Integrated model

Heuristic 00 Log transformation & GBD

On-going work

Solution methods for an integrated airline schedule planning and revenue management model

Bilge Atasoy, Matteo Salani, Michel Bierlaire

Workshop on Large Scale Optimization

21 November 2012

Motivation	Integrated model	Heuristic 00	Log transformation & GBD
Motiva	tion		

- Demand responsive transportation systems
 - Better representation of demand \Rightarrow Appropriate demand models
 - Integration of supply-demand interactions in transportation models
- Today's talk:
 - A brief description of the integrated model
 - A heuristic method
 - Transformation of the problem & Generalized Benders Decomposition

On-going work

- Capacity allocation
- Business seats
- Economy seats
- Aim: to take better fleeting decisions with the information provided by the demand model

Integrated model

Heuristic 00 On-going work

Integrated model - Schedule planning

$$Max \sum_{h \in \mathcal{H}} \sum_{s \in S^h} \sum_{i \in (I_s \setminus I_s')} (d_i - \sum_{j \in I_s} t_{i,j} + \sum_{j \in (I_s \setminus I_s')} t_{j,i} b_{j,i}) p_i - \sum_{\substack{k \in K \\ f \in F}} C_{k,f} x_{k,f}: revenue - cost$$
(1)

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
: mandatory flights $\forall f \in F^M$ (2)

$$\sum_{k \in K} x_{k,f} \le 1: \text{ optional flights} \qquad \forall f \in F^O \qquad (3)$$

$$y_{k,a,t^-} + \sum_{f \in \mathit{In}(k,a,t)} x_{k,f} = y_{k,a,t^+} + \sum_{f \in \mathit{Out}(k,a,t)} x_{k,f^:} \textit{ flow conservation} \qquad \forall [k,a,t] \in N \qquad (4)$$

$$\sum_{a \in A} y_{k,a,minE_a^-} + \sum_{f \in CT} x_{k,f} \le R_k: \text{ fleet availability} \qquad \forall k \in K$$
(5)

$$y_{k,a,minE_a^-} = y_{k,a,maxE_a^+}: cyclic schedule \qquad \forall k \in K, a \in A$$
(6)

$$\sum_{h \in H} \pi_{k,f}^h \le Q_k x_{k,f}: seat \ capacity \qquad \qquad \forall f \in F, k \in K \qquad (7)$$

$$x_{k,f} \in \{0,1\} \qquad \qquad \forall k \in \mathcal{K}, f \in \mathcal{F}$$
(8)

$$y_{k,a,t} \ge 0$$
 $\forall [k,a,t] \in N$ (9

- Itinerary-based fleet assignment
- Spill and recapture

Integrated model

Heuristic 00 Log transformation & GBD

On-going work

Integrated model - Revenue management

$$\begin{split} \sum_{s \in S^{h}} \sum_{i \in (l_{s} \setminus l'_{s})} \delta_{i,f} d_{i} - \sum_{j \in l_{s}} \delta_{i,f} t_{i,j} + \sum_{\substack{j \in (l_{s} \setminus l'_{s}) \\ i \neq j}} \delta_{i,f} t_{j,j} b_{j,i} b_{j,j} \leq \sum_{k \in K} \pi_{k,f}^{h}: \ demand-capacity \qquad \forall h \in H, f \in F \quad (10) \end{split}$$

$$\begin{split} \sum_{\substack{j \in l_{s} \\ i \neq j}} \delta_{i,f} d_{i} - \sum_{j \in l_{s}} \delta_{i,f} t_{i,j} + \sum_{\substack{j \in (l_{s} \setminus l'_{s}) \\ i \neq j}} \delta_{i,f} t_{j,j} b_{j,j} \leq \sum_{k \in K} \pi_{k,f}^{h}: \ demand-capacity \qquad \forall h \in H, f \in F \quad (10) \end{split}$$

$$\begin{split} \sum_{\substack{j \in l_{s} \\ i \neq j}} \delta_{i,f} d_{i} - \sum_{j \in l_{s}} \delta_{i,f} t_{i,j} + \sum_{\substack{j \in (l_{s} \setminus l'_{s}) \\ i \neq j}} \delta_{i,f} d_{i} = O_{s} \frac{\exp(V_{i}(p_{i}, z_{i}, \beta))}{\sum_{j \in l_{s}} \exp(V_{j}(p_{j}, z_{j}, \beta))}: \ logit \ demand \qquad \forall h \in H, s \in S^{h}, i \in (l_{s} \setminus l'_{s}), j \in l_{s} \quad (12) \end{split}$$

