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Motivation

� High level of uncertainty in port operations

mechanical problems etc.

� Disrupt the normal functioning of the

� Require quick real time action.

• Very few studies address the problem of real time recovery in port operations

• Our research problem derives from the

Ras Al Khaimah, UAE where there is a

arrival and handling times.

operations due to weather conditions,

the port

Very few studies address the problem of real time recovery in port operations

the realistic requirements at the SAQR port,

a high degree of uncertainty in the vessel



Research Objectives

• Develop methodologies to react to

• For a given baseline berthing schedule,

costs of the updated schedule as

data is revealed in real time.

to disruptions in real time.

schedule, minimize the total realized

as actual arrival and handling time



Schematic Diagram of a Bulk Terminal
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How to Determine the Baseline Schedule ?

● Any feasible berthing assignment and schedule of vessels 

along the quay respecting the spatial and temporal 

constraints on the individual vessels

● Best case: Optimal solution of the deterministic berth 

allocation problem (without accounting for any uncertainty 

in information)

How to Determine the Baseline Schedule ?

Any feasible berthing assignment and schedule of vessels 

along the quay respecting the spatial and temporal 

constraints on the individual vessels

: Optimal solution of the deterministic berth 

allocation problem (without accounting for any uncertainty 



Deterministic BAP: Problem Definition

● Find
− Optimal assignment and schedule of vessels along the 

● Given

− Expected arrival times of vessels

− Estimated handling times of vessels dependent on cargo type on the vessel (the relative location of 

the vessel along the quay with respect to the cargo location on the yard) and the number 

operating on the vessel

● Objective

− Minimize total service times (waiting time + handling time) of 

● Results

− Near optimal solutions obtained using set partitioning method or heuristic based on squeaky wheel 

optimization for instances containing up to 40 vessels

Deterministic BAP: Problem Definition

assignment and schedule of vessels along the quay (without accounting for any uncertainty)

of vessels dependent on cargo type on the vessel (the relative location of 

the vessel along the quay with respect to the cargo location on the yard) and the number of cranes 

(waiting time + handling time) of vessels berthing at the port

Near optimal solutions obtained using set partitioning method or heuristic based on squeaky wheel 

optimization for instances containing up to 40 vessels



GSPP Formulation: A simple example

● |N| = 2, |M| = 3, |H| = 3

● Vessel 1 cannot occupy section 3 as it does not have conveyor facility, vessel 2

● Feasible assignment matrix:

Vessel 1 1

Vessel 2 0

Section 1 , Time 1 1

Section 1, Time 2 1

Section 1, Time 3 0

Section 2, Time 1 1

Section 2, Time 2 1

Section 2, Time 3 0

Section 3, Time 1 0

Section 3, Time 2 0

Section 3, Time 3 0

Vessel 1

x = 0

GSPP Formulation: A simple example

Vessel 1 cannot occupy section 3 as it does not have conveyor facility, vessel 2 arrives at time t = 1

1 0 0

0 1 1

0 0 0

1 1 0

1 1 0

0 0 0

1 1 1

1 1 1

0 0 0

0 0 1

0 0 1

Vessel 2

x = L



GSPP Model Formulation

Objective Function: 

(min p

Pp

pd λ∑
∈

A p

Pp

ip =∑
∈

1)( λ

Constraints: 

b p

Pp

st

p ≤∑
∈

1)( λ

pλ

pd

ph

: delay in service associated with assignment 

: handling time associated with assignment 

: binary parameter, equal to 1 if assignment             is part of the optimal solution

GSPP Model Formulation

)pph λ+

Ni ∈∀

HtMs ∈∀∈∀ ,

delay in service associated with assignment Pp∈

handling time associated with assignment Pp∈

: binary parameter, equal to 1 if assignment             is part of the optimal solutionPp∈



Real Time Recovery in Berth Allocation ProblemReal Time Recovery in Berth Allocation Problem



Problem Definition: Real time recovery in BAP

● Objective: For a given baseline berthing schedule, minimize the total realized costs 

as data (arrival times and handling times of vessels) is revealed in real time.

● This amounts to solving an optimization problem at time instant t with the following 

objective function:
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Problem Definition: Real time recovery in BAP

For a given baseline berthing schedule, minimize the total realized costs 

as data (arrival times and handling times of vessels) is revealed in real time.

