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Abstract

In this work, we study the single machine scheduling problem with uncertain release times
and processing times of jobs. We adopt a robust scheduling approach, in which the measure of
robustness to be minimized for a given sequence of jobs is the worst-case objective function value
of the set of all possible realizations of release and processing times. The objective function value
is the total flow time of all jobs. We discuss some important properties of robust schedules for
zero and non-zero release times, and illustrate the added complexity in robust scheduling given
non-zero release times. We propose heuristics based on variable neighborhood search and iterated
local search to solve the problem and generate robust schedules. The algorithms are tested and
their solution performance is compared with optimal solutions or lower bounds through numerical
experiments based on synthetic data.
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1 Introduction
Scheduling involves the optimal allocation of scarce resources to activities over time. Scheduling
problems are an integral part of planning in areas such as production, service, manufacturing and
transportation. In the past few decades, the practical importance and complexity of the general
scheduling problem has motivated a significant volume of research in a wide variety of scheduling
environments, including and production and manufacturing systems, and transportation and logistics
systems. Using standard notation, scheduling problems include a set of n jobs that must be scheduled
on a set ofm machines subject to certain constraints to optimize a desired objective function. In real-
ity one or more characteristics of the jobs may be uncertain due to factors such as worker performance
variability, changes in the work environment, variability in tool quality, and a variety of other factors.
In this paper we study the most common configuration single machine scheduling usingm = 1, with
a particular focus on generating “robust” schedules. Our primary goal is to demonstrate the challenge
of building robustness into scheduling solutions, while keeping the problems simple enough to permit
useful analysis.

The major emphasis in past scheduling research has been on deterministic problems in which
the schedule is computed and fixed in advance assuming perfect knowledge of job-specific attributes
such as release times, processing times and/or due dates. However, a major drawback of precomputed
schedules is that even small deviations in job parameter values can disrupt the schedule and lead
to significant system performance degradation. Thus it is desirable to generate schedules that are
“robust” given task parameter uncertainty. Consider a schedule that is created off-line and then placed
into operation. During its execution, a disturbance may render the planned schedule infeasible. In
response to the disturbance, a control action is executed to restore feasibility. A robust schedule is an
a priori schedule which maintains high system performance in the presence of stochastic disturbances
given a policy for control actions. In this study, we use a simple control policy that shifts the disrupted
schedule in time without altering the original planned sequence of jobs, which is particularly useful
in situations where changing the sequence may result in additional cost.

In classical stochastic scheduling, uncertain job attributes are modeled as independent random
variables with known distributions. The performance of a schedule is dependent on the specific re-
alization of each uncertain parameter during execution, while the design objective typically is to
optimize the expected performance of the system. There are drawbacks of this approach. First, it as-
sumes knowledge of probability distributions for the uncertain parameters, which are often unknown
and almost never precisely known and may be difficult to estimate. Moreover, the decision maker
may be more interested in hedging against the worst-case performance of the system than optimizing
the system performance averaged over all possible realizations. However classical approaches fail to
recognize this fact.

In this work, we study robust scheduling to determine a schedule which has the best worst-case
performance. Our focus is single machine scheduling where the performance criterion is the total flow
time of all jobs. The rest of the paper is organized as follows: Section 2 provides a brief literature
review on the general scheduling problem with a particular focus on research work done in dealing
with uncertainty in the context of machine scheduling problems. In Section 3, we formally define
the framework of the robust single machine scheduling problem and provide some important insights

1



into the deterministic and stochastic variants of the single machine scheduling problem. In Section
4 we propose solution algorithms to obtain good solutions for the robust single machine scheduling
problem with release times. In Section 5, we present computational results based on artificial instances
to test and validate the efficiency of the proposed algorithms and compare their solution performance
from a computational perspective. Finally we give some concluding remarks in Section 6.

2 Literature Review
Comprehensive literature surveys on the general scheduling problem in a wide variety of scheduling
environments can be found in Lawler (1976), Graham et al. (1979) and Blazewicz (1987). Graham
et al. (1979) established a three-field notation α|π|γ to simplify the categorization of different types
of machine scheduling problems. In this notation, the parameters α, π and γ describe the machine
environment, the job characteristics and the optimality criterion respectively. For example, 1|rj|

∑
Cj

denotes the variant of the problem in which there is a single machine, each job j is available for
processing only at the release time rj or later, and the objective is to minimize the sum of completion
times of all jobs as given by

∑
Cj. As another example, 1|rj, prec|

∑
j Cj-rj denotes the problem

of scheduling the jobs with precedence constraints and release times on a single machine with the
objective to minimize the total flow times of all jobs. As it will be impossible to enumerate all the
variants of the problem and out of the scope of this study, we refer to Graham et al. (1979) for a survey
on the different types of scheduling problems in literature.

Research has addressed machine scheduling problems in which one or more aspects of the jobs
such as release times, processing times and other job-related properties are random, or the machines
are subject to random breakdowns, or both. Glazebrook (1979), Weiss and Pinedo (1980), Emmons
and Pinedo (1990) are few examples of such works. Stochastic machine scheduling problems fo-
cusing on probabilistic times have been studied by Wu and Zhou (2008), Skutella and Uetz (2005),
Cai and Zhou (2005) and Soroush and Fredendall (1994) in which the job attributes are modeled as
independent random variables with given distributions, whose actual values are realized during the
execution of the schedule after a scheduling decision has been made. Dynamic scheduling methods
in which jobs are dispatched dynamically to account for random disruptions in real time are studied
by Gittins and Glazebrook (1977), Pinedo (1983), Glazebrook (1981), Glazebrook (1985) and few
others. Another line of research focuses on responding to random disruptions that occur in real time,
making it impossible to adhere to the originally planned schedule. Bean et al. (1987) and Roundy
et al. (1989) are examples of such works. For detailed literature surveys on fundamental approaches
for scheduling under uncertainty, refer to Herroelen and Leus (2005), Mohring et al. (1985), Mohring
et al. (1984) and Pinedo and Schrage (1982).

