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1 Abstract

A complete method of tomographic inversion accounting for the presence of
magnetic islands and based on the measurements of a single pin-hole soft X-
ray camera is presented. The method divides the signals into a low frequency
component used for the determination of the stationary emissivity, and a high
frequency component used for the parametric determination of the magnetic
island emissivity. The magnetic islands are simulated by a simple model
based on the concentration of a current perturbation on a resonance surface.
A method of correction of the magnetic equilibrium using the tomographic
inversion is also described. The inversion method results in a very accurate
determination of the position of the resonance surface, as well as a precise
estimation of the island width. Due to the high degree of automation of the
method, only a minimal prior knowledge of the parameters of the magnetic
islands is required. A possible application could be the assessment of models
of the dynamics of the island growth.






2 Introduction

2.1 Basic phenomenology and theoretical background
2.1.1 Tokamak principle

In order to achieve the production of energy using fusion reaction, a device
called tokamak has been developed. Its purpose is to create a plasma and to
confine it using a particular magnetic field configuration. The plasma state is
required because of the high temperature that is needed to obtain a sufficient
fusion rate.

The basic principle of the tokamak is to create a toroidal magnetic field
that confines the plasma particles. The confinement requires also a poloidal
magnetic field. A loop current created by induction in the plasma assures
the main component of the latter, but a set of poloidal coils is also needed
to achieve plasma control and equilibrium.

The usual modelisation of the underlying physics uses the axisymmetry
assumption. In this hypothesis, all the processes can be fully described at a
single poloidal cross-section of the tokamak. The imposed magnetic geometry
can be described by an infinite set of nested toroidal magnetic surfaces, called
fluz surfaces (see figure 1).
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Figure 1: Example of a magnetic equilibrium of the TCV tokamak. Five nested flux
surfaces are represented. Courtesy of Reimerdes [5].

The poloidal flux ), at point (R, Z) in cylindrical coordinates is defined
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as the magnetic flux passing through a disc that is centered on the symmetry
axis, perpendicular to this axis, and which contains (R, Z) as a point of its
circumference. 1, is set to 0 at the last closed flux surface of the plasma. The
axisymmetry assumption results in a correspondence between the magnetic
surfaces and the poloidal flux surfaces, explaining the given name. The
magnetic surfaces are equivalently described by the safety factor q. ¢ is
defined by:

Ay

1= 21

1)
where Ay is the toroidal angle covered by a magnetic field line when the
poloidal angle covered by the latter is equal to 27. If ¢ = m/n, with m and n
being integers, the magnetic field line joins up on itself after m toroidal and n
poloidal rotations. These particular surfaces can be sites of instabilities since
constructive interferences can take place on them. Figure 2 shows the 3-D
geometry of a magnetic field line on the surface ¢ = 2. The poloidal flux can

Figure 2: A schematic of a magnetic field line on the ¢ = 2 magnetic surface. I, is
the plasma current, By, and By, the poloidal and toroidal magnetic fields. Courtesy of
Reimerdes [5].

be used to define a new coordinate system, the fluz coordinates, such that
the flux surfaces expressed in this system are circular. Basically, the flux
coordinate system is a toroidal coordinate system where the small radius is
replaced by the dimensionless variable p defined by:

Yy
= h = 1 o 2
p \/m where 1, n Vp(Ronags Zmag) @
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where (Riag, Zmag) is the coordinate of the magnetic azris and 1, is the
normalized poloidal flux. The magnetic axis corresponds to the center of the
flux surfaces, where 1, is maximum.

2.1.2 X-ray emission in a tokamak plasma

The Brehmstrahlung emission relative to the acceleration of the electrons
during particle interactions is inherent to the existence of the plasma state.
The corresponding spectral emissivity function G(x,v) [W/m? Hz™!] is
isotropic. In the core of tokamak plasmas, the temperatures often reach the
order of the keV and correspond to radiation in the X-ray spectral region.
Since the particles follow the magnetic field lines, the transport coeffi-
cients are much higher in the direction parallel to the field than perpendic-
ular. As the Brehmstrahlung radiation results from the collisions between
particles, the assumption of constant emissivity on magnetic surfaces is often
made. In this framework, it is thus equivalent to determine the X-ray emis-
sivity or the magnetic topology. However, we must point out the article by
Granetz and Borrés [2] claiming that there exist small, but real, discrepancies
between the X-ray emissivity contours and the magnetic flux surfaces.

