 21/m) of KTi(SO4)2·H2O: a = 7.649 Å, b =
5.258 Å, c = 9.049 Å and β = 101.742

◦
. The crystal structure,

which is isomorphous to that of the mineral krausite,23

KFe(SO4)2·H2O, is displayed in Fig. 1. Isolated pairs of
chains (“double chains”) of TiO6 octahedra run along the
crystallographic b axis. The octahedra are distorted and have
no edge-sharing or corner-sharing oxygen atoms. The SO4

tetrahedra corner share with three adjacent TiO6 octahedra,
forming an isosceles triangle. These triangles edge share to
make up the double chains. The single chains are displaced
with respect to each other both laterally and vertically. Large
K+ ions isolate the double chains along a, while along c

the chains are separated by water molecules that share the
oxygen atom with the TiO6 octahedra. The water molecules
are oriented in the ac plane. All of the octahedral O-Ti-O
bond angles deviate slightly from 90

◦
and there are three

pairs of Ti-O bond lengths of 2.001 Å, 2.056 Å (in the ab

plane), and 2.043 Å (along c). The shortest Ti-Ti distance is
4.93 Å and is between nearest neighbors (NN) on the adjacent
chains (t1 in Fig. 1). Within the chains, neighboring Ti are
5.23 Å apart (t2 in Fig. 1). By analogy with the J1 − J2

Heisenberg model, we will call the magnetic interactions
corresponding to the shorter distance (NN) J1 and the longer

b
a

c

c

b

t2

t1

FIG. 1. (Color online) (Top) Crystal structure of KTi(SO4)2·H2O.
Double chains of TiO6 octahedra run along the b axis. The octahedra
are connected on either sides by SO4 tetrahedra. Water molecules are
bound to the octahedra and separating the double chains along the
c axis. The potassium atoms (not shown here) separate the double
chains along the a axis. (Bottom) An isolated segment of the double
chain. The nearest-neighbor (NN) and next-nearest-neighbor (NNN)
hopping paths are represented as t1 and t2, respectively.

distance (next-nearest neighbors, NNN) J2. In case of a
perfect octahedral environment, the three t2g states would
be degenerate and thus warrant additional effects (i.e., lattice
distortion, spin/charge/orbital ordering) to lift the degeneracy
and allow for an S = 1/2 singlet ground state for a Ti3+
ion.24 In KTi(SO4)2·H2O, there is a small distortion of the
octahedra and, consequently, splitting of the t2g levels can
be expected. The related case of TiOCl, another system
containing Ti3+ ions, also possesses a distorted arrangement
of TiCl2O4 octahedra, though the distortions are much larger
with equatorial Ti-O and Ti-Cl bond lengths of 2.25 Å and
2.32 Å, respectively, and an apical Ti-O bond length of 1.95 Å.
Consequently, the t2g orbitals in TiOCl were thought to split
into a lower energy dxy and higher energy dxz,yz orbitals.
Electronic structure calculations confirmed this interpretation
and revealed the magnetically active orbital for the S = 1/2
chains in TiOCl was indeed the lower energy dxy orbital,14,25
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though a prolonged discussion of possible orbital fluctuations
ensued afterwards. Therefore an analysis of KTi(SO4)2·H2O
from the structural point of view alone is not sufficient to
determine the ground state of the system. Detailed calculations
are necessary to understand the correct orbital and magnetic
ground state of the system.

III. CALCULATIONAL DETAILS

The DFT calculations were performed using a full potential
nonorthogonal local orbital code (FPLO) within the local (spin)
density approximation [L(S)DA].26,27 The energies were con-
verged on a dense k mesh with 300 points for the conventional
cell in the irreducible wedge of the Brillouin zone. The Perdew
and Wang flavor28 of the exchange correlation potential was
chosen for the scalar relativistic calculations. The strong
on-site Coulomb repulsion of the Ti 3d orbital was taken into
account using the L(S)DA + U method, applying the “atomic
limit” double counting term. The projector on the correlated
orbitals was defined such that the trace of the occupation
number matrices represent the 3d gross occupation. Maximally
localized Wannier functions (WF) were calculated for the Ti 3d

orbitals to acquire the transfer integrals, also using FPLO.29 The
exchange couplings are computed using an LDA based model
approach, by mapping the results of the LDA calculations
onto a tight-binding model (TBM), which is then mapped
onto a multiorbital Hubbard model, and subsequently to a
Heisenberg model because the system belongs to the strong
correlation limit Ueff � t (t is the leading transfer integral at
half-filling and Ueff is the effective on-site Coulomb repulsion).
Another method of evaluating the exchange couplings is to
map the LSDA + Ud total energies of various supercells with
collinear spin configurations to a classical Heisenberg model.
The supercells used to calculate J1 and J2 were sampled using
300 and 100 k points, respectively.

