DYNAMIC DISCRETE CHOICE MODELING

FOR CAR USE, OWNERSHIP AND FUEL TYPE BASED ON REGISTER DATA

Aurélie Glerum, EPFL Emma Frejinger, KTH Anders Karlström, KTH Muriel Beser Hugosson, KTH Michel Bierlaire, EPFL

> IRUC seminar Monday 17th December 2012

OUTLINE

- Introduction
- The data
- Possible approaches
- The dynamic discrete choice model
- Value iteration results
- Conclusion and future works

INTRODUCTION

Aim of the research project:

 Model dynamics of car transactions, usage and choice of fuel type in the Swedish car fleet

Motivations

- Governmental policies (Source: Swedish parliament):
 - Goal of fossil-independent vehicle fleet by 2030
 - No emissions by 2050
- Technology changes:
 - Increase of alternative-fuel vehicles
 - Changes in the supply
- Company cars: represent important share of new car sales

Difficulties

- Car are durable goods modeling transactions not straightforward
- Need to account for forward-looking behavior of individuals

INTRODUCTION

Current literature on car ownership and usage modeling:

- Car ownership models in transportation literature:
 - Mostly static models:
 - Main drawback: do not account for forward-looking behavior
 - Important aspect to account for since car is a durable good
 - Econometric literature: dynamic programming (DP) models
 - Recently, dynamic discrete choice models (DDCM) starting to be applied in transportation field (Cirillo and Xu, 2011; Schiraldi, 2011)
- Other types of joint models of car ownership and usage:
 - **Discrete-continuous model** of vehicle choice and usage based on register data (Gillingham, 2012)
 - **Duration models** and regression techniques for car holding duration and usage (De Jong, 1996)

THE DATA

Register data of Swedish population and car fleet:

- Data from 1998 to 2008
- All individuals
 - **Individual information**: socio-economic information on car holder (age, gender, income, home/work location, employment status/sector, etc.)
 - Household information: composition (families with children and married couples)
- All vehicles
 - Privately-owned cars, cars from privately-owned company and company cars
 - Vehicle characteristics (make, model, fuel consumption, fuel type, age)
 - Annual mileage from odometer readings
 - Car bought new or second-hand

THE DATA

Advantage of such detailed data:

- Can observe and analyze demand shifts that occurred as a response to changes in policies:
 - Changes in vehicle circulation taxes
 - Changes in fuel prices
 - Introduction of congestion pricing

at a national/regional level

at a local/regional level

 Can test the impact of planned policies on the demand for vehicles and car usage (e.g. fossil-independent fleet by 2030)

MOTIVATIONS

Aim of the project:

Model simultaneously car ownership, usage and fuel type.
 In details: model simultaneous choice of

Transaction type
$$\times$$
 $\begin{bmatrix} Annual & & Private/car c & Fuel type - & New/2^{nd} hand - car c & ca$

- No more than 2 cars in household
- Account for forward-looking behavior of households

How can car ownership and usage be modeled?

Studied 2 approaches:

- 1. Discrete-continuous dynamic programming: mileage(s) considered as continuous and other variables as discrete.
- 2. Dynamic discrete choice modeling: all components of a choice variable are discretized.

How can car ownership and usage be modeled?

- Discrete-continuous DP
 - Endogeneous grid method (EGM) to solve continuous choice problems (Carroll, 2006) in a fast way: avoids a numerical rootfinding procedure when the Euler equation is solved
 - EGM generalized for discrete-continuous choices (Iskhakov et al, 2012). Valid when one continuous variable is considered.

How can car ownership and usage be modeled?

2. DDCM

- All variables considered as discrete mileage(s) discretized
- In transportation research, DP methods using random utility theory developed for discrete actions
 - Account for random term in utility function
 - Assumption that choices are affected by unobserved attributes, taste variations, etc.
- These DP methods lead to simple closed-form formula for the Bellman equation (e.g. Aguirregabiria and Mira, 2010)

How can car ownership and usage be modeled?

2. DDCM

- All variables considered as discrete mileage(s) discretized
- In transportation research, DP methods using random utility theory developed for discrete actions
 - Account for random term in utility function
 - Assumption that choices are affected by unobserved attributes, taste variations, etc.
- These DP methods lead to simple closed-form formula for the Bellman equation (e.g. Aguirregabiria and Mira, 2010)

Approach selected

Motivations for DDCM

- In transportation engineering, usually work with random term in utility
- Though treating mileage as continuous is more adapted, no work on discrete-continuous DP models accommodating random utility theory
- Current DDCM were developed for a different setting:
 - Rust (1987) (and other applications) uses discrete actions and discretizes a continuous state space.
 - Here: large and discrete-continuous action space (while the state space is discrete and small)

- Agent: household
- Time step *t*: year
- State space S

- Agent: household
- Time step t: year
- State space S

- Agent: household
- Time step t: year
- State space S

$$|S| = (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)^2 + (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)$$
 1-car households

- Agent: household
- Time step t: year
- State space S

- Agent: household
- Time step t. year
- State space S

Definition of the components of the dynamic programming model:

Action space A

Definition of the components of the dynamic programming model:

Action space A

Transaction type: details

Definition of the components of the dynamic programming model:

Action space A

Transaction name	0 car	1 car	2 cars
h1: leave unchanged	1	4	16
h2: increase 1	72	288	_
h3: dispose 2	_	-	1
h4: dispose 1st	-	1	4
h5: dispose 2nd	-	-	4
h6: dispose 1st and change 2nd	-	-	72
h7: dispose 2nd and change 1st	-	-	72
h8: change 1st	-	72	288
h9: change 2nd	-	-	288
Sum	73	365	745

Definition of the components of the dynamic programming model:

 Action spa 	ace A
--------------------------------	-------

Size of the action space assuming:

- 4 levels mileage
- 3 levels company car
- 3 levels fuel type
- 2 levels new/2nd hand

0 car	1 car	2 cars
1	4	16
72	288	_
-	-	1
-	1	4
-	-	4
-	-	72
-	-	72
-	72	288
-	_	288
73	365	745
	1 72 - - - - -	1 4 72 288 1 - 1 72 - 72

Definition of the components of the dynamic programming model:

 Action space 	A
----------------------------------	---

Size of the action space assuming:

- 4 levels mileage
- 3 levels company car
- 3 levels fuel type
- 2 levels new/2nd hand

Transaction name	0 car	1 car	2 cars
h1: leave unchanged	1	4	16
h2: increase 1	72	288	-
h3: dispose 2	-	-	1
h4: dispose 1st	-	1	4
h5: dispose 2nd	-	-	4
h6: dispose 1st and change 2nd	-	-	72
h7: dispose 2nd and change 1st	-	-	72
h8: change 1st	-	72	288
h9: change 2nd	-	-	288
Sum	73	365	745
Maximum ciza of			

Maximum size of action space

Definition of the components of the dynamic programming model:

- Instantaneous utility: $u(s_t, a_t, x_t, \theta) = v(s_t, a_t, x_t, \theta) + \varepsilon(a_t)$
- Transition rule: deterministic rule: each state s_{t+1} can be inferred exactly once s_t and a_t are known.

Example:

Resolution of the dynamic programming problem:

Value iteration

Value function:

$$V(s_t, x_t, \theta) = \max_{a_t \in A} \{ u(s_t, a_t, x_t, \theta) + \beta \sum_{s_{t+1} \in S} \bar{V}(s_{t+1}, x_{t+1}, \theta) f(s_{t+1} | s_t, a_t) \}$$

- Using the integrated value function $\bar{V}(s_t, x_t, \theta) = \int V(s_t, x_t, \varepsilon_t) dG_{\varepsilon}(\varepsilon_t)$
 - Another update rule that has a closed-form expression can be defined
 - Obtained from the expected maximum utility

$$\bar{V}(s_t, x_t, \theta) = \log \sum_{a_t \in A} \exp\{v(s_t, a_t, x_t, \theta) + \beta \sum_{s_{t+1} \in S} \bar{V}(s_{t+1}, x_{t+1}, \theta) f(s_{t+1}|s_t, a_t)\}$$

Resolution of the DDCM problem:

Parameters obtained by maximizing likelihood:

$$\mathcal{L} = \prod_{n=1}^{N} \prod_{t=1}^{T} P(a_{n,t}|s_{n,t}, x_{n,t}, \theta) f(s_{n,t}|s_{n,t-1}, a_{n,t-1})$$

- Optimization algorithm is Rust's nested fixed point algorithm (Rust, 1987):
 - Outer optimization algorithm: search algorithm to obtain parameters maximizing likelihood
 - Inner value iteration algorithm: solves the DP problem for each parameter trial

Preliminary results for the value iteration algorithm:

Inputs:

- Size state space = 1407
 - Max age = 5
 - Company car levels = 3
 - Number of fuel types = 3
- Size action space = max 745
 - Number of transaction types = 9
 - Number of mileage levels = 4
 - Number of levels of new/old = 2
- Utility function contains:
 - Transaction-dependent parameters for fuel type
 - Transaction-dependent parameters for age of oldest car

arbitrarily defined

- Parameters of DP problem:
 - Discount factor $\beta = 0.7$
 - Stopping criterion $\varepsilon = 0.01$

Preliminary results for the value iteration algorithm:

Program:

- Prototype in Matlab
- 15 hours on 8-core server

Graph:

• \overline{V} vs age of oldest of 2 cars

Preliminary results for the value iteration algorithm:

Program:

- Prototype in Matlab
- 15 hours on 8-core server

Graph:

• Assume an initial action a = [3, 1, 0, 0, 0, 0, 0, 0, 0] u(a) vs age of oldest car

Program:

- Prototype in Matlab
- 15 hours on 8-core server

Graph:

• Assume an initial action a = [3, 1, 0, 0, 0, 0, 0, 0, 0]P(a) vs age of oldest car

CONCLUSION AND FUTURE WORKS

Conclusion:

- First results of value function
- Shows feasibility of problem

Future works:

- Speed up computation of integrated value function

 C++
- Sequential choice of two vehicles if computational time still too large
- Exploratory analysis to specify instantaneous utility
- Implement outer loop (maximization algorithm)
- Scenario testing:
 - Validation of policy measures taken during the years available in the data
 - Test policy measures that are planned to be applied in future years

Thanks!

