Integrated airline schedule planning with supply-demand interactions

for a new generation of aircrafts

Bilge Atasoy, Matteo Salani, Michel Bierlaire

Transport and mobility laboratory

EPFL

International Conference on Operations Research

September 1, 2011
Motivation

- Increased air travel demand

- Demand responsiveness
 - Flexible supply capacity
 - Improved demand management

- Sustainability
Motivation

Results

Heuristic method

Conclusions

Clip-Air concept

Flexibility in transportation...

- Modular capacity with detachable capsules
 - security, maintenance, storage and crew costs
- Multi-modality for passenger and cargo
- Robustness
- Demand management

Sustainable transportation

- Gas emissions, noise, accident rates

- Exists in a simulated environment
Objectives

- Comparative analysis between standard fleet and Clip-Air
- Development of integrated schedule design and fleet assignment model
 - integration of supply-demand interactions
 - logit demand model \Rightarrow pricing
 - spill and recapture effects
 - Fare-class segmentation
 - demand model for each segment
 - seat allocation for business and economy
- Solution techniques for the resulting mixed integer nonlinear problem
Demand model for itinerary choice

- Utility of itinerary i, class h:

$$V^h_i = \beta_{\text{fare}}^h p^h_i + \beta_{\text{time}}^h time_i + \beta_{\text{stops}}^h nonstop_i$$

- p^h_i is the price of itinerary i for class h.
- $time_i$, binary variable, 1 if departure time is between 07:00-11:00.
- $nonstop_i$, binary variable, 1 if it is a non-stop itinerary.

- Demand for class h for each itinerary i in market segment s:

$$\tilde{d}_i^h = D_s^h \frac{\exp(V_i^h)}{\sum_{j \in I_s} \exp(V_j^h)}$$

- D_s^h is the total expected demand for class h and segment s.
- \tilde{d}_i^h serves as an upper bound for the actual demand.
Spill and recapture effects

- In case of capacity shortage some passengers may not fly on their desired itineraries.
- They may accept to fly on other available itineraries in the same market segment.
- Recapture ratio is given by:

\[b_{i,j}^h = \frac{\exp(V_{j}^h)}{\sum_{k \in I'_s \setminus i} \exp(V_{k}^h)} \]

- No-revenue represented by the subset \(I'_s \in I_s \) for segment \(s \).
Max \(\sum_{s \in S} \sum_{h \in H} \sum_{i \in (I_s \setminus I_s')} (d_i^h - \sum_{j \in I_s} t_{i,j}^h + \sum_{j \in (I_s \setminus I_s')} t_{j,i}^h b_{j,i}^h) \delta_{i,f}^h - \sum_{k \in K} \sum_{f \in F} C_{k,f} x_{k,f} \): revenue - cost \hspace{1cm} (1)

s.t. \(\sum_{k \in K} x_{k,f} = 1 \): mandatory flights \hspace{1cm} \forall f \in F^M \hspace{1cm} (2)

\(\sum_{k \in K} x_{k,f} \leq 1 \): optional flights \hspace{1cm} \forall f \in F^O \hspace{1cm} (3)

\(y_{k,a,t}^{-} + \sum_{f \in \text{In}(k,a,t)} x_{k,f} = y_{k,a,t}^{+} + \sum_{f \in \text{Out}(k,a,t)} x_{k,f} \): flow conservation \hspace{1cm} \forall [k,a,t] \in N \hspace{1cm} (4)

\(\sum_{a \in A} y_{k,a,t}^{n} + \sum_{f \in \text{CT}} x_{k,f} \leq R_k \): fleet availability \hspace{1cm} \forall k \in K \hspace{1cm} (5)

\(y_{k,a,minE_{a}^{-}} = y_{k,a,maxE_{a}^{+}} \): cyclic schedule \hspace{1cm} \forall k \in K, a \in A \hspace{1cm} (6)

\(\sum_{s \in S} \sum_{i \in (I_s \setminus I_s')} \delta_{i,f}^h d_i^h - \sum_{j \in I_s} \delta_{i,f}^h t_{i,j}^h + \sum_{j \in (I_s \setminus I_s')} \delta_{i,f}^h t_{j,i}^h b_{j,i}^h \leq \sum_{k \in K} \pi_{k,f}^h \): capacity \hspace{1cm} \forall h \in H, f \in F \hspace{1cm} (7)

