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Abstract

In airline scheduling problems, integrated decision methodologies have aroused intense interest
in the last decade. These integrated approaches allow for more efficient solutions due to the si-
multaneous decision making process. The studied integrated models mostly consist of planning
phase subproblems. However in order to be demand responsive, demand related information
should also be included in planning models. For that matter supply-demand interactions are
now being introduced in airline decision problems. This is often carried out with simplified
demand models that are exogenous to the supply model. In thispaper we present an integrated
airline scheduling, fleeting and pricing model which includes an explicit demand model for-
mulation. The integrated model combines supply and demand related decisions. On the supply
side, we have the decisions on the subset of flights to be flown and the aircraft types to be as-
signed to each flight. On the demand side, we have the pricing decision and spill and recapture
effects which are facilitated through an itinerary choice model. This itinerary choice model is
estimated based on real data which is a combination of RP and SPdatasets. In this paper a sen-
sitivity analysis is presented for the added-value of the integrated supply-demand interactions.
Furthermore a reformulation of the model is proposed to reduce the complexity.

Keywords
Airline fleet assignment, airline schedule planning, supply-demand interactions, itinerary

choice models, spill and recapture, mixed integer nonlinear problems
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1 Introduction

In airline fleet assignment literature the integration of supply-demand interactions attract an

increased interest in the last decades. These interactionsare either directly integrated into the

model or external demand models/simulators are developed that provide better inputs to the

planning process. When there is a direct representation of supply-demand interactions in the

planning problems it is assumed that the airlines have a control on the revenue side. On the

other hand, researchers who believe that airlines can not have such a control prefer to keep the

revenue related decisions external to the model. This enables to keep the stochastic nature of

the demand and use advance demand modeling techniques.

In this section we provide a brief review of airline fleet assignment literature where supply-

demand interactions are considered through network effects. Since our focus is on how supply-

demand interactions are treated we do not provide a comprehensive review on fleet assignment

models (FAM). We refer to Sheraliet al. (2006) for a recent review on FAM literature. In Table

1 we categorize different conventions in airline fleet assignment literature regards to supply-

demand interactions compared to the basic FAM.

Table 1: FAM literature with network effects

Basic FAM FAM IFAM
fixed price externally estimated revenuefixed price
fixed demand network effects network effects
e.g. Abara (1989) Jacobset al. (2008) Barnhartet al. (2002)
Haneet al. (1995) Dumaset al. (2009) Lohatepanont and Barnhart (2004)

Wanget al. (2012)
Atasoyet al. (2013b)

As mentioned earlier keeping the revenue estimations external to the FAM enables to use

stochastic revenue models. With that motivation Jacobset al. (2008) present a leg-based FAM

where network effects are estimated with a passenger mix model. The passenger mix model is a

nonlinear network flow model which estimates the total revenue given the capacity. Simplified

network effects are included directly in FAM in order to keepa linear formulation. Dumaset al.

(2009) present a framework where a passenger flow model and a leg-based FAM are iteratively

solved. Their aim is to keep the stochastic nature of the demand and reflect the time dimension

in the booking process. They assume that demand distributions of itineraries and recapture

ratios are known.

Direct integration of supply-demand interactions lead to itinerary-based fleet assignment

(IFAM) since the information on the demand is at the itinerary level (Barnhartet al., 2002).

With an itinerary-based setting Lohatepanont and Barnhart (2004) present an integrated sched-

ule design and fleet assignment model with network effects. The considered effects are demand
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correction for the market demand in case of flight cancellations and recapture effects. Recapture

ratios are estimated based on the Quality Service Index (QSI) and introduced as fixed inputs to

the model. Sheraliet al. (2010) also present an integrated schedule design and fleet assignment

model where they work with itinerary-based demands for multiple fare classes. They optimize

the allocation of seats for each fare class as we do in our integrated model. However they do

not include network effects in the model.

The advances in demand modeling enables to better understand the underlying travel behavior.

Discrete choice methodology is widely used in the context ofair transportation for itinerary

choice estimation. We refer to Garrow (2010) where the motivation for the usage of discrete

choice methodology in air travel demand is presented together with several case studies. Vari-

ous specifications are provided such as logit and nested logit models.

Wanget al. (2012) use utility models similar to discrete choice modeling in order to represent

the spill and recapture effects. They present the idea with abasic passenger mix model. Exten-

sions to the model are proposed with fleet assignment and schedule design decisions as well as

market and departure time selections. Atasoyet al. (2013b) estimate the recapture ratios based

on a logit model. The logit model is estimated based on a mixedrevealed preferences and stated

preferences dataset. The recapture ratios are explained bythe price, departure time, number of

stops and trip length. They are provided as inputs to the schedule design and fleet assignment

model.

The explicit representation of demand models in optimization frameworks is a recent trend in

order to improve the supply-demand interactions. Talluri and van Ryzin (2004) introduce a rev-

enue management model based on a discrete choice methodology. They decide on the subset

of fare products to offer at each point in time according to the discrete choice model. They

consider single-leg, multiple-fare-class products.Schön (2008) presents an integrated schedule

design, fleet assignment and pricing model. She provides different specifications of the demand

model as logit and nested logit where the only explanatory variable is the price. Spill and recap-

ture effects are not considered. The concavity of the model is achieved through an inversion of

the demand model (see Appendix D) which is a limiting factor in case of the existence of other

policy variables in addition to the price. Atasoyet al. (2012) propose an integrated scheduling,

fleeting and pricing model where an itinerary choice model isestimated based on a real dataset.

They present several tests in order to understand the behavior of the integrated model. The

explicit representation of the demand model results with a non-convex mixed integer nonlinear

problem (MINLP). Therefore a heuristic method is proposed for the solution of the problem

(Atasoyet al., 2013a).

