hEART 2013

A mesoscopic dynamic flow model for pedestrian movement in railway stations

F. Hänseler, B. Farooq, T. Mühlematter and M. Bierlaire

September 6, 2013
Pedestrian flows in train stations (Lucerne, CH)
Framework for pedestrian flow estimation

Train timetable
Spatio-temporal observations
Travel surveys

Demand estimation
Traffic assignment

Dynamic trip table
Travel time, occupation

Demand
supply
Network-based pedestrian propagation models

- graph-based representation of space
- **cell-transmission models (CTM)** [AM90, Dag94, ASKT07]
 - mesoscopic: aggregate group of pedestrians
 - deterministic: 1st order flow theory
 - system dynamics: macroscopic fundamental diagram
- **queueing network based models** [CS94, Løv94, Daa04]
 - disaggregate: individual agents
 - stochastic: random queues
Representation of pedestrian facilities

- walkable area
- entry/exit points
- route $R = (r_0, r_1, \ldots)$
 - topological area r
 - ‘classical’ route choice
- path $\Gamma = (\xi_1, \xi_2, \ldots)$
 - discretization cell ξ
 - local path choice
Framework of pedestrian propagation model

- pedestrian fundamental diagram [Wei93]

\[v = \min(\frac{k}{k_{\text{opt}}} - \frac{1}{k_{\text{jam}}}, \frac{q}{q_{\text{opt}}}) \]

\[k_{\text{opt}} = 1.75 \]

\[k_{\text{jam}} = 5.4 \]

\[q_{\text{opt}} = 1.22 \]

\[v_f = 1.34 \]
Framework of pedestrian propagation model

- pedestrian fundamental diagram [Wei93]
 - deterministic, isotropic density-velocity relation
 - hydrodynamic flow \(q(k) = kv(k) \)

- space: network of cells \(G = (V, E) \)
 - cells \(\xi \in V \), edges \(e \in E \)
 - in- and outflow edges of cell \(\xi \): \(I(\xi) \), \(O(\xi) \)

- time: discrete intervals \(\tau \in \mathcal{T} \)
 - uniform length \(\Delta t = \Delta L/v_f \), \(\Delta L^2 \): cell size

- pedestrians: groups \(\ell \in \mathcal{L} \)
 - route \(R \), departure interval \(\tau_0 \), size \(m_0 \)
 - \(m_\ell(\xi, \tau) \): size of group \(\ell \) in cell \(\xi \) during interval \(\tau \)
Advancement of group ℓ along path Γ

- ‘sending capacity’ of gate $g : i \rightarrow j$, $g \in \Gamma$ during interval τ

\[
S^\ell_g(\tau) = \min \left\{ \frac{m^{\ell}(i, \tau)}{\sum_{\ell \in \mathcal{L}} m^{\ell}(i, \tau)} \cdot \tilde{Q}_i(\tau) \right\}
\]

- free flow: all agents proceed
- congestion: demand-proportional supply
- hydrodynamic outflow capacity

\[
\tilde{Q}_\xi(\tau) = \begin{cases}
Q_\xi(\tau) & \text{if } \sum_{\ell \in \mathcal{L}} m_\ell(\xi, \tau) \leq k_{\text{opt}}\Delta L^2 \\
Q_{\xi, \text{opt}} & \text{otherwise}
\end{cases}
\]

$\sim Q_\xi(\tau)$: cumulated hydrodynamic cell flow

Ref: [ASKT07]
Advancement of group ℓ along path Γ

- ‘sending capacity’ of gate $g : i \rightarrow j$, $g \in \Gamma$ during interval τ

\[
S_{g}^\ell(\tau) = \min \left\{ m_{\ell}(i, \tau), \frac{m_{\ell}(i, \tau)}{\sum_{\ell \in \mathcal{L}} m_{\ell}(i, \tau)} \cdot \bar{Q}_{i}(\tau) \right\}
\]

- ‘receiving capacity’ of cell j during interval τ

\[
R_{j}(\tau) = \min \left\{ N - \sum_{\ell \in \mathcal{L}} m_{\ell}(i, \tau), \hat{Q}_{j}(\tau) \right\}
\]

- cellular capacity ($N = k_{jam}\Delta L^2$)
- hydrodynamic inflow capacity

\[
\hat{Q}_{\xi}(\tau) = \begin{cases}
Q_{\xi, opt} & \text{if } \sum_{\ell \in \mathcal{L}} m_{\ell}(\xi, \tau) \leq k_{opt}\Delta L^2 \\
Q_{\xi}(\tau) & \text{otherwise}
\end{cases}
\]

