SBB-Beirat Technologie, Methoden und Prozesse Analysis and modeling of pedestrian flows in railway stations

Flurin Hänseler, Transport and Mobility Lab, EPFL

December 4, 2013

Pedestrian flows in train stations

The PedFlux Project

Collaborative EPFL/CFF research project:
 Development of a comprehensive modeling framework for pedestrian demand estimation in railway stations.

1) extensive data analysis of exemplary train station
\rightarrow Gare de Lausanne
2a) development of demand estimation methodology
\rightarrow dynamic origin-destination demand
2b) development of traffic assignment model
\rightarrow accessory to demand estimation
\rightarrow level-of-service assessment
2) application of combined framework to case study

Pedestrian underpasses of Gare de Lausanne

Coverage of tracking sensors

Monitored area in PIO (above) and PIE (below):

Tracking algorithm

Sensor topology:

Tracking algorithm

(1) Detection

Tracking algorithm

(1) Detection - (2) Tracklet generation

Tracking algorithm

(1) Detection - (2) Tracklet generation - (3) Association

Sample trajectory

- 'tracked' vs. interpolated periods
- microscopic vs. macroscopic fidelity

Sample trajectory

- corresponding (v, t)-map

Pedestrian movements on January 16, 2013

Animation: http://youtu.be/HHMXTJIQlkY

Visualization of pedestrian demand

- pedestrian underpasses, Gare de Lausanne
- busiest 15 -min period
- extracted from tracking data

Periodic flow patterns

Heat map of PUs, January 22, 2013

	LOS	Pedestrian density
\square	A	$<0.179\left[\mathrm{ped} / \mathrm{m}^{2}\right]$
\square	B	<0.270
C	<0.455	
D	<0.714	
E	<1.333	
F	≥ 1.333	

density as indicator for:

- comfort
- performance
- safety

Table: Pedestrian walkway LoS density threshold values according to NCHRP

Heat map of PUs, January 22, 2013

Heat map of PUs, January 22, 2013

aggregation: $\Delta t=60 \mathrm{~s}, A=7.29 \mathrm{~m}^{2}$

7:40-7:41: Low occupation, no train arrivals

Heat map of PUs, January 22, 2013

aggregation: $\Delta t=60 \mathrm{~s}, A=7.29 \mathrm{~m}^{2}$

7:41-7:42: Arrival of train IR 1606 at 7:40:20 on platform 3/4

Heat map of PUs, January 22, 2013

aggregation: $\Delta t=60 \mathrm{~s}, A=7.29 \mathrm{~m}^{2}$

7:42-7:43: Arrival of train IR 706 at $7: 41: 24$ on platform $5 / 6$

Heat map of PUs, January 22, 2013

aggregation: $\Delta t=60 \mathrm{~s}, A=7.29 \mathrm{~m}^{2}$

7:43-7:44: Arrival of train IR 1407 at 7:42:20 on platform 3/4

Heat map of PUs, January 22, 2013

aggregation: $\Delta t=60 \mathrm{~s}, A=7.29 \mathrm{~m}^{2}$

7:44-7:45: Gradual decrease in pedestrian occupation

Voronoi-based spatial tessellation

- finite set of points p_{1}, p_{2}, \ldots in space
- Voronoi cell of point p_{i} defined as

$$
V\left(p_{i}\right)=\left\{p \mid\left\|p-p_{i}\right\| \leq\left\|p-p_{j}\right\|, i \neq j\right\}
$$

- each point represents a pedestrian

Empirical fundamental diagram

Framework for pedestrian flow estimation

Pedestrian demand estimation

Pedestrian demand estimation: Train timetable

\longrightarrow flows into pedestrian underpasses
\longrightarrow sample pedestrian trajectories
PU West

Pedestrian demand estimation: Train timetable

- correlation between train schedule and pedestrian flows

Figure: Train unloading flow and train arrivals, April 9, 2013

Pedestrian demand estimation: Train timetable

- correlation between train schedule and pedestrian flows
- 'unloading flow' as superposition of train-induced events

- inflow after train arrival
- dead time: $s \approx 46.3 \mathrm{~s}$
- flow rate:
$\alpha_{\text {long }}=6.8 \pm 1 \mathrm{\#} / \mathrm{s}$
$\alpha_{\text {short }}=4.5 \pm 1 \mathrm{\#} / \mathrm{s}$
- disembarkations per train:
$Q=80 \ldots 500$

Pedestrian demand estimation: Train timetable

- correlation between train schedule and pedestrian flows
- 'unloading flow' as superposition of train-induced events
- sample prediction (April 9, 2013, based on HOP data)

Pedestrian demand estimation: Methodology

\longrightarrow flow counter \longrightarrow tracking system
sales point \longrightarrow boardings/disembarkations

Pedestrian traffic assignment

Pedestrian traffic assignment: Desired properties

- accurate prediction of travel times given demand
- calibration with trajectory data
- customizable I/O interface
- coupling with demand estimation framework
- high computational performance
- several times faster than real-time
\rightarrow mesoscopic pedestrian flow model

Pedestrian traffic assignment: Space representation

Pedestrian traffic assignment: Propagation model pedestrian fundamental diagram [Wei93]

Pedestrian traffic assignment: PU West, Lausanne

Figure: Pedestrian Underpass West, Lausanne railway station

Pedestrian traffic assignment: PU West, Lausanne

- pedestrian demand extracted from tracking data
- prediction of travel times, flows and densities
- January 22, 2013, 07:40-07:46

	LOS	$\left[\# / \mathrm{m}^{2}\right]$
\square	A	<0.179
\square	B	<0.270
C	<0.455	
D	<0.714	
\square	E	<1.333
\square	F	≥ 1.333

Concluding remarks and next steps

1. extensive data analysis for Gare de Lausanne
2. framework for pedestrian flow modeling

2a) demand estimation methodology (primary aim)
2b) traffic assignment model (accessory)
3. application of combined framework to case study

- prototype tool for integrated demand/supply estimation
* operationalization of research findings with third party - tbd
- apply knowledge/methodology to further train stations
- develop decision-aid tools for practitioners

Thank you

SBB-Beirat Technologie, Methoden und Prozesse: Analysis and modeling of pedestrian flows in railway stations Flurin Hänseler, Transport and Mobility Lab, EPFL

Many results shown in this presentation are due to Nicolas Anken, Nicholas Molyneaux and Thomas Mühlematter.
Support by SBB-I-AT-BZU-PFL, EPFL-TraCE and VisioSafe is gratefully acknowledged. Picture on slide 2 ©Michael Buholzer, Reuters.

- flurin.haenseler@epfl.ch

Bibliography I

R Highway Capacity Manual.
Transportation Research Board.
Washington, DC, 2000.
F.S. Hänseler, Nicholas Molyneaux, M. Thémans, and M. Bierlaire.

Pedestrian strategies within railway stations: Analysis and modeling of pedestrian flows (PedFlux Mid-Term Report). Technical report, EPFL, 2013.
(in Nicholas Molyneaux, F.S. Hänseler, and M. Bierlaire.
PedFlux Analysis Report: Train-induced loading and unloading flows in platform access ways.
Technical report, EPFL, 2013.

Bibliography II

E U. Weidmann.
Transporttechnik der Fussgänger. Institute for Transport Planning and Systems, ETH Zürich, 1993.