$$b_{i,j} = \frac{\exp(V_{i}(p_{i}, z_{i}, \beta))}{\sum_{k \in l_{s} \setminus \{i\}} \exp(V_{k}(p_{k}, z_{k}, \beta))}: \ recapture \ ratio \qquad \forall h \in H, s \in S^{h}, i \in (l_{s} \setminus l'_{s}), j \in l_{s} \quad (13) \end{cases}$$

$$d_{i} \leq \tilde{d}_{i}: \ realized \ demand \qquad \forall h \in H, s \in S^{h}, i \in l_{s} \quad (14) \\ LB_{i} \leq p_{i} \leq UB_{i}: \ bounds \ on \ price \qquad \forall h \in H, s \in S^{h}, i \in (l_{s} \setminus l'_{s}), j \in l_{s} \quad (15) \\ t_{i,j}, b_{i,j} \geq 0 \qquad \forall h \in H, s \in S^{h}, i \in (l_{s} \setminus l'_{s}), j \in l_{s} \quad (16) \\ \pi_{k,f}^{h} \geq 0 \qquad \forall h \in H, k \in K, f \in F \quad (17) \end{split}$$

NЛ	0+i1	ation
1.01	OLIV	ation

Heuristic

Log transformation & GBD

On-going work

Heuristic method

Available solvers¹ are able to converge on instances with about 35 flights. We devised a heuristic procedure based on two simplified versions of the model:

- $\bullet~{\rm FAM}^{{\it LS}}:$ price-inelastic schedule planning model $\Rightarrow~{\sf MILP}$
 - Explores new fleet assignment solutions based on a local search
 - Price sampling
 - Variable neighborhood search (VNS)
- $\bullet~\mathrm{REV}^{\textit{LS}}:$ Revenue management with fixed capacity \Rightarrow NLP
 - Optimizes the revenue for the explored fleet assignment solution

¹BONMIN: Bonami et at. (2008), An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 5(2):186-204

N/		1.00	tio	10
IVI	ιοι	IVd	LIU	11

Heuristic

Log transformation & GBD

On-going work

Heuristic method

```
Require: x^0, y^0, d^0, p^0, t^0, b^0, \pi^0, time<sub>max</sub>, n_{\min}, n_{\max}, notImpr, tabuListSize
  g := 0, time := 0, n_{\text{fixed}} := n_{\text{min}}, notImpr := 0, z^* := -\text{INF}, tabuList := 0
   repeat
        p^g := \text{Price sampling}(t^{g-1}, p^{g-1}, d^{g-1})
         \{d^g, b^g\} := \text{Logit model}(p^g)
        L := \operatorname{Fixing}(x^{g-1}, t^{g-1}, n_{\text{fixed}})
        \{x^g, y^g, \pi^g, t^g\} := \text{solve } z_{\text{FAMLS}(p^g, d^g, b^g, L)}
        if (\bar{x}^g \notin \text{tabuList}) then
              tabuList := tabuList | |xg
              \{p^{g}, d^{g}, b^{g}, \pi^{g}, t^{g}\} := \text{solve } z_{\text{REVLS}(x^{g}, y^{g})}
             if (z_{\text{BEVLS} > z^*}) then
                   Update z^*
                    Intensification: n_{\text{fixed}} := n_{\text{fixed}} + 1 when n_{\text{fixed}} < n_{\text{max}}
                    notImpr := 0
              else if (notImpr == 3) then
                    Diversification: n_{\text{fixed}} := n_{\text{fixed}} - 1 when n_{\text{fixed}} > n_{\min}
                    notImpr := notImpr - 1
             end if
        end if
        g := g + 1
   until time ≥ time<sub>max</sub>
```


Motivation	Integrated model 00	Heuristic ●○	Log transformation & GBD	On-going work
Local sea	rch			

- Neighborhood solutions are visited based on the spill rather than a fully random search
- Price sampling:
 - A random price is drawn for each itinerary
 - If the spilled passengers are higher than the average \Rightarrow decrease the price
 - ${\scriptstyle \bullet}~$ Otherwise \Rightarrow increase the price
- Fixing FAM solutions VNS:
 - The itineraries are sorted according to their spilled number of passengers
 - Low spill value \Rightarrow associated flights have a higher probability to be fixed to their current aircraft
 - If the solution is improved more assignments are fixed and vice versa.

Performance of the heuristic

The omitted instances are the ones where the sequential approach has the same solution as the integrated model.

