Demand model

Integrated model 000

Results

Conclusions

Demand based airline scheduling for a new generation of aircraft

Bilge Atasoy Michel Bierlaire Matteo Salani

3ème cycle romand de Recherche Opérationnelle

January 16, 2012

Introduction	Demand model 00000	Integrated model	Results	Conclusions
Clip-Air c	oncept			

- Flexible capacity
- Modular-detachable capsules
- Wing and capsule separation
- Multi-modality
- Passenger and cargo
- Sustainability
 - Gas emissions
 - Noise
 - Accident rates

Introduction	Demand model 00000	Integrated model	Results	Conclusions
Objectives				

- Analyze the potential performance of Clip-Air by developing appropriate models
- Introduce demand notion in optimization models through appropriate demand models
- Develop solution methodologies for the integrated model
- Investigate multi-modality aspect of Clip-Air

Integrated model

Analysis on the potential performance of Clip-Air

- Compared to a fleet composed of standard planes...
 - Clip-Air carries on the average 5-10% more passengers by using 20-30% less capacity,
 - Clip-Air copes better with the insufficient transportation capacity,
 - Uses less aircraft/wing \Rightarrow less crew, simplified operations.
- The scheduling decisions are robust to the estimated cost figures of Clip-Air. Sensitivity analysis showed that Clip-Air is always better in the number of transported passengers and generates higher profit in 89% of the instances.
- A preliminary analysis is carried out on the multi-modality aspect of Clip-Air where the empty capsules are allowed to be repositioned via railways. The results show a potential increase in profit and transportation capacity.

Integration of demand model

Motivation: Demand responsive transportation systems

- Supply \Rightarrow Flexibility provided by Clip-Air
- $\bullet~$ Demand $\Rightarrow~$ integration of appropriate demand models

Demand model

- Simple models (e.g. linear, exp.) fail to represent the reality
- Integrated model becomes very sensitive to demand model parameters
- Appropriate models need to be developed

- Itinerary choice among the set of alternatives for each O-D pair
- Utility of each alternative is defined with the relevant variables
- Choice probability is defined by logit
- Estimation of the coefficients of the variables are done with maximum likelihood estimation
- **Revealed preferences (RP) data:** Booking data from a major European airline
 - Lack of variability
 - Price inelastic demand

Demand model

Integrated model

Results

Conclusions

Itinerary choice model

- RP data is combined with a stated preferences (SP) data
- For each itinerary *i* and class *h* the utility is defined as follows:

 $V_{i}^{h} = ASC_{i} + \beta_{fare}^{h} \cdot \ln(fare_{i}^{h}) + \beta_{time}^{h} \cdot time_{i}^{h} + \beta_{morning}^{h} \cdot morning_{i}^{h}$

- ASC_i : alternative specific constant
- fare and time are interacted with non-stop/stop
- *morning* is a dummy variable and 1 if the itinerary is a morning itinerary
- Time, cost and morning parameters are fixed to be the same for the two datasets.
- A scale parameter is introduced for SP to have equal variances.

	ctior	

Integrated model

Results

Conclusions

Itinerary choice model

• Demand for class *h* for each itinerary *i* in market segment *s*:

$$\tilde{d}_{i}^{h} = D_{s}^{h} \frac{\exp\left(V_{i}^{h}\right)}{\sum_{j \in I_{s}} \exp\left(V_{j}^{h}\right)}$$

- D_s^h is the total expected demand for class h and segment s.

- Spill and recapture effects: Capacity shortage ⇒ passengers may be recaptured by other itineraries (instead of their desired itineraries)
- Recapture ratio is given by: $b_{i,j}^h = \frac{\exp(V_j^h)}{\sum_{k \in I_s \setminus i} \exp(V_k^h)}$
- No-revenue represented by the subset $I'_s \in I_s$ for segment s.

Intro	

Integrated model

Conclusions

Estimation results for the demand model

	β _f	are	β _{ti}		
	non-stop	one-stop	non-stop	one-stop	$\beta_{morning}$
economy	-2.23	-2.17	-0.102	-0.0762	0.0283
business	-1.97	-1.97	-0.104	-0.0821	0.079

• Price and time elasticity of demand:

$$\mathsf{E}_{price_i}^{P_i} = \frac{\partial P_i}{\partial price_i} \cdot \frac{price_i}{P_i}$$

For a selected OD pair...