Ref: [ASKT07]
Advancement of group ℓ along path Γ

- actual flow along gate $g : i \rightarrow j$, $g \in \Gamma$ during interval τ

\[
y_g^\ell(\tau) = \begin{cases}
S_g^\ell(\tau) & \text{if } \sum_{h \in \mathcal{I}(j)} \sum_{\ell \in \mathcal{L}} S_h^\ell(\tau) \leq R_j(\tau) \\
X_g^\ell(\tau) R_j(\tau) & \text{otherwise}
\end{cases}
\]

- cell congestion: demand proportional supply distribution

\[
X_g^\ell(\tau) = \frac{S_g^\ell(\tau)}{\sum_{k \in \mathcal{I}(j)} \sum_{\ell \in \mathcal{L}} S_k^\ell(\tau)}
\]

- recursion for group ℓ in cell i

\[
m_\ell(i, \tau + 1) = m_\ell(i, \tau) + y_f^\ell(\tau) - y_g^\ell(\tau)
\]

- $\Gamma = (\ldots, f, g, \ldots)$, where $f : h \rightarrow i$, $g : i \rightarrow j$

Ref: [ASKT07]
Cell potentials for **en-route path choice**

- **route** \(R = (r_0, r_1, \ldots) \)
- **path** \(\Gamma = (\xi_1, \ldots, \xi_*) \)
- **route-specific floor field** \(F^R \)
 - distance to **destination** \(\star \)
 - \(F^R_{\xi} = \min \) if \(\xi = \xi_{\star}^R \)
- **traffic-dependent floor field**
 - prevailing speed \(v_{\xi}(\tau)/v_f \)
- **potential of cell** \(\xi \)
 - \(P^R_{\xi}(\tau) = F^R_{\xi} - \alpha \frac{v_{\xi}(\tau)}{v_f} \)
 - lower is ‘closer’ to destination
 - route \(R \), interval \(\tau \)

Ref: [HG08, GHW11]
Advancement of group ℓ along route R

- turning proportion: edge $g : i \rightarrow j$, $g \in \mathcal{E}_R$, interval τ
 \[
 D^R_g(\tau) = \begin{cases}
 \frac{P^R_j(\tau) - P^R_i(\tau)}{\sum_{k \in \Theta^R_i(\tau)}\{P^R_k(\tau) - P^R_i(\tau)\}}, & g \in \Theta^R_i(\tau) \\
 0, & \text{otherwise}
 \end{cases}
 \]

- sending capacity: edge $g : i \rightarrow j$, interval τ
 \[
 S^\ell_g(\tau) = D^R_g(\tau) \min \left\{ m^\ell(i, \tau), \frac{m^\ell(i, \tau)}{\sum_{l \in \mathcal{L}} m^\ell(i, \tau)} \tilde{Q}_i(\tau) \right\}
 \]

- recursion for group ℓ in cell $\xi \in \mathcal{V}_R$
 \[
 m^\ell(\xi, \tau + 1) = m^\ell(\xi, \tau) + \sum_{h \in \Phi^R_\xi(\tau)} y^\ell_h(\tau) - \sum_{g \in \Theta^R_\xi(\tau)} y^\ell_g(\tau)
 \]
 \[
 - \Phi^R_\xi(\tau), \Theta^R_\xi(\tau): \text{set of up- and downstream neighbors of cell } \xi
 \]
Bi-directional flow in orthogonal crossing

Simulation parameters:
\[\gamma = 1.913 \text{ #/m}^2, \]
\[k_{jam} = 5.4 \text{ #/m}^2, \]
\[n_0/N = 1, \alpha = 1 \]

<table>
<thead>
<tr>
<th>LOS</th>
<th>[#/m^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 0.179</td>
</tr>
<tr>
<td>B</td>
<td>< 0.270</td>
</tr>
<tr>
<td>C</td>
<td>< 0.455</td>
</tr>
<tr>
<td>D</td>
<td>< 0.714</td>
</tr>
<tr>
<td>E</td>
<td>< 1.333</td>
</tr>
<tr>
<td>F</td>
<td>≥ 1.333</td>
</tr>
</tbody>
</table>
Sensitivity towards congestion in counter-flow

normalized Kladek diagram: decreasing sensitivity w.r.t. congestion

\[\gamma = \{0.1, 0.25, 0.5, 1.0, 1.913^*, 4, 10\} \]

* Default value according to [Wei93]
Sensitivity towards congestion in counter-flow

\[k_{\text{jam}} = 5.4 \ \#/m^2, \ \frac{n_0}{N} = 0.5 \]