This amounts to solving an optimization problem at time instant t with the following 

|)'|2 − iii eeµ

Service cost of unassigned vessels

Cost of re-allocation of unassigned vessels

Berthing delays to vessels arriving on-time



● Key arrival disruption pattern in real time

− For each vessel i ϵ N, we are given an expected arrival time 

advance.  

− The expected arrival time of a given vessel may be updated 

planning horizon of length |H| at time instants 

0  ≤  ti1 <  ti2 <  ti3 …. ti(F-1)  

where ai is the actual arrival time of the vessel, and the corresponding arrival time 

update at time instant tiF is AiF for all i ϵ

● Actual handling time of a vessel is revealed at the time instant when the 

handling of the vessel is actually finished

Problem Definition: Real time recovery in BAP

Key arrival disruption pattern in real time

we are given an expected arrival time Ai which is known in 

The expected arrival time of a given vessel may be updated |F| times during the 

at time instants ti1, ti2…tiF such that 

1)  <  tiF < ai

is the actual arrival time of the vessel, and the corresponding arrival time 

N.

Actual handling time of a vessel is revealed at the time instant when the 

handling of the vessel is actually finished

Problem Definition: Real time recovery in BAP



Modeling the Uncertainty

● Uncertainty in arrival times

− Based on the data sample, arrival times are modeled using a discrete uniform distribution. Actual 

arrival time ai of vessel i lies in the range [Ai-

vessel i at the start of the planning horizon. 

− At any given time instant t in the planning horizon, the following 3 cases arise

● Case I : vessel i has arrived and the actual arrival time 

● Case II : the vessel hasn’t arrived yet but the expected arrival time 

● Case III : neither the actual nor the expected arrival time is known at time instant 

arrival time estimate          at time instant 

from the following equation

Since the arrival time of vessel i is assumed to be uniformly distributed,       

t
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Modeling the Uncertainty

Based on the data sample, arrival times are modeled using a discrete uniform distribution. Actual 

-V , Ai+V], where Ai  is the expected arrival time of 

in the planning horizon, the following 3 cases arise

has arrived and the actual arrival time ai is known 

Case II : the vessel hasn’t arrived yet but the expected arrival time Ai is known

Case III : neither the actual nor the expected arrival time is known at time instant t, then the 

arrival time estimate          at time instant t is such that                             , and is determined 

is assumed to be uniformly distributed,       

aρ=

],[ VAta i

t
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Modeling the Uncertainty

● Uncertainty in handling times

− Handling times are modeled using a discrete truncated exponential distribution. Actual handling time 

vessel i berthed at starting section k lies in the range [

handling time of vessel i berthed at starting section

− At any given time instant t in the planning horizon, the following 3 cases arise

● Case I : the handling of vessel i berthed at starting section 

is known 

● Case II : the vessel is being handled at time instant 

known, but the actual handling time is unknown. The  handling time estimate              at time instant 

given by 

● Case III : the vessel is not assigned yet, in which case the handling time of the vessel at time instant 

any berthing position k is given by

Since the handling times follow a truncated exponentially distribution,
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Modeling the Uncertainty

Handling times are modeled using a discrete truncated exponential distribution. Actual handling time hi(k) of 

lies in the range [Hi(k) , γ Hi(k)], where Hi(k) is the estimated (deterministic) 

berthed at starting section k

in the planning horizon, the following 3 cases arise

berthed at starting section k’ is finished, then the actual handling time hi(k’)

Case II : the vessel is being handled at time instant t, thus the actual berthing position k’ of the vessel is 

known, but the actual handling time is unknown. The  handling time estimate              at time instant t is 

Case III : the vessel is not assigned yet, in which case the handling time of the vessel at time instant t for 

Since the handling times follow a truncated exponentially distribution,
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Solution Algorithms

● Re-Optimization Based Recovery Algorithm
− Re-optimize the berthing schedule of all unassigned vessels using set

there is a disruption
● arrival time of any vessel is updated and it deviates from its previous expected value.

