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Abstract

In this paper we present a local search heuristic method for an integrated airline
scheduling, fleeting and pricing model. The integrated model simultaneously opti-
mizes the decisions of schedule design, fleet assignment, seat allocation, pricing and
considers passengers’ spill and recapture. The resulting problem is a mixed integer
non-convex problem due to the explicit representation of a demand model which
guides the revenue management decisions. The local search heuristic tackles the
complexity of the problem decomposing the problem into two simplified versions of
the integrated model. The first model is a fleet assignment model where the pricing
decision is fixed. The fleet assignment sub-model is a mixed integer linear prob-
lem. The second model is a revenue management model where the fleet assignment
decision, i.e., the transportation capacity, is fixed. This revenue sub-model is a con-
tinuous nonlinear problem. These sub-models are solved in an iterative way with
intelligent local search mechanisms. Price sampling is used for a local search on
price and variable neighborhood search techniques are used for exploring superior
fleet assignment decisions. Metaheuristic mechanisms permit to escape from local
optima. The local search heuristic is presented in comparison to two other heuris-
tic approaches: a heuristic procedure provided by an open-source generic MINLP
solver and a sequential approach which mimic the current practice of airlines. The
three approaches are tested on a set of experiments with different problem sizes.
The local search heuristic outperforms the two other approaches in terms of the
quality of the solution and computational time.
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1 Introduction

The design of a competitive schedule and the decisions related to the fleet assignment are
critical for airline’s profitability. Schedule planning decisions are taken in large advance
with respect to the day of operations according to an estimate of the transportation
demand. Once the decisions on scheduling and fleeting are published, few changes can
be made to take into account demand fluctuation. Furthermore, the demand is given at
the itinerary level, however the capacity must be decided at the flight level. We refer to
Sherali et al. (2006) for a review on airline fleet assignment literature. The itinerary-based
fleet assignment model (IFAM, Barnhart et al., 2002) is well accepted in the literature in
order to be able to better represent the network effects of scheduling and fleeting decisions.
With a further attempt to better handle the network effects, demand correction terms and
recapture effects are included in fleet assignment models (Lohatepanont and Barnhart,
2004). In case of capacity shortage, a portion of passengers that cannot be accommodated
on the desired flight may accept to be redirected to other itineraries in the same market.
When appropriately modeled, the proportion of recaptured passengers, called recapture
ratio, provides flexibility for airlines in their capacity planning.

In the literature, there are studies dedicated to the integration of network effects in
fleet assignment models. Anyway, in such models the estimation on the revenue usually
fails to represent reality: either the demand and price are assumed to be given as an input
or simple revenue models are included. We refer the reader to Talluri and van Ryzin
(2004a) for a review on revenue management models. The need for the incorporation of
more realistic revenue functions is underlined by Barnhart et al. (2009). Authors make
assumptions on the revenue functions that allow for the design of solution methodologies
for the fleet assignment problem. One fundamental assumption is that the revenue is not
a function of the price.

Talluri and van Ryzin (2004b) integrate discrete choice modeling into the single-leg,
multiple-fare-class revenue management model that determines the subset of fare products
to offer at each point in time. Authors provide the characterization of optimal policies
under a general choice model of demand. Schön (2008) shows the integration of different
choice models into an integrated schedule design and fleet assignment model. The studied
demand models include logit and nested logit formulations with simple structures where
the only explanatory variable is the price of the itineraries. The inverse demand function
is used instead of the explicit logit formula in order to obtain a convex formulation. The
convex model is then solved using a benders decomposition approach. However, in case
of having more than one variable or in the presence of disaggregate variables the inverse
operation cannot be used and therefore convexity cannot be guaranteed.

Recently, Atasoy et al. (2013) introduce an integrated airline scheduling, fleeting and
pricing model formulated as a non-convex mixed integer nonlinear problem (MINLP).
The pricing is integrated through an itinerary choice model which shares some similarities
with Schön (2008). One distinction of the considered model is the integration of a choice
model which is estimated on real data. The dataset is a mixed revealed preferences and
stated preferences data which enables to enrich the model with explanatory variables
additional to price. Another important contribution is that the choice model is explicitly
included in the optimization model rather than an inverse demand function, as proposed
by Schön (2008). This gives flexibility for the further extensions of the demand model with
more explanatory variables and/or disaggregate level data. The itinerary choice model is
specific to economy and business classes and enables to optimize the decisions on capacity
allocation for each class. Furthermore, the choice model is adapted to appropriately
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consider the spill and recapture effects. The resulting model simultaneously optimizes
the schedule planning, fleet assignment, pricing and capacity allocation to classes.