	Best solution		Seque		Heuristic results				
	reported	by BONMIN	approac	ch (SA)	Average over 5 replications				
	Profit	Time (sec) <i>max 43,200</i>	Profit	% dev.	Profit	% dev.	%imp. over SA	Time (sec) <i>max 3,600</i>	%time reduction
2	37,335	27	35,372	-5.26%	37,335	0.00%	5.55%	13	53.33%
4	46,037	2,686	43,990	-4.45%	46,037	0.00%	4.66%	3	99.90%
5	70,904	2,479	69,901	-1.42%	70,679	-0.32%	1.11%	6	99.75%
7	87,212	42,628	84,186	-3.47%	87,212	0.00%	3.59%	60	99.86%
8	906,791	12,964	904,054	-0.30%	906,791	0.00%	0.30%	2	99.98%
11	94,203	1,724	93,920	-0.30%	94,203	0.00%	0.30%	10	99.42%
12	858,544	7,343	854,902	-0.42%	858,545	0.00%	0.43%	1	99.99%
13	138,575	37,177	137,428	-0.83%	138,575	0.00%	0.83%	173	99.54%
14	96,486	17,142	93,347	-3.25%	96,486	0.00%	3.36%	89	99.48%
16	38,205	240	37,100	-2.89%	38,205	0.00%	2.98%	1	99.50%
18	53,128	141	52,369	-1.43%	53,128	0.00%	1.45%	1	99.53%
20	146,467	31,945	146,464	-0.00%	147,506	0.71%	0.71%	380	98.81%
21	207,434	4,848	217,169	4.69%	219,136	5.64%	0.91%	1,395	71.22%
22	153,789	4,387	163,114	6.06%	163,393	6.24%	0.17%	126	97.12%
23	227,364	22,174	226,615	-0.33%	227,284	-0.04%	0.30%	1,283	94.21%
24	194,598	42,360	208,561	7.18%	210,395	8.12%	0.88%	791	98.13%
25	463,731	31,535	469,136	1.17%	470,494	1.46%	0.29%	1,117	96.46%

Integrated model

Heuristic 00 Log transformation & GBD

On-going work

Log transformation of the problem

$$\tilde{d}_i = D_s \cdot \frac{\exp(\beta \ln (p_i) + c_i)}{\sum_{j \in I_s} \exp(\beta \ln (p_j) + c_j)} \qquad \forall h \in H, s \in S^h, i \in I_s$$

A new variable υ_s ² is defined:

NSP-OR

$$\upsilon_{s} = \frac{1}{\sum_{j \in I_{s}} \exp(\beta \ln(p_{j}) + c_{j})}$$

$$Prob_{i}^{s} = \upsilon_{s} \exp(\beta \ln(p_{i}) + c_{i})$$

$$\sum_{i \in I_{s}} Prob_{i}^{s} = 1$$

$$\tilde{d}_{i} = D_{s} Prob_{i}^{s}$$

²As proposed by Cornelia Schön (2008)

Moti	

Heuristic 00 Log transformation & GBD

On-going work

Log transformation

The log transformation for the choice probability:

$$\ln(\operatorname{Prob}_{i}^{s}) = \ln(\upsilon_{s}) + \beta \ln(\rho_{i}) + c_{i}$$
$$\operatorname{Prob}_{i}^{s'} = \upsilon_{s}^{'} + \beta \rho_{i}^{'} + c_{i},$$

where $\operatorname{Prob}_i^s > 0, \upsilon_s > 0, p_i > 0$

• We get rid off the non-convexity of the demand model...

Integrated model

Heuristic 00

Transformed revenue model - no spill effects

The fleet assignment decision variables are fixed $(x_{k,f}, y_{k,a,t})$, we have an NLP.

$$\max \sum_{h \in H} \sum_{s \in S^{h}} \sum_{i \in (I_{s} \setminus I'_{s})} \exp(p'_{i} + d_{i}') \Rightarrow p'_{i} + d_{i}'$$
(18)

s.t.
$$\sum_{s \in S^h} \sum_{i \in (I_S \setminus I'_S)} \delta_{i,f} \exp(d'_i) \le \sum_{k \in K} \pi^h_{k,f} \qquad \forall f \in F^*, h \in H$$
(19)

$$\sum_{h\in H} \pi_{k,f}^{h} = Q_{k} \boldsymbol{X}_{k,f} \qquad \forall f \in F, k \in K$$
(20)

$$d'_{i} \leq v'_{s} + \beta p'_{i} + c_{i} + \ln D_{s} \qquad \forall h \in H, s \in S^{h}, i \in I_{s}$$
(21)

$$\sum_{i \in J_s} \exp(\upsilon'_s + \beta \rho'_i + c_i) = 1 \qquad \forall h \in H, s \in S^h$$
(22)

$$\ln(LB_i) \le p'_i \qquad \qquad \forall h \in H, s \in S^h, i \in I_s$$
(23)

$$p_{i}^{\prime} \leq \ln\left(UB_{i}\right) \qquad \forall h \in H, s \in S^{h}, i \in I_{s}$$

$$(24)$$

$$d_{i}^{\prime}, p_{i}^{\prime}, y_{s}^{\prime} \in \Re \qquad \forall h \in H, s \in S^{h}, i \in I_{s}$$

$$(25)$$

$$\forall h \in H, k \in K, f \in F$$

$$\forall h \in H, k \in K, f \in F$$
(26)