Kouvelis and Yu (1997) developed robust versions of many traditional discrete optimization prob-
lems. In general three different measures of robustness can be defined; one that minimizes the maxi-
mum absolute cost over the set of possible outcomes, a second that minimizes the maximum regret the
absolute difference in the solution cost between the realized outcome and the corresponding optimal
solution for the outcome, and a third that minimizes the maximum relative deviation of the realized
outcome from the corresponding optimal solution. Daniels and Kouvelis (1995) study the robust sin-
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gle machine scheduling problem without release times in which schedule robustness is measured by
the absolute or relative deviation of the realized cost from optimality. They describe properties of
robust schedules which allow the selection of a finite set of scenarios from uncertainty intervals of
processing times to determine the worst-case deviation from optimality for a given schedule, and pro-
pose exact and heuristic solution approaches to obtain robust schedules. Yang and Yu (2002) study
the same problem as Daniels and Kouvelis (1995), show that the problem is NP-hard even in the case
of two scenarios for all three measures of robustness described earlier, and propose two alternative
heuristic methods to obtain robust schedules. Kasperski (2005) studies the single machine scheduling
problem for the absolute deviation measure of robustness, the maximum lateness performance crite-
rion, and uncertainty intervals for the processing times. A polynomial time algorithm is proposed to
solve the problem. More recently, Lu et al. (2012) study the single machine scheduling problem with
uncertainty in the job processing times and sequence-dependent family setup times. In their study,
the performance criterion is the total flow time of jobs, and the measure of schedule robustness is the
maximum absolute deviation from the optimal solution in the worst-case scenario. They reformulate
the problem as a robust constrained shortest path problem and propose a simulated annealing-based
algorithm to determine robust schedules.

In this research, we use the maximum absolute cost over the set of all possible outcomes as the
measure of robustness and the total flow time of jobs as the performance criterion to create robust
schedules in the context of the single machine scheduling problem. To the best of our knowledge, this
is the first paper that considers uncertainty in both release times and processing times in the robust
scheduling context for the single machine scheduling problem. We discuss some important properties
of robust schedules with zero and non-zero release times, demonstrate the added complexity when
non-zero release times are considered, propose an exact method to instantaneously solve the deter-
ministic variant of the single machine scheduling problem with release times, and develop heuristic
methods based on variable neighborhood search and iterated local search to generate robust sched-
ules. The solution performance of the proposed algorithms are tested and validated through extensive
numerical experiments based on artificial data.

3 Robust Single Machine Scheduling Problem

3.1 Problem Definition
We consider a set of n jobs that are required to be scheduled on a single machine. We are interested
in generating robust schedules for uncertain scheduling environments, in which there is stochastic
variability in the release times ri and the processing times pi of jobs. In our problem, the release
times and the processing times of the jobs are specified as independent ranges of values with unknown
probability distributions, such that the release time interval of job i is [ri, ri] and the processing time
interval of job i is [pi, pi]. Let the infinite set of possible realizations of release times and processing
times be represented by the setΩ. Then a possible outcome λ ∈ Ω, represents a unique set of release
times and processing times of the jobs, that can be realized with a certain positive and unknown
probability. Let the decision space consisting of all possible job sequences be given by the set P. The
cost of making sequencing decision π ∈ P under scenario λ ∈ Ω is given by f(π, λ). The optimal
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decision and the optimal cost under scenario λ ∈ Ω are given by πλ∗ and f∗(λ) respectively.
We assume the following input data to be available for the singe machine scheduling problem :

N = set of jobs
i = 1, ..., |N| jobs
Ω = the infinite set of possible realizations
P = decision space representing the set of all possible sequences
rλ
i
= release time of job i ∈ N for the realization λ ∈ Ω

pλ
i
= processing time of job i ∈ N for the realization λ ∈ Ω

The objective in the absolute robust single machine scheduling problem (ARSMSP), can be math-
ematically expressed as follows

(ARSMSP)min
π∈P

{max
λ∈Ω

(f(π, λ)} (1)

The only decision variables in the above problems are the starting times of processing of jobs, as
given by si for job i ∈ N. Let Nπ represent the ordered sequence of jobs for the sequence π ∈ P,
such that for jobs i, j ∈ Nπ and j > i, it is implied that job j is sequenced after job i in π. For a given
sequence π ∈ P, realization λ ∈ Ω and the performance criterion as the total flow time of jobs, we
have

f(π, λ) =
∑
i∈Nπ

(si − r
λ
i + p

λ
i ) (2)

subject to the conditions

s1 = r
λ
1 (3)

si = max (rλi , si−1 + p
λ
i−1) ∀i ∈ Nπ, i ≥ 2 (4)

The deterministic single machine scheduling problem (DSMSP) to determine f∗(λ) for a given
realization λ ∈ Ω can be formulated as follows:

(DSMSP) min
∑

i∈N (si − r
λ
i
+ pλ

i
) (5)

s.t. si − rλi ≥ 0 ∀iεN (6)
sj ≥ si + p

λ
i
||si ≥ sj + p

λ
j
∀i, jεN, i , j (7)

In the above formulation, constraints (6) ensure that the processing of a job starts only at or after
the release time of the job. Constraints (7) are the disjunctive constraints that ensure that two jobs are
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not processed at the same time. Unfortunately the disjunctive constraints are non-linear, but can be
linearized using the bigM approach, and reformulated as

sj +M(1− zij) ≥ si + p
λ
i ∀i, jεN, i , j (8)

zij + zji = 1 ∀i, jεN, i , j (9)

where zij is a binary variable equal to 1 if job i preceeds job j without overlapping, 0 otherwise, and
M is a large positive constant. With regard to complexity, DSMSP is strongly NP-hard (Lenstra et al.
(1977)).

