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Abstract

In airline scheduling problems, integrated decision metthagies have aroused intense interest
in the last decade. These integrated approaches allow fia efficient solutions due to the si-
multaneous decision making process. The studied inteynatelels mostly consist of planning
phase subproblems. However in order to be demand respodsineand related information
should also be included in planning models. For that matipply-demand interactions are
now being introduced in airline decision problems. Thisfigemw carried out with simplified
demand models that are exogenous to the supply model. Ipdpier we present an integrated
airline scheduling, fleeting and pricing model which inasdan explicit demand model for-
mulation. The integrated model combines supply and demalated decisions. On the supply
side, we have the decisions on the subset of flights to be flowrtlee aircraft types to be as-
signed to each flight. On the demand side, we have the pri@oigion and spill and recapture
effects which are facilitated through an itinerary choicedel. This itinerary choice model is
estimated based on real data which is a combination of RP an@t&Bets. In this paper a sen-
sitivity analysis is presented for the added-value of tlhegrated supply-demand interactions.
Furthermore a reformulation of the model is proposed tocedhe complexity.

Keywords
Airline fleet assignment, airline schedule planning, sygi#mand interactions, itinerary
choice models, spill and recapture, mixed integer nonfipeablems
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1 Introduction

In airline fleet assignment literature the integration gbply-demand interactions attract an
increased interest in the last decades. These interactiensither directly integrated into the

model or external demand models/simulators are develdpgdotovide better inputs to the

planning process. When there is a direct representationpgfiysalemand interactions in the

planning problems it is assumed that the airlines have aaoon the revenue side. On the

other hand, researchers who believe that airlines can netdwch a control prefer to keep the
revenue related decisions external to the model. This eadblkeep the stochastic nature of
the demand and use advance demand modeling techniques.

In this section we provide a brief review of airline fleet gssnent literature where supply-
demand interactions are considered through network sff&mce our focus is on how supply-
demand interactions are treated we do not provide a compsafeereview on fleet assignment
models (FAM). We refer to Sheradt al! (2006) for a recent review on FAM literature. In Table
[ we categorize different conventions in airline fleet assignt literature regards to supply-
demand interactions compared to the basic FAM.

Table 1: FAM literature with network effects

Basic FAM FAM IFAM

fixed price externally estimated revenudixed price

fixed demand network effects network effects

e.g. Abara (1989) Jacobst al. (2008) Barnhartet al. (2002)

Haneet al. (1995) | Dumaset al. (2009) Lohatepanont and Barnhart (2004)
Wanget al. (2012)
Atasoyet al. (2013b)

As mentioned earlier keeping the revenue estimations mitéo the FAM enables to use
stochastic revenue models. With that motivation Jagbbk (2008) present a leg-based FAM
where network effects are estimated with a passenger miemdbe passenger mix model is a
nonlinear network flow model which estimates the total rexegiven the capacity. Simplified
network effects are included directly in FAM in order to keelmmear formulation. Dumast al.
(2009) present a framework where a passenger flow model awdlzalsed FAM are iteratively
solved. Their aim is to keep the stochastic nature of the ddmaad reflect the time dimension
in the booking process. They assume that demand distritsitid itineraries and recapture
ratios are known.

Direct integration of supply-demand interactions lead tinerary-based fleet assignment
(IFAM) since the information on the demand is at the itingrimvel (Barnharet al., 2002).

With an itinerary-based setting Lohatepanont and BarnRaf4) present an integrated sched-
ule design and fleet assignment model with network effedis.cbnsidered effects are demand
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correction for the market demand in case of flight canceltetand recapture effects. Recapture
ratios are estimated based on the Quality Service Index)(@&m8lintroduced as fixed inputs to
the modell_Sheratt al. (2010) also present an integrated schedule design and$kghanent
model where they work with itinerary-based demands for iplelfare classes. They optimize
the allocation of seats for each fare class as we do in ougriatied model. However they do
not include network effects in the model.

The advances in demand modeling enables to better undetsi@annderlying travel behavior.

Discrete choice methodology is widely used in the contexipotransportation for itinerary

choice estimation. We refer to Garrow (2010) where the matitw for the usage of discrete
choice methodology in air travel demand is presented tegetith several case studies. Vari-
ous specifications are provided such as logit and nestetnmglels.

Wanget al. (2012) use utility models similar to discrete choice maagliin order to represent
the spill and recapture effects. They present the idea wiidséc passenger mix model. Exten-
sions to the model are proposed with fleet assignment andslehdesign decisions as well as
market and departure time selectians. Atagiosl ) (2013b) estimate the recapture ratios based
on a logit model. The logit model is estimated based on a mieeehled preferences and stated
preferences dataset. The recapture ratios are explaingzt pyice, departure time, number of
stops and trip length. They are provided as inputs to thedsdbalesign and fleet assignment
model.

The explicit representation of demand models in optimimaframeworks is a recent trend in
order to improve the supply-demand interactions. Tallod ean Ryzin|(2004) introduce a rev-
enue management model based on a discrete choice methpddlogy decide on the subset
of fare products to offer at each point in time according te discrete choice model. They
consider single-leg, multiple-fare-class products.8d@f08) presents an integrated schedule
design, fleet assignment and pricing model. She providéselift specifications of the demand
model as logit and nested logit where the only explanatonakte is the price. Spill and recap-
ture effects are not considered. The concavity of the madatihieved through an inversion of
the demand model (see Appenix D) which is a limiting factotase of the existence of other
policy variables in addition to the price. Ataselyal| (2012) propose an integrated scheduling,
fleeting and pricing model where an itinerary choice modektimated based on a real dataset.
They present several tests in order to understand the lwehaivihe integrated model. The
explicit representation of the demand model results witbraconvex mixed integer nonlinear
problem (MINLP). Therefore a heuristic method is proposadtiie solution of the problem
(Atasoyet alJ,12013a).

