Simulation based Approach for Agents Synthesis in Large-Scale Urban Systems Modelling

Bilal Farooq, Michel Bierlaire, Ricardo Hurtubia & Gunnar Flötteröd

IATBR 2012

Contents

- Motivation
- Problem (re)statement
- Methodology
- Experiments with a real population
- Application in case of very limited data
- Discussion and concluding remarks

Motivation

- Urban Microsimulation: Forecasting behaviour using individual level models
 - Lack of individual level data for population
 - Synthesis of individual agents and their characteristics
- Initial work
 - Focused on synthesis of a small sub-set of characteristics
 - Usage: Activity-base travel demand models, etc.
- Frequently used approaches
 - Fitting based
 - Combinatorial optimization
 - Iterative proportional fitting

Comments on Existing Approaches

- Key issues with the existing approaches
 - Cloning of data rather than creation of a heterogeneous representative population
 - Over reliance on the representativeness and accuracy of the microdata for retrieving conditional distribution
 - While fitting focused on matching marginals only
 - Optimization resulting in one realization of synthetic population
 - Scalability issues

Problem re-statement

- We are interested in building a "joint distribution" of the population from which one or more realizations of synthetic population can be created, such that
 - Best representation of the real population
 - Synthetic population having a "continuous heterogeneity" rather than "discretized cloning"
 - Population synthesis process as a part of the microsimulation
 - Methodology does not need to know the data collection and aggregation process

Methodology

- Retrieving the underlying joint distribution of the Population using **Simulation** techniques
 - Markov Chain Monte Carlo processes
 - Simulate the direct draws from the distribution
 - Sampling methods
 - Metropolis-Hasting sampling
 - Gibbs sampling
 - Creating an infinite pool of agents which is the unnormalized representation of the underlying distribution
 - Synthetic population as a realization

Methodology

- Retrieving the underlying joint distribution of the Population using **Simulation** techniques
 - Markov Chain Monte Carlo processes
 - Simulate the direct draws from the distribution
 - Sampling methods
 - Metropolis-Hasting sampling
 - Gibbs sampling
 - Creating an infinite pool of agents which is the unnormalized representation of the underlying distribution
 - Synthetic population as a realization


```
\pi(A,B,C,D)??
```

 $\pi(A|B,C,D)$

 $\pi(B|A,C,D)$

 $\pi(C|A,B,D)$

 $\pi(D|A,B,C)$

 $\pi(A,B,C,D)$??

Experiments with Real Population

- Swiss census 2000
 - Person and household attributes (Except for Income)
- Postal code in Lausanne
 - CH-1004
 - 28,533 persons
- Four *Person* attributes
 - Age (<15, 15-24, 25-34, ...,>74)
 - Sex (Female, Male)
 - Household size (1, 2, 3, 4, 5, 6 or more)
 - Education level (none, primary, secondary, university/college)

Experiments with Real Population

- Comparisons with other methods
 - Criteria
 - Not just marginals retrieval, but also the joint distribution
 - Simulation
 - Effect of incompleteness of conditionals
 - IPF
 - Effect of change in sample size

Simulation based Marginals

Simulation based Synthesis with Full Conditionals

Joint distribution for Age(8), Sex(2), Household size(6), and Education level(4)
(With 20 Simulation Runs)

Simulation based Synthesis with Full Conditionals

Simulation Results (Partial Conditionals)

Simulation Results (Partial Conditionals)

Simulation Results (Partial Conditionals)

π(Age|*,Hhld_Size,Edu_Lvl) π(Sex|Age,Hhld_Size,Edu_LvI) π(Hhld_Size|Age,*,Edu_LvI) π(Edu_Lvl|Age, *, Hhld_Size)

Iterative Proportional Fitting

- Two steps
 - Fitting process
 - Cloning processes
 - MC process for the fractions
- Same conditionals
 - Converted to Marginals
- Additionally: randomly selected sample
 - Size: 20% to 3%

IPF Marginals

Iterative Proportional Fitting (Full Marginals and 20% Sample)

Iterative Proportional Fitting (Full Marginals and 10% Sample)

Iterative Proportional Fitting (Full Marginals and 5% Sample)

Iterative Proportional Fitting (Full Marginals and 3% Sample)

Iterative Proportional Fitting (Full Marginals and 1% Sample)

Goodness of fit test

Standardized Root Mean Square Error

	Simulation						
	Full Cond	Partial_1	Partial_2	Partial_3			
SMRSE	0.13	0.24	0.34	0.35			

		IPF						
	20% Sample	10%	5%	3%	1%			
SMRSE	0.853	0.928	1.02	1.16	1.73			

Case of Very Limited Data

- SustainCity Project
 - European Union funded research project
 - 12 major European universities involved
 - Aims:
 - Address the modelling and computational issues of integrating modern mobility simulations with the latest microsimulation land use models
 - Demographics, environment, and multi-scale issues
 - Case studies
 - Paris
 - Zurich
 - Brussels

Application: Greater Brussels Area

Application

- Synthetic population for Brussels region
 - Data sources (extremely limited)
 - Zonal conditionals of households and persons (Census 2001)
 - Incomplete conditionals
 - Travel survey of households and individuals (MOBEL 1999)
 - **3063 observations (0.2%)**
 - Data Preparation
 - Aggregation
 - Spatial
 - Categorical
 - Model based conditionals (Logit)
 - Income and Education level
 - Pool of 100 million households
 - Realization: ~1.2 million

Household Size (Brussels, 2001)

Persons' Marital Status (Brussels, 2001)

Cars in the Hhld per Commune (50 runs)

Average Income per Commune

Discussion and Conclusions

- From single solution optimization problem to sampling from joint distribution
 - Output of Land Use and Transport models
 - Integration over all possible populations
- Focus on reproducing not just marginals, but the whole joint distribution
- Heterogeneous not cloned population
- Population synthesis as part of microsimulation
 - Sensitivity analysis in a coherent way

Discussion and Conclusions

- Separation of data preparation from agent generation
 - Data, models, assumptions
- Mix of sampling process can be utilized based on the situation
- Works both for continuous and discrete or mixture of conditionals
- Computationally efficient and scalable
 - Clean and simple

Thanks!

Questions?