In this paper we present a sensitivity analysis in order to understand the added-value of supply-

demand interactions at different levels (see section 4). Leg-based FAM (e.g. Haneet al., 1995)

is the reference model and the two IFAMs presented by Atasoyet al. (2013b) and Atasoyet al.
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(2012) are tested compared to the leg-based FAM. Furthermore we present a reformulation of

the itinerary choice model which provides a concave revenuesub-problem (see section 5). This

reformulation is expected to facilitate the optimization framework with iterative solutions of

the schedule planning and revenue problems.

2 The itinerary choice model

In order to understand the air travel demand an itinerary choice model is developed. Origin-

destination (OD) pairs are considered as market segments. Economy and business classes are

treated separately. A market segment therefore consists ofall the available itineraries for an

OD pair and a cabin class. For example, all the economy itineraries offered from Geneva to

Boston constitute a market segment. The notation is providedin Table 2.

Table 2: Notation for the demand model

H set of cabin classes - indexed byh
Sh set of market segments in classh - indexed bys
Is set of itineraries in segments - indexed byi
I

′

s set of competing/no-revenue itineraries in segments

Ds unconstrained demand of segments

Vi deterministic utility of itineraryi
msi market share of itineraryi
di demand of itineraryi
pi price of itineraryi
ci constant term for itineraryi that represents several attributes
β parameters of the demand model

The itinerary choice for the market segments is considered to be independent from each other.

The choice set for each market segment consists of all the available itineraries serving the

market. These itineraries may vary in terms of the offered level of service, price, trip length

and departure time of day. A logit model is developed in orderto estimate the choice probability

of each itinerary in each segment based on the listed variables. The estimation of the parameters

are performed using maximum likelihood estimation over a mixed RP/SP dataset. The details

for the demand model and the estimation procedure is provided in Atasoy and Bierlaire (2012).

As mentioned earlier the demand model is integrated into theairline schedule planning model.

The only policy variable which could be controlled by the optimization model is the price (pi).

The other variables (trip length, departure time of day, number of stops) improve the estimation

of choice probabilities and can be represented by a constant(ci) in the optimization model. The

utility is represented by:

Vi = β ln (pi) + ci ∀h ∈ H, s ∈ Sh, i ∈ Is (1)
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Depending on the utility, the choice probability/market share and the demand associated with

itineraryi in segments is given by:

msi =
exp(Vi)

∑

j∈Is

exp(Vj)
=

exp(β ln (pi) + ci)
∑

j∈Is

exp(β ln (pj) + cj)
(2)

di = Dsmsi ∀h ∈ H, s ∈ Sh, i ∈ Is (3)

3 Integrated schedule planning models

In order to reveal the impact of integrated supply-demand interactions we carry out a compara-

tive analysis for different FAMs. The first model is a basic leg-based FAM with schedule design

decisions. The second is an IFAM with choice-based recapture and the third model is an IFAM

with choice-based recapture and pricing. In this section wepresent these three models.

3.1 Leg-based FAM with schedule design

The considered leg-based FAM is based on the work of Haneet al. (1995). The notation for

the parameters and decision variables is provided in Table 3and Table 4 respectively.

z∗FAM = min
∑

k∈K

∑

f∈F

Ck,fxk,f + spill costs (4)

∑

k∈K

xk,f = 1 ∀f ∈ FM (5)

∑

k∈K

xk,f ≤ 1 ∀f ∈ FO (6)

yk,a,t− +
∑

f∈In(k,a,t)

xk,f = yk,a,t+ +
∑

f∈Out(k,a,t)

xk,f ∀[k, a, t] ∈ N (7)

∑

a∈A

yk,a,minE−
a
+
∑

f∈CT

xk,f ≤ Rk ∀k ∈ K (8)

yk,a,minE−
a
= yk,a,maxE+a

∀k ∈ K, a ∈ A (9)

xk,f ∈ {0, 1} ∀k ∈ K, f ∈ F (10)

yk,a,t ≥ 0 ∀[k, a, t] ∈ N (11)

(12)

The objective (4) is to minimize the operating costs and the spill costs. Since the leg-based

formulation does not carry information regarding demand, assumptions are made for the es-

timation of spill costs. First assumption is thefull fare allocation where each flight in the

itinerary is assigned the full fare of the itinerary. The spill estimation is performed in a de-
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Table 3: Notation

Set Definition
F the set of flight legs indexed byf
FM the set of mandatory flight legs
FO the set of optional flight legs
CT the set of flights flying at count time
A the set of airports indexed bya
K the set of fleet types indexed byk
T the set of time of the events in the network indexed byt

N(k, a, t) the set of the nodes in the time-line network
for fleet typek, airporta and timet

In(k, a, t) set of inbound flight legs for node (k,a,t)
Out(k, a, t) set of outbound flight legs for node (k,a,t)
Parameter Definition
Ck,f operating cost for flightf when operated by fleet typek
Rk available number of planes for typek
Qk the capacity of fleet typek in number of seats
minE−

a the time just before the first event at airporta

maxE+
a the time just after the last event at airporta

Table 4: Variables

Variable Definition
xk,f binary variable, 1 if fleet typek is assigned to flightf , 0 otherwise
yk,a,t− the number of typek planes at airporta just before timet
yk,a,t+ the number of typek planes at airporta just after timet

terministic way where the itineraries are listed in order ofdecreasing fare and the demand is

assigned respecting this order. These assumptions on the fare allocation and spill estimation are

explained by Kniker (1998). A similar approach is also considered by Lohatepanont (2002).

In addition to the fleet assignment decisions, the schedule design feature with the sets of manda-

tory and optional flights is integrated (5)-(6). Th remaining constraints are classical FAM con-

straints: flow of aircraft should be conserved (7), the number of available aircraft for each type

should be respected (8) and a cyclic schedule is maintained (9).

