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Abstract

The Berth Allocation Problem (BAP) is one of the most critical and widely studied
problems in port operations. While significant contributions have been made in the use
of operations research methods and techniques to solve the BAP in container terminals,
almost no attention has been directed to bulk ports. In this paper, we study the berth
allocation problem in bulk ports for hybrid berth layout and dynamic vessel arrivals. A
key difference that distinguishes the berth allocation problem in bulk ports from that in
container terminals is that it is necessary to account for the cargo type on the vessel. In
our model, the cargo locations on the yard and the locations of the fixed facilities such as
conveyors and pipelines along the quay are explicitly taken into consideration in model-
ing the handling times of the vessels berthing at the port. The objective of the allocation
is to minimize the total service time of all vessels berthing at the port in a given planning
horizon. For a given yard layout of the bulk terminal and given locations of fixed facil-
ities such as conveyors and pipelines along the quay, our model enhances coordination
between berthing and yard activities. We present a mixed integer linear programming
(MILP) approach to model the problem, and an alternate exact solution approach based
on generalized set partitioning. A heuristic approach based on the principle of squeaky
wheel optimization is also presented. We compare the formulations from a computa-
tional perspective through extensive numerical experiments based on instances inspired
from real data obtained from SAQR port, Ras Al Khaimah, UAE, the biggest bulk port
in the middle east. Our research problem derives from the realistic requirements of the
port where currently the waiting times for the vessels are very large. The results indi-
cate that the set partitioning approach and the heuristic approach can be used to obtain
near-optimal solutions for even larger problem size.
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1 Introduction

The Berth Allocation Problem (BAP) refers to the problem of assigning a set of vessels to a
given berth layout within a given time horizon. There could be several objectives such as
minimization of the service times to vessels, minimization of port stay time, minimization of
number of rejected vessels, minimization of deviation between actual and planned berthing
schedules etc. There are several spatial and temporal constraints involved in the BAP, which
lead to a multitude of BAP formulations. The existing models for BAP in literature can be
classified on the basis of the temporal attributes such as vessel arrival process, start of service
and handling times of vessels as well as spatial attributes relating to the berth layout, draft
restrictions and others.

According to Bierwirth and Meisel (2010), the vessel arrival process can be considered
as static or dynamic. In the static case, the arrival times do not impose a hard constraint on
the berthing times, and vessels can berth at any time given that the allocated portion of the
quay is available for berthing. In the dynamic variant of the problem, vessels cannot berth
before they have arrived at the port. The vessel arrivals can be deterministic in which fixed
expected values of arrival times are given, or stochastic in which a distribution of arrival
times may be given to account for uncertainty in vessel arrival times.

The handling times for vessels can be assumed as fixed and unchangeable, or dependent
on the berthing positions of vessels and/ or work schedule and number of cranes assigned
to vessels. The handling times may also be considered as stochastic to account for uncer-
tainty in handling times due to unforeseen disruptions such as equipment breakdown or
unavailability of equipment or cargo due to any other reason.

Spatial constraints limit the feasible berthing positions of vessels according to a preset
partitioning of the quay into berths. On the basis of berth layout, the BAP can be classified
as discrete, continuous or hybrid (Bierwirth and Meisel (2010)). In the discrete case, the
quay is divided into a set of sections or berths, and a given berth can be used by at most one
vessel at any given time. In the continuous case, there is no partitioning of the quay, and a
vessel can occupy any arbitrary position along the quay. This understandably leads to better
utilization of the quay space, but is computationally more complicated. In the hybrid case,
the quay is partitioned into a set of sections, but a vessel can occupy more than one section
at a time, and more than one vessel may be allowed to share the same section at the same
time. A graphical representation of different berth layouts is shown in Figure 1. In addition,
the draft restrictions on vessels which limit the feasible berthing positions of vessels to only
those berths or sections which have a draft higher than the draft of the vessel may also be
considered in formulating the BAP.

A feasible berthing assignment can be represented on a space-time graph as shown in
Figure 2. The vertical axis corresponds to the quay space within the quay boundary, while
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Figure 1: Berthing Layouts

Figure 2: Feasible BAP Solution.
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the horizontal axis represents berthing time within the planning horizon. Each rectangle
represents a vessel berthing at the port. The height of the rectangle represents the length of
the vessel, with the upper and lower co-ordinates indicating the berthing location along the
quay. The width of the rectangle represents the handling or processing time of the vessel,
with the left and right co-ordinates indicating the start and end of handling time respectively.
While two vessels may be overlapping in space or in time, it is infeasible for two vessels to
overlap in both space and time simultaneously. Thus, in a feasible berthing assignment, all
rectangles (vessels) should be non-overlapping and each individual vessel should respect
the spatial and temporal constraints on its berthing. This representation of the BAP on the
time-space graph further makes it possible for scholars to study the berth allocation problem
as a 2-D bin packing problem (Lim (1998)).

In this paper, we discuss the dynamic, hybrid berth allocation problem in bulk ports. To
our knowledge, this is the first paper that studies the berth allocation problem in the context
of bulk ports and discusses BAP formulations that explicitly take into account the cargo
type on the vessel. A mixed integer linear programming approach is presented to solve
the problem. An alternate exact solution algorithm based on generalized set partitioning
approach is presented to solve larger and more complex instances of the BAP under study.
To solve the problem in large scale realistic environments, a heuristic algorithm based on
an optimization approach, commonly termed in literature as squeaky wheel optimization
is also developed (Clements et al. (1997)). This technique has been successfully applied
in graph coloring and scheduling problems, and more recently used to solve operations
research problems in container terminals by few scholars such as Fu et al. (2007) and Meisel
and Bierwirth (2008). The approach is adapted to solve the hybrid, dynamic BAP in bulk
ports. Numerical experiments are conducted on instances based on real port data to test and
validate the efficiency of the proposed algorithms.