The magnetic excitation spectrum of frustrated spin chains
was simulated using exact diagonalization code from the
ALPS package.30 We used periodic boundary conditions and
considered finite lattices comprising up to N = 32 spins.

The magnetic susceptibility of infinite frustrated spin chains
was simulated using the transfer matrix renormalization group
(TMRG) technique.31 For each simulation, we kept 120–160
states, the starting inverse temperature was set to 0.05J1, and
the Trotter number was varied between 4 × 103 and 16 × 103.
The results were well converged for the whole temperature
range of the experimental curve from Ref. 15.

IV. ELECTRONIC STRUCTURE CALCULATIONS

A. Local density approximation

Since there exists no previous report on the electronic
structure of KTi(SO4)2·H2O, we begin by analyzing the results
from a nonmagentic LDA calculation. In a simplified, fully
ionic model, each Ti3+ ion is surrounded by a slightly distorted
octahedron of O2− ions. The pseudo octahedral coordination
dictates a set of local axes for the conventional eg and t2g

orbitals. The local coordinate system is chosen as ẑ||c, and
x̂ and ŷ axes are rotated by 45

◦
around c with respect to

the original a and b axes. The nonmagnetic total and orbital
resolved density of states (DOS) are collected in Fig. 2. The
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FIG. 2. (Color online) (Top) Total and partial DOS obtained
within LDA for KTi(SO4)2·H2O. The valence panel is predominantly
comprised of Ti-3d and O-2p states. The sulfur states (not shown
here) lie mainly below −8 eV. The contribution from K, S, and H sites
are negligible in the displayed energy range. (Bottom) Ti 3d-orbital
resolved DOS. The t2g and eg complexes are split by a ligand-field
splitting of about 2 eV. The dxz orbital and the dyz orbital are very
close and split from the broad dxy (larger bandwidth) orbital.

presented part of the valence band is predominantly comprised
of Ti 3d and O 2p states belonging to TiO6 octahedra. The
states belonging to sulfur (not shown) lie below −8 eV and are
therefore well separated from the TiO6 states. The weight close
to the Fermi level (EF ) is mainly from the Ti t2g states, which
contain two electrons (one for each Ti in the unit cell) and are
separated by a ligand-field splitting of about 2 eV from the
higher lying (empty) eg states. For an octahedral arrangement
of oxygen anions around a 3d transition metal cation, a 2 eV
ligand-field split is rather typical. For KTi(SO4)2·H2O, the
bandwidth of the t2g band complex is only 0.65 eV, about one
third of the value for TiOCl (∼2 eV).25 This difference arises
from the fact that in TiOCl, the basic octahedral structural
units TiCl2O4 are arranged such that they are corner sharing in
the a direction and edge-sharing along the b direction, leading
to a larger interaction between the octahedral units and hence
a larger t2g bandwidth. In contrast, the TiO6 octahedral units
in KTi(SO4)2·H2O are neither corner- nor edge-sharing and
hence the smaller t2g bandwidth.

The degeneracy between the t2g orbitals is lifted due to
the monoclinic symmetry of the crystal structure as seen in
the nonmagnetic band structure (see Fig. 3). There are 2 Ti
atoms per formula unit and therefore 6 t2g bands close to EF .
The bands are predominantly dispersive along �-Y , X-M ,
and XZ-MZ directions, which are along the crystallographic
y axis and remain rather flat along the other high-symmetry
directions. This implies that the main interaction between the
Ti3+ ions is along the “double chain,” while sizably smaller
interactions are expected between the adjacent double chains.
The band belonging to the dxz orbital is lower in energy as
compared to the dyz and dxz (nearly empty and larger band
width) orbitals (also see Fig. 2). The mixing between the Ti 3d
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FIG. 3. (Color online) Band structures with band character close
to the Fermi level obtained within LDA. The bands are dispersive
along �-Y and X-M direction—the crystallographic y direction along
which the “double chains” propagate. There are two Ti atoms in the
unit cell and therefore 6 t2g bands crossing the Fermi energy.

and the O 2p states close to EF is less than 10% and similar
to other systems where Ti occurs in the d1 configuration. This
scenario is different from the cuprates (d9) where 30% of
the contribution to the states at EF stems from O 2p. This
fundamental difference in the strength of the hybridization
between the transition metal ions and the oxygen ligands
comes from the relative energies (�) of the oxygen p and the
transition metal d bands. In cuprates, the highest (half-filled)
dx2−y2 orbital and the uppermost (filled) oxygen p orbitals
are rather close in energy (� ∼ 2 eV) resulting in a strong
pd hybridization. In titanates, on the contrary, the t2g orbitals
lie much higher in energy than the uppermost (filled) oxygen
p-orbitals (� � 3 eV) and therefore exhibit significantly less
pd hybridization. Upon hole doping, the holes would formally
appear in the oxygen p-orbitals for cuprates and in one of the
t2g orbitals for titanates, characterizing them as charge-transfer
and Mott-Hubbard systems, respectively.