In the following section, our aim is to discuss some of the most important results related to the
deterministic and robust variants of the single machine scheduling problem, and demonstrate the
added complexity when there is uncertainty in both the release times and the processing times of
the jobs. We begin by briefly looking at the deterministic version of the single machine scheduling
problem without release times.

3.2 Scheduling without release times
3.2.1 Deterministic Problem

The simplest scheduling problem arises when the release times of all jobs are equal to zero. The obvi-
ous approach to solve this problem is to assign a priority to each job based on the optimality criterion,
and assign the jobs in the order of decreasing priorities whenever the machine becomes available.
Note that in the absence of release times, the flow time of a given job is equivalent to it’s comple-
tion time. Thus according to the notation discussed earlier, the single machine scheduling problem
without release times with the objective to minimize the total flow times can be represented by 1|Cj.
Intuitively, it makes sense to schedule the job with the shortest processing time at the beginning so
that the delays to all the other jobs are minimized, and in a similar way, schedule the remaining jobs
in the order of increasing processing times. In the literature, this is commonly known as the Shortest
Processing Time (SPT) rule. We have the following useful result(Smith (1956)).

RESULT 1: SPT rule is an exact algorithm to solve 1|
∑
Cj with time complexity O(n log n).

3.2.2 Properties of robust schedules without release times

In the following discussion, we discuss some properties of robust schedules with the performance
criterion as the total flow time or completion time (both are equivalent for zero release times) of the
jobs. The release time of each job i ∈ N is equal to zero, and the processing time interval of job i is
[pi, pi].
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ARSMSP without release times We begin with a simple result for the absolute robust single ma-
chine scheduling problem (ARSMSP) without release times.

RESULT 2: The optimal solution to the ARSMSP without release times is the sequence of jobs
obtained by arranging the jobs in increasing order of pi, that is the highest processing time values for
all jobs.

Proof: Let the sequence of jobs obtained by arranging the jobs in increasing order of the highest
processing times be πλmax . The worst case contingency for this sequence corresponds to the case
when each job i ∈ N assumes its highest processing time pi. However it is obvious that the sequence
πλmax is also the optimal decision for the realization corresponding to this worst case contingency
(using SPT algorithm discussed earlier). Hence for any other sequence π ∈ P, the flow time for the
worst case contingency corresponding to p = pi for each job i ∈ N, is higher than for the sequence
πλmax .

3.3 Scheduling with release times
3.3.1 Deterministic Problem

As discussed earlier, the deterministic single machine scheduling problem (DSMSP) with release
times is an NP-complete problem. Thus it may not be possible to obtain optimal solutions for large
problems in a reasonable computation time by directly solving the MIP formulation of DSMSP as
given by (5)-(7). In order to solve the robust single machine scheduling problem (RSMSP) with
release times, it is desirable that we develop an efficient algorithm to solve DSMSP, that returns the
optimal solution or at the very least a tight upper bound in a small computation time even for large
problems. This point is further illustrated by the following result.

RESULT 3: The maximum optimal value f∗(λ) over the set of all possible realizations λ ∈ Ω is a
lower bound to the absolute robust single machine scheduling problem (ARSMSP) with (or without)
release times.

Proof: Let’s say that we are given a sequence π ∈ P, for which λπ is the worst case realization.
Then we have

f(π, λπ) ≥ f(π, λ) ∀λ ∈ Ω (10)

Let f∗(λ) be the optimal value of the flow time for the realization λ ∈ Ω. Then by definition, we
also have

f(π, λ) ≥ f∗(λ) ∀λ ∈ Ω (11)

Using 10 and 11 we have,
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f(π, λπ) ≥ f
∗(λ) ∀λ ∈ Ω (12)

The above inequality implies that for any sequence π ∈ P, the flow time corresponding to the
worst case realization is greater than or equal to the optimal flow times for all realizations λ ∈ Ω.
Since the above inequality holds for all π ∈ P, it can be equivalently written as

min
π∈P

f(π, λπ) ≥ max
λ∈Ω

f∗(λ) (13)

Note that the left hand side of the above inequality is the objective of the ASMRSP. This proves
the result.

In past research, significant success has been achieved in developing approximation algorithms
for 1|rj|

∑
Cj i.e. DSMSP with release times to minimize the total completion time of jobs. The best

known approximation algorithm for 1|rj|
∑
Cj by Phillips et al. (1998) is a 2-approximation algorithm

that produces non-preemeptive schedules from optimal preemptive schedules which can be easily de-
termined using the Shortest Remaining Processing Time (SRPT) rule. It may be noted that for a given
vector of release times and processing times, the optimal solution for 1|rj|

∑
Cj is also the optimal so-

lution for 1|rj|
∑
Cj − rj. However the approximability of these two criteria may be very different as

shown by Kellerer et al. (1999). Some of the reasonable approximation algorithms for 1|rj|
∑
Cj − rj

are the Earliest Start Time (EST) rule in which the shortest available job is assigned whenever the
machine becomes free for assignment, or the Earliest Completion Time (ECT) rule in which the job
with the earliest completion time (that may not be available yet) is assigned to the machine. Both the
rules have a worst-case performance bound ofO(n). Kellerer et al. (1999) proposed an approximation
algorithm with a sub-linear worst-case performance guarantee of O(n1/2). They further showed that
no constant ratio approximation algorithm can be expected for this problem by proving that there ex-
ists no polynomial time approximation algorithm with a worst-case performance bound ofO(n1/2−ε),
for any ε ≥ 0. It is clear that the bound obtained from the best known approximation algorithm is
extremely weak for the problem under study in this paper. In the following section, we propose an
exact method based on set-partitioning to solve the DSMSP with release times to optimality with a
computation time that is instantaneous for even large problem size.

