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Abstract

In this research, two crucial optimization problems of berth allocation and yard assignment
in the context of bulk ports are studied. We discuss how these problems are interrelated and
can be combined and solved as a single large scale optimization problem. More importantly
we emphasize the differences in operations between bulk ports and container terminals which
emphasizes the need to devise specific solutions for bulk ports. The objective is to minimize the
total service time of vessels berthing at the port. We propose an exact solution algorithm based on
branch and price framework to solve the integrated problem. In the proposed model, the master
problem is formulated as a set-partitioning problem, and subproblems to identify columns with
negative reduced costs are solved using mixed integer programming. The proposed algorithm is
tested and validated through numerical experiments based on instances inspired from real bulk
port data. The results indicate that the algorithm can be successfully used to solve instances
containing up to 40 vessels within reasonable computational time.
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1 Introduction
Maritime transportation is a major channel of international trade. In the last decade, the shipping
tonnage for dry bulk and liquid bulk cargo has risen by 52% and 48% respectively. The total volume
of dry bulk cargoes loaded in 2008 stood at 5.4 billion tons, accounting for 66.3 per cent of total
world goods loaded UNCTAD (2009). The proper planning and management of port operations in
view of the ever growing demand represents a big challenge. A bulk port terminal is a zone of the port
where sea-freight docks on a berth and is stored in a buffer area called yard for loading, unloading
or transshipment of cargo. In general, the bulk terminal managers are faced with the challenge of
maximizing efficiency both along the quay side and the yard. From the past research, it is well
established that operations research methods and techniques can be successfully used to optimize
port operations and enhance terminal efficiency. However while significant contributions have been
made in the field of large scale optimization for container terminals, relatively little attention has been
directed to bulk port operations.

Bulk terminal operations planning can be divided into two decision levels depending on the time
frame of decisions: Tactical Level and Operational Level. Tactical level decisions involve medium to
short term decisions regarding resource allocation such as port equipment and labor, berth and yard
management, storage policies etc. In practice, these decisions could be based on "rules of thumb" in
which the experience of the port managers plays an important role, or alternatively more scientific
approaches based on operations research methods could be in use. The operational level involves
making daily and real time decisions such as crane scheduling, yard equipment deployment and last
minute changes in response to disruptions in the existing schedule. This paper focuses on the tactical
level decision planning for the integrated berth and yard management in the context of bulk ports. We
focus in particular on two crucial optimization problems in the context of bulk port terminals: The
Berth Allocation Problem (BAP) and the Yard Assignment Problem.

The tactical berth allocation problem refers to the problem of assigning a set of vessels to a given
berthing layout within a given time horizon. There could be several objectives such as the minimiza-
tion of the service times of vessels, the minimization of the port stay time, the minimization of the
number of rejected vessels, the minimization of the deviation between actual and planned berthing
schedules etc. There are several spatial and temporal constraints involved in the BAP, which lead to a
multitude of BAP formulations. The temporal attributes include the vessel arrival process, the start of
service, the handling times of vessels, while the spatial attributes relate to the berth layout, the draft
restrictions and others. In a container terminal, all cargo is packed into containers, and thus there is no
need for any specialized equipment to handle any particular type of cargo. In contrast in bulk ports,
depending on the vessel requirements and cargo properties, a wide variety of equipments are used for
discharging or loading operations. Thus, the cargo type on the vessel needs to be explicitly taken into
consideration while modeling the berth allocation problem in bulk ports. The tactical yard assignment
problem refers to decisions that concern the storage location and the routing of materials. This affects
the travel distance between the assigned berth to the vessel and storage location of the cargo type
of the vessel on the yard, and furthermore determines the storage efficiency of the yard. Thus, the
problems of berth allocation and yard management are interrelated. The start times and end times of
operations of vessels determine the workload distribution and the deployment of yard equipment such
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as loading shovels and wheel loaders in the yardside. Moreover, berthing locations of vessels deter-
mine the storage locations of specific cargo types to specific yard locations, which minimize the total
travel distance between the assigned berthing positions to the vessels and the yard locations storing
the cargo type for the vessel. Similarly, the yard assignment of specific cargo types has an impact on
the best berthing assignment for vessels berthing at the port. In this study, we present an integrated
model for the dynamic, integrated berth allocation problem and yard assignment in context of bulk
ports. Few scholars have investigated this problem in context of container terminals, and there is no
published literature for bulk ports. We present an exact solution algorithm based on branch-and-price
to solve the combined large scale problem. Numerical experiments based on real-life-inspired port
data indicate that the proposed algorithm can be successfully used to solve even large sized instances.

2 Literature Review
From the past OR literature on container terminal operations, it is well established that integrated
planning of operations can allow port terminals to reduce congestion, lower delay costs and enhance
efficiency. Significant contributions have been made in the field of large scale optimization and in-
tegrated planning of operations in container terminals. Bulk ports on the other hand have received
almost no attention in the operations research literature. The integrated berth allocation and quay
crane assignment or scheduling problem has been studied in the past by Park and Kim (2003), Meisel
and Bierwirth (2006), Imai, Chen, Nishimura and Papadimitriou (2008), Meisel and Bierwirth (2008),
and more recently by Giallombardo et al. (2010) and Vacca (2011) for container terminals. Compre-
hensive literature surveys on container terminal operations can be found in Steenken et al. (2004),
Stahlbock and Voss (2008), Bierwirth and Meisel (2010).

The dynamic, hybrid berth allocation problem in context of bulk ports is studied by Umang et al.
(2012). The berth allocation problem in container terminals has been widely studied in the past. Imai
et al. (1997), Imai et al. (2001), Imai, Nishimura and Papadimitriou (2008), Imai et al. (2003), Monaco
and Sammarra (2007), Buhrkal et al. (2011), Zhou and Kang (2008), Han et al. (2010), Cordeau et al.
(2005), Mauri et al. (2008) propose methods to solve the discrete berth allocation problem. The
continuous berth allocation problem is studied by Li et al. (1998), Guan et al. (2002), Park and Kim
(2003), Guan and Cheung (2004), Park and Kim (2002), Kim and Moon (2003), Lim (1998), Tong
et al. (1999), Imai et al. (2005) and Chang et al. (2008). The berth allocation problem with hybrid
layout is addressed by Moorthy and Teo (2006), Dai et al. (2008), Nishimura et al. (2001) and Cheong
et al. (2010), and position-dependent handling times are considered by Cordeau et al. (2005) and Imai
et al. (2007) for indented berths.