2 Problem Definition

We consider a set of vessels N, to be berthed on a continuous quay of length L for a time
horizon H. We consider dynamic vessel arrival process and a berth layout which is an ex-
tension of the hybrid case. We discretize the quay boundary into a set M of sections of
variable lengths. In a feasible berthing assignment, a given vessel may occupy more than
one section, however a given section cannot be occupied by more than one vessel or part of
a vessel at any given time. Partitioning the quay space into sections of variable length brings
more flexibility to the model, and the manner in which sections are defined along the quay
is critical.

One major difference that distinguishes the Berth Allocation Problem (BAP) in bulk ports
from that in container terminals is the presence of fixed specialized equipment facilities such
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as conveyors and pipelines at bulk ports. In a container terminal, all cargo is packed into
containers, and thus there is no need for any specialized equipment to handle any particular
type of cargo. In contrast in bulk ports, depending on the vessel requirements and cargo
properties, a wide variety of equipment is used for discharging or loading operations. For
example, liquid bulk is generally discharged using pipelines which are installed at only
certain sections along the quay. Similarly, a vessel may require the conveyor facility to load
cargo from a nearby factory outlet to the vessel. For a given vessel, the handling time has a
variable component as determined by the berthing position of the vessel along the quay and
a fixed component determined by the number of quay cranes operating on the vessel. The
berthing position of the vessel along the quay, determines the distance between the berthing
position and the storage location of the cargo type of the vessel on the yard. This in turn
determines the time taken to transfer cargo between the berthing location and the cargo
location on the yard using auxilliary equipment facilities such as loading shovels, trucks etc.
or specialized facilities such as conveyors and pipelines.

We define a single variable co-ordinate system along the quay, with the origin at the left
extreme of the quay. The vessels berth from the beginning of the first occupied section. This
is schematically shown in Figure 3 for |N| = 3 and |M| = 6.

Figure 3: Schematic representation of vessels berthing along quay of length L for |N|=3, |M|=6

To model the hybrid, dynamic berth allocation problem (BAP) in bulk ports, we assume
the following input data to be available:

4



N = set of vessels
M = set of sections
k = 1,...,|M| sections along the quay
i = 1,...,|N| vessels berthing at the port
Ai = expected arrival time of vessel i
Di = draft of vessel i
Li = length of vessel i
Qi = quantity of cargo for vessel i
Wi = set of cargo type(s) to be loaded or discharged from vessel i indexed

from w=1 to w=|Wi|

dk = draft of section k
`k = length of section k
bk = starting coordinate of section k
hwk = handling time for unit quantity of cargo type w for vessel berthed at

section k
L = total length of quay

The clearance distances between adjacent vessels as well as end-clearances may be con-
sidered implicitly in vessel lengths. Similarly, the clearance times between two successive
vessels overlapping in space may be considered implicitly in the handling times

In the computation of handling times, the main assumption is that all sections occupied
by the berthed vessel are being operated simultaneously with each section handling the
amount of cargo proportionally to the section length. The handling time of the vessel is the
time taken to load or discharge the section whose operation finishes last. The unit handling
time hwk for section k and cargo type w includes the time taken to transfer unit quantity of
cargo between the cargo location on the yard and the berthed section, and the time taken to
load (or unload) the cargo from the quay side to the vessel. In equation 1, these have been
denoted by βk and αk respectively. Thus we have,

hwk = αwk + βwk (1)

αwk = T/nwk (2)

βwk = vwdwk (3)

In equation 2, T is the crane handling rate for loading or discharging operations, and
nwk is the number of cranes operating in section k for cargo type w. βwk is the time taken
to transfer a unit quanity of cargo between the location of cargo type w on the yard and
the section k, which is assumed to be a linear function of the distance dwk between the two
locations. The parameter vw depends on the rate of transfer of cargo type w. A schematic

5



representation of a bulk port terminal is shown in Figure 4. As shown, for a vessel carrying
cement(w=8) berthed at section k=5, the unit handling time value is h85 = α85 + β85 = T/n85 +
v8 d85, where d85 is the distance between the section k=5 and the cargo location w=8, v8 is a
function of the rate of transfer of cement from the cargo location to the berthed section and
n85 is the number of cranes operating in the section. Alternatively, if a vessel is using the
conveyor facility to load rock aggregates from the rock factory directly into the vessel, the
vessel must occupy section k=4. If no additional cranes are being used to transfer the cargo
at k=4, we provide α114 → 0, and h114 = β114 = v11 d114 , where v11 is a parameter dependent on
the rate of material transfer in the conveyor and d114 is the distance between the rock factory
and the conveyor facility.

Figure 4: Schematic representation of a bulk port terminal

In our model, the specialized equipment facilities such as conveyors and pipelines are
also modeled as cargo types. The modeling of handling times using specialized facilities
is taken into account by generating appropriate values of unit handling times hwk for every
section k that may or may not have the cargo facility w. For example, if a particular cargo
type w corresponding to the conveyor facility cannot be handled by section k which does
not have this facility, the unit handling time value hwk is set to infinity or an extremely large
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value, for this particular section and cargo facility. This prevents the vessels needing the
conveyor facility from berthing at any section(s) other than the section(s) where the facility
is installed.

3 Literature Review

In this section we present a brief review of past literature on the berth allocation problem in
the context of container terminals.

Discrete BAP. The static variant of discrete BAP has been studied by Imai et al. (1997)
which minimizes the total service times of vessels and the deviation between arrival order
and service order of vessels, Imai et al. (2001) and Imai et al. (2008)). The dynamic discrete
BAP problem is considered by Imai et al. (2001), Imai et al. (2003), Monaco and Sammarra
(2007), Buhrkal et al. (2011) and few others. More recent approaches, such as Zhou and
Kang (2008) and Han et al. (2010), solve the problem considering stochasticity in both arrival
times and handling times of vessels. Cordeau et al. (2005) uses a tabu search method to
solve the discrete dynamic BAP with due dates, which is further improved upon by Mauri
et al. (2008) using a column generation approach that delivers higher quality solutions in
lesser computation time. Vacca (2011) study the discrete dynamic BAP at the tactical level
in integration with the quay crane scheduling problem, and propose a two-level heuristic to
solve the problem.