Exact Algorithm based on Set Partitioning

As discussed earlier, Result 3 necessitates the need to have an exact method to solve the deter-
ministic single machine scheduling problem (DSMSP) with release times to get a lower bound on the
ARSMSP with release times. In this section, we propose an exact method based on set-partitioning
to solve large instances of the DSMSP with release times in small computation time. In this method,
the set of all feasible assignments is generated apriori and is denoted by the set J. The assignment
matrix is composed of the upper submatrix A and lower submatrix B. The upper submatrix A consists
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Job 1 1 1 1 0
Job 2 0 0 0 1

Time 1 1 0 0 0
Time 2 1 1 0 0
Time 3 0 1 1 1
Time 4 0 0 1 1

Table 1: Assignment matrix for a simple example of set partitioning problem

of |J| columns and |N| rows. In submatrix A, if column j ∈ J represents the feasible assignment of
job i ∈ N, then the entry in row i is 1 while all other entries are zeroes. The lower submatrix B
consists of |J| columns and a single row for every discrete time interval in the planning horizon. Thus,
in submatrix B, if column j ∈ J, represents the feasible assignment of job i ∈ N, then all entries
corresponding to the time intervals in which the job i is processed in the feasible assignment j ∈ J are
1, while all the remaining entries are zeroes. To illustrate the procedure for the specific problem we
are solving, consider the example containing two jobs, and four discrete time intervals in the planning
horizon. Let us assume that both jobs have processing times of two time units, job 1 is released at time
1, while job 2 is released at the start of time 3, and hence can only be processed after that. Then the
assignment matrix for the problem would look like as shown in Table 1. The first column represents
the assignment of job 1 from time 1-2, and so on.

We assume the following input data to be available for the set partitioning model:

N = set of jobs
H = set of discrete time intervals in the planning horizon
J = set of feasible assignments
t = 1, ..., |H| discrete time intervals in the planning horizon
j = 1, ..., |J| feasible assignments
dj = delay associated with assignment j
hj = processing time associated with assignment j

The assignment matrix coefficients are defined as follows.

Aij =

{
1 if job i is the assigned job in the feasible assignment represented by assignment j;
0 otherwise.

Bt
j
=

{
1 if job is being processed in time interval t in assignment j;
0 otherwise.

There is only a single decision variable for selection of feasible assignments in the optimal solution
which is defined as follows.

λj =

{
1 if assignment j is part of the optimal solution;
0 otherwise.
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The set partitioning model to solve the single machine scheduling problem with release times is
formulated as shown below:

min
∑
j

(djλj + hjλj) (14)

s.t.
∑
j

(Aijλj) = 1 ∀iεN (15)∑
j

(Btjλj) ≤ 1 ∀tεH (16)

λj ε {0, 1} ∀jεJ (17)

In the above model, the objective (14) is to minimize the total flow time of the jobs, which includes
the delays and the total processing times of the jobs. Note that the objective function can be equiva-
lently expressed as the minimization of the sum of delays only, since the sum of processing times of
the jobs given by

∑
j(hjλj) is a constant. Thus in the proposed set partitioning model, the processing

times are only used to build the matrix B. Constraints (15) ensure that each job must have exactly one
feasible assignment in the optimal solution. Constraints (16) ensure that in a given time interval, at
most one job can be processed. While the growth in the number of variables and constraints in the
set-partitioning approach is much faster as compared to the mixed integer programming formulation
discussed earlier, it can be used to obtain optimal solutions to the DSMSP almost instantaneously for
even large problem size.

3.3.2 Robust Scheduling with release times

In the following discussion, we discuss some properties of robust schedules with the performance
criterion as the total flow time of the jobs. The release time of each job i ∈ N lies in the interval
[ri, ri], and the processing time interval of job i is [pi, pi].

ARSMSP with release times The absolute robust single machine scheduling problem (ARSMSP)
with release times can be mathematically formulated as follows:

(ARSMSP)min
π∈P

{max
λ∈Ω

(f(π, λ)} (18)

subject to the conditions

f(π, λ) =
∑
i∈Nπ

(si − r
λ
i + p

λ
i ) (19)

s1 = r
λ
1 (20)

si = max (rλi , si−1 + p
λ
i−1) ∀i ∈ Nπ, i ≥ 2 (21)
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Figure 1: Jobs i, q and j in an ordered sequence

In order to determine the sequence with the best worst-case absolute performance, we first for-
mulate the problem of evaluating the worst case scenario for a given sequence π ∈ P. Note that it is
not straighforward to solve this problem by a simple enumeration technique, since the release times
and processing times of all jobs are specified as independent ranges, thus implying an infinite number
of possible realizations. However we have the following useful result that allows us to restrict our
attention to only a subset of the realizations. The result can be stated as follows

RESULT 4: For the ARSMSP with n jobs and uncertainty in both release times and processing
times of jobs, there exists a worst-case scenario λπ for sequence π ∈ P, that belongs to a subset of
cardinality 2n−2 of the extreme point scenarios of π.

Proof: Consider an ordered sequence Nπ of jobs, in which jobs i, q and j are consecutively
ordered, that is, i ≺ q ≺ j. When job q is the first or the last job in the sequence, jobs i and j
respectively, may be considered as fake jobs. We assume that the release times and processing times
of all jobs in the sequence except job q are given (and unchangeable), and we want to show that there
is an extreme point scenario of release time and processing time corresponding to job q, for which
the job sequence assumes its worst case value. We define the following notations to illustrate the
proof. Let d1 be the overlap between the release time of job q given by rq and the finishing time of
processing job i as given by si + pi. Similarly let d2 be the overlap between the end time of processing
job q given by sq + pq and the release time of job j given by rj. This is graphically shown in figure 1.

To obtain the worst case value, we need to maximize the sum of d1 and d2. We consider the
following three cases:

• Case I: Job q is the first job in the sequence. In this case, d1 = 0 and d2 = max(0, sq + pq - rj).
It is easy to see that there is a worst case scenario corresponding to pq = pq and rq = rq.