2.1.3 Tomography inversion problem

Computerized tomography is a technique to reconstruct the local properties,
for example, emission or absorption, of an object from line integrated mea-
surements. The measurements of the emitted radiation G described in this
report are confined to one poloidal cross-section of the tokamak (axisymme-
try assumption). The detectors are placed behind a pin-hole situated at the
bottom of the section wall. For the electron and ion densities commonly
present in tokamak plasmas, the plasma is optically thin for soft X-ray ra-
diation and refraction is negligible. Therefore, each detector measures the
emissivity integrated along a well-defined cone inside the plasma. The cones
will be further approximated by line of sights. The total power measured by
detector [ is:

P = / &z / d Qﬁ‘)e(x, V() W] (3)

where (2; is the solid angle subtended by the cone of sight, and 7 is the detec-
tion efficiency. Writing A(s) the cross-section of the cone in function of the
line coordinate s along its symmetry axis, d®>z may be written d*z = A(s)ds.
Recalling that A(s) oc s* and that € < s72, we can write:

P~ (ii)l /Sl ds/dl/ G [W] (4)
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The optical throughput (AQ), ("étendue géométrique") is a constant that can
be taken outside the integral. S; is the line of sight of the detector [. The
chord brightness f; is may be defined as:

b= i AQ; et / dsg (W] (5)

where g = [ dv G. Equation (5) is called a Radon transform of the function
g(x), from the name of the person who first found the analytical formulation
of the inverse transform. To implement this theory, two possibilities are
given: either to use a numerical approximation of the analytical inversion
(transform tomography methods) or to start by discretizing the integral (5)
and to invert it by linear algebra methods (series expansion methods). In
plasma physics, the number of chords (or line of sights) that is used is small.
Therefore, the inversion process requires the addition of assumptions on the
shape of g that are easily introduced within the series expansion methods.

In the following section, a general solving method for the series expansion
methods is presented (see Ingesson et al. [3] for more details). Writing
explicitly the imaging properties of the detection system as a space dependent
function K;(x), equation (5) becomes:

fi = / @ g(x) Ki(x) (6)

The series expansion of ¢ is given by g(x) = Zj gjbj(x), where g; are the
coefficients of the base functions b;(x). Equation (6) becomes:

fi = K9, (7)

where K; := [ d®z K;(x)b;(x). The very general aspect of this description
relies in the fact that b;(x) can be any kind of finite element description (pixel,
pyramidal, ...) or base function description (e.g. sine and cosine functions
along the poloidal coordinate, defined in the flux coordinate system, ...). To
solve (7), the first constraint that must be satisfied is:

Clg) =Ilf —K g|*—[el* <0 (8)

where € is the authorized estimated error. Since the problem is ill-posed (i.e.
small variations in f;, due to noise for instance, lead to large variations in
g(x)), the length of g must exceed the number of chords and the solution
must be smoothed by a minimization constraint of an object function O(g).
The expression that must be minimized is thus:

If — K- g|*+aO(g) (9)
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where « is equivalent to a Lagrange multiplier. The minimization constraint
is expressed as:

%C(g) + Q%O(g) =0 (10)

A solution g(x) that satisfies (10) is said to be a regularized solution. Gen-
erally, the emissivity function would be expected to be smooth. The object
function may then be defined with respect to the norm of g or to a parameter
describing the overall "unsmoothness". In addition, the resolution is greatly
simplified if O(g) is quadratic, i.e.:

Og)=g"-H-g (11)
In that case, equation (10) becomes:
(K" K+aoH)-g=K-f (12)

« may be adjusted to get a compromise between the smoothness of the
solution and its accuracy with respect to the measurements. A good start
value is given by:
_ Trace(K" - K)
~ Trace(H)

In sections 8.1.1 and 8.1.2 of the appendix, we describe two object func-
tions used in this work, namely the norm of the second order derivative and
the Fisher information.

(13)

2.1.4 MHD perturbations - Magnetic islands

Many kinds of perturbations of the magnetic equilibrium occur in a tokamak
plasma. The study of these perturbations is of crucial importance for the
understanding of magnetic confinement quality and plasma stability. The
perturbations that are dealt with here are called MHD perturbations because
they are successfully described by the MHD theory. MHD is the basic theory
that accounts for macroscopic behaviour of the plasma. There are many
kinds of MHD perturbations: internal or external, resistive or ideal. The
focus is given here to a resistive MHD perturbation called magnetic islands.
In ideal MHD, the magnetic flux is frozen into the plasma and the magnetic
field lines move with it. A deviation with respect to the equilibrium may,
thus, result only in a change of curvature of the lines. In resistive MHD, this
conservation no longer holds and the lines are allowed to break and reconnect,
forming magnetic islands, regions of the plasma nearly isolated from the main
core. Even if the magnetic perturbation has a small impact on the modulus
of the magnetic field or on its local direction, it has a strong impact on its
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topology, resulting in an important increase of the perpendicular diffusion
coefficient. In three dimensions, the islands are situated along a resonance
flux surface and can be seen as a unique flux tube winded up around the
flux surface, following the geometry of the equilibrium field lines. The term
"island" comes from the figures revealed by a poloidal cross-section of a flux
tube making several toroidal turns before closing on itself.