3.2 IFAM with choice-based recapture

The considered IFAM is presented by Atasoyet al. (2013b). As proposed by Barnhartet al.

(2002) an itinerary-based setting is adopted. The additional notation for the IFAM model is

presented in Table 5.

6



Integration of explicit supply-demand interactions in airline schedule planning and fleet assignment 2013

Table 5: Additional notation for IFAM

Parameter Definition
δi,f 1 if itinerary i uses flight legf , 0 otherwise
bi,j recapture ratio for the passengers spilled from itineraryi

and redirected to itineraryj
Decision variable Definition
ti,j redirected passengers from itineraryi to itineraryj
πh
k,f assigned seats for flightf in a typek plane for cabin classh

z∗IFAM = max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s
)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)pi

−
∑

k∈K
f∈F

Ck,fxk,f (13)

s.t.
∑

k∈K

xk,f = 1 ∀f ∈ FM (14)

∑

k∈K

xk,f ≤ 1 ∀f ∈ FO (15)

yk,a,t− +
∑

f∈In(k,a,t)

xk,f = yk,a,t+ +
∑

f∈Out(k,a,t)

xk,f ∀[k, a, t] ∈ N (16)

∑

a∈A

yk,a,tn +
∑

f∈CT

xk,f ≤ Rk ∀k ∈ K (17)

yk,a,minE
−

a
= yk,a,maxE

+
a

∀k ∈ K, a ∈ A (18)
∑

s∈Sh

∑

i∈(Is\I
′

s
)

δi,fdi −
∑

j∈Is

δi,f ti,j +
∑

j∈(Is\I
′

s
)

δi,f tj,ibj,i

≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (19)

∑

h∈H

πh
k,f ≤ Qkxk,f ∀f ∈ F, k ∈ K (20)

∑

j∈Is

ti,j ≤ di ∀h ∈ H, s ∈ Sh, i ∈ Is (21)

xk,f ∈ {0, 1} ∀k ∈ K, f ∈ F (22)

yk,a,t ≥ 0 ∀[k, a, t] ∈ N (23)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (24)

di ≤ d̃i ∀i ∈ I (25)

ti,j ≥ 0 ∀i ∈ I, j ∈ I (26)

This model uses the given price values in the dataset. It assumes that the recapture ratios,bi,j

are given by a logit formula. With the given itinerary attributes in the dataset, recapture ratios

are calculated and taken as an input. The model optimizes therevenue minus operating costs

(13). The revenue functions explicitly includes the spill and recapture effects. In addition to

the schedule planning decisions, seat allocation is optimizes to each class of passengers. Con-
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straints (19) maintain the balance between demand and allocated seats. Constraints (20) ensure

that actual capacity of aircraft is respected. The number ofspilled passengers from an itinerary

cannot be more than the expected demand of that itinerary which is given by constraints (21).

The presented IFAM is similar to what Lohatepanont and Barnhart (2004) proposes. However

they work on demand correction terms which is not consideredby Atasoyet al. (2013b). Fur-

thermore Lohatepanont and Barnhart (2004) introduces decision variables on the cancellation

of the itineraries which is related to the cancellation of the associated flight. Therefore, in

Atasoyet al. (2013b) the demand of the itineraries can only be reduced through spill which

underestimates the potential revenue. This phenomenon is also valid for the model presented

in the next section.

3.3 IFAM with choice-based recapture and pricing

The final IFAM integrates pricing decisions into the framework (Atasoyet al., 2012). The

pricing decision is also determined by the itinerary choicemodel. Therefore the representation

of supply-demand interactions becomes explicit in the modeling framework. The price,pi,

the demanddi and the recapture ratios,bi,j, are now all decision variables in contrast to the

previously presented models.

The demand is given by the itinerary choice model as in (36). This demand variable,̃di, serves

as an upper bound on the actual demand variable,di, as given by (41). It is important to note

that d̃i is the expected demand for each itinerary without any capacity limit. Therefore for

the decision oñdi, the attributes of all the itineraries play a role. In case where all flights are

mandatory this is similar to the model by Wanget al. (2012). However in case of canceled

flights this provides more conservative results compared tothe model by Wanget al. (2012)

since the expected demand is affected by the attributes of all flights. This way of modeling

has such an effect which was addressed by Lohatepanont and Barnhart (2004) with demand

correction terms. The relation for the recapture ratios arepresented in constraints (37). When

a number of passengers is spilled from itineraryi, each remaining itineraryj getsbi,j portion

of the spilled passengers.
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z∗IFAM-P = max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s
)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)pi

−
∑

k∈K
f∈F

Ck,fxk,f (27)

s.t.
∑

k∈K

xk,f = 1 ∀f ∈ FM (28)

∑

k∈K

xk,f ≤ 1 ∀f ∈ FO (29)

yk,a,t− +
∑

f∈In(k,a,t)

xk,f = yk,a,t+ +
∑

f∈Out(k,a,t)

xk,f ∀[k, a, t] ∈ N (30)

∑

a∈A

yk,a,tn +
∑

f∈CT

xk,f ≤ Rk ∀k ∈ K (31)

y
k,a,minE

−

a

= y
k,a,maxE

+
a

∀k ∈ K, a ∈ A (32)
∑

s∈Sh

∑

i∈(Is\I
′

s
)

δi,fdi −
∑

j∈Is

δi,f ti,j +
∑

j∈(Is\I
′

s
)

δi,f tj,ibj,i

≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (33)

∑

h∈H

πh
k,f ≤ Qkxk,f ∀f ∈ F, k ∈ K (34)

