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Abstract

In this research, we study the dynamic, hybrid berth allocation problem (BAP) for bulk ports
under uncertainty. In practice, the actual arrival times of vessels deviate from their expected
values, which can disrupt the original berthing plan and possibly make it infeasible. In this
work, we consider a given baseline berthing schedule, and solve the BAP in real time as actual
arrival data is revealed. We present an optimization based algorithm and an alternate heuristic
approach to recover the schedule in events of disruption with the objective to minimize the total
realized costs of the updated schedule. We further discuss certain strategies that the port should
adopt and implement to maximize their revenues, and incorporate them as constraints in our
recovery algorithms. The approaches are tested and validated by simple numerical experiments
in which the baseline schedule is chosen as the solution of the deterministic BAP problem.
Preliminary results indicate that the algorithms can be successfully used to solve the BAP in
real time, and the optimization approach slightly outperforms the heuristic approach but is
computationally expensive.

Keywords
berth allocation, bulk ports, uncertainty, robustness, dynamic recovery, mixed integer program-
ming
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1 Introduction

The Berth Allocation Problem (BAP) is one of the most critical and widely studied problems
in container terminal operations. The deterministic BAP in bulk ports with dynamic vessel
arrival and hyrbid berth layout is studied by Umang et al. (2012). In practice, port operations
are associated with a high degree of uncertainty owing to weather conditions, equipment break-
down and other factors. Thus the actual arrival times and handling times of vessels can deviate
from the estimated values which can potentially disrupt the planned schedule making it infea-
sible. This calls for quick real time action to minimize the impact of disruptions on the planned
schedule. However, traditional methods to model the berth allocation problem do not explicitly
account for the uncertainty in information which can potential disrupt the origianlly planned
berthing schedule.

There are usually two approaches to deal with uncertainty and stochastic disturbances in trans-
portation schedules. A) Proactive robustness in which the baseline schedule is developed with
a certain degree of anticipation of uncertainty and variability in information and occurrence
of disruptions during the real execution of the schedule. The methods based on proactive ro-
bustness can be divided into two distinct categories: average-best case methods or stochastic
optimization and worst case methods or robust optimization. Both these methods explicitly
consider the set of all possible realized scenarios, which is characterized by the uncertainty set
U. While the stochastic optimization methods aim to find the solution that performs best on
average (Birge and Louveaux (1997), Kall and Mayer (2005) and Wallace and Ziemba (1997)),
the robust optimization method is more conservative and seeks to find the solution that per-
forms best for the worst case scenario (refer Soyster (1973), Bertsimas and Sim (2003), Ben-Tal
and Nemirovski (1998), Ben-Tal and Nemirovski (1999) and Ben-Tal and Nemirovski (2000)
and Bertsimas and Sim (2004)). B) Reactive approach or disruption management or online-
algorithms which is based on the wait-and-see strategy and deals with adjusting the schedule
in real time responding to data changes during execution of the original schedule. The perfor-
mance of this approach is dependent on the way the data is revealed. One common metric to
assess the performance of a reactive algorithm is the competitivity ratio, which is obtained by
dividing the value of the solution found by the algorithm by the optimal solution of the deter-
ministic problem Albers (2003). Further, it may be noted that while disruption management
and rescheduling are both reactive approaches to modify an existing baseline schedule, they
differ in their main objectives. Given a baseline schedule, rescheduling refers to identifying a
schedule that is optimal in terms of the original objective function. Disruption management,
on the other hand focuses only on minimizing the deviation of the modified schedule from the
original planned schedule.