Experimentally, KTi(SO4)2·H2O is an insulator, but a
metallic solution is obtained within LDA. Such metallic results
from LDA are well known and understood to arise from
the inadequate treatment of the strong Coulomb correlation
of the 3d orbitals. Therefore the orbital dependence of the
Coulomb and exchange interactions are taken into account in a
mean-field-like approximation using the LSDA + U approach
(Sec. IV C). As mentioned previously in Sec. II, the distorted
octahedra in TiOCl split the t2g states into a lower lying singlet
(dxy) and a higher energy doublet (dxz,yz). Presuming no further
symmetry breaking, adding correlations, the choice of the
orbital for occupying the unpaired electron of the Ti3+ ion in
TiOCl is rather straightforward: the singlet dxy . On the other
hand, for KTi(SO4)2·H2O the pseudo-octahedral ligand field
fully splits the t2g states and removes the threefold degeneracy.
The on-site energy from the Wannier functions for the dxz

orbital is close to EF and is the lowest lying band of the t2g

complex. The on-site energies of dyz and the broader dxy band
(by a factor of 2) are only slightly higher in energy than the
dxz band by 0.04 and 0.2 eV, respectively. Since the three t2g

orbitals are quite close in energy, a subtle balance between the

orbitals is expected and the choice for the half-filled orbital
is not clear a priori. Moreover, one should also carefully
consider the possibility of an orbitally ordered solution.
Even the undoped, low-dimensional S = 1/2 cuprates that
possess an extensive literature, where the magnetic model is
generally understood to be governed by the half-filled dx2−y2

orbital, can sometimes show surprises. For example, the CuO6

octahedral environment in the insulating S = 1/2 quasi-1D
system CuSb2O6 is less distorted than usual, so that the cubic
degeneracy for the eg ligand-field states are only slightly
lifted. The energy difference between the narrow dx2−y2 and
the broad d3z2−r2 related band centers is about 0.3 eV only,
compared with about 2 eV for standard cuprates. Inclusion of
correlations, changes the order of the bands and the broad band
wins with the unpaired electron occupying the d3z2−r2 orbital
instead of the standard dx2−y2 in CuSb2O6.32 In comparison
to CuSb2O6, the crystal field splitting in KTi(SO4)2·H2O is
even smaller: 0.3 eV versus 0.04–0.2 eV, respectively. Thus
it is pertinent to do a careful analysis and consider different
scenarios beyond just the crystal field to arrive at a definitive
answer.

We take into account the strong electronic correlations
of the Ti 3d states via two possible ways: (a) mapping
the results from LDA first to a multiorbital tight-binding
model (TBM) using the Wannier functions basis to obtain
the transfer integrals (ti). At half-filling, when U is much
larger than the bandwidth, the spin degrees of freedom are
well described by an S = 1/2 Heisenberg Hamiltonian with
an antiferromagnetic part of the exchange interactions J AFM

i �
4t2

i /Ueff. The ferromagnetic contributions are evaluated by
considering the Kugel-Khomskii model,33 which considers all
the 3d levels and the intra-atomic exchange interaction (Jeff).
(b) Another way is by performing LSDA + Ud total energy
calculations for various collinear spin configurations and
mapping the energy differences onto a classical Heisenberg
model to obtain the total exchanges Ji . At this juncture, the
difference between the two parameters used to incorporate the
effects of strong correlations, Ueff and Ud , must be clarified.
The former is applied to LDA bands, which include the effects
of hybridization between the metal atoms and ligands, while
Ud is applied to atomiclike 3d orbitals. This necessitates using
different values for these two parameters.