\(\sum_{h \in H} \pi_{k,f}^h = Q_k x_{k,f} \): seat capacity \hspace{1cm} \forall f \in F, k \in K \hspace{1cm} (8)

\(x_{k,f} \in \{0,1\} \) \hspace{1cm} \forall k \in K, f \in F \hspace{1cm} (9)

\(y_{k,a,t} \geq 0 \) \hspace{1cm} \forall [k,a,t] \in N \hspace{1cm} (10)

\(\pi_{k,f}^h \geq 0 \) \hspace{1cm} \forall h \in H, k \in K, f \in F \hspace{1cm} (11)
Motivation

Integrated schedule planning

Results

Heuristic method

Conclusions

Integrated model - Demand part

\[
\sum_{j \in I_s, i \neq j} t_{i,j}^h \leq d_i^h : \text{total spill} \quad \forall s \in S, h \in H, i \in (I_s \setminus I_s') \tag{12}
\]

\[
\tilde{d}_i^h = D_s^h \frac{\exp (V_i^h)}{\sum_{j \in I_s} \exp (V_j^h)} : \text{logit demand} \quad \forall s \in S, h \in H, i \in I_s \tag{13}
\]

\[
b_{i,j}^h = \frac{\exp (V_j^h)}{\sum_{k \in I_s \setminus i} \exp (V_k^h)} : \text{recapture ratio} \quad \forall s \in S, h \in H, i \in (I_s \setminus I_s') \setminus j \in I_s \tag{14}
\]

\[
d_i^h \leq \tilde{d}_i^h \leq D_i^h : \text{realized demand} \quad \forall h \in H, i \in I \tag{15}
\]

\[
0 \leq p_{i}^h \leq UB_{i}^h : \text{upper bound on price} \quad \forall h \in H, i \in I \tag{16}
\]

\[
t_{i,j}^h \geq 0 \quad \forall s \in S, h \in H, i \in (I_s \setminus I_s'), j \in I_s \tag{17}
\]

\[
b_{i,j}^h \geq 0 \quad \forall s \in S, h \in H, i \in (I_s \setminus I_s'), j \in I_s \tag{18}
\]
Model extension for Clip-Air

- Decision variables for the assignment of wing and capsules:
 \[x^w_f \in \{0,1\} \]
 \[x_{k,f} \in \{0,1\} \text{ for } k \in \{1,2,3\} \]

- Operating cost:
 \[
 \sum_{f \in F} C^w_f x^w_f + \sum_{k \in K} C_{k,f} x_{k,f}
 \]

- Constraints:
 \[
 \sum_{k \in K} x_{k,f} = 1 \quad \forall f \in F^M: \text{ mandatory flights}
 \]
 \[
 \sum_{k \in K} x_{k,f} \leq x^w_f \quad \forall f \in F: \text{ capsule - wing}
 \]
Results

- Dataset from a major European airline
- Other inputs:
 - Cost figures for Clip-Air
 - Weight differences \Rightarrow adjustment of fuel cost and airport and air navigation charges
 - Capsule wing separation \Rightarrow adjustment of crew cost
 - Parameters of the demand model
- Model is implemented in AMPL and solved with BONMIN
- Results provide the schedule design, fleet assignment, seat allocation and pricing.
Demand model parameters

- Estimation of logit model parameters by maximum likelihood estimation using BIOGEME
- Booking data does not have the non-chosen alternatives ⇒ lack of variability
- Adjusted parameters to have enough elasticity

<table>
<thead>
<tr>
<th></th>
<th>Business demand</th>
<th>Economy demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{fare}</td>
<td>-0.025</td>
<td>-0.050</td>
</tr>
<tr>
<td>β_{time}</td>
<td>0.323</td>
<td>0.139</td>
</tr>
<tr>
<td>β_{nonstop}</td>
<td>1.150</td>
<td>0.900</td>
</tr>
</tbody>
</table>
Standard planes vs Clip-Air

An instance with 18 flights and 1096 passengers:

<table>
<thead>
<tr>
<th></th>
<th>Standard Fleet</th>
<th>Clip-Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating cost</td>
<td>107,560</td>
<td>89,512</td>
</tr>
<tr>
<td>Revenue</td>
<td>185,835</td>
<td>200,199</td>
</tr>
<tr>
<td>Profit</td>
<td>78,275</td>
<td>110,687</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>817</td>
<td>909</td>
</tr>
<tr>
<td></td>
<td>184 B, 633 E</td>
<td>192 B, 717 E</td>
</tr>
<tr>
<td>Flight count</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Average pax/flight</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>Total Flight Hours (min)</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Used fleet</td>
<td>2 A319, 1 ERJ135</td>
<td>5 wings</td>
</tr>
<tr>
<td></td>
<td>3 ERJ145</td>
<td>8 capsules</td>
</tr>
<tr>
<td>Used aircraft</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Used capacity (seats)</td>
<td>345</td>
<td>400</td>
</tr>
<tr>
<td>Running time (min)</td>
<td>33.89</td>
<td>31.72</td>
</tr>
</tbody>
</table>

- More passengers
- Less aircraft ⇒ less flight crew
Impacts of the demand model - Different scenarios

<table>
<thead>
<tr>
<th></th>
<th>Cheaper competing itineraries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High price elasticity</td>
</tr>
<tr>
<td>Profit</td>
<td>Fixed demand model 30,966 31,250</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>541 543</td>
</tr>
<tr>
<td>Flight count</td>
<td>8 8</td>
</tr>
<tr>
<td></td>
<td>Comparable competing itineraries</td>
</tr>
<tr>
<td>Profit</td>
<td>Fixed demand model 31,660 32,849</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>579 585</td>
</tr>
<tr>
<td>Flight count</td>
<td>6 6</td>
</tr>
</tbody>
</table>

When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.

When elasticity is lower, integrated model results with higher prices and less transported passengers.
Impacts of the demand model - Different scenarios

<table>
<thead>
<tr>
<th>Cheaper competing itineraries</th>
<th></th>
<th>Low price elasticity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High price elasticity</td>
<td>Fixed demand model</td>
<td>30,966</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>541</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Low price elasticity</td>
<td>Fixed demand model</td>
<td>32,849</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>585</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparable competing itineraries</th>
<th></th>
<th>Low price elasticity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High price elasticity</td>
<td>Fixed demand model</td>
<td>31,660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>579</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Low price elasticity</td>
<td>Fixed demand model</td>
<td>32,849</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>585</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>More expensive competing itineraries</th>
<th></th>
<th>Low price elasticity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High price elasticity</td>
<td>Fixed demand model</td>
<td>32,849</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>585</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Low price elasticity</td>
<td>Fixed demand model</td>
<td>32,849</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>585</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.
Impacts of the demand model - Different scenarios

<table>
<thead>
<tr>
<th>Cheaper competing itineraries</th>
<th>High price elasticity</th>
<th>Low price elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>Fixed demand model</td>
<td>30,966</td>
</tr>
<tr>
<td></td>
<td>Integrated model</td>
<td>23,141</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>Fixed demand model</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>Integrated model</td>
<td>400</td>
</tr>
<tr>
<td>Flight count</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparable competing itineraries</th>
<th>High price elasticity</th>
<th>Low price elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>Fixed demand model</td>
<td>31,660</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>Fixed demand model</td>
<td>579</td>
</tr>
<tr>
<td>Flight count</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Integrated model</td>
<td>36,862</td>
</tr>
<tr>
<td></td>
<td>531</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>More expensive competing itineraries</th>
<th>High price elasticity</th>
<th>Low price elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>Fixed demand model</td>
<td>32,849</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>Fixed demand model</td>
<td>585</td>
</tr>
<tr>
<td>Flight count</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Integrated model</td>
<td>41,657</td>
</tr>
<tr>
<td></td>
<td>535</td>
<td>400</td>
</tr>
</tbody>
</table>

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.
Impacts of the demand model - Different scenarios

<table>
<thead>
<tr>
<th>Cheaper competing itineraries</th>
<th>High price elasticity</th>
<th>Low price elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>Fixed demand model</td>
<td>Integrated model</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>30,966</td>
<td>23,141</td>
</tr>
<tr>
<td>Flight count</td>
<td>541</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparable competing itineraries</th>
<th>High price elasticity</th>
<th>Low price elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>Fixed demand model</td>
<td>Integrated model</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>31,660</td>
<td>36,862</td>
</tr>
<tr>
<td>Flight count</td>
<td>579</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>More expensive competing itineraries</th>
<th>High price elasticity</th>
<th>Low price elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>Fixed demand model</td>
<td>Integrated model</td>
</tr>
<tr>
<td>Transported pax.</td>
<td>32,849</td>
<td>41,657</td>
</tr>
<tr>
<td>Flight count</td>
<td>585</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

- When competing itineraries are cheaper, integrated model keeps the prices low to attract passengers.
- When elasticity is lower, integrated model results with higher prices and less transported passengers.
The resulting mixed integer nonlinear problem is highly complex.