● handling of any vessel is finished and it deviates from the estimated value

− Uncertainty in the unknown arrival and handling times provided as input parameters is modeled as 

discussed earlier

− Berthing assignment of all vessels that have already been assigned to the quay is considered frozen and 

unchangeable

● Smart Greedy Recovery Algorithm
− Assign an incoming vessel to the quay as soon as berthing space is available,  at or after the estimated 

berthing time of the vessel (as per the baseline schedule)

− The vessel is assigned to the section(s) at which 

that instant is minimized by modeling the uncertainty in unrevealed arrival and handling times, as 

discussed earlier
● To determine the total realized cost to assign a given vessel at a given set of section(s), all other unassigned 

vessels are assigned to the estimated berthing sections as per the baseline schedule

Optimization Based Recovery Algorithm
optimize the berthing schedule of all unassigned vessels using set-partitioning method every time 

arrival time of any vessel is updated and it deviates from its previous expected value.

handling of any vessel is finished and it deviates from the estimated value

Uncertainty in the unknown arrival and handling times provided as input parameters is modeled as 

Berthing assignment of all vessels that have already been assigned to the quay is considered frozen and 

Assign an incoming vessel to the quay as soon as berthing space is available,  at or after the estimated 

berthing time of the vessel (as per the baseline schedule)

The vessel is assigned to the section(s) at which the total realized cost of all the unassigned vessels at 

that instant is minimized by modeling the uncertainty in unrevealed arrival and handling times, as 

To determine the total realized cost to assign a given vessel at a given set of section(s), all other unassigned 

vessels are assigned to the estimated berthing sections as per the baseline schedule



● Ongoing Practice at the Port: Greedy Recovery Algorithm

− Assign the vessels as they arrive as soon as berthing space is available, 

the vessel (as per the baseline schedule)

− Any given vessel is assigned  at those set of sections where the realized cost of assigning it is minimized. Thus no 

need to model uncertainty in future arrival and handling times

− Closely represents the ongoing practice at the port

● Best Solution : Aposteriori Optimization Approach

− Re-solve the problem of real time recovery once all the unknown data is revealed at the end of the planning 

horizon

− Problem of real time recovery reduces to solving the deterministic berth allocation problem with the objective 

function to minimize total realized cost of the schedule

− Provides a lower bound to the minimization problem of real time recovery we are interested in solving

Benchmark Solutions

Ongoing Practice at the Port: Greedy Recovery Algorithm

Assign the vessels as they arrive as soon as berthing space is available, at or after the estimated berthing time of 

Any given vessel is assigned  at those set of sections where the realized cost of assigning it is minimized. Thus no 

need to model uncertainty in future arrival and handling times

Optimization Approach

solve the problem of real time recovery once all the unknown data is revealed at the end of the planning 

Problem of real time recovery reduces to solving the deterministic berth allocation problem with the objective 

function to minimize total realized cost of the schedule

Provides a lower bound to the minimization problem of real time recovery we are interested in solving



Arrival Disruption Scenario

ETA

Vessel 0: 19 22(2) 21(4)    24(5)    22(6)

Vessel 1: 3 ATA:6

Vessel 2: 4 7(3) 6(4)         6(5)       

Vessel 3: 14 16(2) 10(3) 12(4)

