Modeling residential location choice and real estate prices with a bid-auction approach

Ricardo Hurtubia Francisco Martínez Michel Bierlaire

Seventh Workshop on Discrete Choice Models, August 25-27, 2011 Lausanne, Switzerland

Outline

- 1. Motivation
- 2. Bid approach for location choice
- 3. Proposed method
- 4. Brussels case study
- 5. Discussion
- 6. Further research

Motivation

- Evolution of land use (location choice) models:
 - Aggregated → Disaggregated
 - Equilibrium → Dynamic microsimulation
- Market clearing / location distribution:
 - Bid-auction
 - Choice
- Bid approach: consistent with economic theory. Usually implemented in equilibrium models (e.g. MUSSA)
- Choice approach: easier to implement in a microsimulation context (e.g. UrbanSim). Requires hedonic rents/prices

Motivation

- Bid-auction approach applied to microsimulation
 - Price formation problem
 - consistency with observed prices
 - Reaction to market conditions
 - Dynamics (pseudo-equilibrium)
 - Active bidders in the auction (choice set)

Bid approach for location choice

• Assumptions:

- Real estate goods (locations) are traded in auctions
- Agents bid their willingness to pay for each location (B_{hi})
- For each location the best bidder is selected
- The amount/value of the best bid determines the rent/price

Bid approach for location choice

• Probability of agent h being the best bidder for location i:

$$P_{h/i} = \frac{\exp(\mu B_{hi})}{\sum_{g \in H} \exp(\mu B_{gi})}$$

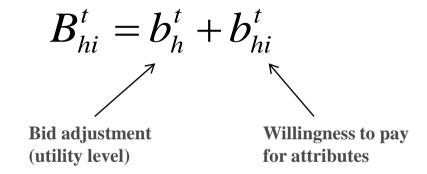
• Expected maximum bid (rent):

$$r_i = \frac{1}{\mu} \ln \left(\sum_{g \in H} \exp(\mu B_{gi}) \right)$$

Bid approach for location choice

• Problems:

- Requires equilibrium between supply and demand (or at least demand > supply)
- In the case of supply surplus it not clear which locations are not selected
- Logsum (r_i) doesn't necessarily reproduce observed prices or rents



- Bid based location choice model
- Assumptions:
 - Goods (locations) traded in auctions, period-wise
 - Agents bid their willingness to pay for each location
 - Agents adjust the level of their bids as a reaction to market conditions (represented by observed prices)
 - Agents are myopic regarding the outcome of future and present auctions

• Bid function:

$$b_{hi}^t = f(z_i^{t-1}, x_h^t, \beta) \longrightarrow \text{estimated via max log-likelihood, assuming } b_h^t = 0$$

• Bid adjustment:

 Bidding households attempt to ensure winning, on average, at least one auction:

$$\sum_{i} P_{h/i}^{t} = \sum_{i} \frac{\exp(b_{h}^{t} + b_{hi}^{t})}{\sum_{g \in H} \exp(B_{gi}^{t})} = 1$$
*

But... households do not observe bids of other households in the same period. They can only observe transaction prices in previous periods

* $\mu = 1$

H: full choiceset

• Bid adjustment:

$$\sum_{i \in S} P_{h/i}^{t} = \sum_{i \in S} \frac{\exp(b_{h}^{t} + b_{hi}^{t})}{\sum_{g \in H} \exp(B_{gi}^{t-1})} = 1$$

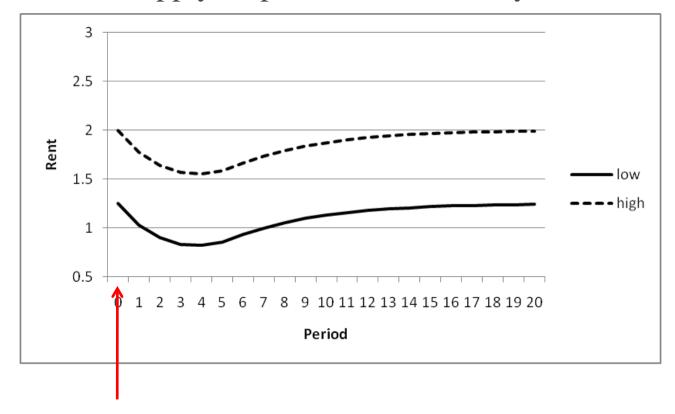
$$\sum_{g \in H} \exp(B_{gi}^{t-1}) = \exp(r_{i}^{t-1})$$

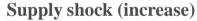
S: full choice set of dwellings/locations