Continuous BAP. The static continuous BAP has been considered by Li et al. (1998),
Guan et al. (2002) and Park and Kim (2003). Guan and Cheung (2004) consider continu-
ous dynamic BAP with fixed handling times using a tree search procedure to minimize the
total weighted port stay time of vessels. Gao et al. (2010) use a robust planning approach
to solve a dynamic continuous BAP with stochastic vessel arrivals via feedback procedure
in the planning stage. Minimization of tardiness as an objective in continuous dynamic
BAP is considered by Park and Kim (2002) using a sub-gradient method and by Kim and
Moon (2003) using simulated annealing approach. Minimization of quay length with given
berthing times as an objective is studied by Lim (1998) and Tong et al. (1999). The continuous
BAP with handling times depending on berthing positions is studied by Imai et al. (2005)
and Chang et al. (2008) who further considers draft restrictions in the BAP model.

Hybrid BAP. The dynamic hybrid BAP with fixed handling times is considered by Moor-
thy and Teo (2006), which considers a robust planning approach by incorporating stochas-
ticity in vessel arrivals, and further studied by Dai et al. (2008). The dynamic hybrid BAP
with position-dependent handling times is studied by Imai et al. (2007) for indented berth-
s, and Cordeau et al. (2005). Draft restrictions in dynamic hybrid BAP are considered by
Nishimura et al. (2001) and Cheong et al. (2010).
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Comprehensive literature surveys on the BAP in context of container terminal operations
can be found in Bierwirth and Meisel (2010), Steenken et al. (2004) and Stahlbock and Voss
(2008). To our knowledge, the problem has not been investigated thus far in the context
of bulk port terminals, which is the primary focus of the research presented in this paper.
Unlike container terminals, in bulk ports it is necessary to account for the cargo type on the
vessel and model the interaction between the yard layout concerning the location of specific
cargo types on the yard and the berthing locations of the vessels. Moreover, in container
terminals the loading and unloading operations are usually carried out using rail mount-
ed gantry (RMG) cranes that move along a guided rail and cannot pass each other. On the
other hand in bulk terminals there is a wide range of heterogenous loading/unloading e-
quipment. This includes specialized equipment facilities such as conveyors and pipelines
that are installed at only certain sections along the quay, and mobile harbor cranes that can
be freely moved around and can pass each other during the service of a vessel. These dif-
ferences among others necessitate the need to devise specific solutions for bulk ports. This
paper discusses exact and heuristic algorithms to solve the berth allocation problem in con-
text of bulk ports and the algorithms are compared from a computational perspective based
on instances inspired from real bulk port data.

4 Models for BAP

In this section, we present two alternate exact solution approaches and a heuristic approach
to model the berth allocation problem in bulk ports with hybrid layout and dynamic vessel
arrivals. In section 4.1, we describe a mixed integer linear programming approach to solve
the problem, while in section 4.2, we use a set partioning approach to model the same prob-
lem by apriori generating the set of all feasible berthing assignments by data pre-processing.
In section 4.3, we describe a heuristic approach based on squeaky wheel optimization to ob-
tain near-optimal solutions for large instances.

However before proceeding to describing the formulations in detail, we present a mixed
integer formulation developed by Nishimura et al. (2001) to solve the berth allocation prob-
lem in container terminals, and explain why this formulation cannot be used in context
of bulk ports. The reason why we choose this particular formulation for comparison is that
their problem definition comes closest to the problem we are addressing in this paper. Please
note that the parameter names have been changed to match the ones that have already been
defined in the previous section. The formulation is as follows:
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min
∑
iεN

∑
kεM

(mi −Ai + cki)xki (4)

s.t.
∑
kεM

xki = 1 ∀iεN (5)

mi −Ai ≥ 0 ∀iεN (6)∑
kεM

(dk −Di)xki ≥ 0 ∀iεN (7)∑
kεM

(`k −
∑

i,i ′εN,i 6=i ′
Li ′yii ′xki ′ − Li)xki ≥ 0 ∀iεN (8)

(m ′
i +
∑
kεM

cki ′xki ′ −mi)(mi +
∑
kεM

ckixki −m
′
i)yii ′xki ′ ≥ 0 ∀iεN,∀kεM, i 6= i ′ (9)

(m ′
i +
∑
kεM

cki ′xki ′ −mi)(mi +
∑
kεM

ckixki −m
′
i)(1− yii ′xki ′) ≤ 0 ∀iεN,∀kεM, i 6= i ′ (10)

xki ε {0, 1} ∀iεN,∀kεM (11)

yii ′ ε {0, 1} ∀i, i ′εN (12)

mi ε Z ∀iεN (13)

In the above formulation, mi is the starting time of the service of vessel i, cki is the han-
dling time of vessel i at berth k, xki = 1 if vessel i is serviced at berth k, xki = 0 otherwise,
yii ′ = 1 if vessel i begins its service when vessel i ′ is being serviced at the same berth, yii ′ =
0 otherwise. The input parameters are as defined earlier in the paper. The above formula-
tion assumes that multiple vessels can be simultaneously serviced at the same berth, while
each vessel occupies exactly one berth. In context of bulk ports, this understandably leads
to less efficient space allocation of vessels. For example consider the case when the unoccu-
pied length of a given berth having access to a specialized facility is smaller than the length
of the vessel requiring this facility. In such a situation the entire berth is rendered useless
for this vessel until the occupied portion of the berth is available again, thus increasing the
waiting time for the vessel. The handling times are deterministic and fixed for a given berth
and vessel, and thus the model also does not capture the variability in handling times with
change in the berthing position of the vessel within the same occupied berth. Moreover, if
only a certain part of a berth has access to a particular facility such as conveyor or pipeline,
additional variables need to be introduced in the model to ensure proper allocation of ves-
sels requiring these facilities. There are also several non-linearities in the model because of
which the model cannot be easily solved using commercially available solvers for even small
sized instances, and thus the authors have proposed a genetic algorithm based heuristic to
solve the problem.