We propose a heuristic method based on Lagrangian relaxation, sub-gradient optimization and a Lagrangian heuristic.

Capacity constraint is relaxed.

Problem is decomposed into 2 subproblems: revenue maximization and fleet assignment:

$$z_{REV}(\lambda) = \max \sum_{h \in H} \sum_{f \in F} \sum_{s \in S} \sum_{i \in (I_s \setminus I_s')} \delta_{i,f} (p_{i}^{h} - \lambda_{f}^{h}) \left(d_{i}^{h} - \sum_{j \in I_s, i \neq j} t_{i,j}^{h} + \sum_{j \in (I_s \setminus I_s')} t_{j,i}^{h} b_{j,i}^{h} \right)$$

$$z_{FAM}(\lambda) = \min \sum_{k \in K} \sum_{f \in F} \left(C_{k,f} x_{k,f} - \sum_{h \in H} \lambda_{f}^{h} \pi_{k,f}^{h} \right)$$
Lagrangian procedure

Require: z_{LB}, \bar{k}, \bar{j}, ε

\[
\lambda^0 := 0, \ k := 0, \ z_{UB} := \infty
\]

repeat
\[
\{\bar{d}, \bar{t}, \bar{b}\} := \text{solve } z_{REV}(\lambda^k), \ \{\bar{x}, \bar{y}, \bar{\pi}\} := \text{solve } z_{FAM}(\lambda^k)
\]
\[
z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k)
\]
\[
z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k))
\]
loop
\[
\{\bar{x}, \bar{\pi}\} := \text{Local search}(\{\bar{x}, \bar{\pi}\})
\]
\[
lb := \text{Lagrangian heuristic } (\{\bar{x}, \bar{\pi}\})
\]
end loop
\[
z_{LB} := \max(z_{LB}, lb)
\]
\[
G := \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})
\]
\[
T := \text{compute step}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})
\]
\[
\lambda^{k+1} := \max(0, \lambda^k - TG)
\]
\[
k := k + 1
\]
until $\|TG\|^2 \leq \varepsilon$ or $k \geq \bar{k}$
Lagrangian procedure

Require: z_{LB}, k, j, ε

\begin{align*}
\lambda^0 &:= 0, \ k := 0, \ z_{UB} := \infty \\
\text{repeat} & \\
\{\bar{d}, \bar{t}, \bar{b}\} &:= \text{solve } z_{REV}(\lambda^k) \\
\{\bar{x}, \bar{y}, \bar{\pi}\} &:= \text{solve } z_{FAM}(\lambda^k) \\
z_{UB}(\lambda^k) &:= z_{REV}(\lambda^k) - z_{FAM}(\lambda^k) \\
z_{UB} &:= \min(z_{UB}, z_{UB}(\lambda^k)) \textbf{ update UPPER BOUND} \\
\text{loop} & \\
\{\bar{x}, \bar{\pi}\} &:= \text{Local search(\{\bar{x}, \bar{\pi}\})} \\
lb &:= \text{Lagrangian heuristic (\{\bar{x}, \bar{\pi}\})} \\
\text{end loop} & \\
z_{LB} &:= \max(z_{LB}, lb) \\
G &:= \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\}) \\
T &:= \text{compute step}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\}) \\
\lambda^{k+1} &:= \max(0, \lambda^k - TG) \\
k &:= k + 1 \\
\text{until } ||TG||^2 &\leq \varepsilon \textbf{ or } k \geq \bar{k}
\end{align*}
Lagrangian procedure