In this paper we present a sensitivity analysis in order tteustand the added-value of supply-
demand interactions at different levels (see section 4)-lhassed FAM (e.d. Hanet al.,11995)
is the reference model and the two IFAMs presented by Atasal (2013b) and Atasogt al.
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(2012) are tested compared to the leg-based FAM. Furthermempresent a reformulation of
the itinerary choice model which provides a concave revenbeproblem (see sectibh 5). This
reformulation is expected to facilitate the optimizatisarhework with iterative solutions of

the schedule planning and revenue problems.

2 The itinerary choice model

In order to understand the air travel demand an itinerarycehmodel is developed. Origin-
destination (OD) pairs are considered as market segmeatsolfny and business classes are
treated separately. A market segment therefore consisi thfe available itineraries for an
OD pair and a cabin class. For example, all the economy &mes offered from Geneva to
Boston constitute a market segment. The notation is providédble 2.

Table 2: Notation for the demand model

H  setof cabin classes - indexed by

St set of market segments in claiss indexed bys

I, setofitineraries in segment- indexed byi

set of competing/no-revenue itineraries in segment
D, unconstrained demand of segment

V;  deterministic utility of itineraryi

ms market share of itinerary

d; demand of itinerary

p;  price of itineraryi

¢ constant term for itinerarythat represents several attributes
I6; parameters of the demand model

The itinerary choice for the market segments is considerdx tindependent from each other.
The choice set for each market segment consists of all théablaitineraries serving the
market. These itineraries may vary in terms of the offeredllef service, price, trip length
and departure time of day. A logit model is developed in otdestimate the choice probability
of each itinerary in each segment based on the listed vagalbhe estimation of the parameters
are performed using maximum likelihood estimation over aatiiRP/SP dataset. The details
for the demand model and the estimation procedure is prdvidatasoy and Bierlaire (2012).

As mentioned earlier the demand model is integrated intaiiee schedule planning model.
The only policy variable which could be controlled by theiopzation model is the pricep).
The other variables (trip length, departure time of day, benof stops) improve the estimation
of choice probabilities and can be represented by a con@taum the optimization model. The
utility is represented by:

Vi=pBIn(p) +c Vhe H,se Shiel, 1)
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Depending on the utility, the choice probability/markeashand the demand associated with
itinerary: in segment is given by:

exp(V; e In(p;) + ¢
ms — _o0V) __exp(BIn(pi) + ) @
D exp(V;) ) exp(BIn(py) + )
J€ls J€Els
d; = D,ms Vhe H,seS"iel, (3)

3 Integrated schedule planning models

In order to reveal the impact of integrated supply-dematetactions we carry out a compara-
tive analysis for different FAMs. The first model is a basg-leased FAM with schedule design
decisions. The second is an IFAM with choice-based recatnd the third model is an IFAM
with choice-based recapture and pricing. In this sectiompresent these three models.

3.1 Leg-based FAM with schedule design

The considered leg-based FAM is based on the work of Haak (1995). The notation for
the parameters and decision variables is provided in Tabtel3rablé ¥ respectively.

Zam =min Y " Cy, sy, 5 + Spill costs (4)
keK feF
Yoang=1 Vfe FM (5)
kEK
Yo ks <1 Vf e F9 (6)
kEK
Ykat= + Z Th,f = Ykatt+ + Z Tk, f Vik,a,t] € N (7)

fen(k,a,t) feOut(k,a,t)
> Ypamines + D Thy < Bi k€ K ®)
acA feCcT
Yk,a,minE; = Yk a,maxEr Vke K,ae A (9)
x5 € {0,1} Vke K,feF (20)
Yk,at =0 Vk,a,t] € N (11)
(12)

The objective[(#) is to minimize the operating costs and thk sosts. Since the leg-based
formulation does not carry information regarding demarssuaptions are made for the es-
timation of spill costs. First assumption is thél fare allocation where each flight in the
itinerary is assigned the full fare of the itinerary. Thellspstimation is performed in a de-
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Table 3: Notation

Set Definition

F the set of flight legs indexed by

Fy the set of mandatory flight legs

Fo the set of optional flight legs

cT the set of flights flying at count time

A the set of airports indexed hy

K the set of fleet types indexed By

T the set of time of the events in the network indexed by

N(k,a,t)  the set of the nodes in the time-line network
for fleet typek, airporta and timet

In(k,a,t)  setofinbound flight legs for nodé f,t)

Out(k,a,t) set of outbound flight legs for nodé,,t)

Parameter  Definition

Ch,f operating cost for flighf when operated by fleet tyge
Ry, available number of planes for type

Qx the capacity of fleet typg in number of seats

minkE,; the time just before the first event at airport

mazrE; the time just after the last event at airpart

Table 4: Variables

Variable Definition

T, f binary variable, 1 if fleet typé is assigned to flight, O otherwise
Yk.at— the number of typé planes at airport just before time

Yk a,t+ the number of typé planes at airport just after timet

terministic way where the itineraries are listed in ordedetreasing fare and the demand is
assigned respecting this order. These assumptions orréhalli@cation and spill estimation are
explained by Kniker (1998). A similar approach is also cdased by Lohatepanont (2002).