Atasoy et al. (2013) report the added value of the integrated scheduling, fleeting and
pricing model by solving the monolithic model with an open-source solver. However, the
solver is designed for convex problems, which is not the case of the integrated model. In
this paper we present a local search heuristic based on two sub-models of the problem.
Inspired by the idea of D’Ambrosio et al. (2012), we fix either the fleet or the revenue
part of the integrated model in order to obtain simplified models. When we fix the
pricing part, we obtain a mixed integer linear problem (MILP). This sub-model is a fleet
assignment problem where the price and the recapture ratios are inputs. When we fix the
fleet assignment decisions, we obtain a non-convex nonlinear problem (NLP). Therefore
it consists of a revenue management model with a given capacity. The two sub-models
are solved in an iterative procedure where local search techniques are used to explore
alternative feasible solutions. Local search techniques include price sampling that is used
to visit new fleet assignment solutions with different price inputs. Furthermore a variable
neighborhood search (Hansen and Mladenović, 2001) is developed so that a sub-set of
the fleet assignments are fixed and kept for the next iteration based on the quality of
the incumbent solution. We also design a tabu search mechanism (Glover, 1990) to
prevent multiple visits to the same solution for a number of consequent iterations. The
main contribution of the paper is a local search heuristic which is designed to handle
the difficulties of the model thanks to a combination of the above-mentioned techniques.
The interactions between supply and demand models are exploited and as a result, this
combination provides better quality feasible solutions for realistic size instances compared
to other two heuristic approaches: an MINLP solver (BONMIN, Bonami et al., 2008)
and a sequential approach which mimics the current practice of airlines. The presented
local search heuristic can easily be used by practitioners for the solution of integrated
scheduling, fleeting and pricing decisions.

The rest of the paper is organized as follows. In section 2 we present the integrated
airline scheduling, fleeting and pricing model that is introduced by Atasoy et al. (2013). In
section 3 we introduce the three heuristic approaches for the integrated model. Section
4 describes the data instances used for the experiments throughout the analysis. In
section 5 we provide experimental results on the performance of the three approaches.
We analyze the results in terms of the quality of the solution and computational time.
Finally we conclude the paper and provide future directions in section 6.

2 Integrated airline scheduling, fleeting and pricing

model

For the sake of self completeness, we briefly report the integrated airline scheduling,
fleeting and pricing model introduced by Atasoy et al. (2013). The model is based on
a time-space network of an airline’s schedule. Every node in the network represents a
departure or arrival event at an airport at a specific time. Every arc in the network
models a feasible connection between events, either a flight arc between two different
airports or a ground arc at the same airport. As the model includes scheduling decisions,
a set of optional flights is considered. These flights represent the set of potential changes
with respect to a baseline schedule. The parameters of the model are reported in Table
1 and the decision variables are presented in Table 2.
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Table 1: Parameters of the integrated model

Set Definition
F set of flight legs indexed by f

FM set of mandatory flight legs
FO set of optional flight legs
CT set of flights flying at count time
A set of airports indexed by a

K set of fleet types indexed by k

T set of time of the events in the network indexed by t

N(k, a, t) set of the nodes in the time-space network
for fleet type k, airport a and time t

In(k, a, t) set of inbound flight legs for node (k,a,t)
Out(k, a, t) set of outbound flight legs for node (k,a,t)
H set of cabin classes indexed by h

Sh set of market segments indexed by s, for cabin class h

Is set of itineraries in segment s, indexed by i

I
′

s set of no-revenue itineraries, I
′

s ∈ Is
Parameter Definition
Ck,f operating cost for flight f when operated by fleet type k

Rk available number of planes for type k

Qk the capacity of fleet type k in number of seats
minE−

a the time just before the first event at airport a

maxE+
a the time just after the last event at airport a

δi,f 1 if itinerary i uses flight leg f , 0 otherwise
Ds the total unconstrained demand for segment s

LBi the lower bound on the price of the itinerary i

UBi the upper bound on the price of the itinerary i

zi the vector of explanatory variables for itinerary i

β the vector of parameters of the logit model
Vi the utility of itinerary i

Table 2: Decision variables of the integrated model

Variable Definition
Schedule planning

xk,f binary variable, 1 if fleet type k is assigned to flight f , 0 otherwise
yk,a,t− continuous variable, the number of type k planes at airport a just before time t

yk,a,t+ continuous variable, the number of type k planes at airport a just after time t

Revenue management: all variables are continuous
di demand of itinerary i

d̃i demand share of itinerary i based on the logit model, which
serves as an upper bound for di

pi price of itinerary i (fixed for no-revenue itineraries)
ti,j redirected passengers from itinerary i to itinerary j

bi,j recapture ratio for the passengers spilled from itinerary i

and redirected to itinerary j

πh
k,f assigned seats for flight f in a type k plane for cabin class h
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max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s
)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)pi

−
∑

k∈K
f∈F

Ck,fxk,f (1)

s.t.
∑

k∈K

xk,f = 1 ∀f ∈ FM (2)

∑

k∈K

xk,f ≤ 1 ∀f ∈ FO (3)

yk,a,t− +
∑

f∈In(k,a,t)

xk,f = yk,a,t+ +
∑

f∈Out(k,a,t)

xk,f ∀[k, a, t] ∈ N (4)

∑

a∈A

yk,a,minE−

a
+

∑

f∈CT

xk,f ≤ Rk ∀k ∈ K (5)

yk,a,minE−

a
= yk,a,maxE+

a
∀k ∈ K, a ∈ A (6)

∑

s∈Sh

∑

i∈(Is\I
′

s
)

δi,f (di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)

≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (7)

∑

h∈H

πh
k,f ≤ Qkxk,f ∀f ∈ F, k ∈ K (8)