∑

j∈Is

ti,j ≤ di ∀h ∈ H, s ∈ Sh, i ∈ Is (35)

d̃i = Ds
exp (Vi)∑

j∈Is

exp (Vj)
∀h ∈ H, s ∈ Sh, i ∈ Is (36)

bi,j =
exp (Vj)∑

k∈Is\{i}

exp (Vk)
∀h ∈ H, s ∈ Sh, i ∈ (Is \ I

′

s), j ∈ Is (37)

xk,f ∈ {0, 1} ∀k ∈ K, f ∈ F (38)

yk,a,t ≥ 0 ∀[k, a, t] ∈ N (39)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (40)

di ≤ d̃i ∀i ∈ I (41)

0 ≤ pi ≤ UBi ∀i ∈ I (42)

ti,j ≥ 0 ∀i ∈ I, j ∈ I (43)

bi,j ≥ 0 ∀i ∈ I, j ∈ I (44)

4 Sensitivity analysis

In this section we perform sensitivity analysis in order to address the key assumptions of the

choice-based IFAM models. The addressed assumptions are related to the unconstrained de-

mand, price parameter in the logit model and the assumptionsregarding the competitors’ offers.

We perform a comparative analysis between the leg-based FAM, IFAM with choice-based re-

capture and IFAM with choice-based recapture and pricing that are presented in section 3.

The sensitivity analysis for each of the assumptions startswith the solution of different FAM/I-

FAM models. With the resulting fleeting and scheduling decisions, a passenger allocation sim-
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Leg-based FAM
IFAM – choice-

based recapture 

IFAM – choice-

based recapture & 

pricing 

Fleeting & Scheduling 

Decisions 

RMM – choice based 

recapture / pricing 

Resulting Profit

Fleeting & 

Deci

Figure 1: Framework for the sensitivity analysis

ulator is employed to determine the quality of the planning decisions given by the models. The

passenger allocation simulator is considered as a revenue management model (RMM) which

consists of all the demand/revenue related equations of theIFAM. In order to have a fair com-

parison for the models we have utilized two versions of the RMM. The first one (see Appendix

A) uses the price values given in the dataset and therefore does not have a pricing decision.

The second RMM (see Appendix B) on the other hand has the pricingdecision. Both of the

RMMs use the capacity given by the FAM/IFAMs therefore the fleet assignment variables are

fixed and represented byXk,f .

When solving the RMMs, perturbations are introduced and the profit obtained by the decision

of different FAM/IFAM models are compared. This methodology for sensitivity analysis is

inspired by the work of Lohatepanont (2002). It is illustrated by Figure 1.

The tests for the sensitivity analysis are performed with the two data instances presented in

Table 6.

4.1 Demand uncertainty

In the presented IFAMs we assume that the total demand for each market segment is known.

The demand share of each itinerary in a market segment is proportional to this total demand.

This is a strong assumption given the daily and seasonal fluctuations of the demand. In this

section we address this assumption and test the added value of IFAMs compared to FAM with

simulated values of demand.
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Table 6: The data instances used for the sensitivity analysis

Experiment 14
Airports 4
Flights 23
Itineraries 35

All economy
6 one-stop - 29 non-stop

Total demand 1918 pax.
Available fleet 4 aircraft types

117-85-70-50 seats
Experiment 24

Airports 8
Flights 77
Itineraries 167

19 business - 90 economy
19 one-stop - 90 non-stop

Total demand 5051 pax.
Available fleet 4 aircraft types

117-85-50-37 seats

We randomly draw 500 realizations of the unconstrained itinerary demand from a Poisson dis-

tribution with a mean equal to the average demand value provided in the dataset. Furthermore,

we introduce perturbations on the average demand value in a range of -30%-+30%. Therefore

for each perturbation on the average demand value we have 500simulations. In order to decide

on a meaningful range for the demand fluctuations we checked passenger flow statistics from

The Airline Origin and Destination Survey (DB1B). For examplefor the OD pair JFK-FLL

the total demand varies at most by around 15% from quarter to quarter in a year (data range

2005-2010). Since the daily fluctuation would be higher thanthe quarterly fluctuation we kept

the range wider.

First of all the added value of IFAM with choice-based recapture is tested compared to leg-

based FAM using the experiments 14 and 24. The considered RMM for passenger allocation is

a model with choice-based recapture but without pricing (see Appendix A).

In experiment 14, supply demand interactions embedded in IFAM results with a higher capacity

allocation since spilled passengers can be accommodated byother itineraries and the cost of

larger capacity aircraft can be compensated. However leg-based FAM decides to assign less

capacity since it cannot make use of recapture effects. Therefore, as seen in Figure 2, when the

demand is over-estimated FAM performs better in the range -30% to -5%. However starting

with -5% IFAM performs better. When the demand is under-estimated the improvement due to

IFAM can be clearly observed. After a level of underestimation (around 15%) leg-based FAM

cannot change the revenue since the allocated capacity is not enough to accommodate all the

demand.
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Figure 2: Sensitivity to demand fluctuations - Experiment 14
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Figure 3: Sensitivity to demand fluctuations - Experiment 24
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Figure 4: Sensitivity to demand fluctuations - Pricing - Experiment 14
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Figure 5: Sensitivity to demand fluctuations - Pricing - Experiment 24
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Experiment 24 includes business class passengers which have higher average demand com-

pared to economy passengers. The existence of business passengers increases the revenue that

could be obtained through recapture and therefore IFAM decides to allocate less capacity com-

pared to leg-based FAM. As seen in Figure 3, IFAM performs better up to the perturbation

level +20%. When the demand is under-estimated by more than 20% FAM performs better.

The higher capacity allocation of FAM helps to recover the unexpected increase in the demand.

In order to be able to test the sensitivity of IFAM with choice-based recapture and pricing we

also performed the same analysis using the RMM with pricing (see Appendix B). In Figures 4

and 5 the results for leg-based FAM, IFAM with choice-based recapture and IFAM with choice-

based recapture and pricing are presented. It is observed that the pricing decision increases the

robustness of IFAM. For experiment 14, IFAM is outperformedby FAM up to -5% fluctuation.