• In each period:

$$b_h^t = -\ln\left(\sum_{i \in S} \exp(b_{hi}^t - r_i^{t-1})\right)$$

• In the base year (calibration year):


$$b_h^0 = -\ln\left(\sum_{i \in S} \exp(b_{hi}^0 - r_i^*)\right)$$
Observed prices at the base year



Price dynamics

• Simulation of a supply surplus scenario with synthetic data

- Data collected for the SustainCity project:
 - Census 2000 (aggregated data by zone)
 - Household survey 2000 (disaggregated data, ~1000 obs)
 - 1985- 2008 average transaction prices by commune and dwelling type
- 1267997 households, 1274701dwellings
- 157 communes
- 4975 zones
- 4 types of dwelling
 - Detached houses
 - Semi-detached houses
 - Attached houses

Bid function specification:

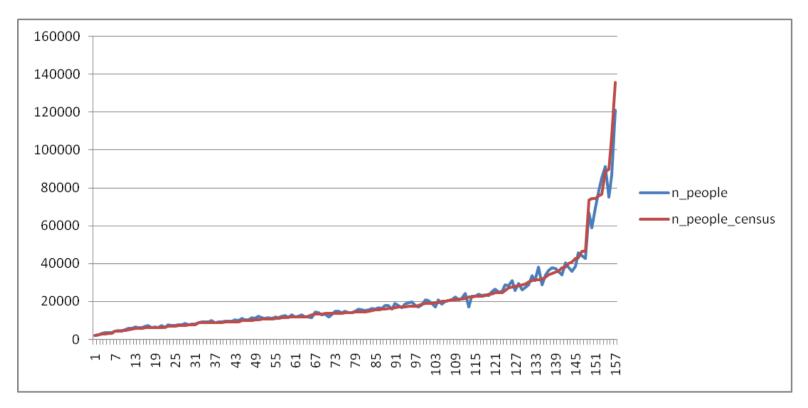
$$b_{hvi} = \beta_{surf} \cdot surf_{vi} \cdot \ln(N_h) + \beta_{sup} \cdot Q_i^{sup} \cdot N_h^{sup} + \beta_{house} \cdot \lambda_{vi}^{house} \cdot N_h +$$

$$\beta_{trans} \cdot Y_i^{trans} \cdot \gamma_h^{cars=0} + \beta_{trans2} \cdot Y_i^{trans} \cdot \gamma_h^{cars>1} + \beta_{comm} \cdot Y_i^{comm} \cdot \ln(N_h) +$$

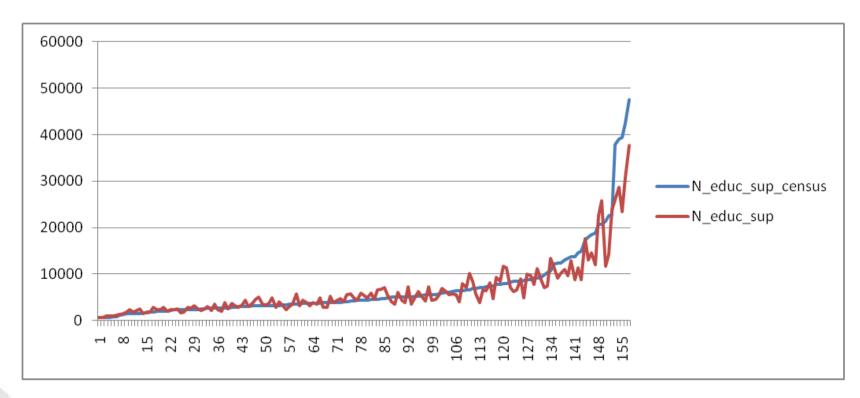
$$\beta_{off} \cdot Y_i^{off} \cdot W_h + \beta_{green} \cdot Y_i^{green} \cdot W_h + \ln \phi_h$$