A key challenge in this research is to determine if the operational costs or realized costs of
the modified berthing schedule in response to disruptions, outweigh the planned costs of the
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original baseline schedule with or without any anticipation of variability in information. This is
because we don’t know beforehand whether or not any disruptions will occur during the plan-
ning horizon when the original planned schedule is executed. Thus given two schedules with
different planned costs, one of them may prove better than the other depending on the extent
of disruptions during execution phase, on which unfortunately there is no prior information.
In this paper, we consider the problem of recovering a berthing schedule in real time as dis-
ruptions occur. Our problem derives from the realistic requirements of the port of SAQR in
Ras-Al-Kahaimah, UAE, the biggest bulk port in the entire middle east. The underlying model
is the dynamic, hybrid berth allocation model developed in context of bulk ports (please refer
to Umang et al. (2012) for details). The objective is to minimize the total realized costs of the
modified berthing schedule, which is the sum of the total service cost of the vessels berthing
at the port and the cost of rescheduling respecting certain contractual agreements between the
port terminal managers and the shipping companies.

2 Literature Review

Comprehensive literature surveys on the work done on berth allocation problem in container
terminals can be found in Bierwirth and Meisel (2010), Steenken et al. (2004) and Stahlbock
and Voss (2008). To the best of our knowledge, the berth allocation problem in context of bulk
ports was studied for the first time by Umang et al. (2012). The dynamic, hybrid berth alloca-
tion problem was formulated and solved which explicitly takes into account the cargo type on
the vessel, using two alternate exact solution approaches based on mixed integer programming
and set partitioning, and a heuristic approach based on squeaky wheel optimization.

In container terminals, there have been few studies on robust planning methods for berth allo-
cation problem. The main issue in pro-active robust methods is to define a metric for robustness
to measure the degree of stability of a given berthing schedule. For example, robustness of a
schedule can be measured by the total slack time or buffer times in the tactical baseline sched-
ule as they can absorb vessel delays to some degree and prevent delay propagation through the
schedule. Alternately, for a given set of disruption scenarios, robustness can be defined as the
objective function value of the worst case scenario or the expected cost of all scenarios. Pri-
marily two types of approaches have been used to address the problem of pro-active robustness
in planned schedule. The first approach is stochastic programming for capturing uncertainty.
Zhen et al. (2011) use a meta-heuristic approach to solve a two-stage decision model for BAP
under uncertainty in which a set of realized scenarios is explicitly defined and the objective is
to minimize the total cost of baseline schedule and expected cost of recourse. Han et al. (2010)
use a simulation based genetic algorithm approach to solve the integrated berth and quay crane
scheduling problem with uncertainty in vessel arrival and operation times. For given proba-
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bility density functions for the vessel arrival and operation, the objective is to minimize the
sum of expected value and standard deviation of the service time and the weighted tardiness of
the vessels. The second approach in pro-active robust methods is to define surrogate problems
that inherit the stochastic nature of the original problem. Moorthy and Teo (2006) use a novel
sequence pair approach to design a robust berth template for transshipment hubs in container
terminals, in which conflicting objectives are to minimize the total expected delays and devia-
tion from the most preferred berthing locations. Zhen and Chang (2012) define robustness as
weighted sum of the free slack times in the berthing schedule, where weights are determined
according to the vessel priorities. A bi-objective model is proposed that minimizes cost and
maximizes robustness. Xu et al. (2012) solve a continuous berth allocation problem with un-
certainty in arrival times and operation times of vessels, in which the objective is to balance
the level of service using the total departure delay of vessels and robustness measure as defined
by the length of buffer time. Hendriks et al. (2010) propose a robust optimization model for
cyclic berth planning in which the objective is to minimize the maximally required crane ca-
pacity. They consider arrival windows for incoming vessels which are agreed upon between
the shipping lines and terminal operator instead of using expected arrival time values. Results
show that by modifying the nominal arrival times of a small percentage of vessels, it is possible
to obtain significant reduction in the crane capacity.