∑

j∈Is

ti,j ≤ di ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s) (9)

d̃i = Ds

exp (Vi(pi, zi;β))
∑

j∈Is

exp (Vj(pj , zj ;β))
∀h ∈ H, s ∈ Sh, i ∈ Is (10)

bi,j =
exp (Vj(pj , zj ;β))

∑

k∈Is\{i}

exp (Vk(pk, zk;β))
∀h ∈ H, s ∈ Sh, i ∈ (Is \ I

′

s), j ∈ Is (11)

xk,f ∈ {0, 1} ∀k ∈ K, f ∈ F (12)

yk,a,t ≥ 0 ∀[k, a, t] ∈ N (13)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (14)

0 ≤ di ≤ d̃i ∀h ∈ H, s ∈ Sh, i ∈ Is (15)

LBi ≤ pi ≤ UBi ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s) (16)

ti,j ≥ 0 ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ Is (17)

bi,j ≥ 0 ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ Is (18)

Objective function(1) maximizes the profit calculated by the revenue minus operating
costs. Constraints (2)-(6) are specific for the fleet assignment process. Constraints (2)
ensure that the mandatory flights are operated. Constraints (3) are for the optional
flights that can be canceled. Constraints (4) maintain the flow conservation of the fleet
at every node of the state-space network. Constraints (5) limit the use of each aircraft
type according to the fleet size. It is assumed that the network configuration at the
beginning and at the end of the period, which is one day, is the same in terms of the
number of aircraft at each airport (6).

The relation between the supply capacity and the actual demand is maintained by
constraints (7) which ensure that the assigned capacity for a flight satisfies the demand for
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the corresponding itineraries. The actual demand is composed of the potential demand
of the itinerary minus the spilled passengers plus the recaptured passengers from other
itineraries. The same constraints ensure that the itineraries do not realize any demand
if any of the corresponding flight legs is canceled. We let the allocation of business and
economy seats to be decided by the model as a revenue management decision. Therefore,
constraints (8) ensure that the total allocated seats does not exceed the capacity of the
aircraft.

Demand related constraints include constraints (9) which ensure that the total redi-
rected passengers from itinerary i to all other itineraries, including the no-revenue options,
do not exceed its realized demand. The demand given by the logit model, d̃i, is provided
as in the constraints (10). This formula gives the demand for each itinerary in a market
segment depending on the utilities of all the available itineraries in the same segment.
The utility of each itinerary, Vi, depends on the price, pi and a vector of explanatory
variables, zi, consisting of trip length, departure time of day and the number of stops. In
the present model, the price is the only policy variable which can be directly controlled.
The other explanatory variables have an indirect effect on the scheduling decisions. The
β parameters are estimated based on a mixed revealed preferences and stated preferences
data. The details on the logit model, the estimation procedure and the estimation results
are provided in Atasoy and Bierlaire (2012).

The recapture ratio is modeled with a similar logit formulation as seen in the con-
straints (11). When a passenger is redirected from itinerary i to itinerary j, the prob-
ability of passenger’s acceptance is given by the market share of itinerary j among the
available itineraries in the market segment excluding the itinerary i. The spill phe-
nomenon is assumed to be the decision of the airline rather than a market equilibrium.
Market reacts only with the recapture ratios. Finally, restriction on variables’ domain
are ensured by constraints (12)-(18).

The resulting model is a non-convex MINLP. The non-convexity comes from the in-
tegration of the logit model.

The added value of the integrated model is presented by Atasoy et al. (2013) compared
to state-of-the-art models. The integrated model is found to take superior scheduling
and fleeting decisions due to the explicit supply-demand interactions. When there is a
potential in increasing the price of some itineraries, the integrated model decides to do so
with a less capacity and increases the profit. Similarly, when there is a room for attracting
more passengers with a small decrease in the price, the integrated model increases the
capacity and obtains a higher profit.

Atasoy et al. (2013) perform the mentioned tests over the integrated model using the
BONMIN solver. As discussed in section 5, BONMIN is computationally inefficient for
solving the full integrated model and cannot provide good quality feasible solutions for
medium size instances even in 12 hours. These limitations necessitate the development
of a more efficient method which is the main motivation of this paper.
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3 Heuristic approaches

In this section we present three heuristic approaches for the solution of the integrated
airline schedule planning model. The first two approaches serve as references for the local
search heuristic.

3.1 BONMIN solver for the integrated model

BONMIN1 is an open-source solver proposed by Bonami et al. (2008) and designed to
solve convex MINLPs. As it is designed to be an exact method for convex problems, it
can be only considered as a heuristic for solving the integrated model. The main methods
embedded in the solver are branch and bound and polyhedral outer approximation.

3.2 Sequential approach

As a second heuristic approach for the solution of the integrated model, we mimic the
current practice of airlines where revenue management decisions are taken with a fixed ca-
pacity provided by the schedule planning process. Talluri and van Ryzin (2004a) provides
the state-of-the-art revenue management models and states the fact that most revenue
management models assume the capacity is given and fixed. A similar sequential ap-
proach is utilized by Lohatepanont (2002) in the context of a sensitivity analysis for an
itinerary-based fleet assignment model.