Yard management in container terminals involves several tactical and operational level decision
problems. Scheduling and deployment of yard cranes is addressed by Cheung et al. (2002), Zhang
et al. (2002), Ng and Mak (2005), Ng (2005) and Jung and Kim (2006). Storage and space allocation,
stacking and re-marshalling strategies have been studied by Kim and Kim (1999), Kim et al. (2003),
Lee et al. (2006) and few others. Nishimura et al. (2009) investigate the storage plan for transshipment
hubs, and propose an optimization model to minimize the sum of the waiting time of feeders and the
handling times for transshipment containers flow. Transfer operations that consist of routing and
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scheduling of internal trucks, straddle carriers and AGV’s have been studied by Liu et al. (2004), Vis
et al. (2005), and Cheng et al. (2005) among others. Works on integrated problems related to yard
management in container terminals include Bish et al. (2001) and Kozan and Preston (2006) who
propose the integration of yard allocation and container transfers, whereas Chen et al. (2007) and Lau
and Zhao (2007) study the integrated scheduling of handling equipment in a container terminal. In
the following, we discuss in more detail some articles relevant to our study.

Moorthy and Teo (2006) discuss the concepts of berth template and yard template in the context
of transshipment hubs in container shipping. They study the delicate trade-off between the level
of service as indicated by the vessel waiting times and the operational cost for moving containers
between the yard and quay in a container terminal. A robust berth allocation plan is developed using
the sequence pair approach, with the objective to minimize the total expected delays and connectivity
cost that is related to the distance between the berthing positions of vessels belonging to the same
transshipment group.

Cordeau et al. (2007) study the Service Allocation Problem (SAP), a tactical problem arising in
the yard management of Gioia Tauro Terminal. The SAP is a yard management problem that deals
with dedicating specific areas of the yard and the quay to the services or route plans of shipping
companies which are planned in order to match the demand for freight transportation. The objective
of the SAP is the minimization of container rehandling operations in the yard and it is formulated as
a Generalized Quadratic Assignment Problem (GQAP, see e.g. Cordeau et al. (2006), and Hahn et al.
(2008)). An evolutionary heuristic is developed to solve larger instances obtained from the real port
data.

More recently, Zhen et al. (2011) propose a mixed integer model to simultaneously solve the
tactical berth template and yard template planning in transshipment hubs. The objective is to minimize
the sum of service cost derived from the violation of the vessels expected turnaround time intervals
and the operation cost related to the route length of transshipment container flows in the yard. A
heuristic algorithm is developed to solve large scale instances within reasonable time and numerical
experiments are conducted on instances from real world data to validate the efficiency of the proposed
algorithm.

To the best of our knowldge, operations research problems have received almost no attention thus
far in the context of bulk port terminals. In the context of container terminals, the major focus in the
field of large scale optimization has been on studying the integrated berth allocation and quay crane
scheduling or assignment problem, while very few scholars have attempted to solve the combined
problem of berth allocation and yard assignment as a single large scale optimization problem. This
is also the first paper to present an exact solution algorithm (based on branch-and-price) to solve
the integrated problem in context of seaside port operations planning. Moreover we discuss and
emphasize the specific features in bulk port operations that necessitate the need to devise specific
solutions for bulk terminals.
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3 Problem Statement
In this section we elaborate on the background for the integrated berth allocation and yard assignment
problem in the context of bulk ports. A schematic representation of a bulk port terminal is shown in
Figure 1. We consider a set of vessels N, to be berthed on a continuous quay of length L over a time
horizonH. We consider dynamic vessel arrivals and a hybrid berth layout in which the quay boundary
is discretized into a set M of sections of variable lengths. In a feasible berthing assignment, a given
vessel may occupy more than one section, however a given section cannot be occupied by more than
one vessel or part of a vessel at any given time. The dynamic, hybrid berth allocation problem in
bulk ports is studied by Umang et al. (2012), in which two alternative exact solution methods and
a heuristic approach are proposed to solve the problem. In the present work, we extend the berth
allocation problem to account for the assignment of different yard locations to specific cargo types
and vessels berthing at the port. Thus unlike the berth allocation model in which the problem was
solved for a given yard layout and the unit handling times for given sections along the quay and cargo
types were provided as input parameters to the model, in the integrated framework the assignment of
cargo locations to specific cargo types and vessels are also decision variables.

Figure 1: Schematic representation of a bulk port terminal

A major difference between bulk port and container terminal operations is the need to explicitly
account for the cargo type on the vessel in bulk ports. Depending on the vessel requirements and cargo
types, a wide variety of specialized equipment such as conveyors and pipelines are used for discharg-
ing or loading operations. For example, liquid bulk is generally discharged using pipelines which
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are installed at only certain sections along the quay. Similarly, a vessel may require the conveyor
facility to load cargo from a nearby factory outlet to the vessel. In contrast in a container terminal,
all cargo is packed into containers, and thus there is no need for any specialized equipment to handle
any particular type of cargo. Furthermore in bulk ports, depending on the cargo properties, there may
be additional restrictions on the storage of specific cargo types in the yard which forbids two or more
cargo types to be stored in adjacent yard locations to avoid intermixing.

In our model the main assumption in the computation of handling times is that all sections oc-
cupied by the berthed vessel are being operated on simultaneously. The amount of cargo handled at
each section is assumed proportional to the section length. The handling time of the vessel is the time
taken to load or discharge the section whose operation finishes last. The unit processing or handling
time of a given vessel has a fixed component dependent on the number of quay cranes operating on
the vessel, and a variable component which is dependent on the distance between the section occupied
by the vessel along the quay and the storage location of the cargo type of the vessel on the yard. In
the integrated model, we assume that each vessel has a single cargo type but that can be discharged
(loaded) and transferred to (from) multiple yard locations. Thus, the distance used to calculate this
variable component of handling time is the weighted average of the distance between the vessel and
the assigned yard locations, where the weights are equal to the cargo quantities that are transferred to
(from) each yard location from (to) the vessel. Another assumption in the model is that in the given
planning horizon, a given yard location is either assigned to a single cargo type, or alternatively the
yard location is not assigned to any cargo type.