We now proceed with the description of the algorithms we have developed to solve the
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hybrid, dynamic berth allocation problem in context of bulk ports, and address the short-
comings of the above formulation.

4.1 MILP formulation

In this section, we present the MILP model for the dynamic, hybrid BAP in bulk ports. All
temporal variables including the start time of operations and handling time of vessel, are
modeled as continuous variables. The model uses several decision variables to obtain the
berthing assignment of vessels to sections along the quay as well as the berthing order of
vessels at each section, as shown below:

mi ≥ 0, represents the starting time of handling of vessel i ∈ N;
ci ≥ 0, represents the total handling time of vessel i ∈ N;
sik binary, equals 1 if section k ∈M is the starting section of vessel i ∈ N,

0 otherwise;
xik binary, equals 1 if vessel i ∈ N occupies section k ∈M, 0 otherwise;
yij binary, equals 1 if vessel i ∈ N is berthed to the left of vessel j ∈ M

without any overlapping in space, 0 otherwise;
zij binary, equals 1 if handling of vessel i ∈ N finishes before the start of

handling of vessel j ∈ N, 0 otherwise;

In the proposed formulation, we use additional parameters that are generated by data-
preprocessing that provide information on whether a particular section is occupied and the
fraction of the length of the section that is occupied for a given vessel and given the first
section occupied by the vessel. The following coefficients are generated and provided as
input to the model:

dilk =

{
1 if vessel i starting at section ` touches section k;
0 otherwise.

pilk =
{

percentage of total cargo handled at section k if vessel i starts at section `;

The MILP model for the dynamic berth allocation problem with hybrid berth layout in
bulk ports is formulated as shown below.
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min
∑
i

(mi −Ai + ci) (14)

s.t. mi −Ai ≥ 0 ∀iεN (15)∑
kεM

(sjkbk) + B(1− yij) ≥
∑
kεM

(sikbk) + Li ∀i, jεN, i 6= j (16)

mj + B(1− zij) ≥ mi + ci ∀iεN,∀jεN, i 6= j (17)

yij + yji + zij + zji ≥ 1 ∀iεN,∀jεN, i 6= j (18)∑
kεM

sik = 1 ∀iεN (19)∑
kεM

(sikbk) + Li ≤ L ∀iεN (20)∑
`εM

(dilks
i
`) = xik ∀iεN,∀kεM (21)

(dk −Di)xik ≥ 0 ∀iεN,∀kεM (22)

ci ≥ hwk pilkQis
i
` ∀iεN,∀kεM, ∀lεM,∀wεWi (23)

sik ε {0, 1} ∀iεN,∀kεM (24)

xik ε {0, 1} ∀iεN,∀kεM (25)

yij ε {0, 1} ∀i, jεN (26)

zij ε {0, 1} ∀i, jεN (27)

The objective function (14) minimizes the total service time of all vessels berthing at the
port. Constraint (15) ensures that vessels can be serviced only after their arrival. Constraints
(16)-(18) are the non-overlapping restrictions for any two vessels berthing at the port. Note
that the constraints (16)-(17) have been linearized by using a large positive constant B. Con-
straints 19)-(21) ensure that each vessel occupies only as many number of sections as deter-
mined by its length and the starting section occupied by the vessel. Note that using a hybrid
berthing layout in case of bulk ports is important. On the one hand, a discrete berthing lay-
out will lead to inefficient allocation of vessels since the delays associated with the vessels
requiring fixed specialized equipment facilities such as conveyors and pipelines will further
increase. On the other hand, a continuous berthing layout introduces several non-linearities
in the modeling of the handling times of vessels which are dependent on the berthing lo-
cation of the vessels along the quay. Moreover in the hybrid berthing layout used in our
model, the sections are small enough such that a given vessel can occupy several sections
while a given section can be occupied by at most one vessel at a given time. This maximizes
the utilization of quay space ensuring better service quality of vessels requiring specialized
equipment facilities such as conveyors and pipelines. Constraints (22) ensure that the draft
of the vessel does not exceed the draft of any occupied section. Constraints (23) are used to
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determine the total handling time for any given vessel. The time taken to handle a given
vessel at a given section is directly proportional to both the cargo quantity handled at that
section as given by the product pilkQi, and the unit handling time associated with that sec-
tion and cargo type given by the parameter hwk . The handling time at a section that is not
occupied by the vessel is equal to zero as taken care of by the binary variable si` , and the
total handling time of the vessel is the handling time at the section with the maximum han-
dling time value among all sections along the quay. Note that the above model is completely
linear and thus small instances can be solved using commercially available solvers.

The discrete BAP has been proved to be NP-hard (Garey and Johnson (1979)). The com-
plexity of the proposed MILP based on hybrid berth layout is significantly enhanced because
of the non-overlapping constraints (16)-(18), which contain several binary integer variables.
This is because several combinations of specific integer values for the variables must be test-
ed, and the number of such combinations rises exponentially with the size of the problem.
Thus with increase in problem size, the space and time complexity of the MILP also increases
exponentially.