• Case II: Job q is the last job in the sequence. In this case, d1 = max(0, si + pi - rq) and d2 = 0.
Again, it is easy to see that there is a worst case scenario corresponding to rq = rq and pq = pq.

• Case III: When job q lies somewhere in between, d1 = max(0, si + pi - rq) and d2 = max(0, sq
+ pq - rj). By inspection, it can be inferred that d1 + d2 is maximized when pq = pq and rq =
rq or rq.

Summarizing the above cases, there is a single unique endpoint scenario corresponding to the
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worst case contingency in cases I and II. For case III, for each of the n-2 possible positions of job q
in the sequence, there are 2 realizations of release times and a single realization of processing time
for which the worst case value of the sequence can be obtained. Thus for n jobs in a sequence, there
exists a worst case scenario belonging to a subset of 2n−2 possible realizations. This proves the result.

The above result indicates that in order to determine the worst case scenario for a given sequence
from the set of infinite possible realizations of release times and processing times, attention can be
restricted to a subset of cardinality 2n−2 of endpoint scenarios. However this number can also be
significantly large for large value of n. In the following, we show that the problem of finding the worst
case realization for a given sequence can be formulated and solved as a mixed integer linear program
(MILP). The absolute worst case performance problem (AWCPP) for a given ordered sequence of
jobs Nπ can be stated as follows:

(AWCPP)max
∑
i∈Nπ

(si − r
λ
i + p

λ
i ) (22)

s1 = r
λ
1 (23)

si = max (rλi , si−1 + p
λ
i−1) ∀i ∈ Nπ, i ≥ 2 (24)

rλi ∈ [ri, ri] ∀i ∈ Nπ (25)

pλi ∈ [pi, pi] ∀i ∈ Nπ (26)

In the above model, constraints (23) state that the processing of the first job in the sequence starts
as soon as it is released. The constraints (24) state that the processing of each subsequent job in
the sequence should start as soon as the job is released and the processing of the previous job in
the sequence has finished. The constraints (24) are not linear, but can be linearized using standard
techniques (see Watters (1967)). To begin with we introduce two sets of additional variables σi and
γi for all jobs i ∈ N. Then the constraints (24) can be equivalently expressed as

si = r
λ
i + σi ∀i ∈ Nπ, i ≥ 2 (27)

si = si−1 + p
λ
i−1 + γi ∀i ∈ Nπ, i ≥ 2 (28)
σiγi = 0 ∀i ∈ Nπ, i ≥ 2 (29)

To linearize constraints (29) we introduce binary variables uik and vik for all jobs i ∈ N, for
a large enough positive integer K such that k ≤ K. Note that the product σiγi is of the form∑

t≤K2

∑
k≤K

∑
j≤KCtuikvij, where the Ct terms are constants. For the product σiγi to be equal to

zero, each term Ctuikvij should be equal to zero. This entails one or both the binary variables, uik
and vij, to be equal to zero. This can be mathematically modeled as uik + vij ≤ 1. Thus we have the
linearized version,
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σi =
∑
k≤K

2kuik ∀i ∈ Nπ, i ≥ 2 (30)

γi =
∑
k≤K

2kvik ∀i ∈ Nπ, i ≥ 2 (31)

uik + vij ≤ 1 ∀i ∈ Nπ, i ≥ 2,∀j, k ≤ K (32)
uik, vik ∈ {0, 1} ∀i ∈ Nπ, i ≥ 2,∀k ≤ K (33)

Following the above discussion, replacing σi and γi from constraints (30) - (31), the AWCPP can
be rewritten as a mixed integer linear program as follows

(AWCPP)max
∑
i∈Nπ

(si − r
λ
i + p

λ
i ) (34)

s1 = r
λ
1 (35)

si = r
λ
i +
∑
k≤K

2kuik ∀i ∈ Nπ, i ≥ 2 (36)

si = si−1 + p
λ
i−1 +

∑
k≤K

2kvik ∀i ∈ Nπ, i ≥ 2 (37)

uik + vij ≤ 1 ∀i ∈ Nπ, i ≥ 2,∀j, k ≤ K (38)
uik, vik ∈ {0, 1} ∀i ∈ Nπ, i ≥ 2,∀k ≤ K (39)

rλi ∈ [ri, ri] ∀i ∈ Nπ (40)

pλi ∈ [pi, pi] ∀i ∈ Nπ (41)

Thus given a sequence π ∈ P, the worst case sequence can be determined by solving the above
MILP. Note that in the above formulation, for |N| jobs, the number of variables is of the order of
|N||K| and the number of constraints is of the order of |N||K|2. From the computational experiments,
the above MILP was found to be solvable almost instantaneously for even large problem size. The
ARSMSP with release times given by 18-21 is solved using heuristic techniques described in the
following section.
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4 Solution Algorithms to the ARSMSP with Release Times
In this section, we present two alternative heuristic methods to obtain optimal or near-optimal solu-
tions for the absolute robust single machine scheduling problem with uncertainty in release times and
processing times.

