Recent trends in pedestrian modeling at EPFL

Michel Bierlaire Antonin Danalet Flurin Haenseler Marija Nikolic

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

October 23, 2013

Outline

Outline

Indicators

- Density
- Fundamental diagram
- Flow
- Oemand analysis
 - OD flows
 - Activity chains
- 5 Flow propagation

Conclusion

6

Pedestrians

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

Context

Swiss railway authority

- Increasing demand
- Increased capacity of the trains
- More and more pedestrian congestion in train stations
- Need for decision aid tools

Research projects at EPFL

Data collection and analysis

- Trajectories
- WiFi traces

Performance indicators

- Density
- Speed
- Flow
- Fundamental relationships

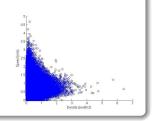
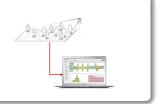
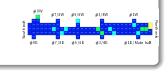
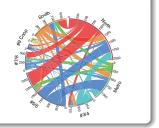



Image: A (1)


Research projects at EPFL

Demand analysis


- Origin-destination matrices
- Activities

- Assignment
- Congestion
- Cell transmission model

A →

Data

Outline

👂 Data

3 Indicators

- Density
- Fundamental diagram
- Flow
- 4 Demand analysis
 - OD flows
 - Activity chains
- 5 Flow propagation
- Conclusion

3

< E

Traditional data collection

Real life data

- Video surveillance
- Manual extraction of relevant data

Experimental data

- Controlled environment
- Video analysis

TU Delft

Data

New technology

Visiosafe

- Spin-off of EPFL
- Anonymous tracking of pedestrians
- Thermal and range sensors

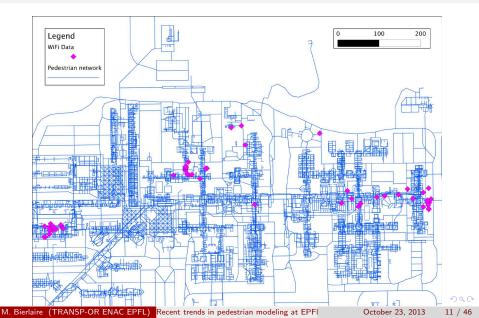
Short movie

Pervasive technology: smartphones

WiFi traces

- Media Access Control (MAC) address tracked
- Sometimes, login is required

Bluetooth


- Track surrounding devices
- Tracking devices are mobile

Data

EPFL campus

Outline

Indicators

- Density
- Fundamental diagram
- Flow


4 Demand analysis

- OD flows
- Activity chains
- Flow propagation
- Conclusion

Indicators

Traffic flow theory

- Density
- Speed
- Flow
- Fundamental relationships

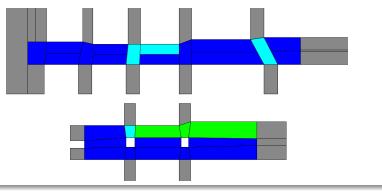
M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

Vehicular traffic

At a given time, number of cars per meter

Pedestrians

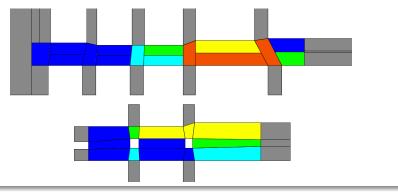
At a given time, number of pedestrians per square meter


Pedestrian walkway LoS density threshold values according to NCHRP

LOS	Pedestrian density
А	$< 0.179 \; [{ m ped}/{ m m}^2]$
В	< 0.270
С	< 0.455
D	< 0.714
Е	< 1.333
F	\geq 1.333