However with IFAM pricing this is pulled back to -10%. A similar phenomenon is observed

with experiment 24. IFAM is outperformed by FAM when demand is under-estimated by more

than 20%. With IFAM pricing this is shifted towards 25%. Thissupports the fact that when the

planning model has more flexibility and information from therevenue side, the perturbations

can be absorbed better.

It is important to note that experiment 14 is a smaller size instance compared to experiment

24 and its solution is provided by BONMIN solver with a 0% duality gap. However for the

experiment 24 we work with the heuristic solution. Therefore the improvement due to pricing

is less evident for experiment 24 compared to experiment 14.

The analysis performed for the demand uncertainty shows that the performance of IFAMs are

not affected by slight changes on the average demand. The sensitivity analysis performed

by Lohatepanont (2002) concludes that the improvement due to IFAM is not clear even with a

perturbation of 2-3% on average demand. In our case, the improvement provided by the IFAMs

is more evident. It can be concluded that a flexible planning model provides robust solutions

since it can deal with more significant perturbations.

4.2 Price parameter of the itinerary choice model

The parameters of the demand model are estimated based on a mixed RP/SP dataset as ex-

plained in section 2. Since the only policy variable is the price among the set of explanatory

variables, its coefficient has a direct impact on the market shares. Depending on the data set

used, the estimated value of the parameter will be different. Therefore in this section we per-

form a sensitivity analysis with perturbations on the priceparameter in a range from -50% to

+50%. This range of perturbations modifies the elasticity ofpassengers is perturbed consider-

ably.
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Figure 6: Sensitivity to price parameter - Experiment 24
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Figure 7: Sensitivity to price parameter - Pricing - Experiment 24
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We perform the analysis on the price parameter with experiment 24. In Figure 6 we com-

pare the behavior of FAM and IFAM with choice-based recapture. The considered RMM has

choice-based recapture but does not have pricing decision (see Appendix A). It is observed that

IFAM is outperforming FAM for all the cases which suggests that the added-value of IFAM is

systematic and robust to perturbations on the price parameter.

In Figure 7 we compare the behavior of FAM, IFAM with choice-based recapture, and IFAM

with both recapture and pricing. In this case RMM has a decision on pricing as well (see Ap-

pendix B). It is observed that IFAM with recapture provides a better fleeting solution compared

to the two other models. It can be concluded that the added-value of IFAM with pricing is

robust to the perturbations on price sensitivity. Another important observation is that the profit

is higher when passengers are highly sensitive to price and when they are almost insensitive to

price. In the former case RMM is able to attract more passengers with a slight price reduction.

In the latter case it is able to increase the prices without decreasing the demand significantly.

Both phenomenon result with an increase in the profit.

This section concludes that the improvement provided by thesupply-demand interactions

through the itinerary choice model is not sensitive to the price parameter.

4.3 Competitors’ price

As mentioned in section 2 we include no-revenue options in the choice set which represent

the alternatives offered by the competitors. The price of these alternatives are assumed to be

known and even if there is a pricing decision they are kept fixed. Since the market share of the

itineraries depends on the offer by the competitors, in thissection we perform analysis on the

price of the competitor’ itineraries. The prices are perturbation in a range from -50% to +50%.

The analysis is done with experiment 24.

In Figure 8 we compare the behavior of FAM and IFAM with choice-based recapture. The

RMM is solved with choice-based recapture but without pricing (see Appendix A). It is ob-

served that the price offered by the competitors does not have a significant impact on the

added-value of IFAM. Only when the prices are under-estimated by around 50% FAM per-

forms better than IFAM. As mentioned in section 4.1 leg-based FAM allocates more capacity

compared to IFAM in experiment 24. Therefore with such a significant under-estimation of

competitors’ price, the market shares of the airline increase and FAM performs better with a

higher capacity at hand.

In Figure 9 we compare the behavior of FAM, IFAM with choice-based recapture, and IFAM

with both recapture and pricing. Consequently, considered RMM has a decision on pricing as

well (see Appendix B). It is observed that IFAM with pricing outperforms both of the models in
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Figure 8: Sensitivity to competitors’ price - Experiment 24
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Figure 9: Sensitivity to competitors’ price - Pricing - Experiment 24
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the range from -25% to +25%. However when the price of competitors change more than 25%

IFAM with pricing is outperformed by IFAM. The reasoning behind is that pricing decision is

taken given the competitors’ prices and the planning decisions are directly affected by those

prices. All in all this only occurs with very high perturbations and even in those cases the

improvement compared to leg-based FAM can be clearly observed.

The analysis shows that integrating supply-demand interactions with a choice model enables to

react to market conditions which cannot be achieved througha leg-based FAM setting. IFAM

gives this reaction by updating the recapture effects and the decisions on spill. IFAM with

pricing also reacts with the changes on the prices in addition to the spill and recapture effects.

5 Reformulation of the model

In this section we present a logarithmic transformation of the itinerary choice model in order

to reduce the complexity of the integrated schedule planning model presented by Atasoyet al.

(2012).

We first present how the logarithmic transformation is done in section 5.1. Then we present

the relative market shares idea proposed by Wanget al. (2012) in section 5.2. In section 5.3

we provide the RMM sub-problem as a result of the reformulation. The logarithmic trans-

formation necessitates the information on the selected flights since 0 market share cannot be

treated in the logarithmic space. Therefore the new formulation is appropriate for bi-level pro-

gramming framework where the schedule planning decisions and revenue related decisions are

separated. In section 5.4 we present a Benders’ Decomposition framework for the iterative so-

lutions of IFAM and RMM. Finally we discuss the flexibility of the reformulated problem for

the extensions of the demand model in section 5.5.

