Results 0000 Heuristic method

Conclusions

Integrated airline schedule planning with supply-demand interactions for a new generation of aircrafts

Bilge Atasoy, Matteo Salani, Michel Bierlaire

Transport and mobility laboratory EPFL

International Conference on Operations Research September 1, 2011

Motivation

Results 0000 Heuristic method

Conclusions

Motivation

• Increased air travel demand

• Demand responsiveness

- Flexible supply capacity
- Improved demand management

Sustainability

Integrated schedule planning 00000

Results 0000 Heuristic method

Conclusions

Clip-Air concept

Flexibility in transportation...

- Modular capacity with detachable capsules
 - security, maintenance, storage and crew costs
- Multi-modality for passenger and cargo
- Robustness
- Demand management

Sustainable transportation

• Gas emissions, noise, accident rates

• Exists in a simulated environment

Motivation

Results 0000 Heuristic method

Objectives

- Comparative analysis between standard fleet and Clip-Air
- Development of integrated schedule design and fleet assignment model
 - integration of supply-demand interactions
 - logit demand model \Rightarrow pricing
 - spill and recapture effects
 - Fare-class segmentation
 - demand model for each segment
 - seat allocation for business and economy
- Solution techniques for the resulting mixed integer nonlinear problem

Integrated schedule planning

Results 0000 Heuristic method

Conclusions

Demand model for itinerary choice

• Utility of itinerary *i*, class *h*:

$$V_{i}^{h} = \beta_{\textit{fare}}^{h} p_{i}^{h} + \beta_{\textit{time}}^{h} \textit{time}_{i} + \beta_{\textit{stops}}^{h} \textit{nonstop}_{i}$$

- p_i^h is the price of itinerary *i* for class *h*.
- *time*_i, binary variable, 1 if departure time is between 07:00-11:00.
- nonstop_i, binary variable, 1 if it is a non-stop itinerary.
- Demand for class *h* for each itinerary *i* in market segment *s*:

$$\tilde{d}_{i}^{h} = D_{s}^{h} \frac{\exp\left(V_{i}^{h}\right)}{\sum_{j \in I_{s}} \exp\left(V_{j}^{h}\right)}$$

- D_s^h is the total expected demand for class h and segment s.
- $\tilde{d}_i^{\tilde{h}}$ serves as an upper bound for the actual demand.

- In case of capacity shortage some passengers may not fly on their desired itineraries
- They may accept to fly on other available itineraries in the same market segment
- Recapture ratio is given by:

$$b_{i,j}^{h} = \frac{\exp(V_{j}^{h})}{\sum_{k \in I_{s} \setminus i} \exp(V_{k}^{h})}$$

• No-revenue represented by the subset $I'_s \in I_s$ for segment s.

Integrated model - Supply part 🚥

$$\max \sum_{s \in S} \sum_{h \in \mathcal{H}} \sum_{i \in (I_s \setminus I_s')} (d_i^h - \sum_{\substack{j \in I_s \\ i \neq j}} t_{j \in I_s \setminus I_s}^{h_j} + \sum_{\substack{j \in [I_s \setminus I_s] \\ i \neq j \neq j}} t_{j \in (I_s \setminus I_s)}^{h_j, h_j, h_j, h_j, h_j} p_i^h - \sum_{\substack{k \in \mathcal{K} \\ i \neq j \neq j}} C_{k, f} \times k_{k, f} : revenue - cost$$
(1)