B. Wannier functions

Wannier functions are essentially a real-space picture of
localized orbitals and can be used to enhance the understanding
of bonding properties via an analysis of factors such as their
shape and symmetry. Before analyzing the WF’s (shown in
Fig. 4), one should keep in mind that the two nearest-neighbor
(NN) Ti atoms do not belong to the same chain but to the
pair-chain displaced along the c axis (see lower panel of
Fig. 1). By fitting (using exact diagonalization) the low-
temperature magnetic susceptibility, the recent experimental
report15 suggests that the AF-NN interaction J1 is larger than
the AF-NNN interaction J2. Therefore one expects to observe
large tails at oxygen sites from the WF’s bending towards the
NN Ti atoms, as this facilitates the Ti-O-O-Ti superexchange.
Foremost, we observe that the WF’s resemble the atomiclike
d orbitals. There is a lot of oxygen hybridization tails, but
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FIG. 4. (Color online) Wannier functions of all the five 3d orbitals of the Ti3+ ion. (Left to right) dxz, dxy , dyz, dx2−y2 , d3z2−r2 . The blue and
red lobes of the WF’s refer to the positive and negative isosurfaces, the circles refer to the atoms. The TiO6 octahedra are highlighted by the
light pink Ti-O bonds. For dxy and dx2−y2 , only the plaquette Ti-O bonds are shown.

not a strong t2g-eg mixing (refer to Table I). The Ti dxy WF
is composed of contributions from the dxy orbital as well as
tails on the oxygen sites in the xy plane, although these do
not point towards the NN Ti atom. The dyz WF, on the other
hand, has tails on all six oxygen sites of the TiO6 octahedra,
and all point towards the NN Ti atom. Interestingly, the dxz

WF not only has tails on the oxygen sites bending towards
the NN Ti, but also has tails on one of the hydrogen site
belonging to the crystal water molecule. Such an effect is
arising from the hybridization effect of the O and H orbitals.
The effects of hybridization involving the H atom in the dyz

WF is comparatively less than the dxz, since no extended tails
are observed on the H site.

C. Tight-binding model using Wannier functions

Though LDA fails in reproducing the insulating ground
state of KTi(SO4)2·H2O system, it still provides valuable
information about the orbitals involved in the low-energy
physics, as well as their corresponding interactions strengths.
As mentioned previously, the strong Coulomb correlations
favor full polarization, and a detailed analysis is necessary
to identify the ground state for the fully polarized d orbital.

TABLE I. The NN and NNN transfer integrals t1 and t2 and on-site
energies ε0 obtained using the WF technique for all the five d orbitals
of Ti. All the t’s are in meV while ε0 is in eV.

xz yz xy x2 − y2 3z2 − r2

t1 (meV) t2g eg

xz 44.2 5.3 3.7 7.8 53.4
yz 5.3 38.2 1.7 9.5 32.8
xy 3.7 1.7 3.1 2.3 55.4
x2 − y2 7.8 9.5 2.3 1.6 12.8
3z2 − r2 53.4 32.8 55.4 12.8 23.1

xz yz xy x2 − y2 3z2 − r2

t2 (meV) t2g eg

xz 27.8 5.4 1.1 3.5 9.1
yz 5.4 26.7 2.4 22.6 3.0
xy 1.1 2.4 131 6.1 49.7
x2 − y2 3.5 22.6 6.1 211 2.6
3z2 − r2 9.1 3.0 49.7 2.6 77.6
(eV) xz yz xy x2 − y2 3z2 − r2

ε0 0.045 0.087 0.243 2.097 1.992

Therefore, to obtain a microscopic picture of the magnetic
interactions, we have constructed an effective five-orbital TBM
including all the five 3d orbitals of Ti. There are two Ti
atoms in the unit cell, resulting in altogether ten bands. Ti
centered WF’s adapted to the various 3d orbital characters
are constructed, and the transfer integrals (tij ) of the TBM
are evaluated as non-diagonal matrix elements in this Wannier
basis. The magnitudes of the leading hopping integrals t1 and
t2 (the paths are indicated in Fig. 1) are collected in Table I.
All other t’s beyond NNN are less than 1 meV for all the five
orbitals and therefore can be neglected for the chain physics.
The two main hopping terms are thus confined to interactions
between the Ti sites within each S = 1/2 “double chain”,
consistent with the experimental observations15 of displaying
low-dimensional magnetic properties. Given that the matrix
subspace of the t2g manifold is diagonally dominant (see
Table II), it is conceivable that the inter-t2g mixing is small
enough such as to justify an orbital by orbital tight-binding
fit for this orbital subspace, discarding the coupling between
different t2g Wannier functions. An exception is the t1,xy−xy

hopping, which is of the same size as the t2g off-diagonal
elements. However, this orbital is of minor importance in our
final analysis (see below), and hence the general argument
holds to a good approximation. Although we do not refrain
ourselves to such a TB analysis, it would yield very similar
results to our Wannier functions analysis. Albeit we obtain
some large hoppings between the t2g and eg manifolds, these
transfer integrals do not influence the exchange constants much
due to the large differences in their on-site energies as shown
below. The individual exchange constants (Jij ) are calculated