Based on the preceding discussion, the unit handling time hwik for vessel i with cargo type w
occupying section k along the quay includes the time taken to transfer the unit quantity of cargo
between the cargo location on the yard and section k, and the time taken to load (or unload) the
cargo from the quay side to the vessel. These can be denoted by βwik and αwik respectively. Thus
we have, hwik = αwik + βwik, where αwik = T/nwik and βwik = Vwrik . Here T is the crane handling rate
for loading or discharging operations, and nwik is the number of cranes operating in section k on
vessel i for cargo type w. βwik is the time taken to transfer a unit quantity of cargo between the
cargo location w on the yard and the section k for vessel i, which is assumed to be a linear function
of the weighted average distance rik between the section k and all cargo locations assigned to the
vessel i. The parameter Vw depends on the rate of transfer of cargo type w. Thus for example,
if a vessel is using the conveyor facility to load rock aggregates from the rock factory directly into
the vessel, the parameter Vw is equal to the cargo transfer rate for the conveyor facility, and if there
are no additional cranes operating on the vessel, the parameter αwik which is provided as an input
parameter to the model is equal to zero. In practice, the fixed specialized equipment facilities such
as conveyors and pipelines are dedicated to handling certain cargo types. For example, liquid bulk
is transferred using pipelines, and rock aggregates are transferred using conveyor facility. Thus the
specialized facilities are themselves modeled as cargo types in the proposed model. The objective
of the integrated optimization model that we solve is to minimize the sum of the service times of
all vessels, which includes the handling or processing times and the berthing delays for all vessels
berthing at the port.
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4 Model Formulation
In this section, we present a mixed integer programming formulation for the integrated berth allocation
and yard assignment problem in bulk ports.

4.1 Notation
Input parameters In the formulation of the integrated model, the following input data is assumed
available:-

N = set of vessels
M = set of sections
P = set of cargo locations
W = set of cargo types
H = set of time steps
Wi = cargo type to be loaded or discharged from vessel i
P̄(p) = set of cargo locations neighbouring cargo location p
W̄(w) = set of cargo types that cannot be stored adjacent to cargo type w
Ai = expected arrival time of vessel i
Di = draft of vessel i
Li = length of vessel i
Qi = quantity of cargo for vessel i
dk = draft of section k
`k = length of section k
bk = starting coordinate of section k
αwik = deterministic component of handling time for cargo type w of vessel i

berthed at section k
Vw = constant dependent on the rate of transfer of cargo type w
rpk = distance between cargo location p and section k
Rw = maximum amount of cargo type w that can be handled in a single time step
L = total length of quay
B = large positive constant
F = maximum number of cargo locations that can be assigned to a single vessel
ρi`k = fraction of cargo handled at section k when section ` is the first section

occupied by vessel i

δi`k =

{
1 if vessel i starting at section ` touches section k
0 otherwise.

Decision Variables The following decision variables are used in the model:-
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mi integer ≥ 0, represents the starting time of handling of vessel i ∈ N;
ci integer ≥ 0, represents the total handling time of vessel i ∈ N;
hwik handling time for unit quantity of cargo typew for vessel i berthed at section

k ;
βwik variable component of handling time of vessel i with cargo type w berthed

at section k along the quay;
qip amount of cargo handled by vessel i at cargo location p;
ηi number of cargo locations assigned to vessel i;
rik weighted average distance between section k occupied by vessel i and all

cargo locations assigned to the vessel;
sik binary, equals 1 if section k ∈ M is the starting section of vessel i ∈ N, 0

otherwise;
xik binary, equals 1 if vessel i ∈ N occupies section k ∈M, 0 otherwise;
yij binary, equals 1 if vessel i ∈ N is berthed to the left of vessel j ∈Mwithout

any overlapping in space, 0 otherwise;
zij binary, equals 1 if handling of vessel i ∈ N finishes before the start of

handling of vessel j ∈ N, 0 otherwise;
µpw binary, equals 1 if cargo type w is stored at cargo location p, 0 otherwise;
φip binary, equals 1 if cargo location p is assigned to vessel i, 0 otherwise;
θit binary, equals 1 if vessel i is being handled at time t, 0 otherwise;
ωip
t binary, equals 1 if vessel i is being handled at location p at time t, 0 other-

wise;

4.2 Mathematical Model
The integrated model for the berth allocation and yard assignment problem in bulk ports can be
formulated as follows:

min
∑
i∈N

(mi −Ai + ci) (1)

s.t. mi −Ai ≥ 0 ∀iεN (2)∑
kεM

(sjkbk) + B(1− yij) ≥
∑
kεM

(sikbk) + Li ∀i, jεN, i 6= j (3)

mj + B(1− zij) ≥ mi + ci ∀iεN,∀jεN, i 6= j (4)
yij + yji + zij + zji ≥ 1 ∀iεN,∀jεN, i 6= j (5)∑

kεM

sik = 1 ∀iεN (6)∑
kεM

(sikbk) + Li ≤ L ∀iεN (7)
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∑
`εM

(δi`ks
i
`) = xik ∀iεN,∀kεM (8)

(dk −Di)xik ≥ 0 ∀iεN,∀kεM (9)
ci ≥ hwikρi`kQi − B(1− s

i
`) ∀iεN,∀lεM, ∀kεM, ∀wεWi (10)

hwik = α
w
ik + β

w
ik ∀wεWi, ∀kεM (11)

βwik = Vwr
i
k ∀iεN,∀wεWi, ∀kεM (12)

rik =
∑
pεP

(rpkqip)/Qi ∀iεN,∀kεM (13)

Qi =
∑
pεP

qip ∀iεN (14)

qip ≤ φipQi ∀iεN,∀pεP (15)
φip ≤ qip ∀iεN,∀pεP (16)

qip ≤
∑
wεWi

∑
tεH

(Rwω
ip
t + B(1− µpw)) ∀iεN,∀pεP (17)∑

pεp

φip ≤ F ∀iεN (18)