4.1 Iterated Local Search
To begin with, we implement a simple heuristic based on iterated local search. In this method, we
start with a random initial solution and perform a local search on the neighborhood of this sequence.
In our implementation, the local search neighborhoodNLS of a given sequence is defined as the set of
sequences obtained by swapping two adjacent jobs in the original sequence. In case the local search
improves the current solution, the local search solution is accepted as the new current solution and
the local search is performed again. When the algorithm is stuck at a local minimum for too long,
the algorithm is restarted with a new initial solution. The algorithm is terminated when the elapsed
time from the beginning crosses a threshold computational time limit. The algorithm is described in
Algorithm 1:

Algorithm 1 Iterated Local Search Algorithm
Require: Set N of jobs, setM of scenarios

Construct an initial feasible solution
currentBestSolution← initialSolution
bestWorstCaseScenarioValue← worstCaseScenarioValue(currentBestSolution)
while timeLimit ≤ ilsTimeLimit do
x ′ = LocalSearch(currentBestSolution, NLS)
if worstCaseScenarioValue(x ′)< bestWorstCaseScenarioValue then

bestWorstCaseScenarioValue← worstCaseScenarioValue(x ′)
currentBestSolution← x ′

end if
if solution value does not improve over time = timeRandomRestartILS then

reinitialize currentSolution and start all over
end if

end while

4.2 Variable Neighborhood Search Algorithm
In this section, we propose the metaheuristic popularly known as the variable neighborhood search
(VNS) in the literature. The algorithm was initially developed by Hansen and Mladenovic (1997).
The main idea of the variable neighborhood search algorithm is to explore multiple neighborhood
structures systematically instead of a single neighborhood, and escape local minima (in the case of
minimization). In our implementation of the method, the kth neighborhood structure, Nk(`) of a
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Figure 2: VNS Neighborhood Structures for a given sequence 1-2-3-4

Figure 3: VNS Neighborhood N1(1-2-3-4)

given sequence ` is the set of sequences obtained by permuting the subset of jobs that are at most
k indices apart in the original sequence. It naturally follows that a sequence containing n jobs has
n-1 neighborhood structures. This is graphically represented in the figure (2), where the permutable
subset of jobs are shown in the blocks shaded in grey. Note that the neighborhoood structure N1(`)
contains three candidate solutions as shown in figure (3)

In the implementation of the VNS, we start with an initial feasible solution x. Iteratively starting
from k=1, the shaking procedure is applied in which a random neighbor x ′ is generated in the Nk

neighborhood of x. The shaking procedure is important as it prevents the algorithm from getting
trapped at a local minimum. Thereafter a local search is carried out in the NLS neighborhood of x ′,
where the NLS neighborhood has a similar definition to the one described previously for the iterated
local search method. If the local search solution x ′′ is found to be better than the current solution x, the
search continues with the local search solution x ′′ as the new starting point, and k is re-initialized to
be equal to 1. If no improvement is found in the Nk neighborhood, then x remains the starting point
for randomly generating a neighboring solution from the subsequent neighborhood Nk+1. When
the current solution does not improve over a certain predefined time limit, the whole procedure is
repeated starting from k=1 with a different initial solution. The algorithm is terminated when the time
elapsed from the beginning crosses a threshold computational time limit. The algorithm is described
in Algorithm 2:

Before proceeding to the computational results, we look at how depending on the problem size,
a benchmark solution is obtained to assess the solution performance of the proposed heuristic tech-
niques.
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Algorithm 2 Variable Neighborhood Search Algorithm
Require: Set N of jobs, setM of scenarios

Construct an initial feasible solution
currentBestSolution← initialSolution
bestWorstCaseScenarioValue← worstCaseScenarioValue(currentBestSolution)
while timeLimit ≤ vnsTimeLimit do
k=1
while k ≤ (|N|-1) do

Shaking Procedure
x ′ = GenerateNeighbor(currentBestSolution, Nk)
Local Search
x ′′ = LocalSearch(x ′, NLS)
if worstCaseScenarioValue(x ′′)< bestWorstCaseScenarioValue then

bestWorstCaseScenarioValue← worstCaseScenarioValue(x ′′)
currentBestSolution← x ′′

k=1
else
k++

end if
if solution value does not improve over time = timeRandomRestartVNS then

reinitialize currentSolution and start all over
end if

end while
end while
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Figure 4: Binary string representations for the job sequence 1-2-3-4, for two different extreme point
scenarios

4.3 Calculation of Lower Bound
In this section, we discuss methods to obtain lower bounds for test instances of the problem, to assess
and compare the solution performance of the proposed heuristic algorithms.

As shown in Result 3 earlier in the paper, the maximum optimal value over the set of all possible
realizations is a lower bound to the absolute robust single machine scheduling problem (ARSMSP).
From the computational experiments, it was found that for instances up to 15 jobs, the lower bound
could be determined by brute force method in a reasonable computational time of about an hour.
However for larger instances, the computational time may be very large. Thus in order to speed up
the computation of the lower bound, we implement the following simple code similar to the iterated
local search described earlier. We know that for each job, two extreme point values of the release
times and a single value of the processing time need to be considered. Then for an ordered sequence
of jobsNπ containing jobs from 1 to n, a given scenario can be represented by a binary string, where
a 0 represents the left side extreme value of the release time and value 1 represents the right side
extreme value. This is graphically represented for the sequence 1-2-3-4 in figure (4).

A neighboring solution is obtained by switching a single job from 0 to 1, or vice versa. We
perform a simple local search on a randomly chosen initial scenario, choose the solution with the
highest optimal value in the neighborhood, which then becomes the new candidate scenario for local
search and so on. When the algorithm is stuck at a local minimum, the whole procedure is restarted
with a new randomized solution. The algorithm is terminated after a preset computational time and
the best solution obtained thus far is accepted as the final solution. The algorithm was found to
perform exceptionally well for the computation of the maximum optimal flow time, as indicated by
the computational experiments on instances containing upto 15 jobs. In a computational time of less
than a minute, the algorithm was found to return the exact value of the maximum optimal flow time as
determined from the brute force method, while in a few instances there was a difference of less than
1 %.
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5 Computational Results and Analysis

5.1 Generation of Instances
The proposed heuristic algorithms were tested and validated through extensive numerical experiments
based on artificial instances. The algorithms were implemented in JAVA programming language, and
computational tests were run on an Intel Core i7 (2.80 GHz) processor and used a 32-bit version of
CPLEX 12.2.

