A DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL OF CAR OWNERSHIP AND USAGE

Aurélie Glerum EPFL Emma Frejinger Université de Montréal Anders Karlström ктн Muriel Beser Hugosson ктн Michel Bierlaire EPFL

> 13th Swiss Transport Research Conference 25th April 2013

OUTLINE

- Introduction
- Background and data
- The dynamic discrete-continuous choice modeling framework
 - Assumptions
 - Definition of the components
 - Solving the dynamic programming problem
 - Model estimation
- Illustration of model application
- Conclusion and future works

INTRODUCTION

Aim of the research project:

- Model dynamics of car transactions, usage and choice of fuel type in the Swedish car fleet
- Motivations
 - Governmental policies:
 - Goals of reducing carbon emissions
 - Technology changes:
 - Increase of alternative-fuel vehicles
 - Changes in the supply
 - Company cars: represent important share of new car sales

INTRODUCTION

Current literature on car ownership and usage modeling:

- Car ownership models in transportation literature:
 - Mostly static models:
 - Main drawback: do not account for forward-looking behavior
 - Important aspect to account for since car is a durable good
 - Econometric literature: dynamic programming (DP) models + discrete choice models (DCM)
 - Recently, dynamic discrete choice models (DDCM) starting to be applied in transportation field (Cirillo and Xu, 2011; Schiraldi, 2011)
- Joint models of car ownership and usage:
 - Early references: e.g. **duration models** and regression techniques for car holding duration and usage (De Jong, 1996)
 - **Dynamic programming mixed logit (DPMXL)** (Schjerning, 2007) used to model car ownership, type of car and usage (Munk-Nielsen, 2012)
 - **Discrete-continuous model** of vehicle choice and usage based on register data (Gillingham, 2012)

Research issues:

- Car are durable goods > Need to account for forward-looking behavior of individuals
- Difficulty of modeling a **discrete-continuous choice**
- Many models focus on individual decisions, but choices regarding car ownership and usage made at household level

INTRODUCTION

Research issues:

- Car are durable goods > Need to account for forward-looking behavior of individuals
- Difficulty of modeling a **discrete-continuous choice**
- Many models focus on individual decisions, but choices regarding car ownership and usage made at household level

Proposed methodology:

- Attempt to address these issues by applying dynamic discrete-continuous choice model (DDCCM)
- Large register data of all individuals and cars in Sweden

BACKGROUND AND DATA

Register data of Swedish population and car fleet:

- Data from 1998 to 2008
- All individuals
 - **Individual information**: socio-economic information on car holder (age, gender, income, home/work location, employment status/sector, etc.)
 - Household information: composition (families with children and married couples)
- All vehicles
 - Privately-owned cars, cars from privately-owned company and company cars
 - Vehicle characteristics (make, model, fuel consumption, fuel type, age)
 - Annual mileage from odometer readings
 - Car bought new or second-hand

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL[®]

Aim of the project:

Model simultaneously car ownership, usage and fuel type.
 In details: model simultaneous choice of

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL[®]

Aim of the project:

Model simultaneously car ownership, usage and fuel type.
 In details: model simultaneous choice of

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹⁰

Aim of the project:

Model simultaneously car ownership, usage and fuel type.
 In details: model simultaneous choice of

Continuous variables

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹¹

Motivations for discrete-continous vs discrete model

- Mileage variable(s) are continuous: lose information by discretizing it.
- In a discrete-continuous approach:

If choice of mileage **conditional** on the discrete choice

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹²

ASSUMPTIONS

- Decisions at household level: up to 2 cars in household
- Strategic choice of:
 - Transaction
 - Type(s) of ownership (company vs private car)
 - Fuel type(s)
 - Car state(s) (new vs 2nd-hand)
 - Account for forward-looking behavior of households
- Myopic choice of:
 - Annual mileage(s)
- Choice of mileage conditional on choice of discrete variables

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹³ DEFINITION OF THE COMPONENTS

- Agent: household
- Time step *t*. year
- State space S

$$|S| = (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)^2 + (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1) + 1.$$

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹⁴ DEFINITION OF THE COMPONENTS

- Agent: household
- Time step *t*: year
- State space S

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹⁵ DEFINITION OF THE COMPONENTS

- Agent: household
- Time step *t*: year
- State space S

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹⁶ DEFINITION OF THE COMPONENTS

- Agent: household
- Time step *t*. year
- State space S

$$S| = (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1)^2 + (|Y| \times (|I_C| - 2) \times (|F| - 1) + 1) + 1. 0-car households$$

FÉDÉRALE DE LAUSANNE

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹⁷ DEFINITION OF THE COMPONENTS

- Agent: household
- Time step *t*: year
- State space S

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹⁸ DEFINITION OF THE COMPONENTS