µpw + µp̄w̄ ≤ 1 ∀wεW,∀w̄εW̄(w),∀pεP,∀p̄εP̄(p) (19)∑
iεN

ωip
t ≤ 1 ∀pεP,∀tεH (20)∑

wεW

µpw ≤ 1 ∀pεP (21)

φip ≤ µpw ∀iεN,∀wεWi,∀pεP (22)
ωip
t ≥ φip + θit − 1 ∀iεN,∀pεP,∀tεH (23)

ωip
t ≤ φip ∀iεN,∀pεP,∀tεH (24)
ωip
t ≤ θit ∀iεN,∀pεP,∀tεH (25)∑

tεH

θit = ci ∀iεN (26)

t+ B(1− θit) ≥ mi + 1 ∀iεN,∀tεH (27)
t ≤ mi + ci + B(1− θit) ∀iεN, ∀tεH (28)

sik, xik ε {0, 1} ∀iεN,∀kεM (29)
yij, zij ε {0, 1} ∀i, jεN (30)
µpw ε {0, 1} ∀pεP,∀wεW (31)
ωip
t ε {0, 1} ∀iεN,∀pεP,∀tεH (32)
φip ε {0, 1} ∀iεN,∀pεP (33)
θit ε {0, 1} ∀iεN,∀tεH (34)
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The objective function (1) minimizes the total service time of all vessels, which is the sum of
total delays and total handling time of vessels berthing at the port. Constraints (2) are the dynamic
arrival constraints that ensure that vessels can be serviced only after their arrival. Constraints (3)-(5)
are the non-overlapping restrictions for any two vessels berthing at the port. These ensure that while
two vessels may be overlapping in space or in time, they cannot be simultaneously overlapping in
both space and time. Note that the constraints (3)-(4) have been linearized by using a large positive
constant B. Constraints (6)-(8) ensure that each vessel occupies only as many number of sections as
determined by its length and the starting section occupied by the vessel. Constraints (9) ensure that
the draft of the vessel does not exceed the draft of any occupied section.

Constraints (10) are used to determine the total handling time for any given vessel which is equal to
the time taken to process the section occupied by the vessel whose operation finishes last. The variable
component of the handling time for a given vessel i and given occupied section k is determined by
the constraint (12), and is a function of the weighted average distance between section k and all cargo
locations assigned to vessel i. The average distance is weighted over the cargo quantities transferred
between each cargo location p assigned to vessel i and section k occupied by the vessel, and is
determined by constraint (13). Constraints (11) determine the unit handling time of vessel i at a given
section k, which is the sum of the fixed component dependent on the number of cranes operating
on that section and the variable component of the handling time as discussed earlier. Constraints
(14)-(16) state that the total cargo quantity to be loaded (discharged) is equal to the sum of the cargo
quantities transferred from (to) all the cargo locations assigned to the vessel. Constraints (17) are
capacity constraints to ensure that the amount of cargo transferred in a unit time does not exceed the
maximum amount of cargo that can be handled as given by parameter Rw for cargo type w. Note that
in case of specialized equipment facilities, the parameter Rw may refer to the conveyor speed or the
flow rate through the pipeline; in other cases it may refer to the maximum rate of transfer of material
between the quay side and the yard side that can be achieved by assigning auxiliary equipment such
as loading shovels, wheel loaders etc.

Constraints (18) impose an upper bound on the maximum number of cargo locations that can
be assigned to any single vessel. Constraints (19) ensure that two cargo types that cannot be stored
together, for example coal and clay, are not assigned to adjacent yard locations. Constraints (20) state
that a given cargo location at a given time can be used by at most one vessel to avoid congestion.
Constraints (21) state that the yard locations have dedicated cargo types, and given yard location can
be assigned to at most one cargo type. Constraints (22) ensure that a vessel is assigned to a yard
location only if that yard location stores the cargo type on the vessel.

Constraints (23) - (25) control the values of the binary decision variable ωip
t which should take

value equal to 1, if and only if both the binary variables φip and θit are equal to 1. This implies that
vessel i is handled at cargo location p at time t if and only if, cargo location p is assigned to vessel
i and vessel i is being handled at time t. Similarly, constraints (26) - (28) contol the values of the
binary decision variable θit which is equal to 1 at all time intervals between the starting time of the
handling of the vessel and the finishing time of the handling operations, and 0 otherwise.
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5 Solution Approach
The mixed integer programming formulation of the integrated model is extremely complex and un-
wieldy, and could not be used to solve even small sized instances, as was validated by numerical
experiments. Thus in the following section, we decompose the mixed integer model and formulate it
as a set partitioning problem.

5.1 Set Partitioning Model
Let Ω be the set of feasible berthing assignments of all vessels berthing at the port in the given
planning horizon. Note that a feasible assignment represents the assignment of a single vessel for a
given set of section(s) for a specific time period, assigned to a set of specific cargo location(s) in the
yard. Let ca be the cost of assignment a ∈ Ω. The following input parameters are used in the set
partitioning model:

Input Parameters

Aia =

{
1 if vessel i is assigned in assignment a,
0 otherwise.

Bkta =

{
1 if section k is occupied at time t in assignment a,
0 otherwise.

Cpwa =

{
1 if cargo type w is stored at location p in assignment a,
0 otherwise.

Dpt
a =

{
1 if assignment p is handled at cargo location p at time t,
0 otherwise.

There is one additional parameter ϑw, which indicates the number of vessels carrying cargo type
w ∈ W. The set partitioning model for the integrated berth allocation and yard assignment problem
can then be formulated as following:

min
∑
a∈Ω

caλa (35)

s.t.
∑
a∈Ω

Aiaλa = 1, ∀i ∈ N, (36)∑
a∈Ω

Bkta λa ≤ 1, ∀k ∈ K, ∀t ∈ H, (37)∑
a∈Ω

Cpwa λa − ϑwµ
p
w ≤ 0, ∀p ∈ P,∀w ∈W, (38)∑

w∈W

µpw ≤ 1, ∀p ∈ P, (39)

10



µpw + µpw ≤ 1, ∀p ∈ P,∀p ∈ P, ∀w ∈W,∀w ∈W, (40)∑
a∈Ω

Dpt
a λa ≤ 1, ∀p ∈ P,∀t ∈ H, (41)

λa ∈ {0, 1}, ∀a ∈ Ω, (42)
µpw ∈ {0, 1}, ∀p ∈ P,∀w ∈W. (43)

In the above formulation, λa indicates if assignment a ∈ Ω is part of the optimal solution (i.e.
λa = 1), and the decision variable µpw is retained from the original formulation and indicates if
location p ∈ P stores cargo type w ∈W.