A simple theoretical description of the magnetic islands can be given in the
ideal case of a toroidal plasma of circular cross-section, on which the toroidal
magnetic field is constant. As said above, the perturbation can only occur
on a flux surface where g, = m/n. Let us call r the distance to the magnetic
axis, 6 the poloidal angle coordinate, and ¢ the toroidal angle coordinate. A
change of coordinate § = 0 — > is performed in order to work in a coordinate
system (é,, é¢, é,) that corresponds to the magnetic field line geometry. é
is perpendicular to B (on the ¢, surface) and to é,, and ¢ is constant along
the magnetic field lines of the mentioned flux surface. By definition, the
é-component of the equilibrium field is given by:

wir- 1) (4

ds
where 7, is the radius of the resonance surface. Note that Be(r;) = 0. In
(14), ¢ is the derivative of ¢ with respect to r. A current perturbation along
the field lines of the g, surface causes a radial perturbation 0B, ,,, of the
magnetic field. In the simplest case,

(r—ry) (14)

S

6Bymn = 0B,(r)sin(mé) (15)

8B, is a function of r because it is created by a current situated on the reso-
nance surface. In order to find an analytical expression for the trajectory of
the perturbed field line, 6 B, is assumed to be constant. To find the trajectory
of the perturbed field lines in the (r,&) space, the condition By ox dl is
written. Expressing Byoa as Biotar := Beée + 0B, mny, and integrating the
differential equation results in the following expression for the field lines:

9 2

(r—rs)” = meBrquS(COS(mf) + K) (16)

where K is an integration constant. The resulting topology is shown in figure
(3). The lines corresponding to 0 < K < 1 are those inside the islands, the
separatrix is given by K = 1, and the lines for the other values of K do not
show any change in their topology. The width w of the islands is given by

12
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Figure 3: Sketch of the island formation resulting from a radial perturbation of the
magnetic field. The perturbation is caused by a helical current density perturbation ji,
along the magnetic field lines on a resonance flux surface at ;. Courtesy of Reimerdes [5].

equation (16) with K = 1 and & corresponding to the maximum of the cosine

term. It yields:
5ér7nsqs
w=4—— 17
\/mBms)qf(rs) "

The detection of MHD activity in tokamak plasmas relies on the motion of
the plasma as a whole. In fact, although the magnetic islands appear because
of resistivity, we can consider that the magnetic islands are frozen into the
plasma. Due to the thermal activity of the plasma, or to particular ways of
heating the plasma (e.g. neutral beam injection), the latter always rotates on
itself both poloidally and toroidally. This motion makes the magnetic islands
pass in front of the detectors (magnetic pick-up coils, soft X-ray cameras, etc)
and they are observed as high frequency fluctuations (in the range of the kHz
on TCV (Tokamak & Configuration Variable)).

2.2 The DMPX at TCV

The Multiwire Proportional X-ray camera (MPX) is the main device used
to furnish the data analysed in this project (see figure 4). It consists of a 1D
camera placed behind a pin-hole and observing a poloidal cross-section of the
plasma from the bottom. The X-ray detection system is based on a multiwire
proportional counter, consisting of 64 parallel anode wires situated between

13
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Figure 4: Schematic of the MPX device at TCV.
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two cathode grids in a common gas chamber filled by an argon-methane,
krypton-methane, or xenon-methane gas mixture at atmospheric pressure.
The detector views the plasma through an helium chamber and a beryllium
window, and provides measurements of the plasma core X-ray emission in
the 3-30 keV range with a 50 kHz bandwidth. The sampling rate of the
acquisition is of 200 kHz. The radial spatial resolution is approximately 8
mm at the mid-plane of the vacuum vessel. The Dual Multiwire Proportional
X-ray camera (DMPX) is an extension of the MPX where the detection
system has been enhanced by a second detection system working in another
energy range and constituted of 32 wires, with a radial spatial resolution of
16 mm at the mid-plane of the vacuum vessel. Between the first and the
second detection system, there is a versatile filter window that allows the
selection of the energy spectrum to the second detection system.