In addition to the fleet assignment decisions, the schecdhdigd feature with the sets of manda-
tory and optional flights is integrated (5)-(6). Th rema@aonstraints are classical FAM con-
straints: flow of aircraft should be conserved (7), the nundbavailable aircraft for each type
should be respected] (8) and a cyclic schedule is maintafed (

3.2 IFAM with choice-based recapture

The considered IFAM is presented by Atasal. (2013b). As proposed by Barnhattal.
(2002) an itinerary-based setting is adopted. The additiootation for the IFAM model is
presented in Tablg 5.
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Table 5: Additional notation for IFAM

*
ZIFAM

s.t.

Parameter Definition
0i.f 1 ifitinerary i uses flight legf, O otherwise
bi recapture ratio for the passengers spilled from itinetary

and redirected to itinerary

Decision variable Definition

lij

redirected passengers from itinerary itinerary
w,iﬁf assigned seats for flightin a typek plane for cabin clask

:maxzz Z (dsztm-Jr Z

heH seSh je(I\I) Jj€ls jG(I,;\I;)

- Z Ck’ka_’f

keEK
JEF

Zka:l

keK

Zxkyf <1

keK

Yk,a,t— + Z

fe€In(k,a,t)

Z Yk,at, + Z zp,p < Ry,

acA fecr

Tk, f = Yk,a,tt T Z Tk, f
feOut(k,a,t)

yk aminE, = yk a rnamE+

Z Z 5Zfd_zalftlj+ Z 67.ft]zb]z

S€SM G (I,\1) JeLs JETNIL)

<D T

keK

Z Ty < Quk

heH

Z ti; < d;

JEIs

x5 € {0,1}
Yk,at > 0
7rk 520

d; < d;

zg ZO

VfeFM
Vf e FO
Vk,a,t] € N
Vk e K

Vke K,ae A

Vhe H,f € F
Vfe Flke K
Vhe HseShiel

VkeK,feF
V[k,a,t] € N

Vhe Hke K, feF
Viel

Viel,jel

(13)

(14)

(15)

(16)

(17)

(18)

(19)
(20)
(21)

(22)
(23)
(24)
(25)
(26)

This model uses the given price values in the dataset. In@ssthat the recapture ratids,
are given by a logit formula. With the given itinerary attribs in the dataset, recapture ratios
are calculated and taken as an input. The model optimizeete®iue minus operating costs
(@3). The revenue functions explicitly includes the spilbaecapture effects. In addition to
the schedule planning decisions, seat allocation is opéisiio each class of passengers. Con-
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straints[(IP) maintain the balance between demand andsidseats. Constrainks {20) ensure
that actual capacity of aircraft is respected. The numbepilied passengers from an itinerary
cannot be more than the expected demand of that itinerarshw$igiven by constraints (21).

The presented IFAM is similar to what Lohatepanont and Batr(8804) proposes. However
they work on demand correction terms which is not considesedtasoyet al| (2013b). Fur-
thermore_Lohatepanont and Barnhart (2004) introducesidaciariables on the cancellation
of the itineraries which is related to the cancellation o tssociated flight. Therefore, in
Atasoyet al) (2013b) the demand of the itineraries can only be reducexughr spill which
underestimates the potential revenue. This phenomendsasalid for the model presented
in the next section.

3.3 IFAM with choice-based recapture and pricing

The final IFAM integrates pricing decisions into the framek@Atasoyet all, [2012). The
pricing decision is also determined by the itinerary choraalel. Therefore the representation
of supply-demand interactions becomes explicit in the rhingdramework. The pricep;,
the demand/; and the recapture ratios; ;, are now all decision variables in contrast to the
previously presented models.

The demand is given by the itinerary choice model a5 ih (3Bjs emand variablel;, serves
as an upper bound on the actual demand variabl&s given by[(41). It is important to note
that d; is the expected demand for each itinerary without any capéiniit. Therefore for
the decision oni;, the attributes of all the itineraries play a role. In casexehall flights are
mandatory this is similar to the model by Waetal. (2012). However in case of canceled
flights this provides more conservative results comparettiégomodel by Wangt al! (2012)
since the expected demand is affected by the attributed @fghits. This way of modeling
has such an effect which was addressed by Lohatepanont andéBaf2004) with demand
correction terms. The relation for the recapture ratiogpaesented in constraints (37). When
a number of passengers is spilled from itinergrgach remaining itinerary getsb; ; portion

of the spilled passengers.
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*
Z|FAM-P

s.t.

