Demand model

Integrated model 00000

Results

Heuristic

Conclusions

Models and algorithms for integrated schedule planning and revenue management

Bilge Atasoy Michel Bierlaire Matteo Salani

10th Joint Operations Research Days

June 28, 2012

Introduction	Demand model 0000	Integrated model	Results	Heuristic	Conclusions
Motivati	on				

- Demand responsive transportation systems
 - $\bullet~$ Better representation of demand \Rightarrow Appropriate demand models
 - Flexibility in supply \Rightarrow New concept: Clip-Air
 - Integration of supply-demand interactions in transportation models

Introduction	Demand model ●000	Integrated model	Results	Heuristic	Conclusions
ltinerary	choice mode	► DCA			

- Market segments, s, defined by the class and each OD pair
- Itinerary choice among the set of alternatives, I_s , for each segment s
- For each itinerary $i \in I_s$ the utility is defined by:

 $\begin{aligned} \mathbf{V}_{i} &= \mathbf{ASC}_{i} + \beta_{p} \cdot \ln(p_{i}) + \beta_{time} \cdot \operatorname{time}_{i} + \beta_{morning} \cdot \operatorname{morning}_{i} \\ \mathbf{V}_{i} &= \mathbf{V}_{i}(p_{i}, z_{i}, \beta) \end{aligned}$

- ASC_i : alternative specific constant
- p is a policy variable and included as log
- p and time are interacted with non-stop/stop
- $\operatorname{morning}$ is 1 if the itinerary is a morning itinerary
- No-revenue represented by the subset $I'_s \in I_s$ for segment s.

Introduction	Demand model	Integrated model	Results
	0000	00000	

Itinerary choice model

• Demand for class *h* for each itinerary *i* in market segment *s*:

$$\tilde{d}_i = D_s \frac{\exp(V_i(p_i, z_i, \beta))}{\sum_{j \in I_s} \exp(V_j(p_j, z_j, \beta))}$$

Heuristic

- D_s is the total expected demand for market segment s.

 Spill and recapture effects: Capacity shortage ⇒ passengers may be recaptured by other itineraries (instead of their desired itineraries)
 Recapture ratio is given by:

$$b_{i,j} = \frac{\exp(V_j(p_j, z_j, \beta))}{\sum_{k \in I_s \setminus \{i\}} \exp(V_k(p_k, z_k, \beta))}$$

Conclusions

Introduction	Demand model ○○●○	Integrated model	Results	Heuristic	Conclusions
Estimat	ion				

- **Revealed preferences (RP) data:** Booking data from a major European airline
 - Lack of variability
 - Price inelastic demand
- RP data is combined with a stated preferences (SP) data
- Time, cost and morning parameters are **fixed** to be the same for the two datasets.
- A scale parameter is introduced for SP to capture the differences in variance.

Introduction	Demand model	Integrated model	Results	Heuristic	Conclusions
	0000	00000			

Estimation results

	β_{fare}		β _{ti}		
	non-stop	one-stop	non-stop	one-stop	$\beta_{morning}$
economy	-2.23	-2.17	-0.102	-0.0762	0.0283
business	-1.97	-1.97	-0.104	-0.0821	0.079

• Price elasticity of demand:

$$E_{price_i}^{P_i} = \frac{\partial P_i}{\partial price_i} \cdot \frac{price_i}{P_i}$$

An example

- for a non-stop itinerary
 - $\bullet\,$ price elasticity for economy is -2.03 and -1.86 for business
- for a one-stop itinerary
 - $\bullet\,$ price elasticity for economy is -2.14 and -1.95 for business

Integrated schedule planning and revenue management

Introduction	Demand model	Integrated model	Results	Heuristic	Conclusions
	0000	00000			

Integrated model - Schedule planning

$$\begin{split} & \text{Max} \sum_{h \in H} \sum_{s \in Sh} \sum_{i \in [l_s \setminus l_s']} (d_i - \sum_{j \in l_s} t_{i,j} + \sum_{j \in (l_s \setminus l_s')} t_{j,i} b_{j,i}) p_i - \sum_{k \in K} C_{k,f} \times_{k,f} : \text{ revenue - cost} \end{split} \tag{1}$$

$$& \text{s.t.} \sum_{k \in K} x_{k,f} = 1: \text{ mandatory flights} \qquad \forall f \in F^M \qquad (2)$$

$$& \sum_{k \in K} x_{k,f} \leq 1: \text{ optional flights} \qquad \forall f \in F^O \qquad (3)$$

$$& y_{k,a,t} - + \sum_{f \in [n(k,a,t)]} x_{k,f} = y_{k,a,t} + \sum_{f \in Out(k,a,t)} x_{k,f}: \text{ flow conservation} \qquad \forall [k,a,t] \in N \qquad (4)$$

$$& \sum_{a \in A} y_{k,a,minE_a^-} + \sum_{f \in CT} x_{k,f} \leq R_k: \text{ fleet availability} \qquad \forall k \in K \qquad (5)$$