- maximum price elasticity among economy itineraries is -2.16, and -1.95 for business.
- maximum time elasticity among economy itineraries is -0.33, and -0.36 for business.

Demand model

Integrated model

Results

Conclusions

Estimation results for the demand model

• Value of time (VOT):

$$VOT_{i} = \frac{\partial V_{i} / \partial time_{i}}{\partial V_{i} / \partial cost_{i}}$$
$$= \frac{\beta_{time} \cdot cost_{i}}{\beta_{cost}}$$

For the same OD pair...

- VOT for economy, non-stop: 8 \in /hour
- VOT for economy, one-stop: 19.8, 11, 9.2 ${\in}/{\rm hour}$
- VOT for business, non-stop: 21.7 €/hour

Integrated model - Supply part

$$Max \sum_{s \in S} \sum_{h \in H} \sum_{i \in (I_S \setminus I_S')} (d_i^h - \sum_{\substack{j \in I_S \\ i \neq j}} t_{i,j}^h + \sum_{\substack{j \in (I_S \setminus I_S') \\ i \neq j}} t_{j,i}^h b_{j,i}^h) p_i^h - \sum_{\substack{k \in K \\ f \in F}} C_{k,f} x_{k,f}: \text{ revenue - cost}$$
(1)

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
: mandatory flights $\forall f \in F^M$ (2)

$$\sum_{k \in K} x_{k,f} \le 1: \text{ optional flights} \qquad \forall f \in F^O \qquad (3)$$

$$y_{k,a,t^-} + \sum_{f \in ln(k,a,t)} x_{k,f} = y_{k,a,t^+} + \sum_{f \in Out(k,a,t)} x_{k,f}: flow conservation \qquad \forall [k,a,t] \in N$$
(4)

$$\sum_{a \in A} y_{k,a,t_n} + \sum_{f \in CT} x_{k,f} \le R_k : \text{ fleet availability} \qquad \forall k \in K$$
(5)

$$y_{k,a,minE_a^-} = y_{k,a,maxE_a^+}: \text{ cyclic schedule} \qquad \forall k \in K, a \in A \qquad (6)$$

$$\sum_{s \in S} \sum_{i \in (l_s \setminus l'_s)} \delta_{i,f} d_i^h - \sum_{\substack{j \in l_s \\ i \neq j}} \delta_{i,f} t_{i,j}^h + \sum_{\substack{j \in (l_s \setminus l'_s) \\ i \neq j}} \delta_{i,f} t_{j,i}^h b_{j,i}^h \le \sum_{k \in K} \pi_{k,f}^h: capacity \qquad \forall h \in H, f \in F$$

$$(7)$$

$$\sum_{h \in H} \pi_{k,f}^{h} = Q_{k} x_{k,f} : \text{ seat capacity} \qquad \forall f \in F, k \in K$$
(8)

$$\times_{k,f} \in \{0,1\} \qquad \qquad \forall k \in K, f \in F \qquad (9)$$

$$y_{k,a,t} \ge 0$$
 $\forall [k,a,t] \in N$ (10)

$$\pi_{k,f}^h \ge 0 \qquad \qquad \forall h \in H, k \in K, f \in F \qquad (11)$$

ī.	 ۰.	0	Ы		~	÷	_		
ł	 u	0	u	u	C	L	U		

Integrated model

Results

Conclusions

Integrated model - Demand part

 $\tilde{d}_{i}^{h} = D_{s}^{h} \frac{\exp(V_{i}^{h})}{\sum_{i \in I_{s}} \exp(V_{j}^{h})}$: logit demand

 $b_{i,j}^{h} = \frac{\exp(V_{j}^{h})}{\sum \exp(V_{k}^{h})}$: recapture ratio

 $0 < p_i^h < UB_i^h$: upper bound on price

 $k \in I_{s} \setminus i$ $d_{i}^{h} \leq \tilde{d}_{i}^{h}$: realized demand

$$\sum_{\substack{j \in I_s \\ i \neq i}} t_{i,j}^h \le d_i^h: \text{ total spill} \qquad \forall s \in S, h \in H, i \in (I_s \setminus I_s')$$
(12)

$$\forall s \in S, h \in H, i \in I_s$$
 (13)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (14)

$$\forall h \in H, i \in I$$
 (15)

$$\forall h \in H, i \in I$$
 (16)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (17)

$$\forall s \in S, h \in H, i \in (I_s \setminus I'_s), j \in I_s$$
 (18)