Data analysis: Heat map January 22, 2013

Aggregation: $\Delta t = 60$ s, A = 8...75 m²

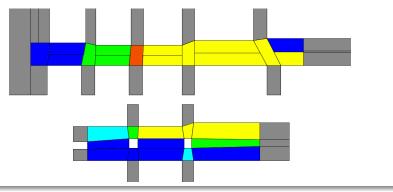

7:40-7:41: Low occupation, no train arrivals

Data analysis: Heat map January 22, 2013

Aggregation: $\Delta t = 60$ s, A = 8...75 m²

7:41-7:42: Arrival of train IR 1606 at 7:40:20 on platform 3/4

< A > < > > <

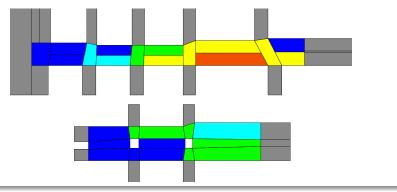

- - - E - N

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI October 23, 2013 16 / 46

Data analysis: Heat map January 22, 2013

Aggregation: $\Delta t = 60$ s, A = 8...75 m²

7:42-7:43: Arrival of train IR 706 at 7:41:24 on platform 5/6

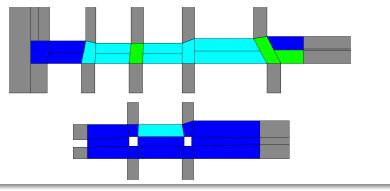


M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI October 23, 2013 17 / 46

Data analysis: Heat map January 22, 2013

Aggregation: $\Delta t = 60$ s, A = 8...75 m²

7:43-7:44: Arrival of train IR 1407 at 7:42:20 on platform 3/4

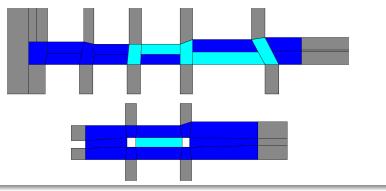

・ 何 ト ・ ヨ ト ・ ヨ ト

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI October 23, 2013 18 / 46

Data analysis: Heat map January 22, 2013

Aggregation: $\Delta t = 60$ s, A = 8...75 m²

7:44-7:45: Gradual decrease in pedestrian occupation



M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI October 23, 2013 19 / 46

Data analysis: Heat map January 22, 2013

Aggregation: $\Delta t = 60$ s, A = 8...75 m²

7:45-7:46: Return to low level of occupation

New developments

Issues

- Spatial discretization is arbitrary
- Results may be highly sensitive
- If cells are too small, many are empty
- If cells are too large, loss of heterogeneity

Solution investigated

- Visiosafe data: detailed trajectories
- Position of every single individual over time

 $(t, x(t), y(t), pedestrian_{id})$

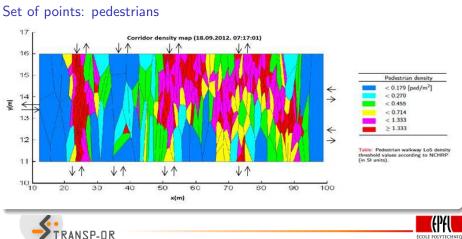
• Idea: data driven spatial discretization

Voronoi tessellations

Partitioning of space

- Consider a finite set of points p_1, p_2, \ldots in space.
- The Voronoi cell of point p_i is defined as

$$V(p_i) = \{p | ||p - p_i|| \le ||p - p_j||, i \ne j\}$$



Illustrations: Wikipedia

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

October 23, 2013 22 / 46

Voronoi tessellations

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

October 23, 2013 23 / 46

(日) (同) (三) (三)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Voronoi tessellations

Methodology

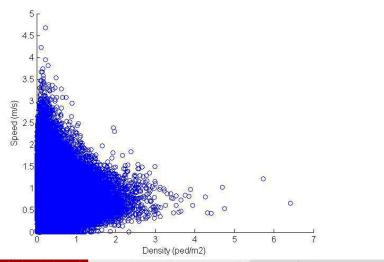
- Consider pedestrian p
- V_p is the Voronoi cell associated with p
- $|V_p|$ is the area of cell V_p (in m²)
- Density associated with the cell: $d_p = 1/|V_p|$.