TABLE II. The FM (J FM
1 , J FM

2 ), AFM (J AFM
1 , J AFM

2 ), and the total
exchange integrals (J1, J2) calculated applying the Kugel-Khomskii
model [Eq. (1)] for the Ti t2g orbitals, using Ueff = 3.3 eV and Jeff =
1 eV. The J values are in units of degrees of Kelvin. For comparison,
the experimental values are J

exp
1 = 9.46 K and J

exp
2 = 2.8 K.15 The

last column is the frustration ratio α evaluated as |J2/J1|. We have
additionally calculated the dependence of J ’s to the choice of Ueff

and Jeff , which are collected in Supplemental Material.

J AFM
1 J FM

1 J1 J AFM
2 J FM

2 J2 α

dxz 27 −6.0 21 11 −0.4 10.6 0.5
dyz 20.5 −2.7 17.8 10 −1.3 8.7 0.5
dxy 0.1 −7.0 −6.9 243 −6.0 237 34
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using the expression of the Kugel-Khomskii model,33

Jij,α = 4t2
ij,αα

Ueff
−

∑

β

4t2
ij,α→βJeff

(Ueff + �αβ)(Ueff + �αβ − Jeff)
(1)

= JAFM − JFM,

where i and j denote the sites, α is the magnetically active
orbital at site i, β is one of five d orbitals at site j , tij,α→β

are the transfer integrals of orbital α at site i to orbital β at
site j , �αβ are the crystal field splittings between orbitals α

and β. Ueff and Jeff denote the on-site Coulomb repulsion
and Hund’s coupling, respectively. The first term in the
above equation is the AFM superexchange and describes the
AFM coupling due to the hopping between active d orbitals.
The second term is the sum of the exchange interactions
between the active orbital α and the rest of the d complex,
and thus ferromagnetic (FM). For TiOCl, a Ueff ∼ 3.3 eV
was shown to provide good agreement between calculated
exchange constants and susceptibility measurements.25 The
same value of Ueff = 3.3 eV with a Jeff = 1 eV has been
used here for KTi(SO4)2·H2O, and the J ’s obtained thus are
collected in Table II. Only the exchanges for the t2g complex
are shown here, since the single unpaired Ti 3d electron is
very unlikely to occupy the higher-lying eg states. The J ’s are
predominantly AFM for the lower energy dxz and as well as
the slightly higher lying dyz band and furthermore, the J ’s are
of similar order of magnitude as compared to the experimental
report (J exp

1 = 9.46 K, J
exp
2 = 2.8 K).15 To the contrary, the

calculated NN and NNN J ’s for the dxy band are much smaller
and larger in energy respectively, compared to the experimental
report. This large difference in the energy scale of the magnetic
exchanges for the dxy band implies that this orbital might be a
rather unlikely choice for full polarization (an even more clear
picture emerges in the following section when performing
LSDA + U calculations). Furthermore, we have checked the
robustness of our calculated J ’s as a function of the parameters
Ueff and Jeff in the physically relevant sector. We varied Ueff in
the range of 2 to 4 eV and Jeff in the range of 0.5 to 1 eV and find
that αxz and αyz were (i) very robust in the entire parameter
region, varying at maximum by about 10%, and (ii) always
significantly larger than αexp (see Supplemental Material34 for
further details). In contrast, αxy changes strongly in the relevant
parameter range, but remains far too large in the entire region
and thus incompatible with the experimental findings.

D. Density functional theory +U

Besides obtaining estimates for the various couplings in the
system, the TBM also allows for approximating the number of
Ti-Ti neighbors that needs to be considered when performing
the more involved and time consuming LSDA + Ud supercell
calculations. Since the AFM exchanges obtained from the
TBM beyond the NNN are less than 1 meV and because
FM interactions beyond second neighbors should also be
small, we constructed two supercells to obtain the values of
the short-ranged exchanges J1 and J2. Using different initial
density matrices for the Ti 3d orbitals, one can correlate (fill
the spin-up band with one electron and leave the spin-down
band empty), the bands belonging to different irreducible
representations. For KTi(SO4)2·H2O, we tried to spin polarize

each of the three t2g bands. We considered Ud values ranging
from 2.5–4.5 eV.35 First, let us consider the dxz and dyz orbitals,
which gave similar AFM exchange constants in our TBM. In all
of our LSDA + Ud calculations, the scenario in which the dxz

band was spin polarized had the lowest energy. Spin-polarizing
dyz required an additional energy of 350 meV per Ti3+ ion.
This energy scale is comparable to the bandwidth of these
orbitals. Incidentally, all our attempts to spin polarize dxy