$$& y_{k,a,minE_a^-} = y_{k,a,maxE_a^+}: \text{ cyclic schedule} \qquad \forall k \in K, a \in A \qquad (6)$$

$$& \sum_{h \in H} \pi_{k,f}^h = Q_k \times_{k,f}: \text{ seat capacity} \qquad \forall f \in F, k \in K \qquad (7)$$

$$& x_{k,f} \in \{0,1\} \qquad \forall k \in K, f \in F \qquad (8)$$

$$& y_{k,a,t} \ge 0 \qquad \forall [k,a,t] \in N \qquad (9)$$

Introduction

Demand model

Integrated model

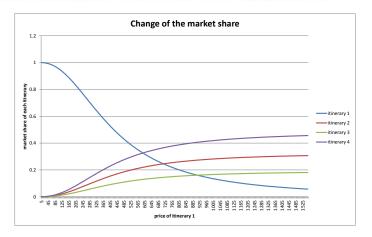
Results Heuristic

Conclusions

Integrated model - Revenue management

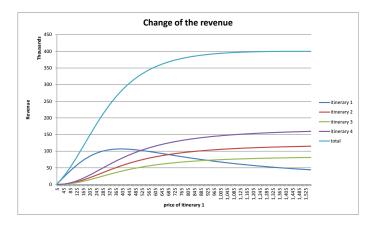
$$\begin{split} & \sum_{s \in S^{h}} \sum_{i \in (l_{s} \setminus l'_{s})} \delta_{i,f} d_{i} - \sum_{j \in l_{s}} \delta_{i,f} t_{i,j} + \sum_{\substack{j \in (l_{s} \setminus l'_{s}) \\ i \neq j}} \delta_{i,f} t_{j,j} b_{j,i} d_{j,j} b_{j,i} d_{j,j} d_{j,j} d_{j,i} d_{j,$$

Introduction	Demand model	Integrated model	Results	Heuristic	Conclusions
Integrat	ed model				


- We consider reference models to evaluate the integrated model
 - **Price-inleastic schedule planning**: M. Lohatepanont and C. Barnhart (2004)
 - **Sequential approach**: Revenue management considers fixed supply capacity
- The resulting model is a mixed integer nonlinear problem
- Nonlinearity is due to the explicit supply-demand interactions
- The model is implemented in AMPL and BONMIN solver is used
- BONMIN does not guarantee optimality

Introduction	Demand model	Integrated model	Results	Heuristic	Conclusions
	0000	00000			

Illustration



Introduction	Demand model	Integrated model	Results	Heuristic	Conclusions
	0000	00000			

Illustration

Demand model

Integrated model 00000

Results

Heuristic

Conclusions

Impact of the integrated model

Number of airports: Number of flights:		3 26	
Average demand:		assengers per flight	
Cabin classes:		onomy and business	
Level of service:		neraries are nonstop	
Available fleet: 3 t	Available fleet: 3 types of aircraft (100, 50 and 37 seats)		
	Price-inelastic	Integrated	Integrated
	schedule	model -	model
	planning model	limited prices	mouer
Revenue	204,553	214,380	244,924
Operating costs	150,603	160,003	173,349
Profit	53,949	54,377 (+ 0.8%)	71,575 (+ 32.7%)
Number of flights	22	22	24
Transported passengers	943	1031 (+ 9.3%)	1064 (+ 12.7%)
Economy-Business	882 E - 61 B	970 E - 61 B	997 E - 67 B
Allocated seats	274	324	324

Demand model

Integrated model 00000

Results

Heuristic

Conclusions

Sequential versus integrated

	Se	quential	approach		Integrated model - % Improvement			
No	Profit	Pax.	Flights	Seats	Profit	Pax.	Flights	Seats
1	15,091	284	8	124	-	-	-	-
2	35,372	400	8	150	5.55%	33.50%	8	217
3	50,149	859	10	300	-	-	-	-
4	69,901	931	22	274	1.43%	14.18%	24	324
5	82,311	1145	16	333	-	-	-	-
6	904,054	1448	10	1148	0.30%	-	10	1312
7	135,656	1814	32	498	-	-	-	-
8	115,983	2236	26	691	-	-	-	-
9	854,902	1270	10	1016	0.43%	5.83%	10	1090
10	137,428	1517	34	391	0.83%	4.94%	34	476
11	93,347	1144	20	387	3.36%	1.40%	20	457
12	49,448	1050	12	370	-	-	-	-
13	27,076	448	10	207	-	-	-	-
14	52,369	599	10	267	1.45%	16.69%	12	267
15	26,486	504	6	185	-	-	-	-

Introduction	Demand model 0000	Integrated model	Results	Heuristic	Conclusions
Heuristic	method				

- We are limited in terms of the computational time
- A heuristic based on two simplified versions of the model:
 - $\bullet~\mathrm{FAM}^{\textit{LS}}$: price-inelastic schedule planning model \Rightarrow MILP
 - Explores new fleet assignment solutions based on a local search
 - Price sampling
 - Variable neighborhood search
 - $\bullet~\mathrm{REV}^{\textit{LS}}:$ Revenue management with fixed capacity \Rightarrow NLP
 - Optimizes the revenue for the explored fleet assignment solution