 $t_{i,j}^h \ge 0$ $b_{i,i}^h \ge 0$

Ľ.	n+v	od	uction	
2	IILI	ou	uction	

Model extension for Clip-Air

- Decision variables for the assignment of wing and capsules: $x_f^w \in \{0,1\}$ $x_{k,f} \in \{0,1\}$ for $k \in \{1,2,3\}$
- Operating cost:

$$\sum_{f\in F} C_f^w x_f^w + \sum_{k\in K} C_{k,f} x_{k,f}$$

Constraints:

$$\sum_{k \in K} x_{k,f} = 1 \quad \forall f \in F^M: \text{ mandatory flights}$$
$$\sum_{k \in K} x_{k,f} \le x_f^w \quad \forall f \in F: \text{ capsule - wing}$$

Integrated model

Results

Conclusions

Example data instance

Data from a major European airline: set of flights, itineraries, aircraft, airports

Airports	3 (CDG, MRS, LYS)
Flights	26
Passengers	1459 (1352 economy, 107 business)
Capsule capacity	31 seats
Standard fleet types	ERJ135 (37), ERJ145 (50), A319 (79), BAE300(100), A318 (123)

	Fixed demand-price	Integrated model
Operating cost	160,653	159,774
Revenue	216,149	233,355
Profit	55,496	73,581
Transported pax.	997 (936 E, 61 B)	1006 (948 E, 58 B)
Flight count	22	22
Average pax/flight	45	46
Total Flight Hours	28h50	28h50
Used fleet	1 ERJ135, 4 ERJ145, 1 A319	1 ERJ135, 3 ERJ145, 1 A319
Used capacity	316 seats	266 seats

Impact of the demand model integration

CDG-LYS pair, total demand 253 (226 business, 27 economy), all non-stop.

	expected		Fixed de	mand-price	Integr	ated model	
	class	demand	morning	demand	fixed price	demand	realized price
1	E	33	0	34	175	37	183
2	Ē -	33			175	<u>-</u> -	
3	E -		1	37	175	50	
4	<u>-</u>	7	1	10	409.5	7	450
5	E	34	1	40	175	30	200
6	<u>-</u>	7	0 -		409.5	<u>-</u> -	
7	E	33	0	0	175	0	200
8	<u>-</u>	7			409.5		450
9	E	33	0	30	175	30	200
10	E	28	0	29	185	17	185
11	В	6	0	6	425	4	425

Introduction	Demand model	Integrated model	Results
	00000	000	

Clip-Air vs Standard planes

	Standard fleet	Clip-Air
Operating cost	159,774	178,921
Revenue	233,355	267,957
Profit	73,581	89,036
Transported pax.	1006 (948 E, 58 B)	1136 (1069 E, 67 B)
Flight count	22	26
Average pax/flight	46	44
Total Flight Hours	28h50	33h30
Used fleet	1 ERJ135, 3 ERJ145, 1 A319	9 capsules
	5 aircrafts	б wings
Used capacity	266 seats	279 seats
Running time	2h45	0h19

Conclusions and future work

- Demand model: Challenging with the available data!
- Integration of demand notion: further analysis of the impacts
- Solution methods for the resulting mixed integer nonlinear problem
 - A Lagrangian relaxation based heuristic is already developed
 - Performance of the method should be tested
- Clip-Air
 - There is a clear potential
 - Multi-modality aspect will be further investigated

Demand model

Integrated model

Results

Conclusions

Thank you for your attention!

Demand model

Discrete choice analysis

• Finite and discrete set of alternatives

- Choice of transportation mode: car, bus, etc.
- Choice of brand: Leonidas, Lindt, Suchard, Toblerone, etc.
- Choice of flight: GVA-NCE 10:00, GVA-NCE 06:30, etc.
- Individual *n* associates a utility to alternative *i*
- Represented by a random function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + \varepsilon_{in}$$

- Individual *n* chooses alternative *i* if $U_{in} \ge U_{jn}$, for all *j*.
- Utility is random, so we have a probabilistic model

$$P_n(i|C_n) = Pr(U_{in} \ge U_{jn}) = Pr(V_{in} + \varepsilon_{in} \ge V_{jn} + \varepsilon_{jn})$$

- Concrete models require
 - specification of V_{in}
 - assumptions about $\epsilon_{\textit{in}}$
 - estimation of the parameters from data