Vessel 4: 18 23(9) ATA:22

Vessel 5: 12 13(7) ATA:12

Vessel 6: 0 5(2) ATA:4

Vessel 7: 0 ATA:-4

Vessel 8: 0 ATA:3

Vessel 9: 11 ATA:7

Arrival Disruption Scenario

21(4)    24(5)    22(6) 24(7)    23(8)    23(9)   23(22)   ATA:23

6(4)         6(5)       ATA:7

12(4) ATA:11



Computational Results

● Low Stochasticity, mildly congested scenario

● |N|=10 vessels, |M|= 10 sections, c1 = c3 = 1.0, c

● Mean Gap with respect to the aposteriori optimization solution

Greedy Approach Optimization based Approach 

13.75% 1.78%

c2 = 0.002, U= 4 hours, V = 5, γ = 1.1, ρa= ρh= 0.95

optimization solution

Optimization based Approach Smart Greedy Approach

1.78% 9.53%



Computational Results

● Low Stochasticity, highly congested scenario

● |N|=25 vessels, |M|= 10 sections, c1 = c3 = 1.0, 

● Mean Gap with respect to the aposteriori optimization solution

Greedy Approach Optimization based Approach 

86.85 % 48.06 %

= 1.0, c2 = 0.002, U= 4 hours, V = 5, γ = 1.1, ρa= ρh= 0.95

optimization solution

Optimization based Approach Smart Greedy Approach

48.06 % 63.68 %



Computational Results

● High Stochasticity, mildly congested scenario

● |N|=10 vessels, |M|= 10 sections, c1 = c3 = 1.0, c

● Mean Gap with respect to the aposteriori optimization solution

Greedy Approach Optimization based Approach 

17.70 % 4.11 %

c2 = 0.002, U= 4 hours, V = 10, γ = 1.2, ρa= ρh= 0.95

optimization solution

Optimization based Approach Smart Greedy Approach

4.11 % 13.27 % 



Computational Results

● High Stochasticity, highly congested scenario

● |N|=25 vessels, |M|= 10 sections, c1 = c3 = 1.0, 

● Mean Gap with respect to the apriori optimization solution

Greedy Approach Optimization based Approach 

77.57 % 78.41 %

= 1.0, c2 = 0.002, U= 4 hours, V = 10, γ = 1.2, ρa= ρh= 0.95

optimization solution

Optimization based Approach Smart Greedy Approach

78.41 % 68.88 %



Conclusions and Future Work

● Modeling the uncertainty in future vessel arrival and handling times can significantly reduce the 

total realized costs of the schedule, in comparison to the ongoing practice of re

at the port. 

● The optimization based recovery algorithm outperforms the heuristic based smart  greedy 

recovery algorithm, but is computationally more expensive.

● Limitation:  The re-optimization based algorithm that involves updating the entire schedule in the 

event of disruptions is more sensitive to the increase in problem size and stochastic variability, as 

compared to the smart greedy approach.

● As part of future work, we are developing a robust formulation of the berth allocation problem 

with a certain degree of anticipation of variability in information.

Conclusions and Future Work

Modeling the uncertainty in future vessel arrival and handling times can significantly reduce the 

total realized costs of the schedule, in comparison to the ongoing practice of re-assigning vessels 

The optimization based recovery algorithm outperforms the heuristic based smart  greedy 

recovery algorithm, but is computationally more expensive.

optimization based algorithm that involves updating the entire schedule in the 

event of disruptions is more sensitive to the increase in problem size and stochastic variability, as 

As part of future work, we are developing a robust formulation of the berth allocation problem 

with a certain degree of anticipation of variability in information.



Thank you!Thank you!



Literature Review

● Very scarce literature on dealing with

terminals . To the best of our knowledge,

● OR literature related to BAP under uncertainty

− Pro-active Robustness: Plan with a certain

information.

● Stochastic programming approaches used

● Define surrogate problems i.e. for a given

expected delays: Moorthy and Teo (2006

al. (2010)

− Reactive approach or disruption management

● Zeng et al.(2012) and Du et al. (2010) propose

or local rescheduling heuristics.

with uncertainty in operations in container

knowledge, no literature on bulk ports.

uncertainty in container terminals:

certain degree of anticipation of variability in

used by Zhen et al. (2011), Han et al. (2010).

given level of service, maximize buffer times or minimize

2006), Zhen and Chang (2012), Xu et al. (2012, Hendriks et

management : Reacting to disruptions in real time

propose reactive strategies based on simple rules of thumb



BAP Solution 

Quay length

Handling Time

Berthing Time
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Berthing location

Vessel 1

Vessel 3

Asilomar Conference Grounds, Pacific Grove, CA

Time Horizon

Vessel 2

Vessel 4

Conference Grounds, Pacific Grove, CA



Discretization

Vessel 1 Vessel 2

Discrete

Hybrid

Continuous 

Vessel 1 Vessel 2

Vessel 1 Vessel 2

Berth 1 Berth 2

Section 1

Vessel 3

Discrete Layout

Hybrid Layout

Continuous Layout

Vessel 3

Vessel 3

Berth 3

Section 2 Section 3



MILP Model

Objective Function

Decision variables:

mi starting time of handling of vessel 

ci total handling time of vessel 

(min ∑
∈

−
Ni

im

starting time of handling of vessel i ∈ N;

total handling time of vessel i ∈ N;