4 Sensitivity analysis

T SD MID ST SRS >

heH seSh je(1,\12) J€Is

— Z Ck’f:(:k’f

keK
JEF

ka’fZI

ke K

S any <1

keK

yk,a,t* + Z Th,f = yk,a,t+ +

f€In(k,a,t)
> Ykat, + D Thy < Ry
acA fecr

yk,a,minE; = yk,a,mazE;’

Z Z 0i,pdi — Z Os, fti; + Z

, :
seSMic(aIy) gets

<Dy

keEK

> Ty S Qi

heH

Z ti; < d;

j€ls
exp (V3)

> exp(V;)

J€ls
exp (V)

> exp (V)

kels\{:}
Tk, f S {07 1}

Yk,a,t >0

Ji:Ds

bi,j =

Vfe FM
vf e F°
V[k,a,t] € N
vk e K

Vke K,ae A

VheH,feF
VfeFkeK

Vhe H,seShiel,

Vhe HseShicl,

Vhe HyseShic (I, \I1.),jel,

VkeEK,feF
Vk,a,t] € N

Vhe Hke K,feF
viel

Viel

Viel,jel
Vviel,jel

@7

(28)

(29)

(30)

(31

(32

(33

(34)

(35)

(36)

@7

(38)
(39)
(40)
(41)
(42)
(43)
(44)

In this section we perform sensitivity analysis in order tlligess the key assumptions of the
choice-based IFAM models. The addressed assumptionslated@o the unconstrained de-
mand, price parameter in the logit model and the assumptegasding the competitors’ offers.

We perform a comparative analysis between the leg-based, FA\M with choice-based re-
capture and IFAM with choice-based recapture and priciatjdhe presented in sectioh 3.

The sensitivity analysis for each of the assumptions stattsthe solution of different FAM/I-
FAM models. With the resulting fleeting and scheduling deais, a passenger allocation sim-
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. IFAM — choice-
Leg-based FAM IFAM = choice- based recapture &
based recapture ..
pricing

N /

Fleeting & Scheduling
Perturbations Decisions

_— N|

RMM - choice based
recapture / pricing

|

Resulting Profit

Figure 1. Framework for the sensitivity analysis

ulator is employed to determine the quality of the planniagisions given by the models. The
passenger allocation simulator is considered as a reveanagement model (RMM) which
consists of all the demand/revenue related equations dF&M. In order to have a fair com-
parison for the models we have utilized two versions of the RMNE first one (see Appendix
[A) uses the price values given in the dataset and therefare dot have a pricing decision.
The second RMM (see AppendiX B) on the other hand has the pri@ogion. Both of the
RMMs use the capacity given by the FAM/IFAMSs therefore thetflessignment variables are
fixed and represented by, ;.

When solving the RMMs, perturbations are introduced and tbétmbtained by the decision
of different FAM/IFAM models are compared. This methodgldgr sensitivity analysis is
inspired by the work of Lohatepanont (2002). It is illusécby Figurél.

The tests for the sensitivity analysis are performed withttho data instances presented in
Table[®.

4.1 Demand uncertainty

In the presented IFAMs we assume that the total demand fdér macket segment is known.
The demand share of each itinerary in a market segment iogiopal to this total demand.
This is a strong assumption given the daily and seasonalfitions of the demand. In this
section we address this assumption and test the added vdk&s compared to FAM with
simulated values of demand.

10



Integration of explicit supply-demand interactions iflia& schedule planning and fleet assignment 2013

Table 6: The data instances used for the sensitivity arglysi

Experiment 14
Airports 4
Flights 23
Itineraries 35
All economy

6 one-stop - 29 non-stop
Total demand 1918 pax.
Available fleet 4 aircraft types
117-85-70-50 seats

Experiment 24
Airports 8
Flights 77
Itineraries 167

19 business - 90 economy
19 one-stop - 90 non-stop
Total demand 5051 pax.
Available fleet 4 aircraft types
117-85-50-37 seats

We randomly draw 500 realizations of the unconstrainee@itiny demand from a Poisson dis-
tribution with a mean equal to the average demand value gedvin the dataset. Furthermore,
we introduce perturbations on the average demand valueangerof -30%-+30%. Therefore
for each perturbation on the average demand value we havafs0tations. In order to decide
on a meaningful range for the demand fluctuations we checéssemger flow statistics from
The Airline Origin and Destination Survey (DB1B). For examfibe the OD pair JFK-FLL
the total demand varies at most by around 15% from quarteuaotey in a year (data range
2005-2010). Since the daily fluctuation would be higher tthenquarterly fluctuation we kept
the range wider.

First of all the added value of IFAM with choice-based recaptis tested compared to leg-
based FAM using the experiments 14 and 24. The considered R paEssenger allocation is
a model with choice-based recapture but without pricing GependixX_A).

In experiment 14, supply demand interactions embeddeddiMIfesults with a higher capacity
allocation since spilled passengers can be accommodatethby itineraries and the cost of
larger capacity aircraft can be compensated. However &sgd FAM decides to assign less
capacity since it cannot make use of recapture effects.efdwer, as seen in Figuré 2, when the
demand is over-estimated FAM performs better in the rangéo-8 -5%. However starting
with -5% IFAM performs better. When the demand is under-estida the improvement due to
IFAM can be clearly observed. After a level of underestim@ifaround 15%) leg-based FAM
cannot change the revenue since the allocated capacity ennagh to accommodate all the
demand.

11
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Figure 2: Sensitivity to demand fluctuations - Experiment 14

Figure 3:
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Sensitivity to demand fluctuations - Experiment 24
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Figure 4: Sensitivity to demand fluctuations - Pricing - Expent 14
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Figure 5. Sensitivity to demand fluctuations - Pricing - Bxpent 24
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Experiment 24 includes business class passengers whiehhiglver average demand com-
pared to economy passengers. The existence of businegngassincreases the revenue that
could be obtained through recapture and therefore IFAMd#ecio allocate less capacity com-
pared to leg-based FAM. As seen in Figlie 3, IFAM performgebaip to the perturbation
level +20%. When the demand is under-estimated by more th@n XM performs better.
The higher capacity allocation of FAM helps to recover thexpected increase in the demand.

