A DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL OF CAR OWNERSHIP AND USAGE

Aurélie Glerum EPFL
Emma Frejinger Université de Montréal
Anders Karlström KTH
Muriel Beser Hugosson KTH
Michel Bierlaire EPFL

13th Swiss Transport Research Conference
25th April 2013
• Introduction

• Background and data

• The dynamic discrete-continuous choice modeling framework
 • Assumptions
 • Definition of the components
 • Solving the dynamic programming problem
 • Model estimation

• Illustration of model application

• Conclusion and future works
Aim of the research project:

- Model dynamics of car transactions, usage and choice of fuel type in the Swedish car fleet

- Motivations
 - Governmental policies:
 - Goals of reducing carbon emissions
 - Technology changes:
 - Increase of alternative-fuel vehicles
 - Changes in the supply
 - Company cars: represent important share of new car sales
Current literature on car ownership and usage modeling:

• **Car ownership models in transportation literature:**
 • Mostly **static models:**
 • Main drawback: do not account for forward-looking behavior
 • Important aspect to account for since car is a durable good
 • **Econometric literature: dynamic programming (DP) models + discrete choice models (DCM)**
 • Recently, **dynamic discrete choice models (DDCM)** starting to be applied in transportation field (Cirillo and Xu, 2011; Schiraldi, 2011)

• **Joint models of car ownership and usage:**
 • Early references: e.g. **duration models** and regression techniques for car holding duration and usage (De Jong, 1996)
 • **Dynamic programming mixed logit (DPMXL)** (Schjerning, 2007) used to model car ownership, type of car and usage (Munk-Nielsen, 2012)
 • **Discrete-continuous model** of vehicle choice and usage based on register data (Gillingham, 2012)
Research issues:

• Car are durable goods \implies Need to account for forward-looking behavior of individuals

• Difficulty of modeling a discrete-continuous choice

• Many models focus on individual decisions, but choices regarding car ownership and usage made at household level
Research issues:

- Car are durable goods \Rightarrow Need to account for **forward-looking behavior** of individuals
- Difficulty of modeling a **discrete-continuous choice**
- Many models focus on individual decisions, but choices regarding car ownership and usage made at **household level**

Proposed methodology:

- Attempt to address these issues by applying **dynamic discrete-continuous choice model (DDCCM)**
- Large **register data** of all **individuals** and **cars** in Sweden
BACKGROUND AND DATA

Register data of Swedish population and car fleet:

- Data from 1998 to 2008

- All individuals
 - **Individual information**: socio-economic information on car holder (age, gender, income, home/work location, employment status/sector, etc.)
 - **Household information**: composition (families with children and married couples)

- All vehicles
 - Privately-owned cars, cars from privately-owned company and **company** cars
 - Vehicle **characteristics** (make, model, fuel consumption, fuel type, age)
 - **Annual mileage** from odometer readings
 - Car bought **new or second-hand**
Aim of the project:

• Model simultaneously car ownership, usage and fuel type.

In details: model simultaneous choice of

\[
\text{Transaction type} \times \left[\text{Annual milage} - \text{car } c \right] \times \left[\text{Private/ company car} - \text{car } c \right] \times \left[\text{Fuel type} - \text{car } c \right] \times \left[\text{New/2}^{\text{nd}} \text{ hand} - \text{car } c \right] \times # \text{ cars}
\]
Aim of the project:

- Model simultaneously car ownership, usage and fuel type.

In details: model simultaneous choice of:

- Transaction type
- Annual milage – car c
- Private/company car – car c
- Fuel type – car c
- New/2nd hand – car c
- # cars

Discrete variables
Aim of the project:

- Model simultaneously car ownership, usage and fuel type.

In details: model simultaneous choice of

Transaction type \(\times \) Annual milage – car \(c \) \(\times \) Private/ company car – car \(c \) \(\times \) Fuel type – car \(c \) \(\times \) New/2\(^{nd}\) hand – car \(c \) \(\times \) # cars

Continuous variables
Motivations for discrete-continuous vs discrete model

- **Mileage** variable(s) are **continuous**: lose information by discretizing it.