The principle of detection is based on the ionisation of the gas mixture
by the X-rays. The liberated electrons are then accelerated by the imposed
electric field and create an localized current avalanche gathered by the anode
wires. The latter current is a measurement of the X-ray flux. The X-ray
emissivity is proportional to n.7 where @ ~ 1 — 1.5, n. is the electron
density and T, is the electronic temperature.

2.3 DMotivations, aims and objectives

Historically, a lot of work has been done to build theoretical and numerical
models of magnetic islands, but much less to link these models with exper-
imental data and to integrate them within the sets of usual data analysis
methods. Among the pioneers, Reimerdes [5] has given a model simulating
the magnetic effects of the islands at the magnetic probes of the TCV toka-
mak in order to allow a comparison with experiments and to determine the
parameters of the real magnetic islands. The uncertainty on the obtained
parameters is large because the reconstruction of the magnetic islands from
the magnetic signal measured at the edge of the plasma is intrinsically not
adequate to determine the exact position of the islands or their width. The
latter are in fact determined by the magnetic topology, which is here only a
secondary result of the obtained approximative current distribution. Other
methods are based on the radiation emitted by the plasma. Inside magnetic
islands, the radiation is different from the rest of the plasma and a tomo-
graphic inversion of the signals can reveal the islands. However, until now,
the assumptions taken for these particular inversions are still the same as
those generally made for tomographic inversion of tokamak plasmas (type
of base functions, smoothness, etc) and do not give sufficient resolution to
determine the parameters of the magnetic islands accurately (see Bessenrodt-
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Weberpals et al. [1], Yoshimura et al. [8]).

The main aim of this project is to obtain a method based on the plasma
radiation allowing the characterization of the magnetic islands appearing ex-
perimentally in TCV. This method should be applicable to different shots
(term used for a complete experiment on TCV) with a minimal prior knowl-
edge of the parameters of the perturbation. The used diagnostic is the DMPX
because of its high bandwidth and high spatial resolution. As described
above, the DMPX has a single pin-hole. In this case, the inversion process
requires important assumptions on the emissivity profile, such as constant
emissivity on flux surfaces. In a stationary plasma, such assumptions are
valuable and often lead to reliable results. In the presence of MHD pertur-
bations, the equilibrium is no longer axisymmetric and these assumptions
become false. Consequently, we need to find an inversion process that can
take the break of symmetry into account to obtain the perturbed emissivity
profile, and give an accurate characterization of the magnetic islands. This
process could rely on a combination with signals from other diagnostics or
on a model of the prevalent MHD instabilities. The ultimate objectives that
lie behind this project are to obtain a better knowledge of the instabilities,
and thus to improve the plasma confinement.
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3 Model of the magnetic islands and their emis-
sivity

With the DMPX, the inversion problem may not be solved without impos-
ing a shape for the magnetic perturbations, restricted here to the magnetic
islands.

The purpose of this section consists in giving a model that can be used to
generate any kind of magnetic islands, staying coherent with the description
given in section 2.1.4. The input parameters of this model should allow the
specification of the geometry of the islands in the poloidal cross-section: i.e.
the toroidal mode number m, the width w, and the orientation . The model
presented here is based on those given in Reimerdes [5| and Schittenhelm et
al. |7]. The principle is to work on a current perturbation localized on the
desired resonance surface, and flowing along the magnetic field lines. This
current is considered as the unique source of magnetic perturbation. As it
is force-free, it does not change the equilibrium. After the description of
the model for the magnetic islands, some considerations about the emissivity
function relative to these islands are given.

3.1 Current perturbation

Considering a unique Fourier component with poloidal and toroidal mode
numbers m and n for the current perturbation, and recalling that the latter
is assumed to flow in the direction of the magnetic field, one can write:

85j(p, 0%, ) = c(iby) - /M7 9) . B (18)

where 6* is the straight field line angle (see appendix, section 8.1.3). Since
V -j = 0in the MHD model, Br and By are obtained from the derivatives
of 1, and if the toroidal symmetry holds, equation (18) leads easily to:

mB V0" —nB -V =0 (19)

Comparing with equation (82), it can be seen that equation (19) holds only
at the surface ¢ = m/n, showing that the assumed current perturbation
(18) can exist only at this particular surface. This surface thus fulfills the
condition of resonance for the current defined in (18).