In order to be able to test the sensitivity of IFAM with choisased recapture and pricing we
also performed the same analysis using the RMM with pricieg &ppendixB). In Figurds 4
and5 the results for leg-based FAM, IFAM with choice-basszapture and IFAM with choice-
based recapture and pricing are presented. It is obseraeththpricing decision increases the
robustness of IFAM. For experiment 14, IFAM is outperfornsgd=AM up to -5% fluctuation.
However with IFAM pricing this is pulled back to -10%. A sirail phenomenon is observed
with experiment 24. IFAM is outperformed by FAM when demasdmnder-estimated by more
than 20%. With IFAM pricing this is shifted towards 25%. Thigoports the fact that when the
planning model has more flexibility and information from tle¥enue side, the perturbations
can be absorbed better.

It is important to note that experiment 14 is a smaller siztance compared to experiment
24 and its solution is provided by BONMIN solver with a 0% dtaap. However for the
experiment 24 we work with the heuristic solution. Thereftite improvement due to pricing
is less evident for experiment 24 compared to experiment 14.

The analysis performed for the demand uncertainty showshbkegerformance of IFAMs are
not affected by slight changes on the average demand. Tlsitigy analysis performed

by Lohatepanont (2002) concludes that the improvementaifeAM is not clear even with a

perturbation of 2-3% on average demand. In our case, theiaprent provided by the IFAMs
is more evident. It can be concluded that a flexible planniglehprovides robust solutions
since it can deal with more significant perturbations.

4.2 Price parameter of the itinerary choice model

The parameters of the demand model are estimated based ored RiP/SP dataset as ex-
plained in sectiol2. Since the only policy variable is the@among the set of explanatory

variables, its coefficient has a direct impact on the markatess. Depending on the data set
used, the estimated value of the parameter will be differ€herefore in this section we per-

form a sensitivity analysis with perturbations on the ppesameter in a range from -50% to

+50%. This range of perturbations modifies the elasticitpadsengers is perturbed consider-
ably.

14
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Figure 6: Sensitivity to price parameter - Experiment 24
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We perform the analysis on the price parameter with exparirgad. In Figurd b we com-
pare the behavior of FAM and IFAM with choice-based recamtithe considered RMM has
choice-based recapture but does not have pricing deciseaAppendik A). It is observed that
IFAM is outperforming FAM for all the cases which suggestattthe added-value of IFAM is
systematic and robust to perturbations on the price pasmet

In Figure[.7 we compare the behavior of FAM, IFAM with choicasked recapture, and IFAM
with both recapture and pricing. In this case RMM has a degisiopricing as well (see Ap-
pendiXB). It is observed that IFAM with recapture provides#iér fleeting solution compared
to the two other models. It can be concluded that the addke\a IFAM with pricing is
robust to the perturbations on price sensitivity. Anotimepartant observation is that the profit
is higher when passengers are highly sensitive to price dmhwhey are almost insensitive to
price. In the former case RMM is able to attract more passsngii a slight price reduction.
In the latter case it is able to increase the prices withoatedesing the demand significantly.
Both phenomenon result with an increase in the profit.

This section concludes that the improvement provided bysiingply-demand interactions
through the itinerary choice model is not sensitive to thegoparameter.

4.3 Competitors’ price

As mentioned in sectionl 2 we include no-revenue options éncitoice set which represent
the alternatives offered by the competitors. The price eféhalternatives are assumed to be
known and even if there is a pricing decision they are keptfi&nce the market share of the
itineraries depends on the offer by the competitors, ingbidion we perform analysis on the
price of the competitor’ itineraries. The prices are pdyation in a range from -50% to +50%.
The analysis is done with experiment 24.

In Figure[8 we compare the behavior of FAM and IFAM with chebzsed recapture. The
RMM is solved with choice-based recapture but without pgcfeee Appendikx A). It is ob-

served that the price offered by the competitors does not laasignificant impact on the
added-value of IFAM. Only when the prices are under-estahdty around 50% FAM per-

forms better than IFAM. As mentioned in section]4.1 leg-dS&M allocates more capacity
compared to IFAM in experiment 24. Therefore with such a ificgnt under-estimation of

competitors’ price, the market shares of the airline inseeand FAM performs better with a
higher capacity at hand.

In Figure[9 we compare the behavior of FAM, IFAM with choicaskd recapture, and IFAM
with both recapture and pricing. Consequently, considered/Ris a decision on pricing as
well (see AppendikB). It is observed that IFAM with pricingtparforms both of the models in
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the range from -25% to +25%. However when the price of cortgrstchange more than 25%
IFAM with pricing is outperformed by IFAM. The reasoning heti is that pricing decision is
taken given the competitors’ prices and the planning decssare directly affected by those
prices. All in all this only occurs with very high perturbatis and even in those cases the
improvement compared to leg-based FAM can be clearly obderv

The analysis shows that integrating supply-demand intiersswith a choice model enables to
react to market conditions which cannot be achieved thraulgly-based FAM setting. IFAM
gives this reaction by updating the recapture effects ardd#éctisions on spill. IFAM with
pricing also reacts with the changes on the prices in additdhe spill and recapture effects.