- In a discrete-continuous approach:

 If choice of mileage **conditional** on the discrete choice

 Reduction of size of the discrete action space
• Decisions at household level: up to 2 cars in household

• **Strategic choice** of:
 • Transaction
 • Type(s) of ownership (company vs private car)
 • Fuel type(s)
 • Car state(s) (new vs 2nd-hand)

 \(\Rightarrow\) Account for forward-looking behavior of households

• **Myopic choice** of:
 • Annual mileage(s)

• **Choice of mileage conditional** on choice of discrete variables
• **Agent**: household

• **Time step** \(t \): year

• **State space** \(S \)

\[
s_t = (y_{1,t}, I_{1,t}, f_{1,t}, y_{2,t}, I_{2,t}, f_{2,t})
\]

\[
|S| = (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)^2 + (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)
\]

\[
+ 1.
\]
1. **Agent**: household

2. **Time step** t: year

3. **State space** S

$$s_t = (y_{1,t}, I_{1,t}, f_{1,t}, y_{2,t}, I_{2,t}, f_{2,t})$$

- **Age** – 1st car
- **Private/company car** – 1st car
- **Fuel type** – 1st car
- **Age** – 2nd car
- **Private/company car** – 2nd car
- **Fuel type** – 2nd car

$$|S| = \left(|Y| \times (|I_C| - 2) \times (|F| - 1) + 1 \right)^2$$

2-car households

$$+ \left(|Y| \times (|I_C| - 2) \times (|F| - 1) + 1 \right)$$

$$+ 1.$$
Agent: household

Time step t: year

State space S

\[s_t = (y_{1,t}, I_{1,t}, f_{1,t}, y_{2,t}, I_{2,t}, f_{2,t}) \]

\[|S| = (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)^2 \]

+ 1-car households

\[+ (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1) \]

+ 1.
Agent: household

Time step t: year

State space S

$$s_t = (y_{1,t}, I_{1,t}, f_{1,t}, y_{2,t}, I_{2,t}, f_{2,t})$$

$$|S| = (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)^2$$

$$+ (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)$$

$$+ 1.$$ 0-car households
• Agent: household

• Time step t: year

• State space S

$$s_t = (y_{1,t}, I_{1,t}, f_{1,t}, y_{2,t}, I_{2,t}, f_{2,t})$$

$$|S| = (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)^2$$

$$+ (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)$$

$$+ 1 = 1407 \Rightarrow \text{relatively small state space}$$
• Action space A

$$a_t = (h_t, \tilde{m}_{1,t}, \tilde{I}_{1,t}, \tilde{f}_{1,t}, \tilde{r}_{1,t}, \tilde{m}_{2,t}, \tilde{I}_{2,t}, \tilde{f}_{2,t}, \tilde{r}_{2,t})$$
• Action space A

Transaction type: details

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL
DEFINITION OF THE COMPONENTS
Action space A

<table>
<thead>
<tr>
<th>Transaction name</th>
<th>0 car</th>
<th>1 car</th>
<th>2 cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1: leave unchanged</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h_2: increase 1</td>
<td>18</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>h_3: dispose 2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>h_4: dispose 1st</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h_5: dispose 2nd</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>h_6: dispose 1st and change 2nd</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>h_7: dispose 2nd and change 1st</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>h_8: change 1st</td>
<td>-</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>h_9: change 2nd</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Sum</td>
<td>19</td>
<td>38</td>
<td>76</td>
</tr>
</tbody>
</table>
Action space A

<table>
<thead>
<tr>
<th>Transaction name</th>
<th>0 car</th>
<th>1 car</th>
<th>2 cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h1$: leave unchanged</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$h2$: increase 1</td>
<td>18</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>$h3$: dispose 2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>$h4$: dispose 1st</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$h5$: dispose 2nd</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>$h6$: dispose 1st and change 2nd</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>$h7$: dispose 2nd and change 1st</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>$h8$: change 1st</td>
<td>-</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>$h9$: change 2nd</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
</tbody>
</table>

Sum: 19 38 76

Size of the **discrete part** of the action space assuming:
- 3 levels company car
- 3 levels fuel type
- 2 levels new/2nd hand

Maximum size of action space $<<$ for DDCM
• **Transition rule**: deterministic rule: each state s_{t+1} can be inferred exactly once s_t and a_t are known.