The objective function (35) minimizes the total service time of vessels berthing at the port. Con-
straints (36) ensure that there is exactly one feasible berthing assignment for each vessel in the optimal
solution. Constraints (37) state that a given section at a given time can be occupied by at most one
vessel. Constraints (38) and (39) state that a given cargo location on the yard can store at most one
cargo type. Constraints (40) are identical to constraints (19) in the original formulation, ensuring that
cargo types that cannot be stored together are not stored at adjacent locations in the yard. Constraints
(41) ensure that at most one vessel can be handled at a cargo location at a given time to avoid con-
gestion. Constraints (42) and (43) state that both the decision variables λp and µpw are binary integer
variables and can only take (0,1) values.

The above formulation was tested for small instances inspired from real port data. However, the
number of feasible assignments given by the size of (Ω) grows exponentially with the problem size.
This in turn leads to an exponential growth in the computational time. Hence in order to avoid the
"explosion" of the solution time, we propose to solve the linear programming relaxation of the above
problem using column generation, as described in the next section.

5.2 Column Generation
The main idea behind the column generation method is to keep the set partitioning model as the so
called "restricted master problem" (RMP). We call it ’restricted’, because instead of using the set of
all feasible assignments Ω, only a subset of the assignments denoted by Ω1 are considered in any
given iteration. Moreover, the binary decision variables λa and µpw are relaxed in order to speed up
the convergence of the process.

In the first iteration of column generation, the RMP is solved using the setΩ1 consisting of vessel
assignments in the initial feasible solution provided by the greedy heuristic (Section 5.2.1). Thereafter,
in each successive iteration of the column generation process, the following dual variables are passed
to the subproblem for identifying feasible assignments with negative reduced cost:

• πi – dual variables corresponding to constraints (36)

• τkt – dual variables corresponding to constraints (37)

• ξpw – dual variables corresponding to constraints (38)
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Algorithm 1: Branch and Price
Data: data file,Ω, finished - boolean, duals - float
Result: Ω1 ⊂ Ω, solution

1 begin
2 Ω1 ← greedy(Ω)
3 duals← ∅
4 solution← ∅
5 repeat
6 duals← solveMaster(Ω1)
7 finished← true

8 for i ∈ N do
9 temp← solveSubProblem(i, duals)

10 if reducedCost(temp) < 0 then
11 Ω1 ∪ temp
12 finished← false

13 until finished
14 solution← solveMaster(Ω1)
15 if solution /∈ Z then
16 ub← solveMaster(Ω1, integral)
17 if solution = ub then
18 break
19 solution← branch&bound(solution)

20 print solution
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• γpt – dual variables corresponding to constraints (41)

The rest of the dual variables are not considered, since from the definition of dual variables (also
known as shadow prices), as described in Hillier and Lieberman (2001):

"The shadow price for resource i (denoted by y∗i ) measures the marginal value of this
resource, i.e., the rate at which Z (objective function) could be increased by (slightly)
increasing the amount of this resource being made available."

Since there is no direct effect on the objective function when the µ variable value(s) are adjusted
in constraints 39 and 40, it implies that the dual variable values for these constraints would be always
zero. Thus the dual variable values for these constraints are not reported to the sub-problem (Section
5.2.2). Based on the dual variables from RMP, the subproblem generates new columns to enter the
active pool of columnsΩ1 by calculating the most negative reduced cost column for each vessel sep-
arately in each iteration of the column generation process. When there are no columns with negative
reduced cost for any subproblem to enterΩ1, the column generation terminates.

The column generation in pseudocode can be seen in Lines (1) - (13) in Algorithm 1. For math-
ematical justification of column generation, please refer to Barnhart et al. (1998), Desaulniers et al.
(2005) and Feillet (2010). In general, this method decomposes the model into a master problem and
sub-problem, and hence reduces the solution space and enhances the convergence speed.

5.2.1 Initial Solution

Algorithm 2: Greedy Heuristic
Data: N - set of vessels, C - set of columns
Result: inital solution

1 begin
2 inital solution← ∅
3 for i ∈ N do
4 for j ∈ C do
5 if initial solution = ∅ then
6 initial solution← j

7 break
8 else if i ∈ j and j is compatible with initial solution then
9 initial solution ∪ j

10 break

11 return inital solution

In order to execute the column generation, an initial feasible solution is needed. Note that if the
problem is infeasible, no dual variables are produced causing the column generation approach to fail.
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A greedy heuristic algorithm (Algorithm 2) is designed to extract an initial feasible solution to the
master problem. The heuristic searches through the space of all feasible columns, where a column
represents the assignment of a single vessel containing the following information:

• set of sections occupied by the vessel

• set of cargo locations in the yard assigned to the vessel (from this information related to the
cargo types stored at specific yard locations can be derived)

• time period for which the given set of section(s) and cargo location(s) in the yard are occupied
by the vessel (from this information related to the berthing delay and the handling time of the
vessel can be derived)

5.2.2 Sub–Problem

In each iteration of column generation, we solve |N| subproblems, one for each vessel i ∈ N. In each
subproblem, the objective is to identify the feasible assignment for that particular vessel with the most
negative reduced cost to be added to the current pool of active columns Ω1 in the restricted master
problem. Note that the index i ∈ N is removed from all decision variables and input parameters in
the sub-problem, since it is solved separately for each vessel i ∈ N. The objective function in a single
sub-problem can be written as:

min (m− a+ c) − (π+
∑

k∈K
∑

t∈H τkt · σkt+∑
p∈P
∑

t∈H γpt ·ψpt +
∑

p∈P
∑

w∈W ξpw · µpw)
(44)

where:

• π, τkt, γpt, ξpw are the dual variables obtained from the restricted master problem

• binary decision variables connecting the duals:

– σkt ∈ (0, 1) – 1 if section k is occupied at time t, 0 otherwise

– ψpt ∈ (0, 1) – 1 if cargo location p is used at time t, 0 otherwise

– µpw ∈ (0, 1) – 1 if cargo type w is stored at location p, 0 otherwise

• m is the starting time of handling the vessel

• a is the arrival time of the vessel

• c is the handling time of the vessel
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Input Parameters The input parameters used in the subproblem are:

w – cargo type on the vessel
δlk – fraction of cargo handled at section k, if the starting section of the vessel is l
B – large positive constant (set to 1,000,000)
bk – starting coordinate of section k
L – length of the vessel
Q – quantity of cargo on the vessel
Y – quay length
ρlk – binary, equals 1 if section k is occupied by the vessel when section l is the starting section,

0 otherwise
F – maximum number of cargo locations that can be assigned to the vessel
rpk – distance between section k and cargo location p
αwk – number of cranes operating in section k for cargo type w
Vw – transfer rate of cargo type w

Decision Variables The decision variables used in the subproblem are:

hwk ≥ 0 – handling time of the vessel at section k
qp ≥ 0 – quantity of cargo handled by the vessel at cargo location p
rk ≥ 0 – weighted average distance for section k occupied by the vessel
sl ∈ (0, 1) – binary, equals 1 if section l is the starting section of the vessel, 0 otherwise
xk ∈ (0, 1) – binary, equals 1 if section k is occupied by the vessel, 0 otherwise
φp ∈ (0, 1) – binary, equals 1 if cargo location p is assigned to the vessel, 0 otherwise
θt ∈ (0, 1) – binary, equals 1 if the vessel is served at time t, 0 otherwise

Sub-problem formulation The subproblem can be formulated as a mixed integer linear program
as follows:

m− a ≥ 0, (45)
c ≥ hwk ρlk − B (1− sl) , ∀l, k ∈M (46)∑

l∈M

sl = 1, (47)∑
k∈M

(sk bk) + L ≤ Y, (48)∑
l∈M

ρlksl = xk, ∀k ∈M, (49)∑
l∈M

φl ≤ F, (50)

φp ≤ µpw, ∀p ∈ P, (51)
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∑
p∈P

qp = Q, (52)

qp ≤ φpQ, ∀p ∈ P, (53)
φp ≤ qp, ∀p ∈ P, (54)

rk =

(∑
p∈P

rpkqp

)
/Q, ∀k ∈M, (55)

hwk = αwk + Vwrk, ∀k ∈M, (56)∑
t∈T

θt = c, (57)

t+ B (1− θt) ≥ m+ 1, ∀t ∈ H, (58)
t ≤ m+ c+ B (1− θt) , ∀t ∈ H, (59)

σkt ≥ xk + θt − 1, ∀k ∈M, ∀t ∈ H, (60)
σkt ≤ xk, ∀k ∈M, ∀t ∈ H, (61)
σkt ≤ θt, ∀k ∈M, ∀t ∈ H, (62)

ψpt ≥ φp + θt − 1, ∀p ∈ P,∀t ∈ H, (63)
ψpt ≤ φp, ∀p ∈ P,∀t ∈ H, (64)
ψpt ≤ θt, ∀p ∈ P,∀t ∈ H. (65)

Constraints (45) ensure that vessels can be served after their arrival. Constraints (46) are used to
determine the total handling time of the vessel. Constraints (47) state that each vessel has exactly
one starting section. Constraints (48) state that the vessel should be berthed such that it does not
extend beyond the length of the quay. Constraints (49) determine if a particular section is occupied
by the vessel. Constraints (50) impose an upper bound on the number of cargo locations that can be
assigned to a single vessel. Constraints (51) ensure that a vessel is assigned to a yard location only if
that yard location stores the cargo type on the vessel. Constraints (52) - (54) state that the total cargo
quantity to be loaded (discharged) is equal to the sum of the cargo quantities transferred from (to) all
the cargo locations assigned to the vessel. Constraints (55) calculate the weighted average distance
over cargo quantities and constraints (56) calculate the handling time for given vessel and berthed
section. Constraints (57) - (59) control the values of the binary decision variable timet ensuring they
take value equal to 1 at all times when the vessel is berthed along the quay. Constraints (58) - (60)
control the values of the binary decision variable σkt to ensure that they take value equal to 1 if and
only if both xk and θt are equal to 1. Similarly, constraints (61) - (63) control the values of the binary
decision variable ψpt to ensure that they take value equal to 1 if and only if both φp and θt are equal
to 1.

Since the sub-problem is solved separately for each vessel, there are no non-overlapping con-
straints in the above formulation and the complexity of the problem is significantly reduced. Thus in
the proposed algorithm, the sub-problems are solved as mixed integer programs directly using CPLEX
solver.
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5.3 Branch and Bound
Since we solve the linear relaxation of the restricted master problem, the final solution obtained after
the convergence of the column generation process is typically not an integer solution. In the "worst"
case, the solution of the relaxed version of the restricted master problem provides a lower bound to the
solution of the original problem and an integer solution can be obtained by applying the branch and
bound algorithm (for more details on branch and bound, please refer to Hillier and Lieberman (2001))
to the obtained solution. However, this does not guarantee that we obtain the optimal integer solution
to the original problem, since there might be a column that would price out favorably but is not present
in the final pool of active columns Ω1. Therefore to find the optimal solution, column generation has
to be executed again at every node of the branch and bound tree (Barnhart et al. (1998)).

The branching is held on the 2 decision variables: λ and µ. Since λ variables are not restricting
the solution space dramatically, we branch first on the µ variables. Since µ variables restrict the cargo
type stored in a given cargo location, several columns are discarded, hence the convergence of branch
and bound is faster than with the restriction of λ variables. When the list of µ variables has been
exhausted, i.e. there are no fractional µ variables, then we start branching on the λ variables.