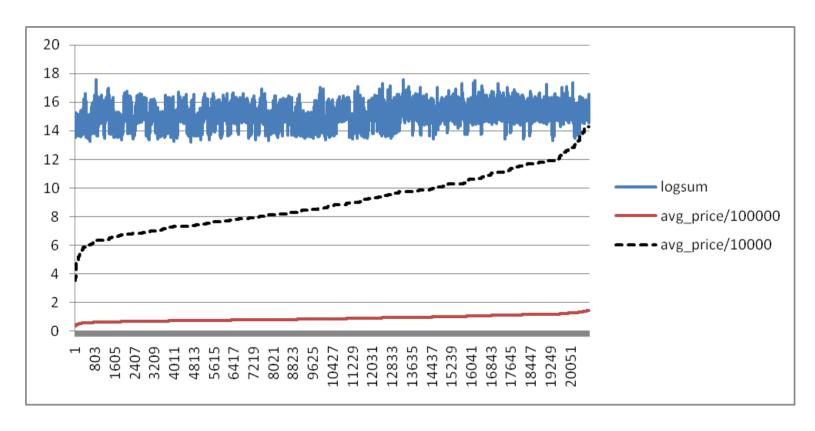
- $sur f_{vi}$: average surface of a residential unit in buildings type v in zone i (calculated from the census).
- N_h : number of individuals in a household.
- W_h : number of active individuals (workers) in a household
- N_h^{sup} : number of persons in the household who achieved a university degree as their maximum education level.
- Q_i^{sup} : percentage of the population in zone i with a superior level education-degree.
- $\bullet \ Y_i^{trans}$ measurement of the quality of public transport (accesibility)
- $Y_i^{comm}, Y_i^{off}, Y_i^{green}$: measurement of the presence of commerce, offices and public green areas
- **ISP-** ϕ_{vi} correction factor for the household-sampling protocol.

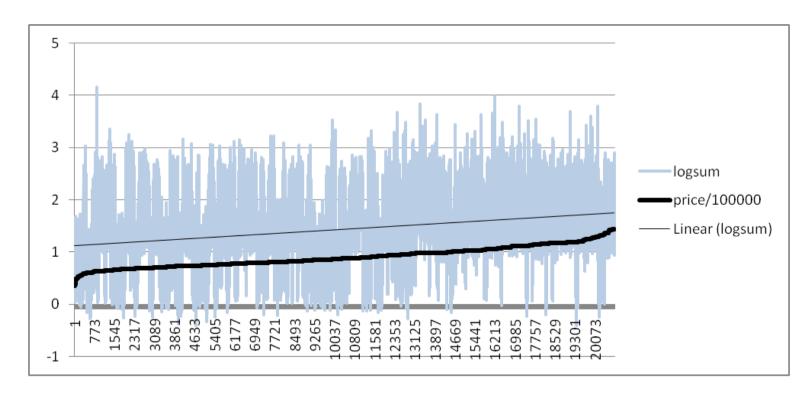
Estimation results with PythonBiogeme


Name	Value	Std err	t-test	p-value	Robust Std err	Robust t-test	p-value
B_surf_s	0.00832	0.00265	3.14	0.00	0.00274	3.04	0.00
B_superior	0.484	0.105	4.62	0.00	0.104	4.63	0.00
B_trans	0.344	0.138	2.50	0.01	0.144	2.39	0.02
B_trans2	-0.454	0.157	-2.89	0.00	0.159	-2.87	0.00
B_house	0.419	0.0622	6.74	0.00	0.0638	6.57	0.00
B_comm	-1.48	0.286	-5.17	0.00	0.293	-5.05	0.00
B_green	-0.336	0.0736	-4.57	0.00	0.0771	-4.36	0.00
B_prof	-0.179	0.0906	-1.98	0.05	0.0933	-1.92	0.05

• Likelihood ratio test against null model 219.4


Number of people by commune


• Number of people with university degree by commune


Logsums for each location

• Logsum for each location after adjustment of b_h

Discussion

- Framework allows for supply or demand surplus
- Changes in (aggregate) market conditions are captured in the price
- Adjustment of b_h produces maximum expect bids close to observed prices
- Scale of prices
 - Arbitrary? (positive or negative b_h)
 - Estimation of μ ?
 - Should bid's be also adjusted location-wise (b_i) ?
 - Relative importance of b_{hi} ? (re-estimation of betas?)

Further research

- Active bidders (choice set generation)
 - Price is affected by who is "competing" for the location
 - Choice set generation or importance sampling?
 - Relevance of the scale of the logsum
- Location assignment
 - Monte Carlo simulation following max bid probabilities?
 - Simultaneous location assignment?

Thanks

Choice approach for location choice

• Assumptions:

- Each agent selects the location that provides maximum utility
- Agents are price takers
- Prices (usually) defined as function of the location attributes

Choice approach for location choice

• Assumption: consumer surplus is a proxy of utility:

$$V_{hi} = B_{hi} - r_i$$

• Probability of location *i* providing maximum utility to agent *h*:

$$P_{i/h} = \frac{\exp(\mu(B_{hi} - r_i))}{\sum_{j} \exp(\mu(B_{hj} - r_j))}$$

Choice approach for location choice

• Problems:

- Price-taker assumption (not good for quasi-unique goods)
- Market conditions usually not captured by hedonic rents

Advantages:

 If prices are the outcome of an auction, the location distribution is the same for the bid and choice approaches