Example:

If $s_t = [2,1,2,0,0,0]$ and $a_t = [1,12'000,0,0,0,0,3,0,0]$ then $s_{t+1} = [3,1,2,0,3,0]$.
• Instantaneous utility function:

\[u(s_t, a_t^C, a_t^D, x_t, \theta) = v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) + \varepsilon_D(a_t^D) \]
• Instantaneous utility function:

\[u(s_t, a_t^C, a_t^D, x_t, \theta) = v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C, \theta)) + \varepsilon_D(a_t^D) \]

- Deterministic term
- Random term
• Instantaneous utility function:

\[u(s_t, a^C_t, a^D_t, x_t, \theta) = v(s_t, a^C_t, a^D_t, x_t, \varepsilon_C(a^C_t), \theta) + \varepsilon_D(a^D_t) \]

Assume additive **deterministic utility** for simplicity (see also Munk-Nielsen, 2012):

\[v(s_t, a^C_t, a^D_t, x_t, \varepsilon_C(a^C_t), \theta) = v^D_t(s_t, a^D_t, x_t, \theta) + v^C_t(s_t, a^D_t, a^C_t, x_t, \varepsilon_C(a^C_t), \theta) \]
Instantaneous utility function:

\[u(s_t, a_t^C, a_t^D, x_t, \theta) = v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) + \varepsilon_D(a_t^D) \]

Deterministic term

Random term

Assume additive **deterministic utility** for simplicity (see also Munk-Nielsen, 2012):

\[v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) = v_t^D(s_t, a_t^D, x_t, \theta) + v_t^C(s_t, a_t^D, a_t^C, x_t, \varepsilon_C(a_t^C), \theta) \]

Utility for discrete actions

Utility for continuous actions
Instantaneous utility function:

\[u(s_t, a_t^C, a_t^D, x_t, \theta) = v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) + \varepsilon_D(a_t^D) \]

Define:

- Deterministic term: \[v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) \]
- Random term: \[\varepsilon_D(a_t^D) \]

Assume additive deterministic utility for simplicity (see also Munk-Nielsen, 2012):

\[v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) = v_t^D(s_t, a_t^D, x_t, \theta) + v_t^C(s_t, a_t^D, a_t^C, x_t, \varepsilon_C(a_t^C), \theta) \]

- Utility for discrete actions: \[v_t^D(s_t, a_t^D, x_t, \theta) \]
- Utility for continuous actions: \[v_t^C(s_t, a_t^D, a_t^C, x_t, \varepsilon_C(a_t^C), \theta) \]
Instantaneous utility function

Utility for continuous actions: **Constant elasticity of substitution (CES) utility function:**

- Captures substitution patterns between the choice of both annual driving distances
- ρ is elasticity of substitution

$$v_t^C(s_t, a_t^D, a_t^C, x_t, \varepsilon_C(a_t^C), \theta) = (m_1 t^{-\rho} + \alpha \cdot m_2 t^{-\rho})^{-1/\rho}$$

- Randomness introduced in $\alpha := \exp\{\gamma x_t - \varepsilon_C(a_t^C)\}$

- x_t contains price of fuel, car consumption and other socio-economic characteristics
1. Finding the optimal value(s) of annual mileage conditional on the discrete choices

2. Solving the Bellman equation
Finding the optimal value(s) of mileage

• Maximization of the continuous utility:
 \[
 \max_{m_{1,t},m_{2,t}} v_t^C
 \]
 \[\text{s.t. } p_{1,t}m_{1,t} + p_{2,t}m_{2,t} = \text{Inc}_t\]

• Find analytical solutions: \(m_{1,t}^*, \text{ and } m_{2,t}^*\)

\[
m_{2,t}^* = \frac{\text{Inc}_t \cdot p_{2,t}^{(-1/(\rho+1))}}{p_{2,t}^{(\rho/(\rho+1))} + p_{1,t}^{(\rho/(1+\rho))} \alpha^{(-1/(\rho+1))}}
\]

\[
m_{1,t}^* = \frac{\text{Inc}_t}{p_{1,t}} - \frac{p_{2,t}m_{2,t}^*}{p_{1,t}}
\]