Issues

- Numerical instability if pedestrians are very close.
- Time discretization: a new tessellation is computed at each point in time.

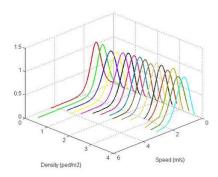
October 23, 2013

24 / 46


Dealing with obstacles.

ZTRANSP-OR

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI


Fundamental diagram

Empirical

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

Probabilistic speed-density model

 $V - f(\alpha(k), \beta(k), l(k), u(k))$

- f Kumaraswamy pdf
- V speed
- k density level
- α, β shape parameters
- I, u boundary parameters

Flow

Other research topics

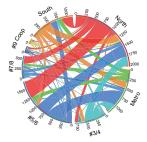
Definition of flow

- Vehicular traffic: number of vehicles crossing a given location per unit of time.
- Pedestrian case: how do we define the location?
- Well defined instances: unidirectional flow through gates, doors, corridors, stairs.
- Ill defined instances: open spaces, multidirectional flow.

Outline

2 Data

3 Indicators


- Density
- Fundamental diagram
- Flow
- Oemand analysis
 - OD flows
 - Activity chains
 - Flow propagation
 - Conclusion

___ ▶

Origin destination matrices

Data

- Visiosafe data
- Train timetable
- Train occupation

29 / 46

October 23, 2013

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

Demand estimation: timetable induced demand

• correlation between train schedule and pedestrian flows

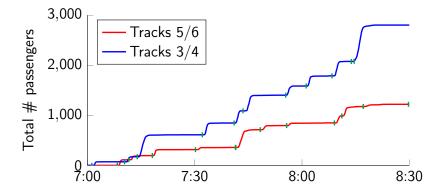
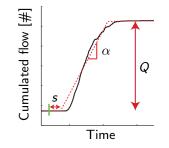
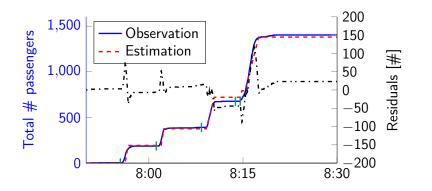



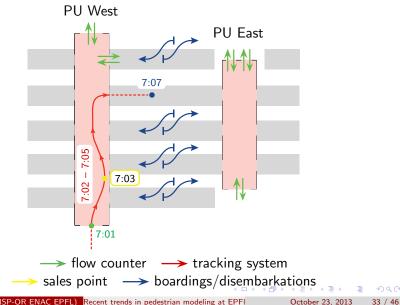
Figure: Train unloading flow and train arrivals, April 9, 2013

Demand estimation: timetable induced demand

- correlation between train schedule and pedestrian flows
- 'unloading flow' as superposition of train-induced events



- inflow after train arrival
- dead time: $s \approx 46.3$ s
- flow rate: $\alpha_{long} = 6.8 \pm 1 \ \#/s$ $\alpha_{short} = 4.5 \pm 1 \ \#/s$
- disembarkations per train: Q = 80...500



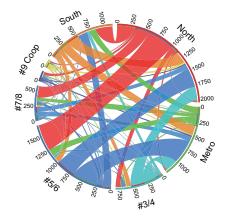
Demand estimation: timetable induced demand

- correlation between train schedule and pedestrian flows
- 'unloading flow' as superposition of train-induced events
- sample prediction (April 9, 2013, based on HOP data)

Pedestrian demand estimation: measurement equation

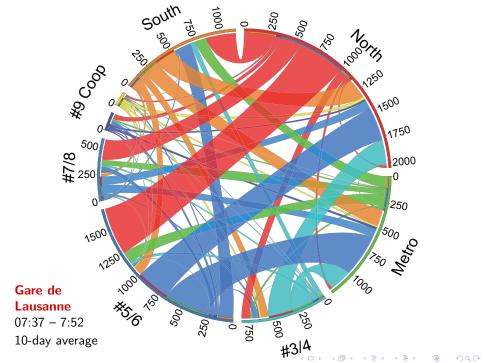
M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