Require: \(z_{LB}, \bar{k}, \bar{j}, \varepsilon \)
\(\lambda^0 := 0, \ k := 0, \ z_{UB} := \infty \)

repeat
\(\{\bar{d}, \bar{t}, \bar{b}\} := \text{solve } z_{REV}(\lambda^k) \), \(\{\bar{x}, \bar{y}, \bar{\pi}\} := \text{solve } z_{FAM}(\lambda^k) \)
\(z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k) \)
\(z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k)) \)
end loop

\(\{\bar{x}, \bar{\pi}\} := \text{Local search}(\{\bar{x}, \bar{\pi}\}) \) \textbf{based on } \lambda's \textbf{ under a Tabu mechanism}
\(lb := \text{Lagrangian heuristic}(\{\bar{x}, \bar{\pi}\}) \)

end loop
\(z_{LB} := \max(z_{LB}, lb) \)
\(G := \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\}) \)
\(T := \text{compute step}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\}) \)
\(\lambda^{k+1} := \max(0, \lambda^k - TG) \)
\(k := k + 1 \)
until \(\|TG\|^2 \leq \varepsilon \) or \(k \geq \bar{k} \)
Lagrangian procedure

Require: $z_{LB}, \bar{k}, j, \varepsilon$

\[\lambda^0 := 0, \; k := 0, \; z_{UB} := \infty \]

repeat

\[\{\tilde{d}, \tilde{t}, \tilde{b}\} := \text{solve } z_{REV}(\lambda^k), \; \{\tilde{x}, \tilde{y}, \tilde{\pi}\} := \text{solve } z_{FAM}(\lambda^k) \]

\[z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k) \]

\[z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k)) \]

loop

\[\{\tilde{x}, \tilde{\pi}\} := \text{Local search}(\{\tilde{x}, \tilde{\pi}\}) \]

\[lb := \text{Lagrangian heuristic}(\{\tilde{x}, \tilde{\pi}\}) \text{ a feasible solution} \]

end loop

\[z_{LB} := \max(z_{LB}, lb) \]

\[G := \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\tilde{d}, \tilde{t}, \tilde{b}, \tilde{x}, \tilde{y}, \tilde{\pi}\}) \]

\[T := \text{compute step}(z_{UB}, z_{LB}, \{\tilde{d}, \tilde{t}, \tilde{b}, \tilde{x}, \tilde{y}, \tilde{\pi}\}) \]

\[\lambda^{k+1} := \max(0, \lambda^k - TG) \]

\[k := k + 1 \]

until $||TG||^2 \leq \varepsilon$ or $k \geq \bar{k}$
Lagrangian procedure

Require: z_{LB}, k, j, ε

\[
\lambda^0 := 0, \quad k := 0, \quad z_{UB} := \infty
\]

repeat

\[
\{\tilde{d}, \tilde{t}, \tilde{b}\} := \text{solve } z_{REV}(\lambda^k), \quad \{\bar{x}, \bar{y}, \bar{\pi}\} := \text{solve } z_{FAM}(\lambda^k)
\]

\[
z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k)
\]

\[
z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k))
\]

loop

\[
\{\bar{x}, \bar{\pi}\} := \text{Local search}(\{\bar{x}, \bar{\pi}\})
\]

$lb :=$ Lagrangian heuristic $(\{\bar{x}, \bar{\pi}\})$

end loop

\[
z_{LB} := \max(z_{LB}, lb) \quad \text{update LOWER BOUND}
\]

$G :=$ compute sub-gradient$(z_{UB}, z_{LB}, \{\tilde{d}, \tilde{t}, \tilde{b}, \bar{x}, \bar{y}, \bar{\pi}\})$

$T :=$ compute step$(z_{UB}, z_{LB}, \{\tilde{d}, \tilde{t}, \tilde{b}, \bar{x}, \bar{y}, \bar{\pi}\})$

\[
\lambda^{k+1} := \max(0, \lambda^k - TG)
\]

$k := k + 1$

until $\|TG\|^2 \leq \varepsilon$ or $k \geq \bar{k}$
Lagrangian procedure

Require: z_{LB}, k, j, ε

$\lambda^0 := 0$, $k := 0$, $z_{UB} := \infty$

repeat

$\{\bar{d}, \bar{t}, \bar{b}\} := \text{solve } z_{REV}(\lambda^k)$, $\{\bar{x}, \bar{y}, \bar{\pi}\} := \text{solve } z_{FAM}(\lambda^k)$