Introduction	Demand model 0000	Integrated model	Results	Heuristic	Conclusions
Heuristic	method				

$$\begin{array}{l} \mbox{Require: } \bar{x}_0, \bar{y}_0, \bar{d}_0, \bar{p}_0, \bar{t}_0, \bar{b}_0, \bar{\pi}_0, z^*, z_{opt}, k_{max}, \varepsilon, n_{min}, n_{max} \\ k := 0, n_{fixed} := n_{min} \\ \mbox{repeat} \\ \bar{p}_k := \mbox{Price sampling} \\ \{\bar{d}_k, \bar{b}_k\} := \mbox{Demand model}(\bar{p}_k) \\ \{\bar{x}_k, \bar{y}_k, \bar{\pi}_k, \bar{t}_k\} := \mbox{solve } z_{\rm FAM}{}^{\rm LS}(\bar{d}_k, \bar{b}_k, n_{fixed}) \\ \{\bar{p}_k, \bar{d}_k, \bar{b}_k, \bar{\pi}_k, \bar{t}_k\} := \mbox{solve } z_{\rm REV}{}^{\rm LS}(\bar{d}_k, \bar{b}_k, n_{fixed}) \\ \{\bar{p}_k, \bar{d}_k, \bar{b}_k, \bar{\pi}_k, \bar{t}_k\} := \mbox{solve } z_{\rm REV}{}^{\rm LS}(\bar{x}_k, \bar{y}_k) \\ \mbox{if improvement}(z_{\rm REV}{}^{\rm LS}) \ \mbox{then} \\ \mbox{Update } z^* \\ \mbox{Intensification: } n_{fixed} := n_{fixed} + 1 \ \mbox{when } n_{fixed} > n_{min} \\ \mbox{else} \\ \mbox{Diversification: } n_{fixed} := n_{fixed} - 1 \ \mbox{when } n_{fixed} > n_{min} \\ \mbox{end if} \\ k := k + 1 \\ \mbox{until } ||z_{opt} - z^*||^2 \le \varepsilon \ \mbox{or } k \ge k_{max} \end{array}$$

Demand model

Integrated model 00000

Results

Heuristic

Conclusions

Performance of the heuristic

The omitted instances are the ones where the sequential approach has the same solution as the integrated model.

		Best solution		Sequential		Heuristic results			
		reported by Bonmin		approach		Average over 5 replications			s
	Flights	Profit	Time (sec)	Profit	% dev.	Profit	%dev.	Time (sec)	Time red.
2	11	37,335	27	35,372	5.26%	37,335	0.00%	13	53.33%
4	26	70,904	2,479	69,901	1.41%	70,679	0.32%	6	99.75%
6	12	906,791	12,964	904,054	0.30%	906,791	0.00%	2	99.98%
9	11	858,544	7,343	854,902	0.42%	858,545	0.00%	1	99.99%
10	39	138,575	37,177	137,428	0.83%	138,575	0.00%	173	99.54%
11	23	96,486	17,142	93,347	3.25%	96,486	0.00%	89	99.48%
14	14	53,128	141	52,369	1.43%	53,128	0.00%	1	99.53%
16	77	194,598	42,360	208,561	-7.18%	210,395	-8.12%	791	98.13%
17	61	227,364	22,174	226,615	0.33%	227,284	0.04%	1283	94.21%
18	48	153,789	4,387	163,114	-6.06%	163,393	-6.24%	126.4	97.12%
			max 43200					max 3600	

Demand model

Integrated model 00000

Results

Heuristic

Conclusions

Conclusions and future work

Heuristic

- Inclusion of larger instances
- Further solution methods for the resulting mixed integer nonlinear problem
 - Convex approximation of the nonlinearity
 - Decomposition methods \Rightarrow FAM and REV models
 - Subgradient optimization

Demand model

Integrated model 00000

Results

Heuristic

Conclusions

Thank you for your attention!

Introduction	Demand model	Integrated model	Results	Heuristic	Conclusions			
	0000	00000						
Discrete choice analysis								
DISCICIC		19515						

• Finite and discrete set of alternatives

- Choice of transportation mode: car, bus, etc.
- Choice of brand: Leonidas, Lindt, Suchard, Toblerone, etc.
- Choice of flight: GVA-NCE 10:00, GVA-NCE 06:30, etc.
- Individual *n* associates a utility to alternative *i*
- Represented by a random function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + \varepsilon_{in}$$

- Individual *n* chooses alternative *i* if $U_{in} \ge U_{jn}$, for all *j*.
- Utility is random, so we have a probabilistic model

$$P_n(i|C_n) = Pr(U_{in} \ge U_{jn}) = Pr(V_{in} + \varepsilon_{in} \ge V_{jn} + \varepsilon_{jn})$$

- Concrete models require
 - specification of V_{in}
 - assumptions about $\epsilon_{\textit{in}}$
 - estimation of the parameters from data