5.1 Log transformation of the logit model

The integration of the presented logit model into an optimization framework brings complex-

ity issues. In addition to the nonlinearity, depending on the formulation it may result with

a non-convex problem. The integrated scheduling, fleeting and pricing model presented in

Atasoyet al. (2012) is mixed integer nonlinear problem where the convexity is not guaranteed.

The logit model is explicitly integrated in the model representing the decisions on pricing and

spill effects.

In order to develop a framework where the non-convexity can be avoided, we propose a loga-

rithmic transformation of the problem.
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The denominator in equation 2 is same for all the itinerariesin the segment. Similar to Schön

(2008) a new variableυ is defined as follows :

υs =
1

∑

j∈Is

exp(β ln (pj) + cj)
∀h ∈ H, s ∈ Sh (45)

Therefore the market share of each itinerary in the segment can be written as in equation 46.

msi = υs · exp(β ln (pi) + ci) ∀h ∈ H, s ∈ Sh, i ∈ Is (46)

Since we do not use the full logit formula we need to make sure that the market shares sum up

to 1. Therefore we need the following relation for each market segment:

∑

i∈Is

msi = 1 ∀h ∈ H, s ∈ Sh (47)

The logarithm of equation 46 is given by:

ln (msi) = ln (υs) + β ln (pi) + ci ∀h ∈ H, s ∈ Sh, i ∈ Is (48)

We can denoteln (msi) by ms
′

i, ln (pi) by p
′

i, an similarlyln (υs) by υ
′

s. Therefore we can write

the following linear relation:

ms
′

i = υ
′

s + βp
′

i + ci ∀h ∈ H, s ∈ Sh, i ∈ Is (49)

5.2 Relative market shares and spill effects

Atasoyet al. (2012) present a model where the logit function is explicitly integrated in the

model. The pricing decision is given by the full logit formula. Similarly the recapture ratios

are also modeled by the logit function where the actually desired itinerary is removed from the

choice set. Wanget al. (2012) represent the spill and recapture effects with a neater formu-

lation. They keep the market shares proportional to the utility of the itineraries however they

do not limit it to the exact market share given by the logit. Itserves as an upper bound but

it is not necessarily realized. This allows the spill and recapture of the passengers. With this

formulation there is no decision variable on the spilled number of passengers and no parameter

on the recapture ratios. Therefore no control is available on the spill. Furthermore, they do not

have any pricing decision in the formulation.

Combined with our logarithmic transformation the market share formulation can be re-written
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as follows:

msi ≤ msj
exp (Vi)

exp (Vj)

ms
′

i ≤ ms
′

j + Vi − Vj

ms
′

i ≤ ms
′

j + βp
′

i + ci − βp
′

j − cj ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ I
′

s, (50)

where itinerariesi andj are in the same market segments and itineraryj represents the com-

peting itineraries available in the market. The expected utility of j is constant since there is no

pricing decision over the competing itineraries. This relation ensures that the market share of

an itinerary is proportional to its relative expected utility. In our setting there is only a single

competing itinerary in a market segment. If there are several the market share and the expected

utility should be replaced by their sum over all the competing itineraries.

With this formulation there is no need for the variables for the number of spilled passengers and

the recapture ratios. Moreover the defined variableυs is also redundant since relative market

shares are considered rather than the full logit representation.

5.3 Sub-problem - RMM

RMM maximizes the revenue with the decisions on the market share, pricing and seat alloca-

tion. The decisions on the operated flights and the fleet assignment are inputs to the model.

Fleet assignments are represented byXk,f parameters. The transformed model can be given as

follows:

z∗RMM = max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′
s)

(ln (Ds) + ms
′

i + p
′

i)

− M(msi − exp (ms
′

i))
2 (51)

∑

i∈Is

msi = 1 ∀h ∈ H, s ∈ Sh (52)

ms
′

i ≤ ms
′

j + βp
′

i + ci − βp
′

j − cj ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ I
′

s (53)
∑

s∈Sh

Ds

∑

i∈(Is\I
′
s)

δi,fmsi ≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (54)

∑

h∈H

πh
k,f ≤ QkXk,f ∀f ∈ F, k ∈ K (55)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (56)

ln (LBi) ≤ p
′

i ≤ ln (UBi) ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s) (57)

ms
′

i ∈ ℜ ∀h ∈ H, s ∈ Sh, i ∈ Is (58)

msi ≥ 0 ∀h ∈ H, s ∈ Sh, i ∈ Is (59)
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Objective is to maximize the revenue (51).exp (ln (Ds) + ms
′

i + p
′

i) is mathematically equiva-

lent toDs · msi · pi. Furthermore we can remove theexp () and have the presented objective

function. There is a penalty term, M, which penalizes the deviation from the real market share

when represented with the logarithmic transformation. We need this penalty because the rela-

tion between the market share and its logarithm could not be given by an equality constraint

such asexp (ms
′

i) = msi in order to avoid non-convexity. Constraints (53) ensure therela-

tion between the expected utility of the itineraries and their market shares in a market segment

as explained in section 5.2. Constraints (54) ensure that theallocated number economy/busi-

ness seats for a flight should satisfy the realized economy/business demand. Constraints (55)

maintain that the actual capacity of the aircraft is respected.

The presented RMM has linear constraints and continuous variables. The only nonlinearity is in

the objective function. It can be shown that the objective function is a concave function (seeAp-

pendix C). Therefore the problem is a concave nonlinear problem (NLP) given the decisions on

the schedule design and fleet assignment. This problem can beembedded in an iterative frame-

work in the context of bi-level modeling where the fleet assignment model (IFAM) is solved

and thexk,f variables are transferred to RMM.

5.4 Generalized Benders’ Decomposition framework

In this section we provide the Generalized Benders’ Decomposition framework for the refor-

mulated problem based on the Mixed Integer Nonlinear Programming chapter of Li and Sun

(2006).

