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1 Motivation

In airline scheduling problems, it is well accepted that there is a potential for obtaining

superior solutions by integrating the sub-problems of the process. However revenue manage-

ment and schedule planning models are mostly treated independently. Revenue management

models usually work with a fixed capacity which is provided by the schedule planning phase

(Talluri and van Ryzin, 2004). Schedule planning models consider the demand and the price

as inputs based on forecasts (Schön, 2008). In this study, we develop an integrated schedule

planning model with explicit supply-demand interactions. These interactions are represented

by a logit model and they enable to integrate revenue management decisions early in the

planning phase. This integration results with superior planning decisions and expected to

provide valuable information to the actual revenue management process.

2 Integrated model

The presented integrated model simultaneously decides on the schedule design, fleet assign-

ment and pricing. The schedule design and fleet assignment decisions are modeled similar to

the work of Lohatepanont and Barnhart (2004). The contribution of the model to the fleet

assignment literature is the explicit integration of supply-demand interactions via an itinerary

choice model. The integration of pricing decision is inspired by Schön (2008). The originality

of our work is the estimation based on a real data1. The demand model is developed sepa-

rately for economy and business classes which facilitates the decision on the capacity allocated

to each class.

1A mixed RP/SP data set, the details can be found in Atasoy and Bierlaire (2012)
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The objective (1) is to maximize the profit, which is the revenue minus the operating cost.

The main decision variable for the schedule planning is xk,f which is 1 if aircraft k is assigned

to flight f , 0 otherwise. Constraints (2) and (3) constitute the schedule design decisions where

mandatory flights needs to be served and optional flights can be canceled. Constraints (4)

maintain the conservation of flow and constraints (5) respect the availability of fleet. The

network has a daily cyclic schedule which is provided by the constraints (6). Constraints

(7) represent the coverage of the realized demand where πh
k,f is the decision variable for the

allocated number of class h seats on aircraft k for flight f . Constraints (8) constitute the

key component in the integration such that the allocated seats by the revenue management

cannot exceed the actual capacity given by the fleet assignment. The subsequent constraints

are related to the demand. The market share, msi, is given by a logit formula (10) with

the associated the utilities, Vi. The pricing decision, pi, is also embedded in the same set

of constraints. Competitive itineraries are represented by the set I
′

s and the airline does not

have control on these itineraries, i.e. their prices are fixed and provide a reference market

price (11). The constraints (10)-(11) represent a reformulation of the full logit model. It is



equivalent to the logit function due to the constraints (9) which maintain that market shares

sum up to 1. The spill and recapture effects are also facilitated with the logit model due to

the ≤ relation in (10). The resulting model is a non-convex MINLP where non-convexity is

due to the revenue in the objective function and the constraints (10)-(11).

As a further reformulation of the logit model, a logarithmic transformation is proposed:
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where ms
′

represents ln (ms) and υ
′

s represents ln (υs).

3 A local search heuristic for the integrated model

The heuristic model is based on the two sub-problems of the model: a fleet assignment model

where the price and demand are inputs to the model, and a revenue management model where

the capacity is an input. The fleet assignment problem is a mixed integer linear problem.

With the proposed logarithmic transformation the revenue sub-problem can be represented

with a concave objective function and linear constraints. The two subproblems are solved

in an iterative process where local search techniques are employed to explore good feasible

solutions.

Local search is composed of price sampling and variable neighborhood search (VNS). Price

sampling is based on the spilled number of passengers so that if there is a high spill the price

is decreased and vice versa. VNS is carried out by fixing a subset of fleet assignment solutions.

The probability of a flight to be fixed to its aircraft in the previous iteration is based on the

spilled passengers as well. The number of fixed assignments is increased to intensify the search

when a better solution is found and diversification is applied otherwise.

4 Results

Data instances are generated using a dataset from a major European airline2. The integrated

model is solved with BONMIN (Bonami et al., 2008) which cannot guarantee optimality for

non-convex problems. However the first aim was to quantify the added value of the integrated

approach. The integrated approach is compared with a sequential approach (SA) which is

the current practice of airlines. In SA, the fleet assignment problem is solved to optimality

with the given price. Subsequently the revenue is maximized with the given capacity by the

fleet assignment. It is observed that, in more than half of the instances the integrated model

results with a higher profit compared to SA (Atasoy et al., 2013).

The performance of the heuristic is evaluated in comparison to the best feasible solution

provided by BONMIN and to the solution of SA. In fact, the heuristic starts with the given

demand-price values in the data and the first iteration is equivalent to SA. Heuristic has a

2http://challenge.roadef.org/2009/en



Table 1: Performance of the heuristic
Integrated model Sequential Heuristic results

by BONMIN approach (SA) Avg. over 5 replications

Profit Time Profit %dev. Profit %dev.
%imp.

Time
%time

(sec) over SA (sec) reduction

20 155,772 1,429 154,322 -0.93% 155,772 0.00% 0.94% 990 30.7%

21 303,726 86,400 303,469 -0.08% 307,021 1.08% 1.17% 3,824 95.6%

22 161,197 86,400 163,324 1.32% 163,767 1.59% 0.27% 235 99.7%

23 284,269 86,400 278,942 -1.87% 282,226 -0.72% 1.18% 1,480 98.3%

24 155,457 86,400 150,844 -2.97% 156,761 0.84% 3.92% 2,189 97.5%

25 409,496 86,400 394,716 -3.61% 401,019 -2.07% 1.60% 4,864 94.4%

time limit of 2 hours on the other hand BONMIN has 24 hours. In Table 1 we present the

results for 6 instances, which consist of 33, 46, 48, 61, 77, and 97 flights respectively. The

heuristic is able to improve the solution by SA thanks to local search mechanisms for all the

instances. It provides superior feasible solutions compared to BONMIN in 4 of the instances

in significantly less computational time.
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