In real time when conflicts occur, there are several reactive strategies to cope up with the dis-
ruptions and minimize their impact on the original planned schedule. For example, the vessels
are rescheduled by considering the analogous time space diagram, and shifting rectangles rep-
resenting vessels along the time axis. Another strategy could be rescheduling the unassigned
conflicting vessels in the event of a disruption which amounts to solving a complex optimiza-
tion problem in real time. Zeng et al. (2012) address the problem of disruption recovery in the
integrated berth and quay crane assignment problem in container terminals. They develop op-
timization models for berth reallocation and quay crane rescheduling, and solve the disruption
recovery problem using local rescheduling and tabu search methods. Du et al. (2010) use a
feedback procedure to develop a robust berth allocation plan and a reactive strategy that takes
into account the priorities assigned to the vessels and the congestion at the port. To the best
of our knowledge, very few scholars have addressed the problem of real time recovery in berth
allocation problem in port operations using optimization based approaches. While in context
of bulk ports, the problem has not been studied at all. This paper makes an exploratory study
in this field.
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N = set of vessels
M = set of sections
k = 1,...,|M | sections along the quay
i = 1,...,|N | vessels berthing at the port
Ai = expected arrival time of vessel i
ei = estimated departure time of vessel i
Di = draft of vessel i
Li = length of vessel i
Qi = quantity of cargo for vessel i
Wi = set of cargo type(s) to be loaded or discharged from vessel i indexed from

w=1 to w=|Wi|
dk = draft of section k
`k = length of section k
b(k) = starting coordinate of section k
hwk = handling time for unit quantity of cargo type w for vessel berthed at section

k
L = total length of quay
H = total duration of planning horizon

Table 1: Input Parameters in the determination of baseline schedule

3 Problem Statement and Implementation

Our research problem derives from the realistic requirements of the port of SAQR in Ras-Al-
Kahaimah, UAE. We study the problem of solving the dynamic, hybrid BAP for bulk ports in
real time for a given baseline schedule. The baseline schedule can be any feasible solution to
the BAP or alternately it can be obtained by solving the deterministic version of the problem
without accounting for any uncertainty. Please refer to Umang et al. (2012) for details regarding
the implementation and solution of the deterministic problem. A list of the input parameters
used in the modeling of the deterministic problem is as given in Table (1).

In practice, the actual arrival times of vessels deviate from their estimated values, which can
potentially disrupt the baseline schedule making it infeasible. In this research, we solve the
BAP in real time accounting for the deviation in arrival times of vessels, by introducing addi-
tional constraints and variables in our model. Once a baseline berthing schedule is developed
for the vessels arriving at the port, the port authorities allocate various resources such as hu-
man labour, handling equipment and cargo availibility depending on the requirements of the
vessels berthing over the planning horizon. In the event of disruptions, these resources need
to be reallocated over time and/or space, and this incurs additional cost to the port. Thus for a
given baseline schedule, our objective is to minimize the sum of the total service cost of vessels
berthing at the port, and the inconsistent cost of rescheduling in the event of disruptions as
measured by the weighted sum of the time and space deviation of the updated schedule from
the original one.
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Furthermore, we explicitly consider and model certain contractual agreements between the bulk
terminal managers and shipping companies. In practice, in container terminals the port author-
ities and shipping lines have an agreement that guarantees a maximum threshold processing
time and departure time for any incoming vessel if its arrival is within a certain arrival time
window (Hendriks et al. (2010)). We propose the bulk terminal managers to enforce a similar
agreement, where the processing time of the vessel is below a certain nominal value if the ac-
tual arrival time ai of vessel i lies within the arrival time window [Ai-Ui, Ai+Ui]. The nominal
handling time value of any vessel can be taken as a factor η times larger than the handling time
of the vessel in the baseline schedule or the minimum handling time hmini of the vessel for
the most preffered berthing location of the vessel along the quay. If the arrival is outside the
arrival window, the processing time is bounded by the maximum handling time value as given
by the least preferred berthing location of the vessel along the quay. Figure 1 represents the
maximum threshold handling time envelope for different values of the actual arrival times. To
mathematically model this, we introduce an additional auxiliary binary decision variable θi(t),
which is equal to 1 if time t lies within the arrival time window of vessel i, and 0 otherwise.
This results in the following:

hi ≤ ηhmini +M(1− θi(t)) (1)

ai +M(1− θi(t)) ≥ Ai − Ui (2)

ai ≤ Ai + Ui +M(1− θi(t)) (3)
Ai+Ui∑
t=Ai−Ui

θi(t) = 2Ui + 1 (4)