The idea is an iterative solution of the RMM sub-problem and the master problem which is the

IFAM in our case. The sub-problem optimizes the price, market share and the seat allocation to

each class of passengers given the fleet assignment decisions. This solution provides Benders’

cuts to the master problem through constraints (55). Let’s consider a simplified version of

the problem with all flights being mandatory, all itineraries being non-stop and economy. In

this case we have one itinerary per flight and no decision on seat allocation. With such a

simplification the master problem can be written as follows:
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max α (60)

s.t.α ≤
∑

s∈S

Ds

∑

i∈(Is\I
′

s
)

exp (P c′

i +MSc′

i )−
∑

k∈K
f∈F

Ck,fX
c
k,f

+
∑

k∈K
f∈F

(Qkλ
c
f − Ck,f )[xk,f −Xc

k,f ] ∀c ∈ CUTS (61)

∑

k∈K

xk,f = 1 ∀f ∈ F (62)

yk,a,t− +
∑

f∈In(k,a,t)

xk,f = yk,a,t+ +
∑

f∈Out(k,a,t)

xk,f ∀[k, a, t] ∈ N (63)

∑

a∈A

yk,a,minE−

a
+
∑

f∈CT

xk,f ≤ Rk ∀k ∈ K (64)

yk,a,minE−

a
= yk,a,maxE+a

∀k ∈ K, a ∈ A (65)

xk,f ∈ {0, 1} ∀k ∈ K, f ∈ F (66)

yk,a,t ≥ 0 ∀[k, a, t] ∈ N (67)

The Lagrangian multipliers associated with constraints (55) is represented byλf . Constraints

(61) represent the main idea of the framework. The information on the potential revenue change

by a modification on the fleet assignment is carried withλc
f ’s at each iterationc. The multipliers

should be obtained through the optimality conditions of theRMM sub-problem.

5.5 The generalization of the itinerary choice model

The presented integrated schedule planning model with pricing includes an itinerary choice

model where the only policy variable is the price. Furthermore the considered explanatory vari-

ables of the logit model are only itinerary attributes, in other words there is no socio-economic

characteristics related to passengers which enables to have an aggregate level model. In this

section we discuss the flexibility of the reformulated modelfor the extensions of the demand

model.

5.5.1 Additional policy variables

When there are more additional variables they will appear as an additional term in the market

share constraint (53). Let’s say this additional variable is the departure time of the itinerary,

dti. The new market share relation would be as follows:

ms
′

i ≤ ms
′

j + βp
′

i + βdtdti + ci − βp
′

j − βdtdti − cj (68)
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The complexity of the constraint does not change and since the time does not appear directly

in the objective function the structure of the problem is conserved. When the decision on the

departure time is introduced the schedule design part of themodel will be updated. However

this will not change the revenue problem as already mentioned.

5.5.2 Socio-economic characteristics

In this section we investigate the case with socio-economiccharacteristics in the presence of

individual data availability. The utility for each individualn and itineraryi with such individual

level characteristics can be represented by:

Vi,n = β ln (pi) + βi,nzn + ci ∀n ∈ N, h ∈ H, s ∈ Sh, i ∈ Is, (69)

wherezn is a socio-economic variable for individualn, andβi,n is the corresponding alternative

specific parameter. Note that one of theβin ’s should be fixed to 0 for identification purposes.

In the previous cases we presented the logit model with market shares since the demand model

is aggregate. When we have individual level characteristicswe need the choice probability for

each individualn. And the demand for an itineraryi is the sum of the choice probabilities over

individuals as presented below:

di =
∑

n∈N

Probi,n ∀h ∈ H, s ∈ Sh, i ∈ Is, (70)

where Probi,n is the choice probability for alternativei for individualn. The choice probability

is represented by:

Probi,n = υs,n · exp(β ln (pi) + βi,nzn + ci) ∀n ∈ N, h ∈ H, s ∈ Sh, i ∈ Is, (71)

where a new variableυs,n is defined for each market segments and individualn similar to (45)

in section 5.1:

υs,n =
1

∑

j∈Is

exp(Vj,n)
∀h ∈ H, s ∈ Sh. (72)

The market share relation in RMM (53) needs to be replaced by the choice probability relation

as given by:

Prob
′

i,n ≤ Prob
′

j,n + βp
′

i + βi,nzn + ci − βp
′

j − βj,nzn − cj, (73)
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where Prob
′

i,n representsln (Probi,n). Similarly the constraints (52) should be replaced by:

∑

i∈Is

Probi,n = 1 ∀n ∈ N, h ∈ H, s ∈ Sh. (74)

The constraints on the demand-capacity balance (54) shouldalso be modified accordingly:

∑

s∈Sh

∑

i∈(Is\I
′
s)

∑

n∈N

δi,fProbi,n ≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F. (75)

Finally the objective function of the RMM should be adapted. Total revenue is represented by:

∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′
s)

pi
∑

n∈N

Probi,n, (76)

which can be reformulated using the logarithmic transformation as given in equation(77).

exp () is removed since for the maximization problem it does not bring any change. In this

case penalty should be imposed on the deviation ofexp (Prob
′

i,n) from Probi,n similar to (51).

∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′
s)

∑

n∈N

p
′

i + Prob
′

i,n. (77)

Therefore the presented framework is valid when there are socio-economic characteristics in

the demand model.

6 Conclusions and Future Research

In this paper we present the added value of different level ofsupply-demand interactions

through a sensitivity analysis. It is concluded that choice-based supply-demand interactions

are not sensitive to slight changes on demand model parameters. This shows the robustness of

the choice-based framework.