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
: mandatory flights $\forall f \in F^M$ (2)

$$\sum_{k \in K} x_{k,f} \le 1: \text{ optional flights} \qquad \forall f \in F^O \qquad (3)$$

$$y_{k,a,t} - + \sum_{f \in ln(k,a,t)} x_{k,f} = y_{k,a,t} + + \sum_{f \in Out(k,a,t)} x_{k,f}: \text{ flow conservation} \qquad \forall [k,a,t] \in N$$
(4)

$$\sum_{a \in A} y_{k,a,t_n} + \sum_{f \in CT} x_{k,f} \le R_k: \text{ fleet availability} \qquad \forall k \in K$$
(5)

$$y_{k,a,minE_a^-} = y_{k,a,maxE_a^+}: \text{ cyclic schedule} \qquad \forall k \in K, a \in A \qquad (6)$$

$$\sum_{s \in S} \sum_{i \in (I_s \setminus I'_s)} \delta_{i,f} d_i^h - \sum_{\substack{j \in I_s \\ i \neq j}} \delta_{i,f} t_{i,j}^h + \sum_{\substack{j \in (I_s \setminus I'_s) \\ i \neq j}} \delta_{i,f} t_{j,i}^h b_{j,i}^h \le \sum_{k \in K} \pi_{k,f}^h: capacity \qquad \forall h \in H, f \in F$$

$$(7)$$

$$\sum_{h \in H} \pi_{k,f}^{h} = Q_{k} x_{k,f} : \text{ seat capacity} \qquad \forall f \in F, k \in K$$
(8)

$$x_{k,f} \in \{0,1\} \qquad \qquad \forall k \in K, f \in F \qquad (9)$$

$$y_{k,a,t} \ge 0 \qquad \qquad \forall [k,a,t] \in N \qquad (10)$$

$$\pi_{k,f}^h \ge 0 \qquad \qquad \forall h \in H, k \in K, f \in F \qquad (11)$$

Integrated schedule planning $\circ \circ \circ \circ \circ$

 $\tilde{d}_{i}^{h} = D_{s}^{h} \frac{\exp(V_{i}^{h})}{\sum\limits_{i < t} \exp(V_{j}^{h})}$: logit demand

 $b_{i,j}^{h} = \frac{\exp(V_{j}^{h})}{\sum \exp(V_{k}^{h})}$: recapture ratio

 $d_i^h \leq \tilde{d}_i^h \leq D_i^h$: realized demand $0 < p_i^h < UB_i^h$: upper bound on price Results 0000 Heuristic method

Conclusions

Integrated model - Demand part •••

 $\sum_{\substack{j \in I_{s} \\ i \neq i}} t_{i,j}^{h} \leq d_{i}^{h}: \text{ total spill} \qquad \forall s \in S, h \in H, i \in (I_{s} \setminus I_{s}^{'})$ (12)

$$\forall s \in S, h \in H, i \in I_s$$
 (13)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (14)

$$\forall h \in H, i \in I$$
 (15)

$$\forall h \in H, i \in I$$
 (16)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (17)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (18)

 $t_{i,j}^h \ge 0$ $b_{i,i}^h \ge 0$

Integrated schedule planning

Results 0000 Heuristic method

Conclusions

Model extension for Clip-Air

- Decision variables for the assignment of wing and capsules: $x_f^w \in \{0,1\}$ $x_{k,f} \in \{0,1\}$ for $k \in \{1,2,3\}$
- Operating cost:

$$\sum_{f\in F} C_f^w x_f^w + \sum_{k\in K} C_{k,f} x_{k,f}$$

Constraints:

NSP-DR

$$\sum_{k \in K} x_{k,f} = 1 \quad \forall f \in F^M: \text{ mandatory flights}$$
$$\sum_{k \in K} x_{k,f} \le x_f^w \quad \forall f \in F: \text{ capsule - wing}$$

Motivation	Integrated schedule planning	Results •000	Heuristic method	Conclusions
Results				

- Dataset from a major European airline
- Other inputs:
 - Cost figures for Clip-Air
 - Weight differences => adjustment of fuel cost and airport and air navigation charges
 - Capsule wing separation => adjustment of crew cost
 - Parameters of the demand model
- Model is implemented in AMPL and solved with BONMIN
- Results provide the schedule design, fleet assignment, seat allocation and pricing.

5.4			
	οτιν	atio	on.