Pedestrian demand estimation: measurement equation

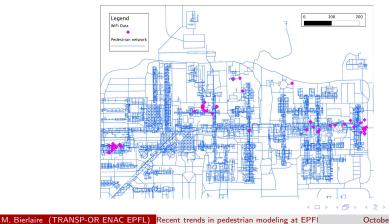

For route $r \in R$, sensor $s \in S$, time interval $t \in T$:

- $x_{r,t}$: pedestrian demand on route r during interval t
- $y_{r,t}^{s}$: travel time on route r to sensor s if departing in interval t

Measurement equation for sensor s (time interval t):


sensor flow:
$$f_{s,t} = \sum_{k=1}^{t} \sum_{r=1}^{R} x_{r,k} \underbrace{\Pr(y_{r,k}^{s} = t - k)}_{\text{probability term}}$$

Pedestrian demand estimation: Circos diagram


Example of OD demand:

- pedestrian underpasses, Gare de Lausanne
- busiest 15-min period
- extracted from tracking data

Activity chains

- Visiosafe data not always available.
- How can we exploit WiFi traces?
- Case study: EPFL campus

Methodology

Goal

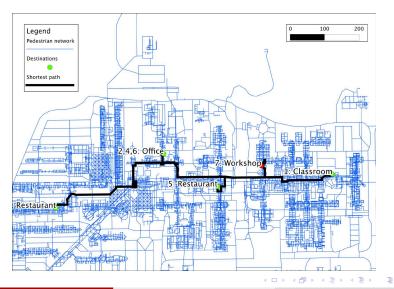
Extract the possible activity episodes performed by pedestrians from digital traces from communication networks

Input

- Network traces
- Semantically-enriched routing graph
- Potential attractivity measure

Output

Set of candidate activity-episode sequences associated with the likelihood to be the true one


Bayesian approach

 $P(a_{1:m}|\hat{s}_{1:n}) \propto P(\hat{s}_{1:n}|a_{1:m}) \cdot P(a_{1:m})$

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

Activity chains

Case study

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

October 23, 2013 38 / 46

Outline

Introduction

2 Data

3 Indicators

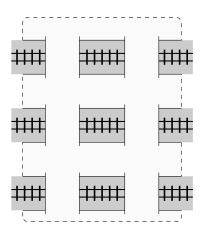
- Density
- Fundamental diagram
- Flow
- 4 Demand analysis
 - OD flows
 - Activity chains

5 Flow propagation

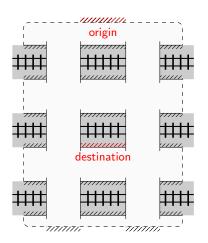
Conclusion

___ ▶

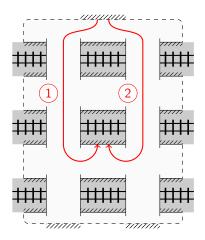
Propagation model


Hierarchical discretization of space

- One discretization for route choice
- One discretization for flow propagation

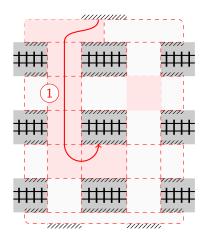

Cell transmission model

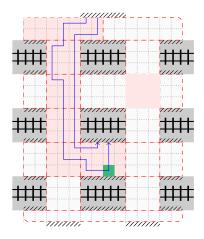
- mesoscopic: aggregate group of pedestrians
- deterministic: 1st order flow theory
- system dynamics: macroscopic fundamental diagram



