Demand Based Timetabling of Passenger Railway Service

Tomáš Robenek
Jianghang Chen Michel Bierlaire

hEART 2013
2nd Symposium of the European Association for Research in Transportation, Stockholm

September 5, 2013
Railway Planning

STRATEGIC - several years

TACTICAL - >= 1 year

OPERATIONAL - < 1 year

Demand → Line Planning → Lines → Train Timetabling → Actual Timetables → Train Platforming → Platform Assignments

→ Actual Timetables → Rolling Stock Planning → Train Assignments

→ Actual Timetables → Crew Planning → Crew Assignments
Line Planning Problem

Railway Infrastructure

Passenger Demand

Potential Lines

Model

Min Cost

Max Direct Pass.

Trade-Off

Supply and Demand

SURPLUS

Shortage

Equilibrium

Price

Quantity

Supply

Demand
Train Timetabling Problem – Non-Cyclic
Train Timetabling Problem – Cyclic
Arising Issues

Figure: Outside peak hour

Figure: Inside peak hour

Figure: Train station in China
Do We Keep Traditions?

TRADITION

Doing Stupid Things Since 1876 Is No Reason To Continue Doing Stupid Things.
Railway Planning Improved

STRATEGIC - several years
- Demand

TACTICAL - >= 1 year
- Line Planning
- Ideal Train Timetabling
- Ideal Timetables
- Train Timetabling

OPERATIONAL - < 1 year
- Actual Timetables
- Train Platforming
- Rolling Stock Planning
- Crew Planning

TOC
IM

TRANSP-OR

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

8 / 35
Agenda

1. Motivation
2. Ideal Train Timetabling Problem
3. Conclusions
4. Future Work
1 Motivation

2 Ideal Train Timetabling Problem
 - Assumptions
 - Inputs
 - Decision Variables
 - Objective
 - Constraints
 - Cyclicality
 - Connections

3 Conclusions

4 Future Work
Assumptions I

User Cost

Ideal Time

Time
Assumptions II
Inputs

\[t \in T \quad \text{– set of time steps} \]
\[l \in L \quad \text{– set of lines} \]
\[f \quad \text{– fraction by which it is better to be early} \]
\[d_t^l \quad \text{– demand captured along the line } l, \text{ when scheduling} \]
\[\text{a train at time } t \]
\[d_t^{ll'} \quad \text{– connection demand captured along the line } l \text{ and } l', \]
\[\text{when scheduling a train at time } t \text{ on the line } l \]
\[n^l \quad \text{– number of trains available for line } l \]
\[h_{l}^{l'} \quad \text{– relative headway to reach a connection point of lines} \]
\[l \text{ and } l' \text{ from the first station on line } l \text{ and } l' \]
\[c^l \quad \text{– size of the cycle on line } l \]
\[s \quad \text{– preferred start of the planning horizon} \]
\[M \in \mathbb{M} \quad \text{– set of sufficiently large numbers} \]
Primary Decision(s)

\[
x_t^l = \begin{cases}
1 & \text{if a train on line } l \text{ is scheduled at time } t, \\
0 & \text{otherwise.}
\end{cases}
\]
Secondary Decisions I

- $y_{tb}^{l} \in \mathbb{R}^{+}$ – cost of the passengers wanting to travel at time t on the line l, when taking a closest train at t or before
- $y_{ta}^{l} \in \mathbb{R}^{+}$ – cost of the passengers wanting to travel at time t on the line l, when taking a closest train after t
- $y_{t}^{l} \in \mathbb{R}^{+}$ – cost of the passengers wanting to travel at time t on the line l
Secondary Decisions II

\[z_t^l = \begin{cases}
1 & \text{if passengers wanting to travel at time } t \\
& \text{on the line } l \text{ take the closest train after the time } t, \\
0 & \text{otherwise.}
\end{cases} \]
Objective

$$\min \sum_{l \in L} \sum_{t \in T} y^l_t \cdot d^l_t$$
Constraints I

\[y_{lb}^{t} \geq \frac{(t - t')}{f} \cdot \left(x_{t'}^{l} - \sum_{t''=t'+1}^{t} x_{t''}^{l} \right) \quad \forall l \in L, \forall t, \forall t' \in T : t \geq t', \]

\[y_{la}^{t} \geq (t' - t) \cdot \left(x_{t'}^{l} - \sum_{t''=t+1}^{t'-1} x_{t''}^{l} \right) \quad \forall l \in L, \forall t, \forall t' \in T : t < t', \]
\[y_{lb}^I \geq M_1 \cdot \left(1 - \sum_{t' = s}^{t} x^l_{i'} \right) \quad \forall l \in L, \forall t \in T, \]

\[y_{la}^I \geq M_1 \cdot \left(1 - \sum_{t' = t}^{T} x^l_{i'} \right) \quad \forall l \in L, \forall t \in T, \]
Constraints III

\[y_t^l \geq y_t^{lb} - z_t^l \cdot M_2 \quad \forall l \in L, \forall t \in T, \]
\[y_t^l \geq y_t^{la} - (1 - z_t^l) \cdot M_2 \quad \forall l \in L, \forall t \in T, \]
\[M_2 > M_1 \]
Constraints IV

$$\sum_{t \in T} x^l_t \leq n^l \quad \forall l \in L,$$
Motivation

Ideal Train Timetabling Problem
- Assumptions
- Inputs
- Decision Variables
- Objective
- Constraints
- Cyclicity
- Connections