Integrated model

Heuristic

Log transformation & GBD

On-going work

Master problem - GBD

max α $\alpha \leq \sum_{h \in H} \sum_{s \in S^h} \sum_{i \in (I_s \setminus I'_s)} \exp(\boldsymbol{P}_i^{c'} + \boldsymbol{D}_i^{c'}) - \sum_{k \in K} \sum_{f \in F} C_{k,f} \boldsymbol{X}_{k,f}^c$ s.t. $+\sum_{k\in K}\sum_{f\in F}(Q_k \mathbf{MR}_{k,f}^c-C_{k,f})[x_{k,f}-\boldsymbol{X}_{k,f}^c]$ $\forall c \in CUTS$ (27) $\forall f \in F^M$ $\sum_{k,f} x_{k,f} = 1$ (28) $\forall f \in F^O$ $\sum_{k \in K} x_{k,f} \leq 1$ (29) $y_{k,a,t^{-}} + \sum_{f \in \text{In}(k,a,t)} x_{k,f} = y_{k,a,t^{+}} + \sum_{f \in \text{Out}(k,a,t)} x_{k,f}$ $\forall [k, a, t] \in N$ (30) $\sum_{a \in A} y_{k,a,\min \mathbf{E}_a^-} + \sum_{f \in C^T} x_{k,f} \le R_k$ $\forall k \in K$ (31) $\forall k \in K, a \in A$ (32) $y_{k,a,\min \mathbf{E}_a^-} = y_{k,a,\max \mathbf{E}_a^+}$ $\forall k \in K, f \in F$ $x_{k,f} \in \{0,1\}$ (33) $y_{k,a,t} \geq 0$ $\forall [k, a, t] \in N$ (34)

Li and Sun 2006 - Generalized Benders Decomposition

Motivation Integrated model Heuristic Log transformation & GBD On-going work

Lagrangian multipliers - Marginal revenue of each seat

$$\mathbf{MR}_{k,f}^{c} = \frac{\sum_{h \in H} \mathbf{\Pi}_{k,f}^{h} \boldsymbol{\lambda}_{k,f,h}}{Q_{k}} \quad \forall f \in F, k \in K, \boldsymbol{X}_{k,f}^{c} = 1$$

- $\lambda_{k,f,h}$ are the Lagrangian multipliers related to the demand-capacity constraints
- price of one seat at flight f on class h and plane type k.
- obtained with the application of the optimality conditions

Integrated model

Heuristic 00 Log transformation & GBD

On-going work

GBD framework

- Initial FAM solution $(x_{k,f})$
- Repeat until UB \leq LB
 - Solve REV subproblem which is an NLP and obtain...
 - price, demand, allocated seats $(p'_i, d'_i, \pi^h_{k,f})$
 - Lagrangian multipliers \Rightarrow Benders cuts
 - A lower bound (LB) for the problem
 - Solve the FAM master problem which is a MILP and obtain...
 - an updated FAM solution $(x_{k,f})$
 - An upper bound (UB) for the problem

NЛ	0+i1	ation
1.1.1		

Heuristic 00 Log transformation & GBD

On-going work

A small example

- 2 airports CDG-MRS
- 4 flights all are mandatory
- 2 aircraft types: 37-50 seats

We start with an initial FAM solution:

	AC1	AC2
F1	Х	
F2	Х	
F3	Х	
F4	Х	

Integrated model

Heuristic 00

 \implies

Log transformation & GBD

On-going work

A small example - GBD iterations

Iteration 1				
	Sub	Master		
	12522.8	16923.4		
	LB	UB		
	12522.8	16923.4		
	AC1	AC2		
F1		Х		
F2		Х		
F3		Х		
F4		Х		

	Iteration 2				
	Sub	Master			
	10734.4	14822.8			
	LB	UB			
	12522.8	14822.8			
	AC1	AC2			
F1		Х			
F2		х			
F3	Х				
F4	Х				

	Iteration	3
	Sub	Master
	12696.8	14822.8
	LB	UB
	12696.8	14822.8
	AC1	AC2
F1	Х	
F2		Х
F3		х
F4	X	

Iteration 4				
	Sub	Master		
	12474.4	12696.8		
	LB	UB		
	12696.8	12696.8		
	AC1	AC2		
F1		Х		
F2		Х		
F3	Х			
F4	Х			

 \implies

Integrated model 00

Heuristic 00 Log transformation & GBD

On-going work

Conclusions and on-going work

- The integrated model has promising results
- ... which motivates the effort in devising solution methodologies
- GBD will be tested
- The spill effects will be added back to the model

Integrated model

Heuristic 00 Log transformation & GBD

On-going work

Thank you for your attention!