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(\gamma = 0.1)</th>
<th>(\gamma = 0.25)</th>
<th>(\gamma = 0.5)</th>
<th>(\gamma = 1)</th>
<th>(\gamma = 1.913)</th>
<th>(\gamma = 4)</th>
<th>(\gamma = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7</td>
<td>2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7</td>
<td>2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7</td>
<td>2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7</td>
<td>2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7</td>
<td>2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7</td>
<td>2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7</td>
</tr>
</tbody>
</table>
En-route path choice in bottleneck

\[P^R_\xi(\tau) = F^R_\xi - \alpha \frac{v_\xi(\tau)}{v_f} \]

\[\gamma = 1.913 \text{#/m}^2, \ k_{jam} = 5.4 \text{#/m}^2, \ n_0/N = 1.5 \]

\(\alpha = 0 \):

\(\alpha = 5 \):
Calibration using pedestrian tracking data

- data: pedestrian trajectories from multi-directional walkway (2 days, 7:37 – 7:52, Lausanne train station, Switzerland)
- objective function: \(\min \| \tau_{sim} - \tau_{obs} \|^2 \)
- calibration technique: simulated annealing [Ros06]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\mu_{cal} \pm \sigma_{cal})</th>
<th>[Wei93]</th>
</tr>
</thead>
<tbody>
<tr>
<td>free-flow speed ((v_f))</td>
<td>1.069 ± 0.006</td>
<td>1.34</td>
</tr>
<tr>
<td>congestion sensitivity ((\gamma))</td>
<td>1.963 ± 0.069</td>
<td>1.913</td>
</tr>
<tr>
<td>jam density ((k_{jam}))</td>
<td>6.227 ± 0.424</td>
<td>5.4</td>
</tr>
<tr>
<td>path choice parameter ((\alpha))</td>
<td>0.555 ± 0.278</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Preliminary results of calibration
Calibration using pedestrian tracking data

- stochasticity of density-speed relation
- small density range

![Graph showing the relationship between average density and average speed, with data points and lines indicating calibrated values using PedCTM by Weidmann [Wei93]].

Lausanne (75 m², 60 s)

- calibrated using PedCTM
- Weidmann [Wei93]
Computational performance: Case study

Peak hour in pedestrian underpass of Lausanne train station: 07:00 – 08:30 (90 min), $N_{ped} = 9132$, $A_{tot} = 685.27 \text{ m}^2$

$t_{run} = 8 \text{ min 37 s}$ (MacBook Pro 2011)

Animation : Lausanne train station, 07:40 – 07:46, January 22, 2013

Simulation parameters: $v_f = 1.096 \text{ m/s}$, $\gamma = 1.913 \#/\text{m}^2$, $k_{jam} = 5.4 \#/\text{m}^2$, $\alpha = 0.5$, $N_{cell} = 94$, $\Delta L = 2.7 \text{ m}$, $\Delta \tau = 2.464 \text{ s}$, $N_\tau = 2192$
Conclusions

- congestion in pedestrian facilities of railway stations
- demand estimation ⇔ traffic assignment
 - space: route, path ⇔ areas, cells
 - pedestrians: groups with same route & departure time
- cell-based pedestrian propagation model
 - 1st-order pedestrian flow theory
 - multi-directionalinity
 - en-route path choice
- sensitivity analysis, preliminary calibration, case study
hEART 2013:

A mesoscopic dynamic flow model for pedestrian movement in railway stations

F. Hänseler, B. Farooq, T. Mühlematter and M. Bierlaire

Financial support by SNF grant #200021-141099 ‘Pedestrian dynamics: flows and behavior’ as well as by SBB-CFF-FFS in the framework of ‘PedFlux’ is gratefully acknowledged.

– flurin.haenseler@epfl.ch
Bibliography I

Bibliography II

John J Fruin.
Pedestrian planning and design.

R.Y. Guo, H.J. Huang, and SC Wong.
Collection, spillback, and dissipation in pedestrian evacuation:
A network-based method.
Transportation Research Part B: Methodological,

H.J. Huang and R.Y. Guo.
Static floor field and exit choice for pedestrian evacuation in
rooms with internal obstacles and multiple exits.

Bibliography V

Masamitsu Mōri and Hiroshi Tsukaguchi.
A new method for evaluation of level of service in pedestrian facilities.

FP Navin and RJ Wheeler.
Pedestrian flow characteristics.

Detlef Oeding.
Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs.
SJ Older.
Movement of pedestrians on footways in shopping streets.
Traffic Engineering & Control, 1968.

S. M. Ross.
Simulation.

Armin Seyfried, Bernhard Steffen, Wolfram Klingsch, and Maik Boltes.
The fundamental diagram of pedestrian movement revisited.
Journal of Statistical Mechanics: Theory and Experiment,
U. Weidmann.
Transporttechnik der Fussgänger.
Institute for Transport Planning and Systems, ETH Zürich, 1993.