The experimental design adopted for the computational study consists of test problems involving
|N|=7, 15, 20, 30 and 50 jobs and a single machine. For each problem size, 20 instances were tested.
Based on the degree of stochastic variability in the release times and processing times of the jobs, the
test instances are categorized into four different sets. For each category, the instances are generated
by randomly drawing the lower and upper ends of the release time range and the processing time
range of the jobs. The lower end of the release time range ri is drawn from a uniform distribution of
integers on the interval ri ∈ [0, 5β] for four different values of β (β=2,3,4 and 6). For β = 2 and 3,
ri is equal to ri + 10. On the other hand, for β = 4 and 6, ri is equal to ri + 20. The lower end of the
processing time range pi is drawn from a uniform distribution of integers on the interval [1,4], while
the upper end of the processing time range is equal to pi + 6. Five problem instances are tested for
each combination of |N| and β, resulting in a total of 100 problem instances.

5.2 Discussion of Results
The computational results obtained from the algorithms discussed previously are shown in the tables
(2)-(6). For |N|=7 jobs, the optimal solution is calculated using an exhaustive search algorithm. Thus
for test instances with |N|=7 jobs, it is possible to determine the strength of the lower bound. As
evident from table (2), the lower bound is not too strong, and with increasing β value, implying a
larger uncertainty in the release times of the jobs, the bound weakens. For large problem size, it can
be expected that the bound is even weaker.

From the results tables, it can be inferred that in general, the variable neighborhood search (VNS)
algorithm is the more superior method to generate robust schedules. Based on a trial analysis, the
computational time limit for test instances corresponding to a given combination of |N| and β was set
to a certain value. It can be seen that for |N|=7, the VNS algorithm is able to generate optimal solutions
for all instances in a computational time of few seconds. The iterated local search (ILS) method on
the other hand is able to generate optimal solutions for close to 50% of the problem instances in the
computational time limit of 100 seconds. For larger problem size with |N| = 15, 20 30 and 50 jobs,
the worst case value for a given sequence of jobs is determined by solving the mixed integer linear
program 34-41 using K=10. On an average, the instances were found to converge faster for small β
value, that is, smaller uncertainty in the release times of the jobs. As can be seen from the results, the
VNS and ILS algorithms converge to approximately the same solution for a few instances. Although
the gap with respect to the lower bound is pretty large for most test instances, but since the bound is
a weak one as established previously, it is difficult to comment on the absolute solution performance
of the algorithms for these instances. Figure (5 ) shows the convergence of the solution for the test
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Figure 5: Convergence of Instance C18 over a computational time limit of 5 hours

instance C18 over a computational time limit of 5 hours for the VNS and ILS methods. Note that the
solution value may remain stable for a long time, before it begins to improve again.

From the computational experiments it was found that there is a certain degree of variance in the
output solution values when a given problem instance was tested using a given algorithm. To study
the behavior of the algorithms in more depth, we conduct a simulation study in which a test instance
is run 50 times using a given algorithm and the resulting output solution values are plotted against the
associated probability of finding a solution in the corresponding output range of values. The plots for
some of the instances are shown in figures (6)-(9). From the plots, the following observations can be
made:

• In general, the mean of the output values for the VNS was found to be around the same or
smaller than the ILS, implying that on an average, the VNS algorithm performs better than the
ILS for most instances.

• There is a larger probability of finding a good solution using the VNS as compared to the ILS,
as indicated by the frequency of the output solution values in the the low cost range as shown
in the figures.

• The VNS is however less stable than the ILS as evident from the concentration of the output
solution values in a single output range for the ILS, as represented by the peak in the distribution
curve for the ILS.

Thus for a given instance, the VNS algorithm is expected to perform better on an average with a
higher probability of finding a good solution, but there is also a larger variance in the output solution
values returned by the VNS algorithm.
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Figure 6: Distribution of the output solution values for 50 simulation runs on instance C6 for a
computational time limit of 300 seconds

Figure 7: Distribution of the output solution values for 50 simulation runs on instance C12 for a
computational time limit of 300 seconds

6 Conclusions and Future Work
This study demonstrates the complexity in dealing with uncertainty in release times and processing
times of jobs in a proactive manner for the most basic form of the machine scheduling problem. In
our problem, the release times and processing times of jobs are specified as independent ranges of
values with unknown probability distributions. The performance criterion is the total flow time of all
jobs and the robustness measure is the realized outcome for the worst-case contingency over the set
of all possible scenarios.
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Figure 8: Distribution of the output solution values for 50 simulation runs on instance C16 for a
computational time limit of 300 seconds

Figure 9: Distribution of the output solution values for 50 simulation runs on instance C19 for a
computational time limit of 300 seconds

In previous research, the uncertainty in the release times of the jobs was largely ignored in the
robust scheduling context. To the best of our knowledge, this is the first study that illustrates the
added complexity in considering uncertainty in release times. We show that in order to solve the
absolute robust single machine scheduling problem for n jobs, we can restrict our attention to a subset
of cardinality 2n of the extreme point scenarios from the set of infinite possible realizations of release
times and processing times. We propose heuristic algorithms based on variable neighborhood search
(VNS) and iterated local search (ILS) to generate schedules with the best performance in the worst
case contingency. The VNS algorithm was able to solve all instances with |N|=7 jobs to optimality.
For larger problem size, on an average, the VNS was found to perform better than ILS with a larger
associated probability of finding good solutions. However, the VNS was found to be less stable than
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the ILS as indicated by the variance in the output solution values.
As part of future work, the proposed methodology for the single machine scheduling problem

can be extended to more than one machine. There is further scope for research on developing robust
schedules for the single machine scheduling problem with different robustness measures such as the
maximum regret or maximum relative deviation with respect to the corresponding optimal solution
over the set of all possible realizations. There can also be other performance criteria such as the sum
of completion times of all jobs or the total tardiness of all jobs beyond the specified due times for
finishing.
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Appendix A1