• Action space A

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL¹⁹ DEFINITION OF THE COMPONENTS

• Action space A

Transaction type: details

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²⁰ DEFINITION OF THE COMPONENTS

• Action space A

Transaction name	$0 \mathrm{car}$	$1 \operatorname{car}$	$2 \operatorname{cars}$
h1: leave unchanged	1	1	1
h2: increase 1	18	18	-
h3: dispose 2	-	-	1
h4: dispose 1st	-	1	1
h5: dispose 2nd	-	-	1
h6: dispose 1st and change 2nd	-	-	18
$h7{:}$ dispose 2nd and change 1st	-	-	18
h8: change 1st	-	18	18
h9: change 2nd	-	-	18
Sum	19	38	76

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²¹ DEFINITION OF THE COMPONENTS

• Action space A

	Transaction name	$0 \mathrm{car}$	$1 \operatorname{car}$	$2 \operatorname{cars}$
	h1: leave unchanged	1	1	1
Size of the discrete part of the action space assuming:	h2: increase 1	18	18	-
	h3: dispose 2	-	-	1
	h4: dispose 1st	-	1	1
• 3 levels company car	h5: dispose 2nd	-	-	1
 3 levels fuel type 2 lovels now/2nd hand 	h6: dispose 1st and change 2nd	-	-	18
	h7: dispose 2nd and change 1st	-	-	18
	h8: change 1st	-	18	18
	h9: change 2nd	-	-	18
-	Sum	19	38	76

Maximum size of action space << for DDCM

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²² DEFINITION OF THE COMPONENTS

• Transition rule: deterministic rule: each state s_{t+1} can be inferred exactly once s_t and a_t are known.

Example:

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²³ DEFINITION OF THE COMPONENTS

• Instantaneous utility function:

$$u(s_t, a_t^C, a_t^D, x_t, \theta) = v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) + \varepsilon_D(a_t^D)$$

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²⁴ DEFINITION OF THE COMPONENTS

• Instantaneous utility function:

$$u(s_t, a_t^C, a_t^D, x_t, \theta) = \underbrace{v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta)}_{\text{Oterministic term}} + \underbrace{\varepsilon_D(a_t^D)}_{\text{Random term}}$$

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²⁵ DEFINITION OF THE COMPONENTS

• Instantaneous utility function:

$$u(s_t, a_t^C, a_t^D, x_t, \theta) = \underbrace{v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta)}_{\text{Deterministic term}} + \underbrace{\varepsilon_D(a_t^D)}_{\text{Random term}}$$

Assume additive deterministic utility for simplicity (see also Munk-Nielsen, 2012):

 $v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) = v_t^D(s_t, a_t^D, x_t, \theta) + v_t^C(s_t, a_t^D, a_t^C, x_t, \varepsilon_C(a_t^C), \theta)$

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²⁶ DEFINITION OF THE COMPONENTS

• Instantaneous utility function:

$$u(s_t, a_t^C, a_t^D, x_t, \theta) = \underbrace{v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta)}_{\text{Deterministic term}} + \underbrace{\varepsilon_D(a_t^D)}_{\text{Random term}}$$

Assume additive deterministic utility for simplicity (see also Munk-Nielsen, 2012):

$$v(s_{t}, a_{t}^{C}, a_{t}^{D}, x_{t}, \varepsilon_{C}(a_{t}^{C}), \theta) = v_{t}^{D}(s_{t}, a_{t}^{D}, x_{t}, \theta) + v_{t}^{C}(s_{t}, a_{t}^{D}, a_{t}^{C}, x_{t}, \varepsilon_{C}(a_{t}^{C}), \theta)$$

$$Utility \text{ for discrete actions} Utility \text{ for continuous actions}$$

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²⁷ DEFINITION OF THE COMPONENTS

• Instantaneous utility function:

$$u(s_t, a_t^C, a_t^D, x_t, \theta) = \underbrace{v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta)}_{\text{Deterministic term}} + \underbrace{\varepsilon_D(a_t^D)}_{\text{Random term}}$$

Assume additive deterministic utility for simplicity (see also Munk-Nielsen, 2012):

$$v(s_t, a_t^C, a_t^D, x_t, \varepsilon_C(a_t^C), \theta) = v_t^D(s_t, a_t^D, x_t, \theta) + v_t^C(s_t, a_t^D, a_t^C, x_t, \varepsilon_C(a_t^C), \theta)$$
Utility for discrete actions
Utility for continuous actions

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²⁸ DEFINITION OF THE COMPONENTS