)+ ii cA



Dynamic vessel arrival constraints

Non overlapping constraints

MILP Model
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MILP Model

Section covering constraints

Draft Restrictions
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MILP Model

Determination of Handling Times

● Given an input vector of unit handling times for each combination of cargo type and 
section along the quay

● Specialized facilities (conveyors, pipelines etc.) also modeled as cargo types

● All sections  occupied by the vessel are operated simultaneously

Qi quantity of cargo to be loaded on or discharged from vessel 

handling time for unit quantity of cargo 
k ∈ M;

pilk fraction of cargo handled at section k 
section l ∈ M 

i

liilk

w

ki NisQphc ∈∀≥

w

kh

Times

Given an input vector of unit handling times for each combination of cargo type and 

Specialized facilities (conveyors, pipelines etc.) also modeled as cargo types

All sections  occupied by the vessel are operated simultaneously

quantity of cargo to be loaded on or discharged from vessel i

handling time for unit quantity of cargo w ∈ W  and vessel berthed at section 

k ∈ M when vessel i is berthed at starting 

iWwMlMkN ∈∀∈∀∈∀ ,,,



GSPP Model

� Used in context of container terminals by Christensen and 

(2008)

� Generate set P of columns, where each column           represents a 

feasible assignment of a single vessel in both space and time

� Generate two matrices

� Matrix A =              ; equal to 1 if vessel 

vessel in the feasible assignment represented by column 

� Matrix B =              ; equal to 1 if section           is occupied at time                

in column 

Note: Assume integer values for all time measurements

Pp∈

)( ipA

)( st

pb
Ht∈

in context of container terminals by Christensen and Holst

Generate set P of columns, where each column           represents a 

feasible assignment of a single vessel in both space and time

Matrix A =              ; equal to 1 if vessel is the assigned 

vessel in the feasible assignment represented by column 

Matrix B =              ; equal to 1 if section           is occupied at time                

Assume integer values for all time measurements

Pp∈
Ni ∈

Ms∈

Pp∈



GSPP Formulation: A simple example

● |N| = 2, |M| = 3, |H| = 3

● Vessel 1 cannot occupy section 3 owing to spatial constraints (does not have conveyor facility), vessel 2

time t = 1

● Constraint matrix P has 4 feasible assignments:

Vessel 1 1

Vessel 2 0

Section 1 , Time 1 1

Section 1, Time 2 1

Section 1, Time 3 0

Section 2, Time 1 1

Section 2, Time 2 1

Section 2, Time 3 0

Section 3, Time 1 0

Section 3, Time 2 0

Section 3, Time 3 0

Vessel 1

x = 0

GSPP Formulation: A simple example

Vessel 1 cannot occupy section 3 owing to spatial constraints (does not have conveyor facility), vessel 2 arrives at 

1 0 0

0 1 1

0 0 0

1 1 0

1 1 0

0 0 0

1 1 1

1 1 1

0 0 0

0 0 1

0 0 1

Vessel 2

x = L



GSPP Model Formulation

Objective Function: 

(min p

Pp

pd λ∑
∈

A p

Pp

ip =∑
∈

1)( λ

Constraints: 

b p

Pp

st

p ≤∑
∈

1)( λ

pλ

pd

ph

: delay in service associated with assignment 

: handling time associated with assignment 

: binary parameter, equal to 1 if assignment             is part of the optimal solution

GSPP Model Formulation

)pph λ+

Ni ∈∀

HtMs ∈∀∈∀ ,

delay in service associated with assignment Pp∈

handling time associated with assignment Pp∈

: binary parameter, equal to 1 if assignment             is part of the optimal solutionPp∈



SWO Heuristic Approach

● Introduced by Clements (1997), typically

possible to quantify the contribution

overall solution quality

● Construct/ Analyze/ Prioritize: Solution

constructed and analyzed, results of analysis

order

● Moves in search space are motivated by

the overall objective function value

Priority 

Space

Construct Solution

Construct Solution

P1

P2

P3 Construct Solution

SWO Heuristic Approach

typically successful in problems where it is

of each single problem element to the

generated at each successive iteration is

analysis used to generate a new priority

by the weak performing elements and not

Solution 

Space

Construct Solution

Construct Solution

S1

S2

S3Construct Solution



● Construction heuristic: Returns a feasible berthing assignment for given priority 
order of vessels

● Initial Solution: First-Cum-First-Served ordering based on arrival times of vessels

● Algorithm:  In each successive iteration, a new priority 
on the service quality measure of each 

− Service time of the vessel in the solution found in the last iteration
− Deviation of service time of vessel from the minimum service time possible for that vessel ( 

zero delay + minimum handling time )
− Sum of service times of the vessel  in all iterations completed so far!