Note that while branching, both the RMP and the subproblem(s) have to be modified by adding
extra constraints. In RMP, when µ variables are set to 0 or 1 in a particular iteration, constraints
enforcing the µ variables to take the same values are also added in each subproblem in that iteration.
When λa is set to zero, it is ensured that the subproblem for the vessel i in assignment a does not
generate that assignment, otherwise (when set to 1) there is no change.

The combination of column generation and branch and bound is called branch-and-price. The
complete algorithm for branch-and-price can be seen in Algorithm 1.

6 Improvement Methods
The branch and price method has been designed to tackle computationally heavy problems and to
achieve a tight bound (lower bound in case of minimization). The convergence of the method is very
much dependent on how well the decomposition of the original problem is carried out. The recom-
mended method is to decompose the model in a way such that the sub-problem has a block angular
structure (see Alvelos (2005) and Desaulniers et al. (2005)), so that each subproblem can be solved
independently of each other. In this study, each sub-problem is trying to find the berthing and yard
assignment of a given vessel that has the most negative reduced cost for a given set of dual variables
reported from the solution output of the restricted master problem in the last iteration. It is straight-
forward to see that the berthing schedule of one vessel (output of the specific sub-problem) solved
separately, does not have any effect on the remaining sub-problems. Since the effect of dependency
rises only in the master problem, block angular structure is achieved for our problem.

Since we have access to the Ω (from the generation of the initial solution), the first strategy
considered was to solve the master problem onΩ1, retreive dual variables and calculate reduced costs
onΩ. However this method proved to be computationally heavy, hence not feasible.

Another acceleration strategy to speed up the rate of convergence of the column generation process
is to retrieve more than one negative reduced cost columns per sub-problem. In this study, up to 40
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columns are added per sub-problem. This is achieved via modification of the original formulation of
the sub-problem(s). The objective function is removed, and instead following constraint is inserted
into the model:

(m− a+ c) − (π+
∑

k∈K
∑

t∈H τkt · σkt+∑
p∈P
∑

t∈H γpt ·ψpt +
∑

p∈P
∑

w∈W ξpw · µpw) ≤ 0
(66)

The above constraint together with constraints (45) - (65) yield as solution any feasible assignment
with reduced cost less than or equal to zero.

There are many other techniques to improve the convergence of the column generation process
such as stabilization of the dual variables (Pigatti et al. (2005)) and dynamic constraint aggregation
(Elhallaoui et al. (2005) and Elhallaoui et al. (2008)).

These methods are not universal and depend on the structure of the specific problem under study.
We studied these two techniques for our problem, however the results didn’t look very promising and
hence have not been included in this paper. In the dual stabilization method, the basic assumption
that the dual variables are oscillating is not fulfilled and hence it leads to the failure of the method,
although it needs lesser number of columns to finish the column generation process.

The dynamic constraint aggregation technique that we tested is based on the aggregation of con-
straints of the same class and same coefficient values in the restricted master problem. This technique
didn’t speed up the convergence of the column generation process significantly, though the bounds
were found to be tighter and it was found to converge faster than standard column generation for
larger problem size. This can be attributed to the fact that most of the computation time needed for
the convergence of the column generation process is the time taken to solve the sub-problems, while
the computation time of the master problem is already very fast for smaller problem size.

7 Results and Discussion

7.1 Generation of Instances
The proposed branch-and-price algorithm was run on an x64-bit Intel Core i7, (1.60 GHz) using a
64-bit version of CPLEX 12.3. The algorithm was implemented in Java Programming language.

The test instances are based on a sample of real port data obtained from the SAQR port, Ras-
Al-Khaimah, UAE, the biggest bulk port in the middle east. In terms of the level of congestion as
determined by the inter-arrival times of the incoming vessels, the instances consist of 3 different types
of scenarios - congested, mildly congested and uncongested. In all the instances, the total quay length
is 1600 meters, and the vessel lengths lie in the range 50-260 meters as in SAQR.

The cargo quantities on the vessels vary between 1 and 15 cargo units units. In the tested in-
stances, we consider five cargo types - liquid bulk that needs the pipeline facility for discharging, rock
aggregates that need the conveyor facility for loading and three other general type dry cargoes (clay,
coal and cement). The incompatible pair of cargo types that cannot be stored at adjacent locations in
the yard are liquid bulk - clay, and rock - cement. The berthing layout along with the location of the
fixed facilities such as conveyors and pipelines used in the instances is shown in the Table 5.
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Section Length Facility
1 150 C
2 50 C
3 200 P
4 150 C,P
5 125 C,P
6 250 -
7 250 -
8 75 P
9 150 P

10 200 -

Table 5: Berthing layout and fixed facility locations for |M|=10 (C and P stand for conveyor and pipeline
respectively)

In all the tested instances, the planning horizon is 5 days or 120 hours. As illustrated on Figure
2, we have 10 cargo locations in the yard: location 1 has the pipeline facility and is hence designated
for liquid cargo, likewise location 10 has the conveyor facility and is hence designated to the rock
aggregates; locations 2 to 9 are designated to other cargo types, which is a part of the output of the
optimization problem being solved.

CRANE OPERATING AREA

Section 1 Section 102 Section 9Section 3 8Section 4 Section 5 Section 6

150 50 200 150 125 250 250 75 200

Location 1

15

15

100 Location 2 Location 3 Location 4 Location 5

Location 10Location 9Location 8Location 7Location 6

15

1600

Section 7

150

Figure 2: Schematic representation of the port used in instances

7.2 Computational Results and Analysis
In Tables 6, 8 and 9, the results obtained from the column generation method for instances containing
|N|=10, 25 and 40 vessels respectively are shown. As discussed earlier, the solution value obtained
from the column generation method provides a lower bound to the optimal solution of the original
problem.
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instance # congestion time # iter. Ω1 lb ub gap1 gap2 gap

1 yes 4m 16s 15 1 434 125 127 1.5% 0% 1.5%
2 mild 3m 16s 14 996 131 134 1.5% 0.7% 2.2%
3 no 1m 47s 11 737 113 117 – – 3.4%2

4 yes 5m 13s 21 1 294 130 131 0% 0.8% 0.8%
5 mild 3m 18s 18 1 027 131 132 0.7% 0% 0.7%
6 no 1m 39s 17 692 109 111 1.8% 0% 1.8%
7 yes 3m 59s 17 1 311 126 126 0% 0% 0%1

8 mild 2m 37s 13 1 025 122 122 0% 0% 0%1

9 no 1m 29s 9 502 110 117 1.8% 4.5% 6.3%
1 Zero optimality gap obtained from the column generation method without running

the B&B algorithm.
2 Optimality gap without running the B&B algorithm, because of its increased time

complexity.