Results 0000 Heuristic method

Conclusions

Demand model parameters

- Estimation of logit model parameters by maximum likelihood estimation using BIOGEME
- $\bullet\,$ Booking data does not have the non-chosen alternatives $\Rightarrow\,$ lack of variability
- Adjusted parameters to have enough elasticity

	Business demand	Economy demand
β_{fare}	-0.025	-0.050
β_{time}	0.323	0.139
$\beta_{nonstop}$	1.150	0.900

Results 00●0 Heuristic method

Conclusions

Standard planes vs Clip-Air

An instance with 18 flights and 1096 passengers:

	Standard Fleet	Clip-Air
Operating cost	107,560	89,512
Revenue	185,835	200,199
Profit	78,275	110,687
Transported pax.	817	909
	184 B, 633 E	192 B, 717 E
Flight count	16	16
Average pax/flight	51	57
Total Flight Hours (min)	1200	1200
Used fleet	2 A319, 1 ERJ135	5 wings
	3 ERJ145	8 capsules
Used aircraft	6	5
Used capacity (seats)	345	400
Running time (min)	33.89	31.72

• More passengers

• Less aircraft \Rightarrow less flight crew

Results

	Cheaper competing itineraries					
	High price elasticity		High price elasticity Low price elasticity		lasticity	
	Fixed demand model	Integrated model	Fixed demand model	Integrated model		
Profit	30,966	23,141	31,250	17,159		
Transported pax.	541	400	543	499		
Flight count	8	8	8	8		
Comparable competing itineraries						
	High price elasticity		Low price e	lasticity		
	Fixed demand model Integrated model		Fixed demand model	Integrated model		
Profit	31,660	36,862	31,617	36,484		
Transported pax.	579	531	546	400		
Flight count	6	8	8	8		
	More ex	pensive competing it	ineraries			
	High price e	elasticity	Low price e	lasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model		
Profit	32,849	41,657	31,645	40,487		
Transported pax.	585	535	579	400		
Flight count	6	8	6	8		

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.

Results

Cheaper competing itineraries					
	High price elasticity		High price elasticity Low price elasticity		lasticity
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	30,966	23,141	31,250	17,159	
Transported pax.	541	400	543	499	
Flight count	8	8	8	8	
Comparable competing itineraries					
	High price elasticity		Low price e	lasticity	
	Fixed demand model Integrated model		Fixed demand model	Integrated model	
Profit	31,660	36,862	31,617	36,484	
Transported pax.	579	531	546	400	
Flight count	6	8	8	8	
	More ex	pensive competing it	ineraries		
	High price e	elasticity	Low price e	lasticity	
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	32,849	41,657	31,645	40,487	
Transported pax.	585	535	579	400	
Flight count	6	8	6	8	

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.

Results

Heuristic method

Conclusions

Cheaper competing itineraries					
	High price elasticity		Low price e	lasticity	
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	30,966	23,141	31,250	17,159	
Transported pax.	541	400	543	499	
Flight count	8	8	8	8	
Comparable competing itineraries					
	High price elasticity		Low price e	lasticity	
	Fixed demand model Integrated model		Fixed demand model	Integrated model	
Profit	31,660	36,862	31,617	36,484	
Transported pax.	579	531	546	400	
Flight count	6	8	8	8	
	More ex	pensive competing it	ineraries		
	High price e	elasticity	Low price e	lasticity	
	Fixed demand model	Integrated model	Fixed demand model	Integrated model	
Profit	32,849	41,657	31,645	40,487	
Transported pax.	585	535	579	400	
Flight count	6	8	6	8	

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.

Results

Heuristic method

Conclusions

	Cheaper competing itineraries					
	High price elasticity		High price elasticity Low price elasticity		lasticity	
	Fixed demand model	Integrated model	Fixed demand model	Integrated model		
Profit	30,966	23,141	31,250	17,159		
Transported pax.	541	400	543	499		
Flight count	8	8	8	8		
Comparable competing itineraries						
	High price elasticity		Low price e	lasticity		
	Fixed demand model Integrated model		Fixed demand model	Integrated model		
Profit	31,660	36,862	31,617	36,484		
Transported pax.	579	531	546	400		
Flight count	6	8	8	8		
	More ex	pensive competing it	ineraries			
	High price e	elasticity	Low price e	lasticity		
	Fixed demand model	Integrated model	Fixed demand model	Integrated model		
Profit	32,849	41,657	31,645	40,487		
Transported pax.	585	535	579	400		
Flight count	6	8	6	8		

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.