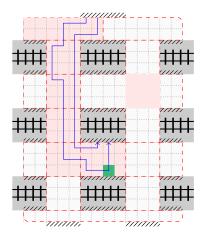
walkable area

- walkable area
- ${\ensuremath{\bullet}}$ entry/exit points


M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI 0


- walkable area
- entry/exit points
- route R

- walkable area
- entry/exit points
- route $R = (r_0, r_1, ...)$
 - topological area r



- walkable area
- entry/exit points
- route $R = (r_0, r_1, ...)$
 - topological area r

- walkable area
- entry/exit points
- route $R = (r_0, r_1, ...)$
 - topological area r

• path
$$\Gamma = (\xi_1, \xi_2, \ldots)$$

- discretization cell ξ

- walkable area
- entry/exit points
- route $R = (r_0, r_1, ...)$
 - topological area r
 - 'classical' route choice

41 / 46

- path $\Gamma = (\xi_1, \xi_2, \ldots)$
 - discretization cell ξ
 - local path choice

• 'sending capacity' of gate $g: i \rightarrow j, g \in \Gamma$ during interval τ

$$S_{g}^{\ell}(\tau) = \min\left\{ m_{\ell}(i,\tau), \frac{m_{\ell}(i,\tau)}{\sum_{\ell \in \mathcal{L}} m_{\ell}(i,\tau)} \cdot \tilde{Q}_{i}(\tau) \right\}$$

- free flow: all agents proceed
- congestion: demand-proportional supply
- hydrodynamic outflow capacity

$$\tilde{Q}_{\xi}(\tau) = \begin{cases} Q_{\xi}(\tau) & \text{if } \sum_{\ell \in \mathcal{L}} m_{\ell}(\xi, \tau) \leq k_{opt} \Delta L^2 \\ Q_{\xi,opt} & \text{otherwise} \end{cases}$$

 $\rightsquigarrow {\it Q}_{\xi}(au)$: cumulated hydrodynamic cell flow

• 'sending capacity' of gate $g: i \rightarrow j$, $g \in \Gamma$ during interval au

$$S_g^{\ell}(\tau) = \min\left\{ m_{\ell}(i,\tau), \frac{m_{\ell}(i,\tau)}{\sum_{\ell \in \mathcal{L}} m_{\ell}(i,\tau)} \cdot \tilde{Q}_i(\tau) \right\}$$

 $\bullet\,$ 'receiving capacity' of cell j during interval $\tau\,$

$$R_j(au) = \min\left\{ \left[N - \sum_{\ell \in \mathcal{L}} m_\ell(i, au), \hat{Q}_j(au)
ight\}
ight\}$$

- cellular capacity ($N = k_{jam} \Delta L^2$)
- hydrodynamic inflow capacity

$$\widehat{Q}_{\xi}(\tau) = \begin{cases} Q_{\xi,opt} & \text{if } \sum_{\ell \in \mathcal{L}} m_{\ell}(\xi,\tau) \leq k_{opt} \Delta L^2 \\ Q_{\xi}(\tau) & \text{otherwise} \end{cases}$$

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI

• actual flow along gate $g: i \rightarrow j, g \in \Gamma$ during interval au

$$y_g^{\ell}(\tau) = \begin{cases} S_g^{\ell}(\tau) & \text{if } \sum_{h \in \mathcal{I}(j)} \sum_{\ell \in \mathcal{L}} S_h^{\ell}(\tau) \leq R_j(\tau) \\ X_g^{\ell}(\tau) R_j(\tau) & \text{otherwise} \end{cases}$$

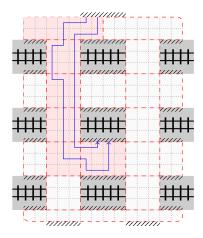
cell congestion: demand proportional supply distribution

$$X_g^{\ell}(\tau) = \frac{S_g^{\ell}(\tau)}{\sum_{k \in \mathcal{I}(j)} \sum_{\ell \in \mathcal{L}} S_k^{\ell}(\tau)}$$