Conclusions

Future Work
Introducing Cyclicity

\[x^l_{t+c^l} = x^l_t \]

\[\forall l \in L, \forall t \in T : t + c^l \leq T : t \geq s, \]

\[\min(t+c^l, T) \]

\[\sum_{t'=t+1} x^l_{t'} \leq (1 - x^l_t) \cdot M_3 \]

\[\forall l \in L, \forall t \in T : t \geq s, \]
Introducing Cyclicity

\[x_{t+c'}^l = x_t^l \]

\[\min(t + c', T) \sum_{t'=t+1} x_t' \leq (1 - x_t^l) \cdot M_3 \]

\[\forall l \in L, \forall t \in T : t + c' \leq T : t \geq s, \]

\[\forall l \in L, \forall t \in T : t \geq s, \]
1 Motivation

2 Ideal Train Timetabling Problem
 - Assumptions
 - Inputs
 - Decision Variables
 - Objective
 - Constraints
 - Cyclicity
 - Connections

3 Conclusions

4 Future Work
Extra Decisions I

- \(y_t^{ll'} \in \mathbb{R}^+ \) – cost of the passengers wanting to travel at time \(t \) on the line \(l \), when taking a closest train at \(t \) or before and connecting to line \(l' \)
- \(y_t^{ll''} \in \mathbb{R}^+ \) – cost of the passengers wanting to travel at time \(t \) on the line \(l \), when taking a closest train after \(t \) and connecting to line \(l' \)
- \(y_t^{ll'''} \in \mathbb{R}^+ \) – cost of the passengers wanting to travel at time \(t \) on the line \(l \) and connecting to line \(l' \)
Extra Decisions II

\[z_{t}^{ll'} = \begin{cases}
1 & \text{if passengers wanting to travel at time } t \text{ on the line } l \text{ take the closest train after the time } t \text{ and connecting to line } l', \\
0 & \text{otherwise.}
\end{cases} \]
Objective

\[
\min \sum_{l \in L} \sum_{t \in T} y^l_t \cdot d^l_t + \sum_{l \in L} \sum_{l' \in L} \sum_{t \in T} y_{l'l}^t \cdot d_{l'l}^t
\]
Extra Constraints I

\[y_{t''}^b \geq (t - t') / f \cdot \left(x_{t'}^{l'} - \sum_{t'''=t'+1}^{t} x_{t'''}^{l''} \right) + \left(t'' - (t' + h_i') \right) \cdot \left(x_{t''}^{l''} - \sum_{t'''=t'+h_i'+1}^{t''-1} x_{t'''}^{l''} \right) - M_4 \cdot \left(1 - x_{t'}^{l'} + \sum_{t'''=t'+1}^{t} x_{t'''}^{l''} \right) \]

\(\forall l, \forall l' \in L : l \neq l' \),

\(\forall t, \forall t', \forall t'' \in T : t \geq t' \) and \(t' + h_i' < t'' \),

\[y_{t''}^a \geq (t' - t) \cdot \left(x_{t'}^{l'} - \sum_{t'''=t+1}^{t'-1} x_{t'''}^{l''} \right) + \left(t'' - (t' + h_i') \right) \cdot \left(x_{t''}^{l''} - \sum_{t'''=t'+h_i'+1}^{t''-1} x_{t'''}^{l''} \right) - M_4 \cdot \left(1 - x_{t'}^{l'} + \sum_{t'''=t+1}^{t'-1} x_{t'''}^{l''} \right) \]

\(\forall l, \forall l' \in L : l \neq l' \),

\(\forall t, \forall t', \forall t'' \in T : t < t' \) and \(t' + h_i' < t'' \),
Extra Constraints II

User Cost

Ideal Time t

Regular Time Step

Arrival to Line l' at time $t'+h$

Departure

yt_{lb}

yt_{la}

Time t''
Extra Constraints III

\[y_{t}^{ll'} \geq y_{t}^{ll'}^{b} - z_{t}^{ll'} \cdot M_{2} \quad \forall l, \forall l' \in L: l \neq l', \forall t \in T, \]

\[y_{t}^{ll'} \geq y_{t}^{ll'}^{a} - (1 - z_{t}^{ll'}) \cdot M_{2} \quad \forall l, \forall l' \in L: l \neq l', \forall t \in T, \]

Constraints to add

- Beginning and the end of horizon, when no connections are possible
1 Motivation

2 Ideal Train Timetabling Problem

3 Conclusions

4 Future Work
Conclusions

- New planning phase, based on the demand
- User cost rather than demand to capture (no need for discrete choice model)
- Can handle both non- and cyclic timetables
- Connections are demand imposed

...AND IN CONCLUSION I RESTATE MY MAIN POINTS IN A SUPER WORDY FASHION TO SQUEEZE ANOTHER PARAGRAPH OUT OF THIS PAPER.
1 Motivation

2 Ideal Train Timetabling Problem

3 Conclusions

4 Future Work
Future Work

- Methodology design (cyclic is tighter than the non-)
- Actually solving the problem
- Analysis of the general results
- Analysis of the connections
Thank you for your attention.