4.2 GSPP formulation

The berth allocation problem described in Section (2) can also be modeled as a generalized
set partitioning problem (GSPP). The GSPP model was proposed by Christensen and Holst
(2008) in the context of container terminals. In the GSPP model, the planning horizon H is
divided into discrete time intervals and only integral measurements of time are considered.
The columns (variables) are generated apriori by data pre-processing, where a column rep-
resents a feasible berthing assignment of a single vessel to a specific set of section(s) at a
specific time. In our research problem, the cargo type on the vessel is explicitly taken into
account in the generation of feasible assignments for that particular vessel. For example, if
a particular vessel carrying liquid bulk needs to be berthed at sections where the pipeline
facility is installed, then only those assignments where the vessel is occupying these sec-
tions and the estimated departure time of the vessel does not exceed the length of planning
horizon, are feasible. Alternatively, these vessels can be prevented from occupying sections
that do not have the pipeline facility by providing extremely large handling time values as-
sociated with these sections and the cargo type corresponding to the conveyor facility. We
illustrate the procedure with a small example containing two vessels 1 and 2. We consider 3
sections along the quay and 3 discrete time intervals in the planning horizon. Let us assume
that vessel 1 needs the conveyor facility and cannot berth at section 3 which does not have
this facility, while vessel 2 arrives at the start of time 2, and hence can only berth after that.
Then the assignment matrix for the problem would look like as shown in Table 1. The first
column represents the berthing assignment of vessel 1 to sections 1 and 2 from time 1-2, and
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Vessel 1 1 1 0 0
Vessel 2 0 0 1 1

Section 1, Time 1 1 0 0 0
Section 1, Time 2 1 1 1 0
Section 1, Time 3 0 1 1 0
Section 2, Time 1 1 0 0 0
Section 2, Time 2 1 1 1 1
Section 2, Time 3 0 1 1 1
Section 3, Time 1 0 0 0 0
Section 3, Time 2 0 0 0 1
Section 3, Time 3 0 0 0 1

Table 1: Assignment matrix for a simple example of GSPP

so on.

We denote the set of columns by P. The assignment matrix is composed of the upper
submatrix A and lower submatrix B. The upper submatrix A consists of |P| columns and
N rows. In submatrix A, if column p ∈ P represents the feasible assignment of vessel i ∈
N, then the entry in row i is 1 while all other entries are zeroes. The lower submatrix B
consists of |P| columns and a single row for every (section,time) position. Thus, in submatrix
B, if column p ∈ B, represents the feasible assignment of vessel i ∈ N, then all entries
corresponding to the (section, time) positions occupied by vessel i in the feasible assignment
p ∈ P are 1, while all the remaining entries are zeroes.

We assume the following input data to be available for the GSPP model:

H = set of discrete time intervals in the planning horizon
P = set of feasible assignments
t = 1, ..., |H| discrete time intervals in the planning horizon
p = 1, ..., |P| feasible assignments
dp = delay associated with assignment p
hp = handling time associated with assignment p

The assignment matrix coefficients are defined as follows.

Aip =


1 if vessel i is the assigned vessel in the feasible assignment represented

by assignment p;
0 otherwise.
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bstp =

{
1 if section s is occupied at time t in assignment p;
0 otherwise.

There is only a single decision variable in the GSPP model for selection of feasible assign-
ments in the optimal solution which is defined as follows.

λp =

{
1 if assignment p is part of the optimal solution;
0 otherwise.

The GSPP model is formulated as shown below:

min
∑
p

(dpλp + hpλp) (28)

s.t.
∑
p

(Aipλp) = 1 ∀iεN (29)∑
p

(bktp λp) ≤ 1 ∀kεM, ∀tεH (30)

λp ε {0, 1} ∀pεP (31)

Constraints (29) ensure that each vessel must have exactly one feasible assignment in the
optimal solution. Constraints (30) ensure that a given section at a given time can be occupied
by at most one vessel

GSPP is in general characterized as NP-hard. The growth in the number of variables
and constraints in the set-partitioning approach is much faster as compared to the integer
programming approach. Furthermore constraints involving two or more vessels are much
more difficult to incorporate in the GSPP approach. For example in bulk context, it would
be complicated to model constraints wherein two or more vessels cannot use the pipeline
facilties installed at different sections at the same time. However, the approach offers several
modeling advantages, primarily because it is much easier to incorporate more advanced
spatial and temporal constraints on individual vessels as these can be easily handled while
generating feasible assignments. It is also easier to model complex objectives as long as they
can be expressed as a function of the column costs.

4.3 Heuristic Algorithm

We now propose a meta-heuristic that improves the berthing assignment of vessels by iter-
atively changing the priority order of vessels with regards to the service quality measure of
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each vessel. The algorithm, commonly termed in literature as squeaky wheel optimization
(SWO) works on the principle of Construct/ Analyze/ Prioritize, where the solution gener-
ated at each successive iteration is constructed and analyzed, and the results of this analysis
are used to generate a new priority order to obtain the next solution. The algorithm operates
on two search spaces: solutions and priorizations as schematically shown in Figure 5. The
idea of SWO was introduced by Clements et al. (1997) and has been used in several combina-
torial optimization problems such as in scheduling problems and graph coloring problems,
by Smith and Pyle (2004), Lim et al. (2004), Joslin and Clements (1998). In the context of
container terminals, SWO algorithm has been used by few scholars such as Fu et al. (2007)
to solve the port space allocation problem, and by Meisel and Bierwirth (2008) to solve the
integrated berth allocation and crane assignment problem. The approach can be adapted to
solve the dynamic, hybrid berth allocation problem in bulk ports as discussed in this section.
SWO is typically useful in problems where it is possible to quantify the individual contribu-
tion of each single problem element to the overall solution quality. It could be used in our
problem, since the objective is to minimize the total service time of the berthing schedule
which is simply the sum of the service times of all vessels in the berthing schedule. Unlike
in local search techniques such as iterated hillclimbing etc., the moves in search space are
not motivated by the objective function value, but rather by the weak performing elements
of the solution even when the move may lead to a worse overall solution.