An analysis of the total cost incurred by the port under different disruption scenarios for a given
baseline schedule, should enable us to come up with appropriate pricing strategies that the port
can adopt to earn revenues from late arriving vessels. For example, there could be contractual
agreements between the port managers and shipping lines according to which the port may
charge an extra penalty fees to the vessel operators, if the actual arrival time of the vessel is
beyond the right end of its arrival time window given by Ai + Ui. It would be of interest to
study the trade-off between the revenues earned by the port from the late arriving vessels, and
the cost incurred by the port due to rescheduling in events of disruption. The penalty cost Pi
imposed on vessel i could be any complex function of the delay gi beyond the right end of
the arrival window. This is illustrated graphically in Figure 2 in which a linear relationship is
assumed for sake of simplicity. For linear relationship, we have:
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gi = maximum(ai − (Ai + Ui), 0) (5)

Pi = c3gi (6)

Here, c3 is a parameter than can be determined from a more in-depth study of the results of the
BAP recovery in real time.

Figure 1: Handling Time Envelope for varying arrival time values

Figure 2: Penalty Cost for varying arrival time values

We further consider different service priorities µi for the incoming vessels berthing at the port.
In practice, if a vessel with higher priority arrives late, it could still be given preference over
a vessel with low service priority. Thus, the service priorities of the vessels are explicitly
taken into consideration. Thus at any given time instant in the planning horizon, the objective
function to be minimized is the sum of the total service cost of the realized schedule and the
cost of rescheduling given by the weighted sum of the departure delay deviation and berthing
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location deviation from the original baseline schedule for all unassigned vessels Nu at that time
instant. Let bi(k′) denote the actual starting berthing location of vessel i and e′i denote the actual
departure time of vessel i in the realized schedule. Then the objective function cost is given by:

minZ =
∑
iεNu

(mi − Ai + hi) +
∑
iεNu

(c1|bi(k′)− bi(k)|+ c2µi|e′i − ei|) (7)

subject to constraints related to the deterministic berth allocation problem (for details refer to
Umang et al. (2012)) and constraints (1)-(6). Here, c1 and c2 are weighting parameters for the
space and time deviation respectively.

The main assumptions in our recovery algorithm for the berth allocation problem can be sum-
marized as follows:

• As discussed earlier, the performance of any real time algorithm largely depends on the
way the actual data is revealed. In our algorithm, we consider that each incoming vessel
updates its exact arrival time a certain fixed time period before its actual arrival time.
This time period represented by the parameter τ in our model is assumed equal to 5
hours. It is further assumed that once the arrival time of the vessel is updated, it does not
change again.

• As the arrival delay information is released in real time only τ hours before the actual
arrival, we re-optimize the berthing schedule every time the arrival time of any vessel
is updated and it deviates from its expected value. Once the arrival time of a vessel is
updated, its berthing assignment is determined by re-optimization of all the unassigned
vessels in the schedule with the objective function (7) and the assignment of that vessel
remains unchanged thereafter. Thus, at any given instant in the planning horizon H , the
berthing schedule of all vessels whose exact arrival time is updated is considered frozen
and unchangeable.

• In the optimization process, we only consider unassigned vessels at that time instant.
The arrival time of any unassigned vessel that has not been updated up to that instant is
assumed to be equal to its expected value if current time t is less thanAi−τ , or otherwise
assumed equal to t+ τ . The handling time restrictions are imposed accordingly.

The implementation of the optimization based recovery algorithm can be described by Algo-
rithm 1.