Table 2: Computational results for generated instances with |N|=7
Instance Lower Bound1 Optimal Solution2 VNS ILS % Gap3

cost time cost time4 cost time5

β = 2
A1 188 212 4 212 5 212 2 11.32%
A2 189 204 4 204 7 217 100 7.35%
A3 192 200 4 200 13 207 100 4.00%
A4 168 180 5 180 7 192 100 6.67%
A5 189 198 4 198 4 203 100 4.55%

Mean 6.78%
β = 3

A6 174 189 5 189 2 189 1 7.94%
A7 126 137 4 137 4 139 100 8.03%
A8 160 183 5 183 7 183 2 12.57%
A9 162 202 4 202 3 202 1 19.80%

A10 194 200 4 200 4 206 100 3.00%
Mean 10.27%
β = 4
A11 135 173 5 173 7 175 100 21.97%
A12 146 154 4 154 10 154 76 5.19%
A13 120 133 4 133 5 133 4 9.77%
A14 180 209 4 209 83 213 100 13.88%
A15 121 151 5 151 13 151 8 19.87%

Mean 14.14%
β = 6
A16 148 178 4 178 8 178 5 16.85%
A17 141 189 4 189 9 189 5 25.40%
A18 150 192 4 192 8 200 100 21.88%
A19 134 171 4 171 12 173 100 21.64%
A20 156 183 5 183 7 194 100 14.75%

Mean 20.10%

1The lower bound is the maximum optimal value over the set of all possible scenarios.
2The optimal solution is determined using an exhaustive search algorithm.
3The gap indicates the optimality gap of the lower bound with respect to the optimal solution.
4A computational time limit of 100 seconds was set for all instances with |N|=7 jobs.
5A computational time limit of 100 seconds was set for all instances with |N|=7 jobs.
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Appendix A2

Table 3: Computational results for generated instances with |N|=15
Instance Lower Bound VNS ILS

cost time6 cost time7

β = 2
B1 726 761 300 761 300
B2 703 783 300 783 300
B3 748 783 300 783 300
B4 674 710 300 710 300
B5 713 750 300 809 300
β = 3

B6 716 757 300 757 300
B7 654 690 300 747 300
B8 712 742 300 742 300
B9 630 657 300 665 300

B10 593 624 300 637 300
β = 4
B11 599 701 600 723 600
B12 587 681 600 763 600
B13 601 698 600 713 600
B14 687 701 600 770 600
B15 620 676 600 778 600
β = 6
B16 671 763 600 763 600
B17 663 723 600 723 600
B18 675 748 600 772 600
B19 689 771 600 841 600
B20 724 871 600 889 600

6The computational time limit determined from a trial based analysis.
7The computational time limit determined from a trial based analysis.
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Appendix A3

Table 4: Computational results for generated instances with |N|=20
Instance Lower Bound VNS ILS

cost time8 cost time9

β = 2
C1 1254 1322 600 1322 600
C2 1305 1410 600 1410 600
C3 1289 1369 600 1434 600
C4 1259 1395 600 1399 600
C5 1259 1338 600 1338 600
β = 3

C6 1117 1228 600 1228 600
C7 1226 1274 600 1364 600
C8 1237 1317 600 1365 600
C9 1206 1328 600 1328 600

C10 1144 1269 600 1356 600
β = 4
C11 1131 1342 900 1329 900
C12 1094 1369 900 1390 900
C13 1208 1362 900 1363 900
C14 1084 1312 900 1312 900
C15 1130 1351 900 1426 900
β = 6
C16 1063 1213 900 1225 900
C17 1038 1144 900 1259 900
C18 1085 1355 900 1363 900
C19 1067 1215 900 1337 900
C20 1116 1357 900 1357 900

8The computational time limit determined from a trial based analysis.
9The computational time limit determined from a trial based analysis.
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Appendix A4

Table 5: Computational results for generated instances with |N|=30
Instance Lower Bound VNS ILS

cost time10 cost time11

β = 2
D1 2865 3252 600 3286 600
D2 2595 2985 600 3126 600
D3 2768 3063 600 3120 600
D4 2647 3095 600 2982 600
D5 2799 3328 600 3335 600
β = 3

D6 2526 2871 600 2786 600
D7 2452 3170 600 3183 600
D8 2525 2946 600 3160 600
D9 2673 3147 600 3154 600

D10 2809 3263 600 3326 600
β = 4
D11 2378 2870 900 3085 900
D12 2543 3224 900 3320 900
D13 2294 2612 900 2593 900
D14 2551 3135 900 3193 900
D15 2362 2826 900 2835 900
β = 6
D16 2296 3004 900 3092 900
D17 2224 2836 900 2748 900
D18 2205 3262 900 3320 900
D19 2190 3082 900 3256 900
D20 2153 2892 900 2914 900

10The computational time limit determined from a trial based analysis.
11The computational time limit determined from a trial based analysis.
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Appendix A5

Table 6: Computational results for generated instances with |N|=50
Instance Lower Bound VNS ILS

cost time12 cost time13

β = 2
E1 7761 9326 900 9363 900
E2 7608 9060 900 9245 900
E3 7650 9001 900 8989 900
E4 7655 8670 900 8910 900
E5 7650 9568 900 9574 900
β = 3

E6 7423 8718 900 9127 900
E7 7057 8129 900 8675 900
E8 7337 8616 900 8642 900
E9 7846 9111 900 9185 900

E10 7135 8710 900 8722 900
β = 4
E11 7647 9500 1200 9767 1200
E12 7672 9642 1200 9655 1200
E13 7099 8836 1200 8848 1200
E14 7478 8972 1200 9207 1200
E15 7354 9126 1200 9321 1200
β = 6
E16 6861 8598 1200 8596 1200
E17 7062 9105 1200 9116 1200
E18 7309 8662 1200 8671 1200
E19 6984 8677 1200 8671 1200
E20 7076 8630 1200 8957 1200

12The computational time limit determined from a trial based analysis.
13The computational time limit determined from a trial based analysis.
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