In the implementation of the SWO algorithm in our problem, we use a base heuristic that
returns a feasible berthing assignment for a given priority order of vessels. In the generation
of feasible assignments, the cargo type on the vessel is explicitly taken into account. The
feasible assignments of vessels requiring fixed equipment facilities such as conveyors and
pipelines have the vessels berthed at only those sections where these facilities are installed,
or alternatively we can provide extremely large values of handling times for other sections
along the quay. The initial solution is the berthing assignment obtained by prioritizing the
incoming vessels in order of arrival times, also called the first-come-first-served (FCFS) or-
dering. At the end of each iteration, we assess the individual contribution of each vessel to
the overall service time of the berthing assignment obtained, and rank the vessels according
to their individual service performance to obtain a new priority order which is then used
as an input in the next iteration. A vessel may be inserted between two vessels that have
already been assigned or at the beginning or at the end of the berthing schedule. A giv-
en vessel at a particular rank in the given priority order is assigned to those set of sections
which minimize the total waiting and handling time of the vessel, after all the vessels ranked
above in the priority order have already been assigned.
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Algorithm 1 Algorithm for implementation of SWO to solve BAP
Require: Set N of vessels, setM of sections

Obtain the initial priority list po given by increasing order of arrival times
Initialize arraylist priorityListsEvaluated
Add po to priorityListsEvaluated
Set po→ current priority list p
while iteration ≤maxiterations do

Obtain the berthing assignment b = BaseHeuristic(p)
for i = 1→ N do

Calculate service quality si of vessel i in solution b
end for
Sort the vessels in decreasing order of si to obtain the new priority list p1
Set p1 → p

while priorityListsEvaluated contains p do
p = Randomize (p)

end while
Add p to priorityListsEvaluated
if service time(b) ≤ service time(finalBerthingAssignment) then

finalBerthingAssignment = b
end if

end while

The key role of the prioritizer is to identify the weak performing vessels and move them
forward in the sequence to enable them to be handled better by the constructor. Once these
vessels start performing well, they sink back in the sequence at which point their perfor-
mance may start deteriorating again and cause them to move forward in the sequence again.
On the other hand, vessels performing consistently well sink back and stay there. In the bulk
context, owing to the restrictive spatial constraints on vessels requiring specialized facilities
such as conveyors and pipelines, the berthing delays for these vessels could be very large
and these vessels are typically the weakest performing elements in the overall solution. Such
vessels are heavily penalized if they are ranked lower in the priority list, and thus to ensure
high service quality for these vessels in particular, they should not be allowed to sink back in
the priority list. In the SWO algorithm, there is also the risk of the algorithm getting trapped
in a cycle alternating between a set of priority listings. To avoid this, if a listing has already
been evaluated, we generate a new listing by introducing some randomization in the cur-
rent priority order by swapping two or more vessels until we get a priority listing that has
not been evaluated so far. The algorithm terminates after a preset number of iterations, and
the best solution obtained thus far is accepted as the final solution. The implementation is
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described by Algorithm 1.
One key issue in using SWO for large problem size is that a new solution is construct-

ed from scratch after every iteration. A possible solution to this problem could be the use
of a history mechanism that keeps track of the previous solutions generated for given pri-
oritizations, as that would speed up the construction process. Another bottleneck in the
approach is that in many cases, the optimal solution has some badly performing vessels.
This is a problem since this approach is primarily motivated by identifying such vessels and
assigning high blame to them to move them forward in the sequence and enable them to
be handled better in the next iteration. This prevents the SWO approach to identify such
sacrificial vessels and converge to good solutions. While a deeper understanding of the ap-
proach would definitely help to obtain better solutions, in this paper we have shown that
a relatively simple implementation of the approach can be used to obtain reasonably good
results for our problem.

Figure 5: Schematic Representation of SWO Algorithm

5 Results and Analysis

In this section, we compare the different BAP formulations presented in earlier sections. The
MILP formulation described in Section 4.1 is tested using CPLEX solver with the solution
time limit set to 7200 seconds. In the GSPP approach, all feasible assignments for the given
instances are generated apriori using JAVA code and provided as an input to the GSPP for-
mulation described in Section 4.2. The optimization model in (28)- (31) is then solved using
CPLEX solver. The heuristic algorithm presented in Section 4.3 is implemented in JAVA pro-
gramming language. All tests were run on an Intel Core i7 (2.80 GHz) processor and used a
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32-bit version of CPLEX 12.2.

5.1 Generation of Instances

The instances were generated based on a small sample of data received from SAQR port, Ras
Al Khaimah(RAK), UAE. SAQR port is the biggest bulk commodity port in the entire mid-
dle east handling approximately 30 million tonnes of cargo annually. The port plays a key
role in the economic growth of the RAK emirate, which has registered a significant growth
in GDP from AED 6.6 billion in 2002 to AED 13.6 billion in 2008. The port’s cargo handling
department specializes in dealing with a wide variety of imported and exported commodi-
ties including consignments of aggregates, cement, coal, clinker, iron ore, feldspar, clay, so-
da ash, silica sand, grain, animal feedstock, steel, project cargoes and petroleum products
(www.saqrport.com).

The data sample received from the port provided information about the vessel lengths,
expected and actual times of arrival, berthing, processing and departure of vessels, expected
and actual berthing positions and the cargo tonnage of the vessels. The data was provided
for over 20 vessels for a time horizon of roughly 10 days from 28th March to 6th April, 2011.
Although, there were a lot of missing entries in the data file, we could use the data sample
to get a rough estimate of the range of values for most input parameters in our model.

To do a comparison of the different formulations, we generate 6 instance sizes with |N| =
10, 25 and 40 vessels and |M| = 10 and 30 sections along the quay. A set of 9 instances was
generated for each instance size. In all instances, the total quay length L is 1600 meters, and
the vessel lengths Li lie in the range 80-260 meters as in SAQR. The expected arrival times
Ai are randomly generated between a given range of values, described more explicitly later
in the paper. We further remark that the drafts of all vessels Di are less than the minimum
draft for all sections, as in the data provided by the port. Therefore, constraints (22) are never
active for the tested instances.