The perturbed current density in A/m? has to be transformed into a
perturbed current density in A/m to obtain a sheet current j, on the res-
onance surface. j, is the concentrated version of the current perturbation
flowing between two neighbouring surfaces on each side of the resonance sur-
face. These surfaces are separated by a dimensionless "distance" di, o;. The
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current perturbation is concentrated on the resonance surface by writing:
jsdwp,01 = (i]d?" (20)

Since di, ;1 o< RB,dr where B, is the poloidal magnetic field and using
equation (18), yields:
1

. elmd™—ne) B 21
RE ¢ (21)

Js o

In order to reconstruct the poloidal component of the field perturbation, only
the toroidal component of the current density perturbation has to be taken
into account. With B, o 1/R, the toroidal current density perturbation is

proportional to:
1

. i (mf* —nep) 29
T (22)

Jsp X

For a numerical reconstruction of the magnetic field perturbation, it is

necessary to discretise the model. The resonance flux surface is divided into

toroidal filaments. In the following, the flux surface filaments are labelled
with k. The toroidal component of the current perturbation is given by:

I = Js oAl (23)

where Al is the width of the filaments in the poloidal plane.

3.2 Reconstruction of the island geometry

The magnetic island geometry appear when the equilibrium helical flux and
the flux perturbation induced by the current perturbation are combined. The
equilibrium helical flux is expressed by (see section 8.1.4 of the appendix for
details):

1
Vo = Upo — q—wt,o (24)

where 1, o and 1)y ¢ are the equilibrium poloidal and toroidal flux, respectively.
An important feature of ¢ is its extremum at the resonance flux surface.
In order to give a consistent model of the magnetic islands, the flux
perturbation should also be a helical flux. This would involve the calculation
of the flux through complicated twisted surfaces, whose geometry is based
on the magnetic field line trajectories. The difficulty of such a calculation
and the intrinsic uncertainty in its result coming from the uncertainty on the
description of the surfaces leads to approximate the helical flux perturbation
by a poloidal flux perturbation. Its calculation is done as follows: the mutual
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inductances M, between the points z, of the plasma and the points z; of
the resonance surface are calculated through:

?{ | Ao (%)

where T, and T}, are the toroidal filaments passing by z, and ;. Using
equation (23), the flux perturbation is given by:

Vi (@) Z ok Lk (26)

Contrary to Schittenhelm [7], Reimerdes [5| proposes to correct the expres-
sion (26) by projecting the currents on the magnetic field lines in order to
give a better approximation of the helical flux perturbation:

\/Bt(l'k)2 + Bp(xk)Q
Ve () Z ol By(zy) 27

where B, and B, are respectively the toroidal and the poloidal components
of the magnetic field. This trick is strange from the point of view of the
definition of the flux, because the currents no longer flow on the trajectories
used for the calculation of the mutual inductances. In addition, it changes
only very weakly the shape of the islands and does not lead to better results
in the solving of the inversion problem. Therefore, we have not used it, and
have retained the expression (26) as the best approximation of the helical
flux perturbation.

3.3 Position of the magnetic islands

The position p, of the islands in flux coordinate is an important input pa-
rameter of the model. It arises in the expressions of 9§ and ;. In 9y,
contrary to 1], the arbitrariness on py is problematic, because the resonance
surface must coincide with the extremum of v/;. If the resonance condition
given by ¢s = m/n is fulfilled, then )} has its extremum well positioned.
Therefore, the g-profile must evolve in function of ps such that the condition
q(ps) = m/n is always fulfilled. We may describe the new g¢-profile as a linear
function of the old one:

m

Qnew(p) = )QOld(p) (28)

”%ld(ﬂs

Y is then calculated with ¢,.,. Obviously, if the new position of the reso-
nance surface is far away from the initial one, the g-profile will be notably
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modified and the magnetic equilibrium conditions risk to be unfulfilled. Con-
sequently, this solution appears to be well adapted for cases where the mod-
ifications applied on ¢ stay in the limit of the uncertainty of the magnetic
equilibrium reconstruction.

3.4 Time dependence of the perturbation

Until now, the time evolution of the perturbation has not been taken into
account. In fact, as our detection system only works in the poloidal cross-
section, no information is obtained on the toroidal behaviour, and the ny
term appearing in equation (18) can be replaced by a phase function ®(t)
where t is the time variable. Due to the evolution of the rotation frequency
of the plasma in function of time, it is difficult to give an exact expression of
®(t). A relevant general shape can still be given:

O(t) = 2m fo(t)t + Do (29)

On small time interval, fg is roughly constant. Using equations (22), (23)
and (26), and introducing a proportionality factor A, the flux perturbation
may be written:

Vi (wp, t) AZ R2 B e MmO A, (30)
Taking the real part,
U (p, 1) = Althe(xp) cOS(D(2)) + s () sin(P(1))] (31)
where 1
Ye(zp) = Z Mpk% - cos(mby) Al (32)
k
and
Z RQBpk - sin(m#y) Al (33)

As the different effects of rotation are not obvious, a brief description is
given here. As said in section 2.1.4, the rotation of the plasma permits the
detection of the magnetic islands. This rotation can be both toroidal and
poloidal. In our case, no direct knowledge of the components of the motion
of the plasma can be deduced from the DMPX signals. Without information
from the magnetic probes surrounding the plasma, the problem is reduced to
a motion that is apparently uniquely poloidal, where the n number is only
involved in the determination of the position of the resonance surface. The
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perturbation frequency fy;, measured by the Fourier transform of the signals
of the DMPX thus only corresponds to this apparent motion. Consequently,
the frequency f,,; of the apparent poloidal rotation of the plasma as a whole
is simply given by fro = fsig/m.