5 Reformulation of the model

In this section we present a logarithmic transformationhef itinerary choice model in order
to reduce the complexity of the integrated schedule planmindel presented by Ataseyal.
(2012).

We first present how the logarithmic transformation is daneectiorf 5.1l. Then we present
the relative market shares idea proposed by Wéim@) (2012) in section 5]2. In section 5.3
we provide the RMM sub-problem as a result of the reformufatidhe logarithmic trans-
formation necessitates the information on the selectelitfligince 0 market share cannot be
treated in the logarithmic space. Therefore the new fortirarias appropriate for bi-level pro-
gramming framework where the schedule planning decisinds@venue related decisions are
separated. In sectidon 5.4 we present a Benders’ Decompogiimework for the iterative so-
lutions of IFAM and RMM. Finally we discuss the flexibility ohé reformulated problem for
the extensions of the demand model in sedtioh 5.5.

5.1 Log transformation of the logit model

The integration of the presented logit model into an optahan framework brings complex-
ity issues. In addition to the nonlinearity, depending oa tbrmulation it may result with
a non-convex problem. The integrated scheduling, fleetmdy @icing model presented in
Atasoyet al/ (2012) is mixed integer nonlinear problem where the cortyaginot guaranteed.
The logit model is explicitly integrated in the model reesng the decisions on pricing and
spill effects.

In order to develop a framework where the non-convexity caavwided, we propose a loga-
rithmic transformation of the problem.
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The denominator in equatidn 2 is same for all the itinerandhe segment. Similar {o Schon
(2008) a new variable is defined as follows :

1
Y ep(Bln(p) + ¢)

jels

Vhe H,se S" (45)

Us

Therefore the market share of each itinerary in the segnanbe written as in equatignl46.

ms = v, - exp(B1n (p;) + ¢;) Vhe HseS"icl, (46)

Since we do not use the full logit formula we need to make saethe market shares sum up
to 1. Therefore we need the following relation for each meskgment:

stzl Vhe H,se S (47)

i€l

The logarithm of equation 46 is given by:

In(ms) =In(v,) +BIn(p;) +¢i  VYhe H,s€S"iel, (48)

We can denotén (ms) by ms, In (p;) by p;, an similarlyln (v,) by v,. Therefore we can write
the following linear relation:

ms=u.+8p;+c VheHseS"icl, (49)

5.2 Relative market shares and spill effects

Atasoyet al/ (2012) present a model where the logit function is expicititegrated in the
model. The pricing decision is given by the full logit formaul Similarly the recapture ratios
are also modeled by the logit function where the actuallyrddstinerary is removed from the
choice set.l Wangt al. (2012) represent the spill and recapture effects with aemdatmu-
lation. They keep the market shares proportional to th@yof the itineraries however they
do not limit it to the exact market share given by the logitsdtves as an upper bound but
it is not necessarily realized. This allows the spill andapgare of the passengers. With this
formulation there is no decision variable on the spilled benof passengers and no parameter
on the recapture ratios. Therefore no control is availahléhe spill. Furthermore, they do not
have any pricing decision in the formulation.

Combined with our logarithmic transformation the marketrstfarmulation can be re-written
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as follows:
sjexp (V2)
exp (V)
ms <ms; +V; -V,
ms <ms +fBp;,+c¢;—PBp,—¢; VheHseS"ie(I,\1),je€l, (50)

ms <m

where itinerarieg and;j are in the same market segmerdand itinerary; represents the com-
peting itineraries available in the market. The expectddyudf j is constant since there is no
pricing decision over the competing itineraries. This tielaensures that the market share of
an itinerary is proportional to its relative expected tiililn our setting there is only a single
competing itinerary in a market segment. If there are sévleeamarket share and the expected
utility should be replaced by their sum over all the compgettmeraries.

With this formulation there is no need for the variables fer humber of spilled passengers and
the recapture ratios. Moreover the defined variahles also redundant since relative market
shares are considered rather than the full logit representa

5.3 Sub-problem - RMM

RMM maximizes the revenue with the decisions on the marketesipaicing and seat alloca-
tion. The decisions on the operated flights and the fleet ms®gt are inputs to the model.
Fleet assignments are representedyy; parameters. The transformed model can be given as
follows:

ZRMM = Max Z Z Z (In (D) + ms; +p;)

heHt seSh je(I\12)

— M(ms — exp (ms;))* (51)
> ms=1 Vhe H,se S"  (52)
i€l
ms < ms; + Bp; +¢; — Bp; — ¢ VheH,se St ic(I,\L),jel  (53)
Y Dy Y siyms <> VYVhe H,feF (54)
sesSh i€(Is\12) keK
k< QuXeg VfeF ke K (55)
heH
T >0 VheHkeK,feF (56)
In (LB;) < p; < In(UBy) Vhe H,seShiec(I,\1I,) (57)
ms, € R Vhe H,seShiel, (58)
ms > 0 Vhe H,seShiecl, (59)
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Objective is to maximize the revende 5k (In (D,) + ms + p;) is mathematically equiva-
lent to D, - ms - p;. Furthermore we can remove thep () and have the presented objective
function. There is a penalty term, M, which penalizes thaat@n from the real market share
when represented with the logarithmic transformation. \&edthis penalty because the rela-
tion between the market share and its logarithm could noti@ndoy an equality constraint
such asexp (ms) = ms in order to avoid non-convexity. Constrainis](53) ensureréia-
tion between the expected utility of the itineraries andrthmarket shares in a market segment
as explained in sectidn 5.2. Constrairts| (54) ensure thalibeated number economy/busi-
ness seats for a flight should satisfy the realized econamiibss demand. Constrairs](55)
maintain that the actual capacity of the aircraft is respect

The presented RMM has linear constraints and continuoushias. The only nonlinearity is in
the objective function. It can be shown that the objectivection is a concave function (seeAp-
pendiX Q). Therefore the problem is a concave nonlinear proNLP) given the decisions on
the schedule design and fleet assignment. This problem cambedded in an iterative frame-
work in the context of bi-level modeling where the fleet assignt model (IFAM) is solved
and ther;, ; variables are transferred to RMM.

