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Context & Motivation

• Importance of pedestrian flows in transportation hubs for
public transportation system as a whole

– congestion of pedestrian facilities at peak hours
– large increase in number of passengers

• Pedestrian flows key for level of service
– performance: travel time, timetable stability
– comfort: ‘degree of crowdedness’
– safety: in case of evacuation, stampede

• Models needed for better understanding of pedestrian flows
– optimize pedestrian facilities & their operation
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Pedestrian flow modeling in train stations
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Pedestrian origin-destination (OD) demand
in train stations

• Pedestrian waves due to train arrivals or upcoming departures
– OD demand fluctuations on a minute-by-minute basis
– superposition of waves leading to congestion

! high temporal resolution needed

• Literature
– Daamen, W. (2004), Ph.D. Thesis, TU Delft
– Cascetta, E. and Nguyen, S. (1988), Transp. Res. B
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Mathematical framework of OD demand model

For centroids i , j = 1, . . . ,R and discrete time t = 1, . . . ,T :

xi ,j ,t: pedestrian demand rate i → j at time t
yi ,j ,t: travel time i → j if leaving node i at time t

Structural equations for centroids i , j at time t:

origin flow: fi ,t =
R∑

j=1

xi ,j ,t

destination flow: gj ,t =
t∑

k=1

R∑

i=1

xi ,j ,k Pr(yi ,j ,k = t − k)
︸ ︷︷ ︸
transition probability
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Data sources for model calibration
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Passenger turnover of a train

For a train z using a track adjacent to platform j :

number of alighting passengers: φj ,z = qj ,zoj ,z + εj ,z

number of boarding passengers: πj ,z = qj ,zpj ,z + ηj ,z

qj ,z : train capacity

oj ,z , pj ,z : fraction of people alighting/boarding (relative to capacity)

εj ,z , ηj ,z : random variables (r.v.) with known distribution
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Pedestrian arrival/departure pattern on platform

Pedestrian arrival pattern on platform preceding train departure:
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Pedestrian arrival/departure pattern on platform

Beta distribution:

pattern preceding train departure: B̃p(t̃; γ̃, δ̃, t̃p)

pattern following train arrival: B̃o(t̃; α̃, β̃, t̃o)

Similarity assumption:

B̃o(t̃; α̃, β̃, t̃o) ∼ B̃p(−t̃; γ̃, δ̃,−t̃p)

t̃ : continuous time

t̃p, t̃o : time of train departure/arrival

α̃, β̃, γ̃, δ̃ : shape parameters
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Structural equations for train passenger flows

Overall train passenger flows:

arrival flow: di ,t =
Ni∑

z=1

φi ,zBo (t;αi ,z ,βi ,z , ai ,z)

departure flow: ej ,t =

Nj∑

z=1

πj ,zBp (t; γj ,z , δj ,z , bj ,z)

Nj : total number of trains docking on platform j

Bo(·),Bp(·) : discrete flow patterns corresponding to B̃o , B̃p

{α,β, γ, δ}j ,z : shape parameters (platform j , train z)

aj ,z , bj ,z : time of arrival and departure (ditto)
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Measurement equations

• For nodes with passenger count data:

origin flow: f̂i ,t = fi ,t + ξi ,t ∀i ∈ F , t

destination flow: ĝj ,t = gj ,t + νj ,t ∀j ∈ G , t

F , G : sets of centroids with outgoing/incoming flow counts

• For train platform nodes:

passenger arrival flow: d̂i ,t =fi ,t + ζi ,t ∀i ∈ I , t

passenger departure flow: êj ,t =gj ,t + λj ,t ∀j ∈ J, t

I , J: sets of centroids used as arrival/departure platforms

ξi ,t, νj ,t , ζi ,t, λj ,t: random variables (r.v.)
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Case Study: Renens CFF (simplified)
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Case Study: Renens CFF (simplified)
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Trip travel time and transition probability

Velocity-density relation: link flows → link travel times
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Trip travel time and transition probability

Estimating the transition probability:
• average pedestrian velocity on link m → n at time t

vm,n,t = v (cm,n, ℓm,n,t , ℓn,m,t , τm,n)

• trip duration i → j along Li ,j

yi ,j ,t =
∑

(m,n)∈Li,j

wm,n

vm,n,(t−1+yi,m,t)
! Pr(yi ,j ,t = k)

cm,n : capacity of link m → n (m,n neighbors)

wm,n : walking length of link m → n

τm,n,t : r.v. representing fluctuations in avg walking speed
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Conclusion & Outlook

Preliminary methodology for dynamic estimation of pedestrian OD
demand within a train station as a function of

• incoming, outgoing trains
– train time table
– track assignment
– number of people getting on and off each train

Next steps:

• application on real case study

• consideration of intermediate activities (shopping, eating)

• coupling with pedestrian dynamics simulator
! optimization studies
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