In the generation of handling times hwk , we consider six cargo types - clay, grain, coal,
cement, conveyor and pipeline. The crane handling rate T is assumed equal to 1000 tonnes
per hour. The number of cranes operating in section k is determined by the length of the
section, assuming an additional crane for every 50 meters of section length. In Figure 6, the
cargo locations on the yard with respect to the quay axis have been graphically shown. The
distance dwk in equation 3 is calculated as the euclidean distance between the midpoint of
section k and the cargo location w. The parameter vw which is dependent on the rate of
transfer of cargo is assumed to be equal to 1/1200 hours per meter per unit cargo for the
conveyor, 1/3600 hours per meter per unit cargo for the pipeline and 1/600 hours per meter
per unit cargo for all other cargo types.

The modeling results were found to be sensitive to the discretization used in the berthing
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Figure 6: Graphical Representation of the yard layout used in the generation of handling times

layout, even for the same number of sections. In the instances shown, the berthing layouts
have been fixed for |M| = 10, 30. The minimum section length is 25 meters, and all section
lengths are whole number multiples of this minimum section length. We use the berthing
layouts as shown in Table 2 and Table 3.

To test the sensitivity of the results with respect to the different input parameters in the
model, the instances have been desgined in the following manner.

1. Within the same instance id, the instances have been indexed from 1 to 9. Instances
with the same index number in instance ids A and B, have all parameters the same
except the berthing layouts which consist of |M| = 10 sections in instance id A and |M|

= 30 sections in instance id B. Similarly for C and D, E and F.

2. Within the same instance id, say A, instances with indices (1, 2, 3), (4, 5, 6) and (7, 8, 9)
have all parameters the same except the vessel lengths, which vary in the range 80-260
meters for instances indexed (1,4,7); in the range 80-170 meters for indices (2,5,8) and
in the range 170-260 meters for indices (3,6,9). Similarly for B, C, D, E and F.

3. Within the same instance id, say A, instances with indices (1, 4, 7), (2, 5, 8) and (3,
6, 9) have all parameters as same except the arrival times. Indices (1,2,3) represent
the congested scenario wherein the vessel arrivals are very close together, within a
time range of 5 hours; indices (4,5,6) represent the mildly congested scenario with
vessel arrival times within a time range of 10 hours; and indices (7,8,9) represent the
congestion free case when the vessel arrivals are spread within a time range of 20
hours. Similarly for B, C, D, E and F.
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Section Length Facility
1 150 C
2 50 C
3 200 P
4 150 C,P
5 125 C,P
6 250 -
7 250 -
8 75 P
9 150 P
10 200 -

Table 2: Berthing layout and fixed facility locations for |M|=10 (C and P stand for conveyor
and pipeline respectively)

Thus instance A8 has a berthing layout with |M|=10 sections, |N|=10 vessels with ves-
sel lengths in the range 80-170 meters and represents the congestion free scenario with all
the vessels arriving within a time range of 20 hours. Instance D6 contains |M|=30 section-
s, |N|=25 vessels with vessel lengths in the range 170-260 meters and represents the mildly
congested scenario with vessel arrivals within a time range of 10 hours. Instance F1 contains
|M|=30 sections, |N|=40 vessels with vessel lengths in the range 80-260 meters and represents
the congested scenario with all vessel arrivals within a time window of 5 hours.

5.2 Comparison of Algorithms

The computational results for the three approaches presented earlier are shown in Tables
(4)-(5). Results obtained from the first-come-first-served (FCFS) heuristic which is used to
obtain an initial solution in the implementation of the SWO heuristic algorithm have been
also shown.

As can be seen from the results, for |N| = 10 vessels, the MILP formulation produces op-
timal results for all instances within the prescribed CPLEX time limit of 2 hours. However,
it is not able to solve even a single instance to optimality for instances with |N| = 25, 40, with
a significantly large duality gap at the end of the run. For instance F3 which represents the
congested scenario with |N| = 40 vessels and |M| = 30 sections, the model is unable to find
even a single feasible integer solution within the CPLEX time limit. Clearly, the complexity
of the problem is highly affected by the problem size and increases exponentially, which as
discussed earlier can be attributed to the exponentially increasing number of integer vari-
ables with increase in problem size.

In the GSPP formulation, we generate feasible assignments for a sufficiently large plan-
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Section Length Facility
1 150 C
2 25 C
3 25 C
4 25 P
5 25 P
6 100 P
7 25 P
8 25 P
9 25 C,P
10 25 C,P
11 100 C,P
12 25 C,P
13 25 C,P
14 25 C,P
15 50 C,P
16 50 -
17 75 -
18 200 -
19 75 -
20 50 -
21 50 -
22 25 P
23 25 P
24 25 P
25 100 P
26 25 P
27 25 P
28 25 -
29 25 -
30 150 -

Table 3: Berthing layout and fixed facility locations for |M|=30 (C and P stand for conveyor
and pipeline respectively)
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ning horizon of 150 hours, divided into discrete time intervals of 1 hour. It should be noted
that the computational time provided for GSPP model includes the time taken to generate
the feasible assignments and subsequently solve the optimization model using CPLEX. As
can be seen from the results, the performance of the GSPP model is quite remarkable, as it
is able to solve all instances to optimality, and most of them within few minutes of com-
putational time. For instance id F with |N| = 40 and |M| = 30, the GSPP model runs out of
memory when the length of time interval h is equal to 1 hour, since the number of feasible
assignments is very large. To overcome this problem, we use time intervals of h=2 hours for
instance id F.

The FCFS heuristic produces results by simply berthing vessels according to their arrival
order. The heuristic used to obtain an initial solution in the implementation of the SWO,
performs reasonably well for small sized instances but the performance is weak for larger
instances. This indicates that as instance size grows, the berthing order has a larger deviation
from the arrival order of vessels.

The SWO heuristic performs reasonably well for the tested instances. The optimality gap
is less than 10 percent averaged over all the tested 54 instances. Since the feasible assign-
ments are explicitly enumerated in the GSPP approach, it runs the risk of running out of
memory for a large number of assignments. Even when the time interval h is equal to 2
hours, the GSPP formulation takes a relatively larger time to converge for some instances,
as can be specially seen for instances F3, F6 and F9 which represent the instances with large
vessels with |N| = 40 vessels and |M| = 30 sections. But the SWO heuristic provides near
optimal solutions in much less time as compared to GSPP. Thus, for very large instances
or even smaller sized instances with long planning horizons, SWO may be used to obtain
sub-optimal berthing assignments.