resulted in the system converging to the lowest energy dxz

solution. We were also unable to stabilize different orbitally
ordered scenarios (i.e., one Ti ion with a spin-polarized dxz

orbital and the NN Ti ion with a spin-polarized dyz orbital).
This alludes to the fact that the (local) magnetic ground state
in KTi(SO4)2·H2O is very likely determined by the Ti 3dxz

orbital. The next question to answer is whether the exchange
constants obtained for the dxz orbital are consistent with the
experimental findings. We obtain effective exchange constants
by performing LSDA + Ud calculations of differently ordered
spin configurations (FM, AFM, and ferrimagnetic) and maping
the energies to a Heisenberg model. Among the considered
spin configurations, the AFM spin configuration was always
more favorable (lower total energy) than the FM. The exchange
constants and the frustration ratio α are collected in Fig. 5. For
comparison, we have displayed the values for both dxz and
dyz orbitals. For the range of Ud values considered here, J

dxz

1

is comparable to experimental findings while J
dxz

2 is larger
by almost an order of magnitude. Comparing the total J ’s
in Fig. 5 with the J AFM obtained from TBM in Table I, we
can infer that there is a significant FM component to the NN
(J FM

1 ) while the FM component to the NNN (J FM
2 ) is quite

negligible. Though the J ’s do not vary very much for Ud = 2.5
to 4.5 eV, an appropriate Ud value needs to be chosen for
comparison with experiments. Spin- and orbital-unrestricted
Hartree-Fock calculation of the on-site Coulomb interaction
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FIG. 5. (Color online) The total exchange constants (top) and the
frustration ratio α (bottom) as a function of Ud for dxz and dyz orbitals.
The NN total exchange J1 (full symbols) and NNN total exchange
J2 (empty symbols) do not vary much for the considered range of
Ud (2.5 to 4.5 eV) values. The experimental results (Ref. 15) are
indicated by thick dashed lines.

224410-6



ELECTRONIC STRUCTURE OF KTi(SO4)2·H . . . PHYSICAL REVIEW B 88, 224410 (2013)

for various transition-metal oxides, recommend a Ud value of
4 eV for Ti3+ ions.36 Using that value of Ud as a benchmark,
we obtain, J dxz

1 ≈ 12 K, J dxz

2 ≈ 13.4 K, and αxz ≈ 0.94 ± 0.15
(J exp

1 = 9.46 K, J
exp
2 = 2.8 K, and α = 0.29). The error bar

is calculated from the difference in the α values between 3 �
Ud � 4. The calculated value of αxz = J xz

2 /J xz
1 is larger than

the experimental value by a factor of 3 for the dxz orbital. The
calculated αyz = 0.60 ± 0.01 for the energetically unfavorable
dyz orbital is also significantly larger than the experimental
value. Albeit the S = 1/2 frustrated chain magnetism in
KTi(SO4)2·H2O is established in both LDA and LSDA + Ud

calculations, our results for α are not consistent with the
experiments. Nonetheless, both our calculation and experiment
suggest an α in the highly interesting region (0.2411 < α <

1.8) of the spin-1/2 frustrated chain phase diagram.
One reason for the overestimation of α in our calculations

might be related to the O-H bond length in KTi(SO4)2·H2O.
Recent reports on Cu2+ spin-1/2 kagome lattice systems (Ref.
37) show that shortening of the O-H bond length can have
dramatic impact on the NN magnetic exchange, including the
sign change from AFM to FM. However, it is well known that
obtaining the correct O-H bond length via x-ray diffraction
in a system containing heavy atoms is at best difficult. OH−
groups in oxides have been shown to have a typical equilibrium
bond length of ≈1 Å.38 For KTi(SO4)2·H2O, the reported O-H
bond length is only 0.874 Å, thus more than 10% smaller
than this value. Therefore one possible reason for the larger
frustration ratio α in LSDA + Ud calculations as compared
to experiments might arise from the possibly underestimated
O-H bond length.39

We have therefore allowed the O-H bond length to relax
(keeping the H-O-H angle fixed). Keeping the TiO6 octahedra
rigid, we relaxed the H position with respect to the total energy
and obtained an optimized O-H bond length of about 1 Å, in
accordance with the empirical expectations.37,38 Recalculating
the exchange constants using the optimized O-H distance,
we obtain for Ud = 4.0 eV, J xz

1 = 10 K, J xz
2 = 14.2 K. The

frustration ratio αxz = 1.4±0.2 is even larger (by 50%) than
the previously calculated value using the experimental O-H
bond length. This change in α with respect to the H position
is quite dramatic, while it must be noted that the obtained
J ’s are of the same order as the experiment. It is generally
accepted that total energy calculations provide accurate atomic
positions. It is thus highly desirable to determine the hydrogen
position precisely. In the following section, we attempt to
understand the discrepancy between our calculations and the
experiment.