イロト 人間ト イヨト イヨト

• actual flow along gate $g: i
ightarrow j, \ g \in \Gamma$ during interval au

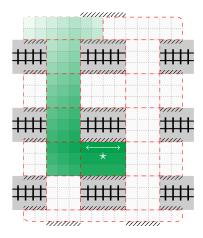
$$y_g^{\ell}(\tau) = \begin{cases} S_g^{\ell}(\tau) & \text{if } \sum_{h \in \mathcal{I}(j)} \sum_{\ell \in \mathcal{L}} S_h^{\ell}(\tau) \leq R_j(\tau) \\ X_g^{\ell}(\tau) R_j(\tau) & \text{otherwise} \end{cases}$$


• cell congestion: demand proportional supply distribution

$$X_g^{\ell}(\tau) = \frac{S_g^{\ell}(\tau)}{\sum_{k \in \mathcal{I}(j)} \sum_{\ell \in \mathcal{L}} S_k^{\ell}(\tau)}$$

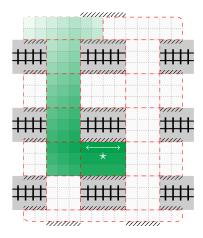
• recursion for group ℓ in cell *i*

$$m_\ell(i,\tau+1) = m_\ell(i,\tau) + y_f^\ell(\tau) - y_g^\ell(\tau)$$


• $\Gamma = (\dots, f, g, \dots)$, where $f : h \rightarrow i, g : i \rightarrow j$

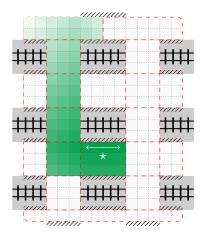
- route $R = (r_0, r_1, ...)$
- path $\Gamma = (\xi_1, \dots, \xi_\star)$

M. Bierlaire (TRANSP-OR ENAC EPFL) Recent trends in pedestrian modeling at EPFI October


- A - E - N

- route $R = (r_0, r_1, ...)$
- path $\Gamma = (\xi_1, \dots, \xi_\star)$
- route-specific floor field F^R
 - $\bullet\,$ distance to destination $\star\,$

A .


•
$$F_{\xi}^{R} = \min \text{ if } \xi = \xi_{\star}^{R}$$

- route $R = (r_0, r_1, ...)$
- path $\Gamma = (\xi_1, \dots, \xi_\star)$
- route-specific floor field F^R
 - $\bullet\,$ distance to destination $\star\,$

•
$$F_{\xi}^{R} = \min \text{ if } \xi = \xi_{\star}^{R}$$

- traffic-dependent floor field
 - prevailing speed $v_{\xi}(\tau)/v_f$

- route $R = (r_0, r_1, ...)$
- path $\Gamma = (\xi_1, \dots, \xi_\star)$
- route-specific floor field F^R
 - $\bullet\,$ distance to destination $\star\,$

•
$$F_{\xi}^{R} = \min \text{ if } \xi = \xi_{\star}^{R}$$

- traffic-dependent floor field
 - prevailing speed $v_{\xi}(au)/v_{f}$
- potential of cell ξ
 - $P_{\xi}^{R}(\tau) = F_{\xi}^{R} \alpha \frac{v_{\xi}(\tau)}{v_{f}}$
 - lower is 'closer' to destination

周 ト イ ヨ ト イ ヨ ト

• route R, interval τ

Outline

Introduction

2 Data

3 Indicators

- Density
- Fundamental diagram
- Flow
- 4 Demand analysis
 - OD flows
 - Activity chains
- 5 Flow propagation

Conclusion

▲ 同 ▶ → 三 ▶

< E

3

Conclusion

Pedestrian movements in open facilities

- Train stations
- Campus
- Airport
- etc.

From data to behavior

- Advanced tracking data
- Smartphone data

From traffic to pedestrians

- Important analogies
- Major differences