NЛ	0+i1	ation
IVI		

Results 0000 Heuristic method

Heuristic method Model

- The resulting mixed integer nonlinear problem is highly complex.
- We propose a heuristic method based on Lagrangian relaxation, sub-gradient optimization and a Lagrangian heuristic.
- Capacity constraint is relaxed.
- Problem is decomposed into 2 subproblems: revenue maximization and fleet assignment:

$$z_{REV}(\lambda) = Max \sum_{h \in H} \sum_{f \in F} \sum_{s \in S} \sum_{i \in (I_s \setminus I'_s)} \delta_{i,f}(p_i^h - \lambda_f^h) \left(d_i^h - \sum_{\substack{j \in I_s \\ i \neq j}} t_{i,j}^h + \sum_{\substack{j \in (I_s \setminus I'_s) \\ i \neq j}} t_{j,i}^h b_{j,i}^h \right)$$
$$z_{FAM}(\lambda) = Min \sum_{k \in K} \sum_{f \in F} \left(C_{k,f} x_{k,f} - \sum_{h \in H} \lambda_f^h \pi_{k,f}^h \right)$$

в. <i>А</i>			itio	
IVI	οι	IVa	ILIO	11

Results 0000 Heuristic method

Conclusions

Lagrangian procedure

Require:
$$z_{LB}$$
, \bar{k} , \bar{j} , ε
 $\lambda^0 := 0$, $k := 0$, $z_{UB} := \infty$
repeat
 $\{\bar{d}, \bar{t}, \bar{b}\} := \text{solve } z_{REV}(\lambda^k)$, $\{\bar{x}, \bar{y}, \bar{\pi}\} := \text{solve } z_{FAM}(\lambda^k)$
 $z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k)$
 $z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k))$
loop
 $\{\bar{x}, \bar{\pi}\} := \text{Local search}(\{\bar{x}, \bar{\pi}\})$
 $lb := \text{Lagrangian heuristic } (\{\bar{x}, \bar{\pi}\})$
 $end \ loop$
 $z_{LB} := \max(z_{LB}, lb)$
 $G := \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})$
 $T := \text{compute step}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})$
 $\lambda^{k+1} := \max(0, \lambda^k - TG)$
 $k := k + 1$
until $||TG||^2 \le \varepsilon$ or $k \ge \bar{k}$

в. <i>А</i>	-		itio	
IVI	οι	IVa	ILIO	11

Results 0000 Heuristic method

Conclusions

Lagrangian procedure

RANSP-OR

Require:
$$z_{LB}$$
, \bar{k} , \bar{j} , ε
 $\lambda^0 := 0$, $k := 0$, $z_{UB} := \infty$
repeat
 $\{\bar{d}, \bar{t}, \bar{b}\} :=$ solve $z_{REV}(\lambda^k)$, $\{\bar{x}, \bar{y}, \bar{\pi}\} :=$ solve $z_{FAM}(\lambda^k)$
 $z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k)$
 $z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k))$ update UPPER BOUND
loop
 $\{\bar{x}, \bar{\pi}\} :=$ Local search($\{\bar{x}, \bar{\pi}\}$)
 $lb :=$ Lagrangian heuristic ($\{\bar{x}, \bar{\pi}\}$)
 $lb :=$ Lagrangian heuristic ($\{\bar{x}, \bar{\pi}\}$)
end loop
 $z_{LB} := \max(z_{LB}, lb)$
 $G :=$ compute sub-gradient($z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\}$)
 $T :=$ compute step($z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\}$)
 $\lambda^{k+1} := \max(0, \lambda^k - TG)$
 $k := k+1$
until $||TG||^2 \le \varepsilon$ or $k \ge \bar{k}$