We represent the sequential approach with two sub-models of the integrated model.
The first sub-model is the fleet assignment model (FAM), where the price of the itineraries
are inputs and the remaining decisions are optimized with the given price and demand.
The optimized decisions are the schedule design, fleet assignment, seat allocation and the
number of spilled passengers. This model is indeed an extended version of the state-of-
the-art fleet assignment models (Lohatepanont and Barnhart, 2004) with more advanced
methodology on the spill and recapture effects. Since the pricing decision is excluded, the
prices of the itineraries (p) are fixed. The demand given by the logit (d̃) and the recapture
ratios (b) are also parameters that are calculated with the given price. Therefore we
represent them by P , D̃, and B for clarification purposes. The FAM is a MILP and given
as follows:

1https://projects.coin-or.org/Bonmin
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z∗
FAM

= max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s
)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,iBj,i)Pi (19)

−
∑

k∈K
f∈F

Ck,fxk,f (20)

s.t.
∑

k∈K

xk,f = 1 ∀f ∈ FM (21)

∑

k∈K

xk,f ≤ 1 ∀f ∈ FO (22)

yk,a,t− +
∑

f∈In(k,a,t)

xk,f = yk,a,t+ +
∑

f∈Out(k,a,t)

xk,f ∀[k, a, t] ∈ N (23)

∑

a∈A

y
k,a,minE−

a

+
∑

f∈CT

xk,f ≤ Rk ∀k ∈ K (24)

y
k,a,minE−

a

= y
k,a,maxE+

a

∀k ∈ K, a ∈ A (25)
∑

s∈Sh

∑

i∈(Is\I
′

s
)

δi,f (di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,iBj,i)

≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (26)

∑

h∈H

πh
k,f ≤ Qkxk,f ∀f ∈ F, k ∈ K (27)

∑

j∈Is

ti,j ≤ di ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s) (28)

xk,f ∈ {0, 1} ∀k ∈ K, f ∈ F (29)

yk,a,t ≥ 0 ∀[k, a, t] ∈ N (30)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (31)

0 ≤ di ≤ D̃i ∀h ∈ H, s ∈ Sh, i ∈ Is (32)

ti,j ≥ 0 ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ Is (33)

The second sub-model is a revenue management model (RMM) with a fixed capacity.
The available seat capacity for every flight is given as input. This model is a non-convex
NLP. Since the fleet assignment decisions of x and y are fixed they are parameters for the
RMM and represented by X and Y for the ease of explanation. The RMM is provided
as follows:
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z∗
RMM

= max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s
)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)pi (34)

s.t.
∑

s∈Sh

∑

i∈(Is\I
′

s
)

δi,f (di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)

≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (35)

∑

h∈H

πh
k,f ≤ QkXk,f ∀f ∈ F, k ∈ K (36)

∑

j∈Is

ti,j ≤ di ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s) (37)

d̃i = Ds
exp (Vi(pi, zi;β))∑

j∈Is

exp (Vj(pj , zj ;β))
∀h ∈ H, s ∈ Sh, i ∈ Is (38)

bi,j =
exp (Vj(pj , zj ;β))∑

k∈Is\{i}

exp (Vk(pk, zk;β))
∀h ∈ H, s ∈ Sh, i ∈ (Is \ I

′

s), j ∈ Is (39)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (40)

0 ≤ di ≤ d̃i ∀h ∈ H, s ∈ Sh, i ∈ Is (41)

LBi ≤ pi ≤ UBi ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s) (42)

ti,j ≥ 0 ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ Is (43)

bi,j ≥ 0 ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ Is (44)

The sequential approach first solves the FAM with the average price values provided
in the dataset. It optimizes the schedule design and fleet assignment (xk,f , yk,a,t). These
decisions on the capacity are given as inputs to the next step which is the solution of the
RMM. It provides the price of each itinerary (pi), the actual demand (di), the allocated
seats to each class (πh

k,f ) and the number of spilled passengers (ti,j).

3.3 Local search heuristic

The third heuristic approach is the main contribution of this paper. It is based on the
sequential approach and the use of appropriate local search mechanisms. The main short-
coming of the sequential approach is that the capacity provided by the FAM cannot make
use of the information on the revenue since it runs with fixed price and demand for the
itineraries. FAM is not able to account for the potential in changing the pricing decisions
in order to shape the demand and come up with more profitable schedule planning. There-
fore a local search heuristic is developed answering to this lack of interaction between
planning and revenue decisions. The neighborhood is defined by local search techniques
which provide alternative schedule planning decisions. Namely, the alternative solutions
for the xk,f variables constitute neighborhood solutions.

The first local search mechanism is price sampling which reveals the potential im-
provement on the revenue as a consequence of the adjustments of the price. The second
mechanism is variable neighborhood search which keeps a varying subset of fleet assign-
ment solutions fixed in the model based on the quality of the solution. Both of the
procedures are based on the number of spilled passengers. This information is found to
be important since the spilled passengers are potential revenue sources. The local search
procedures are then capable of realizing the impact of planning decisions on the revenue
and directing the algorithm towards good feasible solutions.
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3.3.1 Price sampling

As mentioned previously, the FAM considers fixed price and fixed demand values. In
order to visit alternative solutions, the model is iteratively solved drawing different price
samples and different itinerary demands. The sampling procedure takes into account
the rate of spilled passengers resulting from the solution of the RMM in the previous
iteration. The spill rate of a flight is defined as the average spilled passengers divided
by the total demand for the flight (McGill, 1989; Belobaba, 2006). Similarly, for every
itinerary i, the SR

g
i rate is defined as the number of spilled passengers over the realized

demand in iteration g as follows:

SR
g
i =

∑

j∈Is

t
g
i,j

d
g
i

∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s)

In price sampling, according to the solution of RMM, the price of an itinerary in
iteration g is altered based on the number of spilled passengers in the previous iteration
g − 1. The price is increased if that itinerary presents a lower SR

g−1
i rate compared to

the average rate, which is denoted by SRg−1
mean. A random price value is uniformly drawn

between the current price value and the upper bound. On the other hand, the price
is decreased if the spill rate is higher than SRg−1

mean. A random price value is uniformly
drawn between the lower bound and the current price value. This price sampling is given
as follows:

p
g
i =

{

unirand(pg−1
i , UBi) if SRg−1

i ≤ SRg−1
mean

unirand(LBi, p
g−1
i ) otherwise

∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s)

3.3.2 Variable neighborhood search - VNS

While neighborhood schedule planning solutions are being explored, a subset of fleet as-
signments is fixed, i.e. some flights are kept assigned to the same aircraft, for a number
of iterations in order to keep the good fleet assignment solutions. The number of fixed
assignments is represented by nfixed. The variable neighborhood mechanism is embedded
in such a way that nfixed is altered according to the quality of the solution. If a better
solution is obtained, nfixed is increased in the next iteration which is referred as intensi-
fication. On the other hand, when there is no improvement for a subsequent number of
iterations, a diversification is applied, i.e. nfixed is decreased in order to better explore
the feasible region.

The set of fixed assignments is represented by  L which has nfixed elements. Each fixed

assignment ℓ indicates a fleet type k
fixed
ℓ and a flight f fixed

ℓ . This fixing is maintained by
the constraint given by equation (45). Therefore the FAM considered for the local search
heuristic is represented by (20)-(33) and (45).

x
k
fixed
ℓ

,f
fixed
ℓ

= 1 ∀ℓ ∈  L (45)

The decision to fix a fleet assignment is taken considering the number of spilled pas-
sengers. In other words, an aircraft type is assigned to the corresponding flight in the
current solution with a probability which depends on the number of passengers spilled
from itineraries involving that flight. Intuitively the smaller the spill from a flight, the
higher the probability that the flight-aircraft pair is fixed in the current iteration. The
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set of flights which are flown at iteration g is represented by F
g
flown. The spill rate of a

flight, SRg
f , is the sum of the spill rates of all itineraries involving flight f as stated in

equation (46).

SR
g
f =

∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′
s)

δi,fSR
g
i ∀f ∈ F

g
flown (46)

The maximum SR
g
f rate among all the flights in F

g
flown is denoted by SRg

max. The
probability of fixing the assignment of flight f at iteration g, probg

f , is obtained according
to the number of spilled passengers at iteration g − 1 as provided in equation (47). It
is proportional to the gap between the maximum spill rate and the spill rate of flight f .
Therefore, the probability is higher when the number of spilled passengers is lower.

probg
f =

SRg−1
max − SR

g−1
f

∑

j∈F g−1
flown

(SRg−1
max − SR

g−1
j )

∀f ∈ F
g−1
flown (47)

3.3.3 Tabu search

The local search mechanisms allow to visit alternative solutions. In order to prevent
visiting the same solutions and therefore to fasten the process a tabu search framework
is considered. The explored fleet assignment solutions (xk,f ) are kept in a tabu list. The
size of the tabu list is determined according to the size of the instance studied. For
small instances with a small number of flights and aircraft types the tabu list keeps less
fleet assignment solutions compared to larger instances. When a new set of solutions
is introduced in the list, the last one is removed automatically if the maximum size is
reached.

3.3.4 The complete local search heuristic

The local search heuristic consists of iterations each of which solves FAM and RMM
subsequently. As mentioned previously, FAM is solved by fixing the revenue part and
RMM is solved by fixing the schedule planning decisions. This fixing is embedded in an
iterative process similar to the idea of D’Ambrosio et al. (2012). The iterative process is
carried out with the local search mechanisms defined in sections 3.3.1 and 3.3.2. These
local search techniques enable to visit good quality neighborhood solutions.

The procedure is presented by Algorithm 1. The iteration continue until the time
limit, timemax. The decision variables of the model are represented by the same notation
in the algorithm. The price variables are initialized with the given price values in the
data set. This implies that the first iteration of the local search heuristic is actually the
sequential approach. However with the local search mechanisms this sequential approach
solution is improved.

nmin and nmax are defined as the minimum and maximum number of fixed assignments
according to the data instance. notImpr is the number of subsequent iterations where
there was no improvement in the best objective function value, z∗. tabuList is the tabu
list of size tabuListSize, that consists of the fleet assignment solutions x.
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Algorithm 1 Local search heuristic