5.3 Results Analysis

In Figures (7)-(8), the optimal solutions of the instances A1 and C1 are graphically repre-
sented on the time space diagram as shown. Each rectange represents a vessel whose width
represents the berthing location of the vessel along the quay, and the height represents the
handling time of the vessel. The cargo type on each vessel is marked on the rectangle rep-
resenting that particular vessel. The fixed facility locations are marked along the quay axis.
It can be seen that the optimal berthing locations for most vessels are at close physical prox-
imity to the location of the vessel cargo type on the yard, as per the yard layout shown in
Figure 6. This is the case since the distance between the berthing location of the vessel and
the yard location of the cargo type of the vessel is explicitly considered in modeling the han-
dling times of the vessels. The vessels requiring specialized equipment facilities are berthed
at sections where these facilities are installed by providing appropriate values of handling
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times for each combination of section and cargo type. Thus for a given yard layout of the
bulk terminal our model ensures better coordination between the berthing and yard activi-
ties, apart from minimizing the total service time of all vessels berthing at the port. It may
be noted however that some vessels requiring the fixed equipment facilities experience large
delays owing to the restrictive spatial constraints on these vessels.

Figure 7: Graphical Representation of the optimal solution output for the instance A1. The fixed
facilitly locations are marked along the quay, where C and P stand for conveyor and pipeline respec-
tively.

The computational results obtained from the GSPP formulation are used to investigate
the impact of vessel lengths, berthing layouts and congestion on the optimal service times
and complexity of the BAP. In Figure (9), the percentage difference in optimal service time
values for |M|=10 and |M|=30 are plotted for different number of vessels. It is clear from
the plots that having more sections leads to better service times owing to better utilization
of the quay space. It is interesting to note however that the difference in optimal service
times is most significant for instances with smaller vessels represented by indices (2,5,8).
This clearly indicates that instances with small vessels are more sensitive to the berthing
layouts and choosing a higher number of sections is more advantageous for such instances.
As can be seen in Table (5), in many cases for |N|=40 vessels, the computational time is
significantly higher for |M|=30 sections as compared to |M|=10 sections. Thus, in choosing
the discretization for larger problem size, there may be a trade-off between obtaining a better

25



Figure 8: Graphical Representation of the optimal solution output for the instance C1. The fixed
facilitly locations are marked along the quay, where C and P stand for conveyor and pipeline respec-
tively.

solution value and obtaining the solution in reasonable computational time.
In Figure 10, the optimal service times have been plotted for each instance size with

varying degrees of congestion for vessel lengths in the range 80-260 meters represented by
instance ids (1,4,7). Here, congestion is used to represent the case when vessel arrivals are
very close together in time, as opposed to the congestion free case when arrivals are widely
spaced in time. It can be seen from the plot, that as instance size grows the effect of conges-
tion is also higher as indicated by the negative slopes of the curves for the larger instances.
Thus it can be inferred that the temporal proximity of vessel arrivals enhances the complex-
ity of the problem, and leads to higher service time values.
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Figure 9: Effect of discretization and vessel lengths on service times
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Figure 10: Effect of congestion on service times

6 Conclusions and Future Research

The berth allocation problem in bulk ports has many similarities but also few differences
with that in container terminals. The main point of difference is that in bulk port terminals,
it is necessary to explicitly account for the cargo type on the vessel and the fixed equipment
facilities such as conveyors and pipelines which are installed at only certain sections along
the quay. In this paper, we have presented and compared three different formulations to
solve the dynamic, hybrid BAP in bulk port terminals that explicitly take into account the
cargo type on the vessel. Our approach enhances the co-ordination between berthing and
yard activities for a given yard layout and fixed facility locations along the quay, apart from
minimizing the total service cost of all berthing vessels. Results inspired by port data show
that the problem is complex. The exact solution approach based on mixed integer linear
programming (MILP) fails to produce optimal results for large sized instances in the CPLEX
time limit, though it can be used to solve small sized instances in reasonable time.

We have proposed an alternate exact solution approach based on generalized set parti-
tioning (GSPP) in which all feasible assignments for a given planning horizon are generated
a priori by data pre-processing and provided as an input to the optimization model. The
performance of the GSPP model is quite remarkable. The model was able to solve all tested
instances to optimality. However, the increase in the number of variables and constraints in
the GSPP model is very fast with increase in the instance size. When the number of feasible
assignments is too large, typically in excess of 100,000, which could be owing to large in-
stance size or a relatively long planning horizon for even small instances, the CPLEX solver
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runs out of memory. This could be partially handled by tweaking the parameters of the C-
PLEX solver, but was avoided for a fair comparison of the set partitioning method with the
other approaches.

To obtain near-optimal solutions of large sized instances in reasonable time, we have
proposed a heuristic approach based on the principle of squeaky wheel optimization. The
heuristic produces sub-optimal results with less than 10 percent gap averaged over all the
tested instances with respect to the GSPP solution. Thus, SWO algorithm could be used as
an alternative in cases where GSPP model is too slow or does not provide any result.

Another challenging problem in the bulk context is to make the proposed model more
robust to account for unforeseen disruptions in operations owing to uncertainties in arrival
times and/or the breakdown of certain facilities such as conveyors or pipelines. As part of
ongoing work, the berth allocation problem is modeled with some degree of anticipation
of variability in information. The robust model is compared with the deterministic model
presented in this paper by using a dynamic recovery algorithm that solves the berth alloca-
tion problem in real time as actual data is revealed. Another natural extension of the current
work is to extend our berth allocation model and take into account the integrated planning
of berth and yard space allocation.
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