● If a priority order is already evaluated, introduce randomization by swapping two 
or more vessels, until we obtained a priority order that has not been evaluated so 
far

● Algorithm terminates after a preset number of 
selected as the final solution

SWO Heuristic Approach

: Returns a feasible berthing assignment for given priority 

Served ordering based on arrival times of vessels

:  In each successive iteration, a new priority order is constructed based 
quality measure of each berthing vessel in the previous solution

Service time of the vessel in the solution found in the last iteration
Deviation of service time of vessel from the minimum service time possible for that vessel ( 

Sum of service times of the vessel  in all iterations completed so far!

If a priority order is already evaluated, introduce randomization by swapping two 
or more vessels, until we obtained a priority order that has not been evaluated so 

Algorithm terminates after a preset number of iterations and best solution is 

SWO Heuristic Approach



Generation of Instances

● Instances based on data from SAQR port with quay 

in the range 80-260 meters.

● Generate 6 instances sizes with |N| = 10, 25 and 40 vessels, and 

with 9 instances for each instance size.

● Handling times generated for 6 cargo types.

● Drafts of all vessels Di are less than the minimum

(0,0) Quay Axis 

Clay

Cement

(200,600)

(700,1200)

Grain (500,1000)
Conveyor
(200,1100)

Yard Axis

Generation of Instances

port with quay length of 1600 meters and vessel lengths 

= 10, 25 and 40 vessels, and |M| = 10 and 30 sections, 

Handling times generated for 6 cargo types.

are less than the minimum draft along the quay.

(1600,0)Axis 

Coal

(700,1200)

(1100,800)

section k

Pipeline

(1200,1100)



Computational Results

� Instances based on data from SAQR port

� All tests were run on an Intel Core i7 (2
of CPLEX 12.2.

� Results inspired by port data show that

� MILP formulation fails to produce optimal
10 vessels within CPLEX time limit of 2 hours

� The performance of the GSPP model is quite

� Can solve instances up to |N| = 40 vessels

� Limitations: For larger instances, or longer
dynamic column generation!)

� Alternate heuristic approach based on
reasonably well for not so large instances
respect to exact solution obtained from
instances.

Computational Results

port

2.80 GHz) processor and used a 32-bit version

the problem is complex !

optimal results for even small instances with |N|=
hours.

quite remarkable!

vessels

longer horizon H solver runs out of memory (use

squeaky wheel optimization (SWO) performs
instances. Optimality gap is less than 10% (with

from GSPP approach) averaged over all tested



Results Analysis

Time Axis

C P C , P P

Grain

Clay

Pipeline

Grain

Cement

Pipeli

ne

Coal

Coal
Coal

Conve

yor

Quay Axis

Time Axis

|N|=10, |M|=10, 

congested scenario

C P C , P P

Quay Axis

Time Axis

Clay

Grain

Co

nve

yor
Cement

Coal

Pipeline

Clay Coal

Grain

Clay

Coal

Clay

Conveyor

Coal

Grain

Conveyor

Clay

Cement

Conveyor

Clay

Pipeline

Cement

Pipeline

Clay

Grain

|N|=25, |M|=10, 

congested scenario



● Penalty Cost on late arriving vessels: Impose a penalty fees on vessels arriving 

beyond the right end of the arrival window, A

Penalty Cost

Ai
Ai - Ui

Arrival Time Window = 2U

c3gi

Problem Definition: Real time recovery in BAP

Impose a penalty fees on vessels arriving 

beyond the right end of the arrival window, Ai+Ui

Actual Arrival TimeAi +Ui ai

gi

Window = 2Ui

slope = c3

Problem Definition: Real time recovery in BAP