Require: x0, y0, d0, p0, t0, b0, π0, timemax, nmin, nmax, notImpr, tabuListSize
g := 0, time := 0, nfixed := nmin, notImpr := 0, z∗ := −INF, tabuList := ∅
repeat

pg := Price sampling(tg−1, pg−1, dg−1) [section 3.3.1]
{dg, bg} := Logit models(pg) [demand and recapture ratios for the sampled price based on
equations (10) and (11)]
 L := VNS - Fixing(xg−1, tg−1, dg−1, nfixed) [selection of fixed assignments - section 3.3.2]
{xg, yg, πg, tg} := solve zFAM(pg, dg, bg, L) [solve FAM with the sampled price, demand,
recapture ratios and fixed assignments]
if (x̄g /∈ tabuList) then

tabuList := tabuList
⋃

xg [Tabu search, section 3.3.3]
{pg, dg, bg, πg, tg} := solve zRMM(xg, yg) [solve RMM with fixed capacity]
if (zRMM ≥ z∗) [if a better solution is obtained ] then

Update z∗

VNS - Intensification: nfixed := nfixed + 1 when nfixed < nmax

notImpr := 0
else if (notImpr == 3) [if no improvement is obtained in the last 3 iterations] then

VNS - Diversification: nfixed := nfixed − 1 when nfixed > nmin

notImpr := notImpr − 1
end if

end if
g := g + 1

until time ≥ timemax

4 The data instances

For this study, we used a dataset coming from a major European airline which was pro-
vided in the context of the ROADEF Challenge 20092. The dataset provides information
on the set of airports, flights, itineraries, and aircraft. The information on the itineraries
include their forecasted demand and average prices for each class.

Using the dataset several data instances are generated to be used throughout the paper
as provided in Table 3. The data instances are presented with the number of airports,
flights, the average number of flights per route, the average demand per flight and the
available fleet. The information on the fleet includes the number of types of aircraft and
the seat capacity of each type of aircraft. For some data instances the demand is low
and the available aircraft are of small size. There are also larger instances with higher
demand and bigger aircraft. Instances 20-25 are distinguished from the first 19 since they
are large instances which generate more complex problems.

5 Performance of the heuristic approaches

In this section we present results for the three heuristic approaches presented in section
3. All the models are implemented in AMPL3. BONMIN runs over the full integrated
model presented in section 2. The sequential approach and the local search heuristic

2http://challenge.roadef.org/2009/en
3http://www.ampl.com
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Table 3: The data instances for the experiments

no airports flights
flights per
route

demand
per flight

fleet composition

1 3 10 1.67 51.90 2 50-37
2 3 11 2.75 83.10 2 117-50
3 3 12 2.00 113.80 2 164-100
4 3 12 2.00 113.80 6 164-146-128-124-107-100
5 3 26 4.33 56.10 3 100-50-37
6 3 19 3.17 96.70 3 164-117-72
7 3 19 3.17 96.70 5 124-107-100-85-72
8 3 12 3.00 193.40 3 293-195-164
9 3 33 8.25 71.90 3 117-70-37

10 3 32 5.33 100.50 3 164-117-85
11 3 32 5.33 100.50 5 128-124-107-100-85
12 2 11 5.50 173.70 3 293-164-127
13 4 39 4.88 64.50 4 117-85-50-37
14 4 23 3.83 86.10 4 117-85-70-50
15 4 19 3.17 101.40 4 134-117-100-85
16 4 19 3.17 101.40 5 128-124-107-100-85
17 4 15 1.88 58.10 5 117-85-70-50-37
18 4 14 2.33 87.60 5 134-117-85-70-50
19 4 13 2.60 100.10 5 164-134-117-100-85

20 3 33 8.25 71.90 4 85-70-50-35
21 3 46 7.67 86.85 5 128-124-107-100-85
22 7 48 2.29 101.94 4 124-107-100-85
23 3 61 15.25 69.15 4 117-85-50-37
24 8 77 2.08 67.84 4 117-85-50-37
25 8 97 3.46 90.84 5 164-117-100-85-50

work with the models FAM and RMM. FAM is a MILP and solved using the GUROBI4

solver. The RMM is a non-convex NLP and therefore BONMIN solver is used as done
for the integrated model. BONMIN again serves as an heuristic since it is not designed
for non-convex problems. For all the RMMs solved in the sequential approach and in the
local search heuristic, BONMIN reported a 0% duality gap.

In order to test the performances of the three approaches we use the set of instances
provided in Table 3. The time-limit for the solution of the integrated model with BON-
MIN is chosen as 24 hours in order to obtain feasible solutions to this highly complex
problem. Maximum computational time allowed for the sequential approach and the
local search heuristic is 1 hour. Sequential approach consists of one solution of FAM
and RMM each and therefore does not need an excessive computational time. For the
local search heuristic we also preferred to have a 1 hour limit in order to show that the
resulting method is a practical method which can be used by practitioners. For all the
approaches we report the time when the best solution is found. We note that since the
considered revenue models are non-convex for all the approaches, the presented results
are the best solutions obtained in the time limit, we can not talk about optimality.

The comparative results of the three approaches are presented in Table 4. The analysis
of the results enables us to distinguish the following three cases.