The optimization based algorithm described above is implemented using set-partitioning ap-
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Algorithm 1 Algorithm for implementation of optimization based recovery algorithm to solve
BAP in real time
Require: Baseline schedule of set N of vessels, set M of sections

Initialize set Nu of unassigned vessels→ N
Initialize boolean array arrivalUpdated of size N = false ∀i ∈ N
Initialize counter = 0
while |Nu| > 0 and counter ≤ |H| do

Initialize boolean shouldOptimize = false
for i = 1→ N do

if arrivalUpdated[i] = false and counter ≥ ai - τ and ai 6= Ai then
Set arrivalUpdated[i]→ true
Set Ai → ai
Set shouldOptimize→ true

end if
end for
if shouldOptimize then

Re-optimize for all i ∈ Nu

end if
for i = 1→ Nu do

if counter = latest updated start time m′i then
Assign vessel i to latest updated location bi(k′)
Set Nu → Nu − {i}

end if
end for
counter++

end while

proach by generating all feasible assignments of unassigned vessels every time there is a dis-
ruption. Since the approach involves several optimization runs, it is computationally very
expensive as validated from simple numerical experiments. Thus, instead of optimizing the
schedule every time, we consider an alternate heuristic approach for recovering the schedule.
In this approach, every time there is an incoming vessel arriving at the port we scan the entire
quay and assign it to the set of sections where the total cost of unassigned vessels given by (7)
is minimized at or after its estimated berthing time according to the original baseline sched-
ule. While determining the cost at a given instant in the planning horizon, we make the same
assumptions for future vessel arrivals as discussed for Algorithm 1, and that every unassigned
vessel is assigned to the estimated set of sections at or after their estimated berthing time as per
the original baseline schedule. This heuristic algorithm is as described in Algorithm 2.

4 Preliminary Results

In this section, we present some preliminary results on disruption recovery in berth allocation
problem in real time. We conduct some simple numerical experiments to test and validate
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Algorithm 2 Algorithm for implementation of recovery heuristic algorithm to solve BAP in
real time
Require: Baseline schedule of set N of vessels, set M of sections

Initialize set Nu of unassigned vessels→ N
Initialize boolean array arrivalUpdated of size N = false ∀i ∈ N
Initialize counter = 0
while |Nu| > 0 and counter ≤ |H| do

for Berthing Schedule: b do
if b.hasArrived AND !b.isAssigned then

Set boolean foundSection = false
for k = 1→M do

if isStartSectionAvailable(b.vessel,k) then
foundSection = true;
break;

end if
end for
if foundSection AND counter ≥ b.estimatedBerthingTime then

Scan the entire quay and assign the vessel to the set of sections with minimum total
cost ∀i ∈ Nu

end if
end if

end for
counter++

end while

Dv Optimization based algorithm Heuristic Algorithm
Realized Cost Time Realized Cost

0 586.0 0.07 586.0
2 645.0 48.5 695.5
6 745.0 56.5 761.2

10 842.3 85.7 884.3
14 871.5 108.6 897.9
18 904.3 115.8 910.8

Table 2: Total realized costs for the optimization based algorithm and heuristic algorithm for
different values of Dv

the two algorithms discussed in the previous section, and analyze the impact of some input
parameters in the model. All experiments are conducted for an instance of size |N |=25 vessels
and |M |= 10 sections for a congested arrival scenario where all expected vessel arrivals are
within a time range of 5 hours. The baseline schedule is obtained from the solution of the
deterministic BAP for the dynamic vessel arrivals and hybrid berth layout, developed in context
of bulk ports (refer to Umang et al. (2012) for details regarding the implementation). In all
tested instances, the parameter c1 in the objective function (7) is chosen as 0.002 and parameter
c2 is chosen as 1, which implies that shifting the berthing location of a vessel by 500 meters
is considered equivalent to one additional hour of delay. The arrival window for imposition of
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Figure 3: Comparison between optimization based approach and heuristic approach (values
averaged over 10 disruption scenarios)

Figure 4: Variation in total realized cost with change in Dv for different η values (values
averaged over 100 disruption scenarios)

handling time restrictions, Ui is chosen as 8 hours for all vessels, parameter τ relating to the
release of arrival information is chosen as 5 hours, and the parameter η is assumed equal to 1.2
unless specified otherwise. The vessel priorities µi are chosen as more than 1 for two out of 25
vessels, and chosen exactly equal to 1 for the remaining 23 vessels.