• Optimal continuous utility

\[
v_t^{C*}(s_t, d_t^D, d_t^{C*}, x_t, \theta)
\]
Solving the Bellman equation

• **Logsum** formula used in the completely discrete case (DDCM) (Aguirregabiria and Mira, 2010; Cirillo and Xu, 2011)

• Logsum can be applied here given the **key assumptions**:
 • Choice of mileage(s) is conditional on discrete actions
 • Choice of mileage(s) is myopic

\[
\bar{V}(s_t, x_t, \theta) = \log \sum_{a_t^D} \left\{ \exp\{ v_t^D(s_t, a_t^D, x_t, \theta) + v_t^C(s_t, a_t^D, a_t^C, x_t, \theta) \} + \beta \sum_{s_{t+1} \in S} \bar{V}(s_{t+1}, x_{t+1}, \theta) f(s_{t+1}|s_t, a_t) \right\}
\]

• Iterate on **Bellman equation** to find integrated value function \(\bar{V} \)
• Parameters obtained by maximizing likelihood:

\[L = \prod_{n=1}^{N} \prod_{t=1}^{T_n} P(a_{n,t}^D | s_{n,t}, x_{n,t}, \theta) \]

• Optimization algorithm is Rust’s nested fixed point algorithm (NFXP) (Rust, 1987):

 • **Outer optimization algorithm**: search algorithm to obtain parameters maximizing likelihood

 • **Inner value iteration algorithm**: solves the DP problem for each parameter trial

• Plan to investigate variants of NFXP to speed up computational time
Assumptions for the example:

- **Size state space = 651**
 - Max age = 3
 - Company car levels = 3
 - Number of fuel types = 3

- **Size action space = max 745**
 - Number of transaction types = 9
 - Number of state levels (new/old) = 2

- **Utility function contains:**
 - Transaction cost τ
 - Transaction-dependent parameters for age of oldest car

$$v_t^D(s_t, a_t^D, x_t, \theta) = \tau(a_t^D) + \beta_{\text{Age}}(a_t^D, s_t) \cdot \max(\text{Age 1}_t, \text{Age 2}_t)$$

- **Parameters of DP problem:**
 - Discount factor $\beta = 0.7$
 - Stopping criterion $\varepsilon = 0.01$
Program:

- Code in C++
- 2 minutes on 20-core server

Graph:

- V vs age of oldest of cars in household fleet
ILLUSTRATION OF MODEL APPLICATION

\[P(a_{n,t}^D | x_{n,t}, s_{n,t}, \theta) = \frac{v_{n,t}^D + v_{n,t}^{C^*} + \beta \sum_{s_{n,t+1} \in S} \tilde{V} f}{\sum_{a_{n,t}^D} \left\{ v_{n,t}^D + v_{n,t}^{C^*} + \beta \sum_{s_{n,t+1} \in S} \tilde{V} f \right\}} \]
ILLUSTRATION OF MODEL APPLICATION

Instantaneous utility

\[
P(\alpha_{n,t}^D | s_{n,t}, x_{n,t}, \theta) = \frac{v_{n,t}^D + v_{n,t}^C + \beta \sum_{s_{n,t+1} \in S} \tilde{V} f}{\sum_{\alpha_{n,t}} \left(v_{n,t}^D + v_{n,t}^C + \beta \sum_{s_{n,t+1} \in S} \tilde{V} f \right)}
\]
ILLUSTRATION OF MODEL APPLICATION

\[P(\alpha_{n,t}^D | s_{n,t}, x_{n,t}, \theta) = \frac{v_{n,t}^D + v_{n,t}^C + \beta \sum_{s_{n,t+1} \in S} \tilde{V} f}{\sum_{\alpha_{n,t}^D} \left(v_{n,t}^D + v_{n,t}^C + \beta \sum_{s_{n,t+1} \in S} \tilde{V} f \right)} \]
Conclusion:

• Methodology to model choice of car ownership and usage dynamically
• Example of application shows feasibility of approach

Next steps:

• Exploratory analysis to specify instantaneous utility
• Model estimation on small sample of synthetic data
• Model estimation on register data
• Scenario testing:
 • Validation of policy measures taken during the years available in the data
 • Test policy measures that are planned to be applied in future years
Thanks!