4http://www.gurobi.com/

13



Table 4: Performance of the heuristic approaches
BONMIN Sequential Local search heuristic

Integrated model approach (SA) Average over 5 replications

Profit
Time (sec)

Profit
% deviation Time (sec)

Profit
%deviation %improvement Time (sec)

max 86,400 from BONMIN max 3,600 from BONMIN over SA max 3,600

1 15,091 2 15,091 0.00% 1 15,091 0.00% 0.00% 1
2 37,335 22 35,372 -5.26% 1 37,335 0.00% 5.55% 13
3 50,149 62 50,149 0.00% 1 50,149 0.00% 0.00% 1
4 46,037 2,807 43,990 -4.45% 1 46,037 0.00% 4.65% 3
5 70,904 1,580 69,901 -1.41% 1 70,679 -0.32% 1.11% 6
6 82,311 1,351 82,311 0.00% 1 82,311 0.00% 0.00% 1
7 87,212 32,400 84,186 -3.47% 1 87,212 0.00% 3.59% 60
8 779,819 8,137 779,819 0.00% 1 779,819 0.00% 0.00% 1
9 135,656 666 135,656 0.00% 2 135,656 0.00% 0.00% 2

10 107,927 482 107,927 0.00% 1 107,927 0.00% 0.00% 1
11 85,820 31,705 85,535 -0.33% 2 85,820 0.00% 0.33% 88
12 858,544 5,598 854,902 -0.42% 1 858,544 0.00% 0.43% 1
13 112,881 32,713 109,906 -2.64% 1 112,881 0.00% 2.71% 151
14 85,808 10,643 82,440 -3.93% 1 85,808 0.00% 4.09% 9
15 49,448 33 49,448 0.00% 1 49,448 0.00% 0.00% 1
16 38,205 240 37,100 -2.89% 1 38,205 0.00% 2.98% 1
17 27,076 35 27,076 0.00% 1 27,076 0.00% 0.00% 1
18 45,070 78 44,339 -1.62% 1 45,070 0.00% 1.65% 1
19 26,486 13 26,486 0.00% 1 26,486 0.00% 0.00% 1

20 146,773 30 846 146,464 -0.21% 1 147,506 0.50% 0.71% 406
21 194,987 4,963 210,134 7.77% 10 214,251 9.88% 1.96% 1,499
22 152,126 68,864 158,978 4.50% 2 159,258 4.69% 0.18% 39
23 227,643 40,862 226,615 -0.45% 12 227,284 -0.16% 0.30% 1,283
24 153,384 59,708 154,301 0.60% 4 158,099 3.07% 2.46% 2,314
25 313,943 82,780 331,920 5.73% 13 332,744 5.99% 0.25% 1,451
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5.1 Case 1 - Easy instances with no improvement due to the

integrated model

For the first 19 test cases, BONMIN reports 0% duality gap for the integrated model. For
9 of these instances (1, 3, 6, 8, 9, 10, 15, 17, 19), the integrated model does not improve
the solution of the sequential approach. In other words, these instances does not show
the superiority of simultaenous decision making on pricing and schedule planning. These
cases are signified by a gray row color in Table 4. Since the solution of the sequential
approach is the same as the integrated model solution, the local search heuristic stops
after one iteration. As mentioned earlier, the local search heuristic solves the sequential
approach as the first iteration. The computational time needed is a few seconds for those
instances. This implies an order of magnitude reduction for the instances 3, 15, 17, 19.
The gain of computational time is even more evident for the instances 6, 8, 9, and 10
with 2 to 3 order of magnitude.

5.2 Case 2 - Easy instances with an improvement due to the

integrated model

Among the easy instances, the integrated model results with a superior solution compared
to the sequential approach for the instances 2, 4, 5, 7, 11, 12, 13, 14, 16, and 18. The
computational time needed for the sequential approach is again a few seconds. However
it cannot reach the quality provided by the integrated model. The deviation of the
sequential approach from the best solution can be up to 5.26%. The local search heuristic
is able to find the best solution provided by the integrated model in a significantly reduced
computational time. This reduction can be up to 4 order of magnitude as for instance
14. This shows that the local search mechanisms are successful to improve the sequential
approach solution in a reasonable computational time. There is only one instance, 5,
where the solution of the local search heuristic deviates (0.32%) from the solution of the
integrated model provided by BONMIN.

5.3 Case 3 - Complex instances

The last 6 instances are larger compared to the first 19. The generic solver BONMIN re-
ports a duality gap for these instances when solving the integrated model. The sequential
approach runs maximum quarter of a minute and provides better feasible solutions in 4
of these instances. The local search heuristic performs better compared to the sequential
approach in all the instances. The highest improvement is for experiment 24 with 2.46%.
Similarly it outperforms the solutions provided by BONMIN on the integrated model
except the instance 23 where there is a deviation of 0.16%. The local search heuristic
has a computational time less than 40 minutes. This implies a time reduction of 1 to 3
order of magnitude compared to BONMIN. All in all, the local search heuristic provides
better feasible solutions compared to both of the approaches. It can be used for large size
instances where available solvers cannot provide good quality solutions. Therefore the
local search heuristic enables to understand the added value of the integrated modeling
framework for realistic size problems and can be used in decision making.
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5.4 Added value of the spill based local search

As mentioned in section 3, local search heuristic involves mechanisms which enable to visit
neighborhood solutions in an intelligent way based on the spilled number of passengers.
In order to quantify the advantage of applying these local search rules, the local search
heuristic is tested against its counter part with a fully random local search. The prices of
the itineraries are uniformly drawn between the lower and upper bounds. Similarly the
fixing of assignments is done randomly regardless of the spill values.