The integration of choice-based pricing into the IFAM brings nonlinearities that cannot be

characterized as convexity/concavity. Therefore in this paper we propose a logarithmic trans-

formation of the logit model which enables us to have a concave RMM subproblem. With

this reformulation, the IFAM and RMM can be considered in an iterative framework where the

duals of RMM provide information to the IFAM.
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A RMM with choice-based recapture

z∗RMM = max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s
)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)pi (78)

s.t.
∑

s∈Sh

∑

i∈(Is\I
′

s
)

δi,fdi −
∑

j∈Is

δi,f ti,j +
∑

j∈(Is\I
′

s
)

δi,f tj,ibj,i

≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (79)

∑

h∈H

πh
k,f ≤ QkXk,f ∀f ∈ F, k ∈ K (80)

∑

j∈Is

ti,j ≤ di ∀h ∈ H, s ∈ Sh, i ∈ Is (81)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (82)

di ≤ d̃i ∀i ∈ I (83)

ti,j ≥ 0 ∀i ∈ I, j ∈ I (84)

Note that this RMM does not have the pricing decision and therefore price (pi) and recapture

ratios (bi,j) are input parameters to the model.
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B RMM with choice-based recapture and pricing

z∗RMM-P = max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s
)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)pi (85)

s.t.
∑

s∈Sh

∑

i∈(Is\I
′

s
)

δi,fdi −
∑

j∈Is

δi,f ti,j +
∑

j∈(Is\I
′

s
)

δi,f tj,ibj,i

≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (86)

∑

h∈H

πh
k,f ≤ QkXk,f ∀f ∈ F, k ∈ K (87)

∑

j∈Is

ti,j ≤ di ∀h ∈ H, s ∈ Sh, i ∈ Is (88)

d̃i = Ds
exp (Vi)∑

j∈Is

exp (Vj)
∀h ∈ H, s ∈ Sh, i ∈ Is (89)

bi,j =
exp (Vj)∑

k∈Is\{i}

exp (Vk)
∀h ∈ H, s ∈ Sh, i ∈ (Is \ I

′

s), j ∈ Is (90)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (91)

di ≤ d̃i ∀i ∈ I (92)

0 ≤ pi ≤ UBi ∀i ∈ I (93)

ti,j ≥ 0 ∀i ∈ I, j ∈ I (94)

bi,j ≥ 0 ∀i ∈ I, j ∈ I (95)

C Concavity of the reformulated RMM sub-problem

The objective function (51) can be evaluated in two parts. First part is a linear term which is

other words both convex and concave. The Hessian matrix for the second part with respect to

the variables msi and ms
′

i is provided as follows:

H =





∂2zi
∂ms2i

∂2zi

∂msi∂ms
′
i

∂2zi

∂ms
′
i∂msi

∂2zi

∂ms
′2
i



 .

In order to have concavity we need to have∂2zi
∂ms2i

and ∂2zi

∂ms
′2
i

≤ 0. Furthermore we need to have

the determinant nonnegative,∂2zi
∂ms2i

∂2zi

∂ms
′2
i

- ∂2zi

∂msi∂ms
′
i

∂2zi

∂ms
′
i∂msi

≥ 0.

When we re-write the Hessian with the appropriate partial derivatives we obtain:

H =

(

−2M 2M exp (ms
′

i)

2M exp (ms
′

i) 2M exp (ms
′

i)(msi − 2 exp (ms
′

i))

)

,

where−2M is clearly negative and off-diagonal entries are positive.The last term of the

Hessian is2M exp (ms
′

i)(msi − 2 exp (ms
′

i)).
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We can check the first derivative with respect to msi which is given by:

∂zi

∂msi
= −2M(msi − exp (ms

′

i)). (96)

This first derivative is only zero when msi = exp (ms
′

i). Similarly, the derivative with respect

to ms
′

i is given by:

∂zi

∂ms′i
= 2M exp (ms

′

i)(msi − exp (ms
′

i)), (97)

which is also zero only when msi = exp (ms
′

i). Therefore we have:

∂2zi

∂ms′2i
= 2M exp (ms

′

i)(msi − 2 exp (ms
′

i)) (98)

= −2M exp (ms
′

i)
2
< 0. (99)

With a similar analysis the determinant of the Hessian matrix ( ∂2zi
∂ms2i

· ∂2zi

∂ms
′2
i

− ∂2zi

∂msi∂ms
′
i

· ∂2zi

∂ms
′
i∂msi

)

is computed as zero. This shows the concavity (not strictly)of the penalty term.

The objective function is therefore the sum of a linear term and a concave function which

completes the proof of the concavity.

D Inverse demand function proposed by Schön, 2008

As explained in section 5.1 market share, msi, is given by:

msi = υs exp (βpi + ci), (100)

which is similar to (46). If we have the inverse function we can write the price as a function of

the choice probability:

pi =
1

β
(ln (

msi
υs

)− ci) (101)

The revenue for each itinerary,Ri, is given by msipiDs which can be written as:

Ri =
1

β
Dsmsi(ln (

msi
υs

)− ci) (102)

27



Integration of explicit supply-demand interactions in airline schedule planning and fleet assignment 2013

The Hessian forRi is therefore given by:

H =

(

∂2Ri

∂ms2i
= Ds

1
β

1
msi

∂2Ri

∂msi∂pi
= −Ds

1
β

1
υs

∂2Ri

∂pi∂msi
= −Ds

1
β

1
υs

∂2Ri

∂p2i
= Dsmsi 1β

1
υ2
s

)

where msi, Ds, υs are≥ 0 by definition.β ≤ 0 since it gives the effect of price on the utility.

Therefore∂2Ri

∂ms2i
and ∂2Ri

∂p2i
≤ 0 and ∂2Ri

∂msi∂pi
, ∂2Ri

∂pi∂msi
≥ 0. ∂2Ri

∂ms2i
× ∂2Ri

∂p2i
− ∂2Ri

∂msi∂pi
× ∂2Ri

∂pi∂msi
= 0,

which shows the concavity (not strictly concave) of the revenue function.
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