V. TMRG CALCULATIONS

As demonstrated in Ref. 15, a frustrated Heisenberg chain
model with α=0.29 can reproduce the experimental magnetic
susceptibility curve of KTi(SO4)2·H2O. The small α=0.29
implies that J1 is large, while J2 is small. This is at odds with
our LSDA + Ud calculations, where the antiferromagnetic
exchange between NNN Ti atoms appears to be more efficient
than the NN exchange, resulting in α > 1. The question is
then, whether the large α regime conforms to the experimental
behavior.

The small energy scale of the leading couplings leads to
sizable error bars for the J1 and J2 values estimated from
LSDA + Ud calculations. To refine the model parameters, we
use the analytical expressions for the high-temperature part of
the magnetic susceptibility of a frustrated Heisenberg chain,
the high-temperature series expansion (HTSE).40 Typical for a
local optimization procedure, the results are dependent on the
initial values. If we start from the J1 > J2 limit, HTSE yields
J1 �9.6 K and J2 �2.9 K, very close to the α=0.29 reported in
Ref. 15. In contrast, if we proceed from the J2 > J1 regime, we
obtain J1 �5.4 K and J2 �8.1 K (α = 1.5), in accord with our
LSDA + Ud calculations. Thus HTSE yields two ambiguous
solutions.

HTSE typically converges only for temperatures higher or
comparable with the magnetic energy scale (T � J ). To verify,
whether both solutions agree with the experimental χ (T ) at
lower temperatures, we simulate the temperature dependence
of reduced magnetic susceptibility χ∗ using TMRG, and
fit the resulting χ∗(T/ max {J1,J2}) dependencies to the
experimental curve. In this way, we again find that besides
the previously reported α = 0.29 solution, the α = 1.5 curve
with J1 = 5.4 K, J2 = 8.1 K, g = 1.74, and χ0 = 5.9×10−5

emu/mol also yields an excellent fit to the experimental
magnetic susceptibility (see Fig. 6). The difference curves
evidence that both α = 0.29 and 1.5 provide a good description
of the experimental χ (T ) data. Note that the fit for α = 1.5 is
slightly better (see Fig. 6, inset), but is likely not significant
enough to prefer one of the two solutions.

The coexistence of the two solutions actually manifests
the inner symmetry of the frustrated chain model. As a
trivial example, the uniform chain limit can be described with
α = +0 (J1 	= 0, J2 =0) as well as α=∞ (J1 =0, J2 	= 0).
The α = 0.29 and 1.5 solutions are also related, although in
a less trivial way. To pinpoint this relation, we briefly revisit
the phase diagram of the frustrated chain model. The α = 0
limit corresponds to the exactly solvable gapless Heisenberg
chain model. This GS is robust against small frustrating

FIG. 6. (Color online) Fits to the magnetic susceptibility. The ex-
perimental data are adopted from Ref. 15. The magnetic susceptibility
of frustrated Heisenberg chains with α=0.29 and 1.5 (α≡J2/J1)
was simulated using TMRG. The simulated curves were fitted to
the experiment by varying the fitting parameters J1, g, and the
temperature-independent contribution χ0. (Inset) Difference curves
for both solutions. �χ is the difference between the simulated and
the experimental value.
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J2, up to the quantum critical point αc � 0.2411, where a
spin gap opens.17 For larger α values, the spin gap rapidly
increases and reaches its maximum value � � 0.43 J1 at
α � 0.6. Further enhancement of α reduces the spin gap. In the
large α limit (J2 � J1), the spin gap exhibits an exponential
decay.22

Thus, for a certain value of the spin gap �, there are
two possible α values: (i) with a dominant J1, i.e., from the
α = 0.2411–0.6 range and (ii) with a sizable J2 (α = 0.6–∞).
Since � plays a decisive role for the shape of χ (T ), both
solutions yield similar macroscopic magnetic behavior. This
explains the seemingly unusual fact that the experimental data
for KTi(SO4)2·H2O can be well fitted by both α = 0.29 and
1.5.

Unlike, e.g., α = 0 and ∞, that describe the same physics,
the solutions α = 0.29 and 1.5 are physically different despite
the similar spin gaps. Spiral correlations are present in the latter
case only.22 Moreover, the two solutions feature substantially
different correlation lengths.22 Thus the two solutions can
be distinguished by measuring a characteristic experimental
feature (“smoking gun”).