Table 5: Improvement due to the neighborhood search based on spill
Sequential Random Neighborhood % Improvement over

approach (SA) neighborhood based on spill random neighborhood
Profit Profit Time(sec) Profit Time(sec) Quality of Reduction

the solution in time
2 35,372 37,335 116 37,335 13 - 89.10%
4 43,990 44,302 27 46,037 3 3.92% 89.47%
5 69,901 SA 3,600 70,679 6 1.11% 99.83%
7 84,186 85,335 1,649 87,212 60 2.20% 96.35%

11 85,535 SA 3,600 85,820 88 0.33% 97.54%
12 854,902 SA 3,600 858,545 1 0.43% 99.97%
13 109,906 110,868 2,617 112,881 151 1.82% 94.23%
14 82,440 84,938 2,073 85,808 9 1.02% 99.57%
16 37,100 38,205 6 38,205 1 - 80.65%
18 44,339 45,070 358 45,070 1 - 99.72%

20 146,464 SA 3,600 147,506 406 0.71% 88.72%
21 210,134 SA 3,600 214,251 1,499 1.96% 58.36%
22 158,978 SA 3,600 159,258 39 0.18% 98.91%
23 226,615 SA 3,600 227,284 1,283 0.30% 64.36%
24 154,301 154,373 2,572 158,099 2,314 2.41% 10.03%
25 331,920 SA 3,600 332,744 1,451 0.25% 59.69%

The comparative results between the random neighborhood and the one based on spill
is presented in Table 5. The instances where the sequential approach and the integrated
model result with the same solution are omitted since in this case the local search heuristic
is equivalent to the sequential approach.

Both versions of the local search heuristic have a time limit of 1 hour and the presented
results are the average values for 5 replications of each. For 8 of the 16 instances (white
rows), the random neighborhood does not improve the initial solution which is the same
as the sequential approach in 1 hour. The neighborhood based on spill provides a better
quality solution compared to the random neighborhood in 13 of the instances. The
maximum improvement obtained in the profit is 3.92% (instance 4) and on the avereage
this improvement is around 1.3%. In all of the 16 instances the spill based local search
reduces the computational time considerably. The reduction in time can be up to 3
orders of magnitude as for instances 5 and 12. Therefore, the information provided by
the demand model on the spill guides the heuristic method in the right direction and
generates better feasible solutions in less computational time.

6 Conclusions and future research

In this paper a local search heuristic method is presented for the solution of the integrated
airline scheduling, fleeting and pricing model. The main motivation for the heuristic is
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to obtain good quality feasible solutions in a reasonable computational time for large
instances. The iterative process is carried out over two simplified versions of the integrated
model and local search mechanisms are employed to explore better feasible solutions. The
local search mechanisms are based on the information provided by the demand model
on spill. This is an important feature of the heuristic approach which explores better
feasible solutions in less computational time compared to a fully random neighborhood
search. The resulting heuristic is practical and provides insights about the added value
of the integrated approach for large size realistic problems.

The performance of the local search heuristic is compared to an available MINLP
solver BONMIN and a sequential approach that represents the current practice of airlines.
The local search heuristic outperforms the sequential approach when there is a potential
gain from the simultaneous decision making. Otherwise, if there is no potential, it is
equivalent to sequential approach. For large size instances it outperforms both of the
other approaches. It is able to find better feasible solutions in a reasonable computational
time.

The performance of the presented heuristic is evaluated in terms of the best feasible
solution found. Since the problem is non-convex no evaluation could be done in terms
of the duality gap. Therefore a potential future research is the extension of the study to
obtain a valid upper bound through appropriate decomposition methods and/or transfor-
mations of the mathematical model. In the literature there are studies that come up with
approximations to deal with the complexity of non-convex MINLPs. We refer to Nowak
(2005) for a comprehensive set of methods for solving non-convex mixed integer nonlinear
programs. Some studies present convex under estimation techniques for the non-convex
functions in order to obtain valid bounds to the original problem (Gangadwala et al.,
2006;Ballerstein et al., 2011). D’Ambrosio and Lodi (2011) present an overview on the
available tools for convex and non-convex MINLPs. D’Ambrosio et al. (2012) develop
an iterative technique for a non-convex MINLP based on a convex approximation of the
model and a non-convex nonlinear program (NLP) that is obtained by fixing the integer
part of the problem.

As mentioned previously, the non-convexity is due to the explicit logit model. Con-
vexification techniques should be investigated to transform the logit model in to a con-
vex/concave one.
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P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications.
European Journal of Operational Research, 130:449–467, 2001.

M. Lohatepanont. Airline Fleet Assignment and Schedule Design: Integrated Models and
Algorithms. PhD thesis, Massachusetts Institute of Technology, 2002.

M. Lohatepanont and C. Barnhart. Airline schedule planning: Integrated models and
algorithms for the schedule design and fleet assignment. Transportation Science, 38:
19–32, 2004.

J. I. McGill. Optimization and estimation problems in airline yield management. PhD
thesis, The University of British Columbia, 1989.

I. Nowak. Relaxation and Decomposition Methods for Mixed Integer Nonlinear Program-
ming, ISNM-International Series of Numerical Mathematics. Birkhäuser Verlag, Basel-
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