5.4 Generalized Benders’ Decomposition framework

In this section we provide the Generalized Benders’ Decoitippdramework for the refor-
mulated problem based on the Mixed Integer Nonlinear Progriag chapter of Liand Sun
(2006).

The idea is an iterative solution of the RMM sub-problem aredrttaster problem which is the
IFAM in our case. The sub-problem optimizes the price, misskare and the seat allocation to
each class of passengers given the fleet assignment deciSiois solution provides Benders’
cuts to the master problem through constraipis (55). Letissier a simplified version of
the problem with all flights being mandatory, all itinerarieeing non-stop and economy. In
this case we have one itinerary per flight and no decision ah aécation. With such a
simplification the master problem can be written as follows:
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max « (60)
sta<> Do Y exp(PY+MS) =Y CryXiy
SESie(L\I) hek
+ 3 (QrAG — Crop)[wny — Xg ] Ve € CUTS (61)
keK
feF
doars=1 VfeF (62)
keK
Ukat-+ D Thf=Ykarr + D Thy Vlk,a,t] € N (63)
fein(k,a,t) feOut(k,a,t)
> Ypamne + > Ths < Ri Vk e K (64)
acA fecr
Yi,a,mnE; — Yi,a,maxel Vke K,a€ A (65)
x5 € {0,1} VkeK,feF (66)
Yk,at > 0 Vk,a,t] € N (67)

The Lagrangian multipliers associated with constrain® (5 represented bj;. Constraints
(61) represent the main idea of the framework. The inforomadin the potential revenue change
by a modification on the fleet assignment is carried witls at each iteration. The multipliers
should be obtained through the optimality conditions of MM sub-problem.

5.5 The generalization of the itinerary choice model

The presented integrated schedule planning model withngriocludes an itinerary choice
model where the only policy variable is the price. Furthemrertbe considered explanatory vari-
ables of the logit model are only itinerary attributes, ihetwords there is no socio-economic
characteristics related to passengers which enables todraaggregate level model. In this
section we discuss the flexibility of the reformulated mdaelthe extensions of the demand
model.

5.5.1 Additional policy variables
When there are more additional variables they will appeanaadditional term in the market
share constrainf (53). Let's say this additional variabléhe departure time of the itinerary,

dt;. The new market share relation would be as follows:

ms < ms; + Bp; + Badt; + c; — Bp; — Badti — ¢ (68)
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The complexity of the constraint does not change and siredirtie does not appear directly
in the objective function the structure of the problem issgmed. When the decision on the
departure time is introduced the schedule design part ofiibeel will be updated. However

this will not change the revenue problem as already mendione

5.5.2 Socio-economic characteristics

In this section we investigate the case with socio-econainaracteristics in the presence of
individual data availability. The utility for each indivighl» and itinerary; with such individual
level characteristics can be represented by:

‘/i,nzﬁln(pi>+6i,nzn+ci vnENahEH7SESh7i€]S7 (69)

wherez, is a socio-economic variable for individual andp; ,, is the corresponding alternative
specific parameter. Note that one of the’s should be fixed to O for identification purposes.

In the previous cases we presented the logit model with maHares since the demand model
is aggregate. When we have individual level characteristeEseed the choice probability for
each individuak. And the demand for an itinerafyis the sum of the choice probabilities over
individuals as presented below:

dj=) Proh, VheHsecS'icl, (70)

neN

where Prob, is the choice probability for alternativdor individual»n. The choice probability
is represented by:

Prob;,, = v, - exp(BIn (pi) + Binzn + ¢i) VneN,he HseS"iel, (71)

where a new variable; ,, is defined for each market segmerand individualn similar to (45)
in sectior 5.0

Vhe H, s € S". (72)
The market share relation in RMNL(53) needs to be replacedéoyglibice probability relation
as given by:

Prob,, < Prob,, + 8p; + Binza + ¢ — Bp; — Binzn — ¢, (73)

23



Integration of explicit supply-demand interactions iflia& schedule planning and fleet assignment 2013

where Pro@gn represent$n (Prob ,,). Similarly the constraint$ (52) should be replaced by:

> Proh,=1 VneNheHses" (74)

i€ls

The constraints on the demand-capacity balande (54) slatsdde modified accordingly:

5 fProh, <y Vhe H,f €F. (75)
2. D> D GiProb, <)

seSh je(I \I.) neN keK

Finally the objective function of the RMM should be adaptedtal revenue is represented by:

>3 > p> Proh,, (76)

heH scSh ie(Is \[ neN

which can be reformulated using the logarithmic transfdiomaas given in equation(¥7).
exp () is removed since for the maximization problem it does natd@any change. In this
case penalty should be imposed on the deviatioaxpf(Protj,n) from Proh,, similar to (51).