For spin systems, a measurement of magnetization
isotherms is technically simple, but very informative, es-
pecially for systems with weak magnetic couplings. Since
the magnetic field linearly couples to the Sz component
of the spin, a magnetization curve reflects the energy
of the lowest lying state in each Sz sector. This of-
ten suffices to distinguish between ambiguous solutions.
For instance, HTSE for the J1 − J2 square lattice system
BaCdVO(PO4)2 yielded, besides the frustrated solution with
an AFM J2, also a nonfrustrated solution with FM J2.
However, the frustrated scenario was clearly underpinned
by M(H ) measurements.41 In a recent work, M(H ) mea-
surements for A2CuP2O7 (A = Li,Na) resolved previous
controversies concerning the magnetic dimensionality of these
compounds.42

We argue that for the frustrated Heisenberg chain model,
the characteristic behavior of magnetization on the verge
of saturation can be used to distinguish between different
scenarios. In particular, the α = 0.29 magnetization curve
exhibits a well pronounced upward bending, while only a
feeble bending is visible in the α = 1.5 GS magnetization
(see Fig. 7). Another relevant quantity is the saturation field:

Hsat = (gμB)−1
[
E

(
Sz

max

) − E
(
Sz

max − 1
)]

, (2)

where Sz
max corresponds to the fully polarized state. The

energies are estimated using exact diagonalization for finite
chains of N = 32 spins. Adopting J1, J2, and g values from
the HTSE fits, we obtain Hsat �16.4 T and Hsat �18.7 T for
α=0.29 and α=1.5, respectively. Both values of saturation
field lie in the experimentally accessible field range. A
somewhat problematic point could be the low-energy scale
of KTi(SO4)2·H2O, which renders the typical measurement
temperature of ∼1.5 K as relatively high, hence the states
with different Sz could be substantially mixed. Still, the α =
0.29 magnetization isotherms will retain fingerprints of the
characteristic bending. Therefore we believe that a high-field
(up to ∼20 T) measurement of a magnetization isotherm
will be an instructive and decisive experiment to distinguish
between the α = 0.29 and 1.5 scenarios.

α
α

FIG. 7. (Color online) Ground-state magnetization of frustrated
Heisenberg chains with α=0.29 and α=J2/J1 =1.5 (α≡J2/J1),
simulated using exact diagonalization on finite lattices (rings) of
N = 24 spins. Note the characteristic upward bending of the
α=0.29 curve. (Inset) Finite-size dependence of the ground-state
magnetization.

VI. SUMMARY

In conclusion, we have studied the electronic structure of
KTi(SO4)2·H2O in detail using DFT based calculations. The
results of both the TBM and LSDA + Ud calculations confirm
beyond doubt the low-dimensional nature of the material
with NN and NNN exchanges J1 and J2 confined to the
double-chains running along the b axis. We also confirm the
AFM nature of the exchanges, consistent with the experimental
report, with the Ti 3dxz orbital being the magnetically active
one, holding the single unpaired electron of the Ti3+ ion.
The magnitude of the calculated J ’s are of the right order
compared to the experiment, though we observe a strong
dependence to the t2g orbital choice. Notwithstanding the
small energy scale (≈10 K) of the system, we are able to
obtain the correct order of the J ’s from our DFT calculations.
Additionally, we observe a sizable dependence of the estimated
exchanges from the O-H bond length. This feature is clearly
elucidated by calculating the Wannier functions, which show
the effects of hydrogen bonding to the corresponding t2g

orbital, which is oriented in the same plane as the crystal
water molecule. Using the experimental position for hydrogen,
we obtain a frustration ratio α ≈ 0.94 ± 0.15 and a value of
α ≈ 1.4 ± 0.2 upon relaxing the hydrogen position in the
crystal lattice (from LSDA + Ud , Ud = 3.5 ± 0.5 eV). Both
these values are significantly larger than the experimental
value αexp = 0.29. In order to understand the origin of this
discrepancy between the experiment and our calculations, we
simulated the temperature dependence of the susceptibility
using both the small and large values of α. Due to an intrinsic
symmetry of the J1 − J2 frustrated chain model, we show
that both values of α provide similarly good fits to the
experimental curve. Thus our calculated value of α is in line
with the TMRG estimate of αTMRG = 1.5. Consequently, we
calculated magnetization curves as a means to unambiguously
distinguish the two solutions and show two features, which can
be used to identify the appropriate α that defines the magnetic
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ground state of KTi(SO4)2·H2O. Hence we suggest performing
high-field magnetization measurements on this system as well
as susceptibility experiments (to obtain the size of the spin
gap) at very low temperatures.
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