$z_{UB}(\lambda^k) := z_{REV}(\lambda^k) - z_{FAM}(\lambda^k)$

$z_{UB} := \min(z_{UB}, z_{UB}(\lambda^k))$

loop

$\{\bar{x}, \bar{\pi}\} := \text{Local search}\{\bar{x}, \bar{\pi}\}$

$lb := \text{Lagrangian heuristic}\{\bar{x}, \bar{\pi}\}$

end loop

$z_{LB} := \max(z_{LB}, lb)$

$G := \text{compute sub-gradient}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})$

$T := \text{compute step}(z_{UB}, z_{LB}, \{\bar{d}, \bar{t}, \bar{b}, \bar{x}, \bar{y}, \bar{\pi}\})$

$\lambda^{k+1} := \max(0, \lambda^k - TG)$ update λ's

$k := k + 1$

until $||TG||^2 \leq \varepsilon$ or $k \geq \bar{k}$
Performance of the heuristic

<table>
<thead>
<tr>
<th>Instances</th>
<th>BONMIN solver</th>
<th>Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>opt solution</td>
<td>best solution</td>
</tr>
<tr>
<td>9 flights. 800 pax.</td>
<td>52,876</td>
<td>52,876</td>
</tr>
<tr>
<td></td>
<td>time(min)</td>
<td>GAP 0%</td>
</tr>
<tr>
<td>18 flights 1096 pax.</td>
<td>78,275</td>
<td>77,126</td>
</tr>
<tr>
<td></td>
<td>time(min)</td>
<td>1.47%</td>
</tr>
<tr>
<td>26 flights 2329 pax.</td>
<td>176,995</td>
<td>169,913</td>
</tr>
<tr>
<td></td>
<td>time(min)</td>
<td>4.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instances</th>
<th>BONMIN solver</th>
<th>Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>best solution</td>
<td>best solution</td>
</tr>
<tr>
<td>41 flights 3430 pax.</td>
<td>300,949</td>
<td>278,375</td>
</tr>
<tr>
<td></td>
<td>GAP 3.33%</td>
<td>GAP 10.48%</td>
</tr>
<tr>
<td></td>
<td>time(h) 15.01</td>
<td>time(h) 5.51</td>
</tr>
</tbody>
</table>
Conclusions and future work

- **Clip-Air**
 - Potential increase in transportation capacity and profit
 - A system level consideration
 - Repositioning of Clip-Air capsules

- **Integrated scheduling model**
 - Further investigation of the effects of the demand model

- **Heuristic method**
 - Improvement of the solutions
 - Test of the heuristic on a comprehensive test set
Thank you for your attention!

bilge.kucuk@epfl.ch
Spill and recapture effects - Illustration

Information regarding the itineraries in segment ORY-NCE:

<table>
<thead>
<tr>
<th>OD</th>
<th>fare</th>
<th>nonstop</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORY-NCE(_1)</td>
<td>220</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ORY-NCE(_2)</td>
<td>218</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ORY-NCE(_3)</td>
<td>214</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ORY-NCE(_')</td>
<td>250</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Resulting recapture ratios:

<table>
<thead>
<tr>
<th></th>
<th>ORY-NCE(_1)</th>
<th>ORY-NCE(_2)</th>
<th>ORY-NCE(_3)</th>
<th>ORY-NCE(_')</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORY-NCE(_1)</td>
<td>0</td>
<td>0.401</td>
<td>0.503</td>
<td>0.096</td>
</tr>
<tr>
<td>ORY-NCE(_2)</td>
<td>0.417</td>
<td>0</td>
<td>0.490</td>
<td>0.093</td>
</tr>
<tr>
<td>ORY-NCE(_3)</td>
<td>0.463</td>
<td>0.434</td>
<td>0</td>
<td>0.103</td>
</tr>
</tbody>
</table>
Price elasticity of demand

- Price elasticity of logit:

\[(1 - P^h(i))p^h_i \beta^h_{fare}\]

- When \(\beta_{fare}\) is \(-0.05\) and \(-0.025\) is for economy and business demand, the elasticities are around \(-3\) and \(-2\).

- When we decrease them to \(-0.03\) and \(-0.015\) elasticity values become \(-2\) and \(-1.3\).