ot	at	n

Results 0000 Heuristic method

Conclusions

Lagrangian procedure

Require:
$$z_{LB}$$
, \bar{k} , \bar{j} , ε
 $\lambda^0 := 0$, $k := 0$, $z_{UB} := \infty$
repeat
 $\{\bar{d}, \bar{t}, \bar{b}\} := \text{solve } z_{REV}(\lambda^k)$, $\{\bar{x}, \bar{y}, \bar{n}\} := \text{solve } z_{FAM}(\lambda^k)$
 $z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k)$
 $z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k))$
loop
 $\{\bar{x}, \bar{n}\} := \text{Local search}(\{\bar{x}, \bar{n}\})$ based on λ 's under a Tabu mechanism
 $lb := \text{Lagrangian heuristic }(\{\bar{x}, \bar{n}\})$
end loop
 $z_{LB} := \max(z_{LB}, lb)$
 $G := \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{n}\})$
 $T := \text{compute step}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{n}\})$
 $\lambda^{k+1} := \max(0, \lambda^k - TG)$
 $k := k + 1$
until $||TG||^2 \le \varepsilon$ or $k \ge \bar{k}$

в. <i>А</i>	-		itio	
IVI	οι	IVa	ILIO	11

Results 0000 Heuristic method

Conclusions

Lagrangian procedure

RANSP-OR

$$\begin{array}{l} \textbf{Require: } z_{LB}, \ \bar{k}, \ \bar{j}, \ \epsilon \\ \lambda^0 := 0, \ k := 0, \ z_{UB} := \infty \\ \textbf{repeat} \\ \{ \bar{d}, \bar{t}, \bar{b} \} := \text{ solve } z_{REV}(\lambda^k), \ \{ \bar{x}, \bar{y}, \bar{\pi} \} := \text{ solve } z_{FAM}(\lambda^k) \\ z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k) \\ z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k)) \\ \textbf{loop} \\ \{ \bar{x}, \bar{\pi} \} := \text{ Local search}(\{ \bar{x}, \bar{\pi} \}) \\ lb := \text{ Lagrangian heuristic } (\{ \bar{x}, \bar{\pi} \}) \\ lb := \text{ Lagrangian heuristic } (\{ \bar{x}, \bar{\pi} \}) \\ lb := \text{ Lagrangian heuristic } (\{ \bar{x}, \bar{\pi} \}) \\ a \ \textbf{feasible solution} \\ \textbf{end loop} \\ z_{LB} := \max(z_{LB}, lb) \\ G := \text{ compute sub-gradient}(z_{UB}, z_{LB}, \{ \bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi} \}) \\ T := \text{ compute sub-gradient}(z_{UB}, z_{LB}, \{ \bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi} \}) \\ \lambda^{k+1} := \max(0, \lambda^k - TG) \\ k := k+1 \\ \textbf{until } ||TG||^2 \leq \epsilon \ \textbf{or } k \geq \bar{k} \end{array}$$

в. <i>А</i>	-		itio	
IVI	οι	IVa	ILIO	11

Results 0000 Heuristic method

Conclusions

Lagrangian procedure

RANSP-OR

Require:
$$z_{LB}$$
, \bar{k} , \bar{j} , ε
 $\lambda^0 := 0$, $k := 0$, $z_{UB} := \infty$
repeat
 $\{\bar{d}, \bar{t}, \bar{b}\} := \text{solve } z_{REV}(\lambda^k)$, $\{\bar{x}, \bar{y}, \bar{\pi}\} := \text{solve } z_{FAM}(\lambda^k)$
 $z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k)$
 $z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k))$
loop
 $\{\bar{x}, \bar{\pi}\} := \text{Local search}(\{\bar{x}, \bar{\pi}\})$
 $lb := \text{Lagrangian heuristic } (\{\bar{x}, \bar{\pi}\})$
 $end \ loop$
 $z_{LB} := \max(z_{LB}, lb) \ update \ LOWER \ BOUND$
 $G := \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})$
 $T := \text{compute step}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})$
 $\lambda^{k+1} := \max(0, \lambda^k - TG)$
 $k := k + 1$
 $until ||TG||^2 \le \varepsilon \text{ or } k \ge \bar{k}$