- Instantaneous utility function
 - Utility for continuous actions:
 Constant elasticity of substitution (CES) utility function:
 - Captures substitution patterns between the choice of both annual driving distances
 - ρ is elasticity of substitution

$$v_t^C(s_t, a_t^D, a_t^C, x_t, \varepsilon_C(a_t^C), \theta) = (m_{1,t}^{-\rho} + \alpha \cdot m_{2,t}^{-\rho})^{-1/\rho}$$

- Randomness introduced in $\alpha := \exp{\{\gamma x_t \varepsilon_C(a_t^C)\}}$
- *x_t* contains price of fuel, car consumption and other socio-economic characteristics

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL²⁹

SOLVING THE DYNAMIC PROGRAMMING PROBLEM

1. Finding the optimal value(s) of annual mileage conditional on the discrete choices

2. Solving the Bellman equation

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL³⁰

SOLVING THE DYNAMIC PROGRAMMING PROBLEM

Finding the optimal value(s) of mileage

• Maximization of the continuous utility: $\max_{m_{1,t},m_{2,t}} v_t^C$

s.t. $p_{1,t}m_{1,t} + p_{2,t}m_{2,t} = \text{Inc}_t$

• Find analytical solutions: $m_{1,t}^*$ and $m_{2,t}^*$

$$m_{2,t}^{*} = \frac{\operatorname{Inc}_{t} \cdot p_{2,t}^{(-1/(\rho+1))}}{p_{2,t}^{(\rho/(\rho+1))} + p_{1,t}^{(\rho/(1+\rho))} \alpha^{(-1/(\rho+1))}}$$
$$m_{1,t}^{*} = \frac{\operatorname{Inc}_{t}}{p_{1,t}} - \frac{p_{2,t}}{p_{1,t}} m_{2,t}^{*}$$
Optimal continuous utility $v_{t}^{C*}(s_{t}, a_{t}^{D}, a_{t}^{C*}, x_{t}, \theta)$

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL³¹

SOLVING THE DYNAMIC PROGRAMMING PROBLEM

Solving the Bellman equation

- Logsum formula used in the completely discrete case (DDCM) (Aguirregabiria and Mira, 2010; Cirillo and Xu, 2011)
- Logsum can be applied here given the key assumptions:
 - Choice of mileage(s) is conditional on discrete actions
 - Choice of mileage(s) is myopic

$$\bar{V}(s_t, x_t, \theta) = \log \sum_{a_t^D} \left\{ \exp\{v_t^D(s_t, a_t^D, x_t, \theta) + v_t^{C*}(s_t, a_t^D, a_t^{C*}, x_t, \theta)\} + \beta \sum_{s_{t+1} \in S} \bar{V}(s_{t+1}, x_{t+1}, \theta) f(s_{t+1}|s_t, a_t) \right\}$$

• Iterate on Bellman equation to find integrated value function \overline{V}

DYNAMIC DISCRETE-CONTINUOUS CHOICE MODEL³² MODEL ESTIMATION

• Parameters obtained by maximizing likelihood:

$$\mathcal{L} = \prod_{n=1}^{N} \prod_{t=1}^{T_n} P(a_{n,t}^D | s_{n,t}, x_{n,t}, \theta)$$

- Optimization algorithm is Rust's nested fixed point algorithm (NFXP) (Rust, 1987):
 - Outer optimization algorithm: search algorithm to obtain parameters maximizing likelihood
 - Inner value iteration algorithm: solves the DP problem for each parameter trial
- Plan to investigate variants of NFXP to speed up computational time

ILLUSTRATION OF MODEL APPLICATION

Assumptions for the example:

• Size state space = 651

- Max age = 3
- Company car levels = 3
- Number of fuel types = 3

• Size action space = max 745

- Number of transaction types = 9
- Number of state levels (new/old) = 2

• Utility function contains:

- Transaction cost τ **postulated**
- Transaction-dependent parameters for age of oldest car

$$v_t^D(s_t, a_t^D, x_t, \theta) = \tau(a_t^D) + \beta_{Age}(a_t^D, s_t) \cdot \max(Age1_t, Age2_t)$$

• Parameters of DP problem:

- Discount factor $\beta = 0.7$
- Stopping criterion $\varepsilon = 0.01$

Program:

- Code in C++
- 2 minutes on 20-core server

Graph:

 V vs age of oldest of cars in household fleet

ILLUSTRATION OF MODEL APPLICATION

ILLUSTRATION OF MODEL APPLICATION

FÉDÉRALE DE LAUSANNE

CONCLUSION AND FUTURE WORKS

Conclusion:

- Methodology to model choice of car ownership and usage dynamically
- Example of application shows feasibility of approach

Next steps:

- Exploratory analysis to specify instantaneous utility
- Model estimation on small sample of synthetic data
- Model estimation on register data
- Scenario testing:
 - Validation of policy measures taken during the years available in the data
 - Test policy measures that are planned to be applied in future years

Thanks!