In the simulation of the magnetic islands, the expression (31) is used. Due
to the multipole geometry of . and 1, the variation of ® over a whole period
(using definition (29)) does not correspond to a whole rotation of the poloidal
cross-section. In fact, the islands move until they reach, for the first time, a
position equivalent to their departure position. Hence, fo = fror - m = fsig-

Finally, the global position of the plasma has been assumed to be constant
with 1§ written independent of time. This is reasonable since the charac-
teristic time for a change in the equilibrium position of the plasma (order of
5ms) is much larger than that corresponding to the rotation period of the
magnetic islands (order of 0.1 ms).

3.5 Emissivity function and island isolation

Using the assumption of constant emissivity on the flux surfaces, the emis-
sivity function g(x,t) corresponding to the soft X-ray may be written as:

9= 9(Vip) (34)

where

Vot (Tp, t) = g (xp) + 97 (2, 1) (35)
With ¢; as a perturbation in the emissivity due to the presence of magnetic
islands and gg the background emissivity, we have:

g =9 +9¥1(t)) = go(¥5) + N (36)

It is tempting to write g; = ¢1(¢5(t)), and to further approximate that re-
lation by g1(z,,t) = Ay (z,,t) where A is a constant that can be combined
with the proportionality constant already appearing in the equation (31).
This would have the advantage of permitting a linear fit of both the orien-
tation of the islands and the amplitude of the emissivity. This would also
avoid the whole discussion about the helical flux and the positioning of the
magnetic islands. Nevertheless, from a physical point of view, this does not
make sense, since the change of topology in the magnetic field lines due to
the islands creates a quasi isolation of the islands to the rest of the plasma.
The extension of the island is, therefore, a critical parameter and must be
accounted for in the expression of g;. To resume, it is more the change of
topology in the magnetic field than the amplitude of the flux perturbation
that matters for our problem.
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Let us call ¢;(z,,t) the part of ¢/, that is inside the islands. It is eval-
uated as follows: according to our convention for the extremum of ¢, ¢; is
given by the part of ¢ that is above the value 1, of the flux at the island
separatriz (i.e. last flux surface of the magnetic islands). As the position of
the resonance surface is known in the model, the value of 1)y, is given by the
minimum of 1)}, on this surface. Once the position of the islands is identified,
it is then easy to select them, set their surrounding to zero and subtract ),
to obtain a continuous function. Formally, it yields:

@Z)i(wpa t) = iy (wp) : Hw;,t,ww (xp) — Ysp - Hwt*otﬂbsp (wp) (37)
where H is defined by:

Uit (ap) > Yy
Hyg, o (1p) = { 0 otherwise (38)

Figures 5 and 6 are examples of the shape that 1; can have in the cases
m =1, m = 2 and m = 3 respectively. The last closed flux surface is also
represented. In these figures, 1); is normalised to 1.

As 1); is the part of ¢}, that really determines the topology of the islands,
it is necessary to see how it can appear in the expression of g. We can write:

Vi = [0 + P12 () — ¢i(t)] + i(?) (39)
—————

=:A(t)

Calculation shows that ||A(t)|] ~ |[1:(t)||. Therefore, A cannot be removed
from the expression of ;, on the basis of the norm. The determining element
here is the effect on topology. Some tests have revealed that even though
and ¥§ + A have contour lines that differ a bit in their exact geometry, the
topology of both contour lines are exactly the same. Consequently, we can
write the following approximation:

9= 9(Wior) = 95 + ¢i(1)) = go(45) + 1 (¥i(t)) (40)

A further approximation is made by: g1(¢;(t)) o ¥;(t). Recalling that the
time average of the perturbation of the emissivity must be equal to zero, g;
may finally be written:

91(wp,t) = Pli(xp, 1) — < i > (7)) (41)

where the RHS term is normalised such that P is the peak value of g;. Note
that the time average of the magnetic islands can be again found in the
background emissivity gg. Since the topology of this time average is the
same as the topology without islands, the expression gy = go(1§) still holds.
Figure 7 shows an example of g; corresponding to figure 5 (bottom).
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m=1, p_=0.15, A=3000
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Figure 5: Top. Representation of the normalised isolated island in the case m = 1 ,
ps = 0.15 and A = 3000. Bottom. Case m = 2, p;, = 0.5 and A = 3000. The last closed
flux surface is represented in red.
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m=3, p_=0.7, A=3000
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Figure 6: Representation of the normalised isolated islands in the case m = 3, ps = 0.7
and A = 3000. The last closed flux shell is represented in red.

g4 with m=2, p,=0.5, and A=3000
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Figure 7: Representation of the normalised perturbation in the case m = 2, ps = 0.5
and A = 3000. The last closed flux surface is represented in red.
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3.6 Summary of the model

The development described above enables the construction of physically rele-
vant magnetic islands, using the combination of a stationary helical flux and
a flux perturbation. The islands are then isolated from the rest of the total
helical flux function and are used to generate the emissivity perturbation
function. The input parameters of the model are the following;:

Y, : poloidal flux of the magnetic equilibrium.

q : safety factor of the magnetic equilibrium.

m,n : mode numbers describing the islands.

ps : position of the resonance surface in flux coordinate.
®(t) : initial orientation of the islands and time evolution.

A : amplitude of the flux perturbation. A is linked to the amplitude of the
current perturbation. There is no direct way to specify the width of
the islands, but the latter is a one-to-one function of A.

P : peak amplitude of the perturbed emissivity.

In the implementation, care has been taken to prevent non physical is-
lands from being generated. For example, in the case m > 1, a test assures
that the magnetic axis is not covered by the islands. Another test checks
that the islands do not go too close to the last closed flux surface.

In order to complete the description given above, one can wonder what
happens outside the field of the assumptions that have been used. Schitten-
helm et al. [7] claim that the current perturbation does not vanish completely
in the rest of the plasma. Outside the resonance surface, the magnetic field
and the current perturbation do not have the same shear and the perturba-
tion is no longer force-free. Thus, the magnetic equilibrium is changed and
the plasma interacts with the perturbation. A comparison made between
the simplified model and the complete one in a simple cylindrical geometry
reveals that the island width corresponding to a localized current perturba-
tion is overestimated by up to 14%. In our case, the width is fitted with
respect to the measurements. Consequently, the current perturbation that is
calculated a posteriori is underestimated.
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4 Inversion method description

4.1 Used tools

The entirety of the inversion process has been written with the mathematical
software Matlab version 6.5.0 from the MathWorks company, running under
AIX.

The 1)-toolbox has also been intensively used in this work. Under this
name is gathered a set of object-oriented routines running under Matlab and
created by Jean-Marc Moret for the solving of problems occurring commonly
in tokamak geometry. For instance, the -toolbox allows the definition of
grids in many types of coordinate systems and the passage from one to an-
other. It also enables the definition of functions on these grids. Many kinds of
operations are possible on the latter like for example interpolation, derivation
or integration. The 1-toolbox is particularly well suited for many operations
involving the poloidal flux and the flux coordinate system, as well as the
geometrical description of a set of chords.

4.2 General approach

The work has been designed in the structure of a block diagram represent-
ing the different functions of signal processing and their links. The base
approach consists in dividing the components of the signal corresponding to
the stationary plasma and the perturbation, to use different inversion process
for each, and then combine them at the end. A block diagram of the proce-
dure is presented in figure 8. The only information that cannot be deduced
from the DMPX signals is the value of the mode number n. As some tools
based on the magnetic probe signals already existed for the mode analysis,
we have used them to obtain the value of n. These tools also allow to obtain
an approximate value t, qppror Of the time of analysis and fgig appros Of the
frequency of the mode, as well as the value of m (see [5]). The next sections
describe in detail the different blocks.

4.3 Signal pre-processing

The DMPX signals are already calibrated, and no work was performed on
this subject. They contain frequent spikes that are a serious handicap for
fulfilling the requirement of automatic signal processing. These spikes do not
only extend in time, but also between the detectors. They are due to electric
arcs that are sometimes created between the detection wires and the vessel of
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Figure 8: Block diagram of the inversion process. The blue arrows represent paths that
hold DMPX data, whereas the black one hold some useful parameters only. Bold arrows
are placed at positions where only one direction can be taken. ¢, qppros is the approximated
time of analysis.
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the DMPX when an X-ray passes. These spikes can extend over more than
5 wires and last several microseconds.