ST > S b+ pro, (77)

heH seSh je(I\I.) neN

Therefore the presented framework is valid when there ar®-®ronomic characteristics in
the demand model.

6 Conclusions and Future Research

In this paper we present the added value of different levetugdply-demand interactions
through a sensitivity analysis. It is concluded that chdiesed supply-demand interactions
are not sensitive to slight changes on demand model paresndtas shows the robustness of
the choice-based framework.

The integration of choice-based pricing into the IFAM bsngonlinearities that cannot be
characterized as convexity/concavity. Therefore in tlaijggr we propose a logarithmic trans-
formation of the logit model which enables us to have a coad@VIM subproblem. With
this reformulation, the IFAM and RMM can be considered in anative framework where the
duals of RMM provide information to the IFAM.
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A RMM with choice-based recapture

SIS 3D SED ST SRR S

heH seSh je(I\I') Jels FEUNL)
s.t. Z Z 5,;7fd¢ — Z (57;7ft7;7j + Z 5i,ft]‘,ibj,i
s€SM e (I\I) Jels JEINIL)
Szﬁﬁ,f Vhe H, f e F
keK
> mhy < QX veFkeK
heH
Dty <d; VheHseShicl
jel,
>0 VheHkeK,feF
d; < CZZ Viel
>0 Viel,jel

ZJ

(78)

(79)
(80)
(81)

(82)
(83)
(84)

Note that this RMM does not have the pricing decision and tbeseprice ;) and recapture

ratios ¢, ;) are input parameters to the model.
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B RMM with choice-based recapture and pricing

ZRMM-p = Max Z Z Z (di — Z tij+ Z
s.t. Z Z

heH seSh je(1,\10)

t5,ib5,0)pi

=N . ’
7€l JE\IL)

6i7fdi — Z 6i7fti’j + Z

i, ft5,4bj,i

sesh iE(Is\I;) JEILs

<D Ty

keK

> oy < QuXig
heH

Z tij; < d;
Jj€ls
exp (V;)

> exp(V))

J€ls
exp (V;)

Z exp (Vi)

kels\{:}
>0
d; < d;
0<p; <UB;
ti,j >0

Ji:Ds

bij =

b;j >0

JEUNLL)

VheH,feF
VfeFkeK

Vhe HseShiel,

Vhe HseShicl,

Vhe H,se Shie (I, \1.),jel,

VheHkeK,feF
Viel

Viel

Viel,jel
Viel,jel

C Concavity of the reformulated RMM sub-problem

(85)

(86)

87

(88)

(89)

(90)

(91)
(92)
(93)
(94)
(95)

The objective function(831) can be evaluated in two partsstfiart is a linear term which is
other words both convex and concave. The Hessian matrihéosécond part with respect to

the variables msand m'§ is provided as follows:

H—

In order to have concavity we need to ha& and

the determinant nonnegati

9%z; 822z;

oms? ms;dms,

82 Z4 6zzi
oms oms; oms 2

2 —

> 0.

822z,
Bms;
22 0%z _ 9%z 9%2z;
s, oms2  omsoms omsoms —

When we re-write the Hessian with the appropriate partialdgéves we obtain:

—oM
<2M exp (mg) 2M exp (Mg)(ms — 2exp (Ms))

2M exp (ms)

)

< 0. Furthermore we need to have

where —2M is clearly negative and off-diagonal entries are positivdne last term of the
Hessian i\ exp (ms)(ms — 2exp (Ms)).
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We can check the first derivative with respect tg mkich is given by:

aZi
oms

= —2M(ms — exp (MS)). (96)

This first derivative is only zero when ms- exp (ms). Similarly, the derivative with respect
to ms is given by:

37:1» . / o /
6ms;—2M exp (Ms)(Ms — exp (Ms})), (97)

which is also zero only when ms- exp (ms). Therefore we have:

8QZZ'

e = 2M exp (MS)(mS — 2exp (mS)) (98)

— —2Mexp(ms)” < 0. (99)

. . . . . . 2, 2. 2. 2.
With a similar analysis the determinant of the Hessian m&i - 66m?2 = amig;ns, . 6m‘9s,§;q$)

is computed as zero. This shows the concavity (not strictiyhie penalty term.

The objective function is therefore the sum of a linear temd a concave function which
completes the proof of the concavity.

D Inverse demand function proposed by Schon, 2008

As explained in section 5.1 market share, nsgiven by:

ms = v, exp (ﬁpz + Ci)u (100)

which is similar to[(46). If we have the inverse function we ewite the price as a function of
the choice probability:

) — i) (101)

The revenue for each itinerari;, is given by mg; D, which can be written as:

1 3
R; = —Dsmsi(ln(ms’

ﬁ 0. ) — Ci) (102)
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The Hessian forz; is therefore given by:

9*R; _ 11 PR, _ 11

H— omss Dsﬂ ms; oms;0p; Dsﬂv
- R, 1 9°R; _

Op;oms; DSBU op? =D mSﬁUQ

where msg, DS, Vs are> 0 by definition. 3 < 0 since it gives the effect of price on the utility.
Z R 2R, _9°R 2Ry o %R, _ %R 2Ry _
Therefore and < Oandgica-, 550 > 0. ams X B~ omsop X Gpioms = 0

which shows the concavr[y (not strictly concave) of the rexefunction.
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