в. <i>А</i>	-		itio	
IVI	οι	IVa	ILIO	11

Results 0000 Heuristic method

Conclusions

Lagrangian procedure

Require:
$$z_{LB}$$
, \bar{k} , \bar{j} , ε
 $\lambda^0 := 0$, $k := 0$, $z_{UB} := \infty$
repeat
 $\{\bar{d}, \bar{t}, \bar{b}\} := \text{solve } z_{REV}(\lambda^k)$, $\{\bar{x}, \bar{y}, \bar{\pi}\} := \text{solve } z_{FAM}(\lambda^k)$
 $z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k)$
 $z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k))$
loop
 $\{\bar{x}, \bar{\pi}\} := \text{Local search}(\{\bar{x}, \bar{\pi}\})$
 $lb := \text{Lagrangian heuristic } (\{\bar{x}, \bar{\pi}\})$
 $end \ loop$
 $z_{LB} := \max(z_{LB}, lb)$
 $G := \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})$
 $T := \text{compute step}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})$
 $\lambda^{k+1} := \max(0, \lambda^k - TG) \ update \ \lambda's$
 $k := k + 1$
until $||TG||^2 \le \varepsilon \text{ or } k \ge \bar{k}$

Integrated schedule planning 00000

Results 0000 Heuristic method

Conclusions

Performance of the heuristic

	BONMIN	l solver	Heuristic		
Instances	opt solution	time(min)	best solution	GAP	time(min)
9 flights.	52,876	0.24	52,876	0%	0.07
800 pax.					
18 flights	78,275	41.04	77,126	1.47%	20.49
1096 pax.					
26 flights	176,995	204.56	169,913	4.00%	39.27
2329 pax.					

	BONMIN solver			Heuristic		
Instances	best solution	GAP	time(h)	best solution	GAP	time(h)
41 flights	300,949	3.33%	15.01	278,375	10.48%	5.51
3430 pax.						

Integrated schedule planning 00000

Results 0000 Heuristic method

Conclusions

Conclusions and future work

- Clip-Air
 - Potential increase in transportation capacity and profit
 - A system level consideration
 - Repositioning of Clip-Air capsules
- Integrated scheduling model
 - Further investigation of the effects of the demand model
- Heuristic method
 - Improvement of the solutions
 - Test of the heuristic on a comprehensive test set

Integrated schedule planning 00000

Results 0000 Heuristic method

Conclusions

Thank you for your attention ! bilge.kucuk@epfl.ch

NЛ	oti	/at	ion

Results 0000 Heuristic method

Conclusions

Spill and recapture effects - Illustration • Back

Information regarding the itineraries in segment ORY-NCE:

OD	fare	nonstop	time
ORY-NCE ₁	220	1	1
ORY-NCE ₂	218	1	0
ORY-NCE ₃	214	1	0
ORY-NCE	250	1	1

Resulting recapture ratios:

	ORY-NCE ₁	ORY-NCE ₂	ORY-NCE ₃	ORY-NCE
ORY-NCE ₁	0	0.401	0.503	0.096
ORY-NCE ₂	0.417	0	0.490	0.093
ORY-NCE ₃	0.463	0.434	0	0.103

Integrated schedule planning 00000 Results 0000 Heuristic method

Conclusions

Price elasticity of demand

• Price elasticity of logit:

$$(1-P^h(i))p_i^h \beta_{fare}^h$$

- When β_{fare} is -0.05 and -0.025 is for economy and business demand, the elasticities are around -3 and -2.
- $\bullet\,$ When we decrease them to -0.03 and -0.015 elasticity values become -2 and -1.3