The parameter Dv represents the maximum deviation of arrival time from the expected arrival
time values in the disruption scenario applied on the baseline schedule. The arrival scenarios are
generated by randomly generating actual arrival time values within the pre-specified range [Ai-
Dv, Ai+Dv] for each vessel i. Table (2) shows the comparison between the optimization based
algorithm and the heuristic approach. The numbers are averaged over 10 different disruption
scenarios for each value ofDv. It can be inferred that although the optimization based algorithm
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Figure 5: Variation in total realized cost and gi with change in Dv for η = 1.2 (values averaged
over 100 disruption scenarios)

slightly outperforms the heuristic algorithm, it is computationally much more expensive. The
computation time for the heuristic based algorithm was not reported since it returns output
almost instantaneously. The comparison is also shown graphically in Figure 3. As expected, it
can be seen that total realized costs increase with increase inDv. It is important to note here that
the optimization based algorithm also makes assumptions regarding future vessel arrival times
at a given instant in the planning horizon. Thus, the solution obtained from this approach is also
not the best one, and it is possible that the heuristic approach may outperform the optimization
based approach in certain cases in terms of the total realized costs of the modified schedule.

Figure 4 shows the variation of the total realized costs of the modified berthing schedule against
different values of Dv. The results are intuitive as the costs increase with increasing maximum
deviation in arrival time values from the expected value. Note that in this plot, the values are
averaged over 100 disruption scenarios, and obtained from the heuristic algorithm since it is
computationally much faster. An interesting observation is that for a given value of Dv, the
total realized cost does not vary significantly over different values of η. This implies that the
port managers can insert larger buffer times for the processing of vessels, without significantly
increasing the total realized costs. This is a key aspect that definitely needs to be looked into
greater depth in future research.

As discussed earlier, if the port decides to impost a penalty cost on all the vessels which are
late beyond the right end of their permissible arrival window, the port can earn more revenue
to cover their operational costs and earn higher profits. As shown in Figure 5 with increase in
realized costs for increasing values of Dv, the total hours of delay gi for all vessels beyond the
right end of the arrival window is also higher. A more in-depth analysis may enable us to come
up with appropriate pricing strategies and a penalty cost function dependent on the arrival delay
gi.
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5 Conclusions and Future Work

In this work, we solve the problem of recovering a baseline berthing schedule in real time
as disruptions occur. The underlying model is the dynamic, hybrid berth allocation model
developed in context of bulk ports. To the best of our knowledge, very few scholars have
attempted to study the problem of real time recovery using optimization based approaches in
port operations, while the problem has not been studied at all in context of bulk ports. We
present an optimization based recovery approach and a heuristic approach to solve the BAP
in real time for a given baseline schedule. Preliminary results suggest that the approaches can
be successfully applied to minimize the impact of disruptions in real time. The optimization
based approach slightly outperforms the heuristic approach, but is computationally much more
expensive.

Regarding future work, a more in-depth analysis based on extensive numerical experiments is
needed in order to come up with appropriate values of the different input parameters c1 and
c2 related to the cost of shifting the vessel along the quay and departure delay of a vessel
with respect to the baseline schedule respectively, and parameters related to cost functions and
handling time restrictions that can maximize the revenue earnings of the port.

Another possible extension of the work done so far is to develop a robust formulation for
the berth allocation problem with a certain degree of anticipation of delays and variability
in information. The recovery algorithm can be applied on both the deterministic and robust
formulations and the performance can be compared in terms of loss of revenue at the planning
stage and recovery savings in the event of disruptions.
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