Table 6: Results obtained from the column generation for the instances containing |N| = 10

vessels.

The upper bound to the optimal solution is obtained by running the RMP with integer decision
variables at the end of the column generation method.

In the tables shown, the optimality gap between the lower bound and the optimal solution is
represented by gap1, whereas gap2 represents the optimality gap between the optimal solution and
the upper bound. The total gap between the lower bound and the upper bound, represented by gap, is
then simply the sum of gap1 and gap2.

As shown in Table 6, for |N| = 10 vessels, for instances 7 and 8, the optimal solution is obtained
directly from the column generation method, and hence there is no need for running the branch and
bound algorithm for these instances . For the 3rd instance, the computational time time of the branch
and bound algorithm explodes and the optimal solution remains unknown.

Note that because of the exponential increase in the time complexity of the branch and bound
algorithm with increase in the instance size, the branch and bound algorithm is executed for only
instances containing |N| = 10 vessels. The results are as shown in Table 7, strongly indicating
that branching on the µ variables is sufficient in almost all cases. Note that for instances containing
|N| = 25, 40 vessels, the total optimality gap is still small, and thus we do not execute the branch and
bound algorithm and save on the computational time. In these cases, the upper bound is accepted as
the final sub-optimal solution to our problem.

Overall from the results of the column generation shown in Tables 6, 8 and 9, we can observe the
following: barring a few exceptions, the computational time increases with the level of congestion, as
well as with the final size of the active pool of columns given by Ω1 and the number of iterations of
the column generation process. On the other hand, the total optimality gap represented by gap in the
tables, is smaller for the instances with higher level of congestion. This can be attributed to the fact
that the total number of feasible solutions are lesser for congested scenarios.
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instance # time value # of nodes # of µ # of λ

1 10m 02s 127 23 22 0
2 12m 21s 133 43 32 10
3 > 4h 00m 00s – – – –
4 01m 57s 130 5 4 0
5 03m 15s 132 7 6 0
6 03m 12s 111 33 32 0
7 – – – – –
8 – – – – –
9 02m 22s 112 29 28 0

Table 7: Results obtained from the branch and bound for the instances containing |N| = 10 vessels.

instance # congestion time # iter. Ω1 lb ub gap

1 yes 5h 03m 13s 60 6 566 512 529 3.2%
2 mild 2h 18m 38s 38 6 454 459 477 3.8%
3 no 48m 08s 25 5 300 413 449 8.0%
4 yes 1h 34m 32s 26 6 868 520 532 2.3%
5 mild 1h 02m 18s 18 6 051 469 481 2.5%
6 no 1h 13m 39s 32 5 030 436 470 7.2%
7 yes 2h 18m 05s 33 5 757 506 513 1.4%
8 mild 2h 12m 00s 47 6 184 454 467 2.8%
9 no 40m 00s 28 4 877 388 412 5.8%

Table 8: Results obtained from the column generation for the instances containing |N| = 25 vessels.

instance # congestion time # iter. Ω1 lb ub gap

1 yes 3h 12m 15s 35 9 662 677 698 3.0%
2 mild 1h 52m 46s 31 9 017 586 608 3.6%
3 no 1h 26m 20s 39 8 174 457 483 5.4%
4 yes 7h 17m 20s 79 10 743 664 678 2.0%
5 mild 4h 02m 14s 55 9 771 581 593 2.0%
6 no 3h 00m 27s 54 8 620 470 486 3.3%
7 yes 4h 02m 58s 44 8 727 721 758 4.9%
8 mild 3h 03m 38s 35 8 412 641 676 5.2%
9 no 1h 20m 27s 33 7 791 508 532 4.5%

Table 9: Results obtained from the column generation for the instances containing |N| = 40 vessels.
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8 Conclusions and Future Work
In this research, we study the integrated problem of berth allocation and yard assignment in context
of bulk ports. In the past, few scholars have attempted to study the berth allocation problem in inte-
gration with the yard assignment problem in the context of container terminals, while in the context
of bulk ports the problem has not been studied at all. The specific issues in bulk port operations that
necessitate the need to devise specific solutions for bulk ports are emphasized in this study. An exact
solution algorithm based on branch-and-price is proposed to solve the large scale integrated problem
of berth allocation and yard assignment. To the best of our knowledge, this is the first study that
proposes an exact solution method to solve the large scale problem in the context of port operations
planning, since all the previous studies in the context of container terminals use metaheuristic methods
to solve the problem.

The mathematical formulation of the integrated berth allocation and yard assignment problem is
complex and extensive, however there is still scope for improvement. An important assumption in our
model is that each vessel carries only a single type of cargo. In order to model and solve the problem
for multiple cargo types, the location of each cargo type on the vessel needs to be explicitly modeled
which would require the modification of some of the existing constraints in the current formulation as
well as addition of some new constraints. Another possible extension of the current work is to account
for the uncertainty in arrival times of the vessels and delays in handling operations due to factors such
as breakdown of handling equipment including conveyors, pipelines and/or mobile harbor cranes
etc. As for the solution method, the major source of the time complexity of the column generation
framework has been identified as the solution of the sub-problems. Thus t may be worth investigating
the reduction in the solution time of the sub-problems by using heuristic methods such as dynamic
programming, instead of using exact methods and optimization solvers. There is also scope to obtain
a sub-optimal integer solutions in a more time efficient manner by using heuristic methods (GRASP
for instance) instead of using the branch and bound algorithm proposed in this study. Finally more
sophisticated techniques such as dual stabilization and dynamic constraint aggregation to speed up
the convergence of the column generation process need to be studied and implemented in a way such
that they exploit the structure of the specific problem under study.
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