This block has been designed to remove these spikes, while keeping the
modification of the signals as minimal as possible. The routine identifies each
spike and replaces it by a local interpolation of the signals. It also allows
the interpolation of the detectors on which no signal has been recorded. The
details of the routine are given in section 8.2.1 of the appendix. Two examples
of the efficiency of the routine are given in figures 9 and 10.

4.4 Average filter

The DMPX signal corresponding to the stationary plasma is obtained from
the average of the signals on a small time window (some milliseconds) around
the desired time of analysis. The obtained results are very robust.

4.5 Bandpass filter

The bandpass filter block is made of a bandpass filter feeding the block
designed for the perturbation inversion. The frequency limits of the filter
are given by the FFT block. This block has the advantage of differentiating
the harmonics of a mode or the signals produced by other modes. However,
if there are modes evolving at signal frequencies close to one another, their
respective signal will be mixed. The details of the routine are given in section
8.2.2 of the appendix.

4.6 SVD filter

Our main interest in using the SVD (see appendix section 8.2.3) relies in the
decomposition of the different temporal behaviours that can be performed. If
the magnetic island is the dominant perturbation of the plasma equilibrium,
then the first component of the SVD corresponds to the stationary behaviour
of the plasma and the second one to the magnetic islands. The only limitation
of this method appears when two modes are present at the same time, and
at the same frequency in the DMPX signals. In that case, the SVD results
in the mixing of both modes. Note however that this particular limitation
also occurs for all the other methods presented here.

4.7 Time selection

This block is designed to select the time ¢, where the signals present the
largest MHD mode amplitude and a maximal number of oscillations along
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Figure 9: Top. Example of the efficiency of the pre-processing routine for the spike
removal on shot 27481, DMPX wire number 15. Bottom. Zoom on the spike region.
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Shot 27481, DMPX chord 48
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Figure 10: Top. Example of the efficiency of the pre-processing routine for the spike
removal on shot 27481, DMPX wire number 48. Bottom. Zoom on the spike region.
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the detector array. The routine analyses the filtered (bandpass or SVD filter)
DMPX signals on a small time interval around ¢, gppror (Se€ appendix, section
8.2.4 for details).

4.8 Fourier transform filter

This block has mainly two outputs: the Fourier transform of the DMPX
signals and the frequency limits of the MHD mode. The Fourier transform
is performed around the time ¢, on a time interval whose length is defined
with respect to the desired frequency resolution of the calculated spectra.
Only the positive frequencies of the spectra are kept. See section 8.2.5 of the
appendix for a detailed explanation of the routine.

4.9 Stationary plasma profile inversion
4.9.1 Inversion procedure description

We call stationary plasma the plasma seen on a time scale larger than that
of the MHD perturbations that are studied here. The method presented
here is dedicated to the inversion at a particular time, but it could be easily
extended to the inversion at several different times.

The origin of the signals is either a local average of the DMPX signals
or the first topos of a SVD analysis of the signals on a small time interval
(typically 2ms). The errors are given by the standard deviation of the DMPX
signals on the given time interval. At this time scale, the magnetic flux
surfaces are toroidally symmetric. The tomographic inversion requires the
choice of a set of base functions b; whose combination is fitted to the recorded
signals (see section 2.1.3). The quality of the result is improved if the base
functions respect the geometry of the problem. Due to the assumption of
constant emissivity on flux surfaces, a possible choice is b; = b;(p) where p
is the radial flux coordinate. For simplicity, the base functions are defined
as pixels along p:

1 ifp, <p<op;
) ={ o e == (42)

where p;, j = 1,..., N, + 1 with p; = 0 and py,+1 = 1, are the radial flux
coordinates of the flux surfaces delimiting the pixels, and NV, is the number
of pixels. In order to allow a smoothing of the emissivity profile without
deteriorating too much the accuracy of the fit, N, is defined by N, = N.+1,
where N, is the number of chords that pass inside the plasma.

The inversion of the profile requires the calculation of the matrix K ap-
pearing in equation (7). It mainly consists in determining the distance that
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each chord of the DMPX covers in each pixel. This calculation is made by
the routine psitbxzdzp of the y-toolbox. The inversion itself is based on equa-
tion (12). The application of the minimum Fisher information condition is
not sufficient to obtain a good solution. The results present always artificial
sharp oscillations. The minization based on the second order derivative leads
to smooth emissivity profiles, but too flat with respect to those obtained via
the Fisher information. Since both types of problems cancel themselves, the
final solution consists in combining the object function of both methods.
In order to allow a comparison of weights between both object functions,
the latter are normalized by their maximal singular value (standard norm
proposed by Matlab). The new inversion equation may be written:

[KT K+a <5HD + HF(”)H gt KT f (43)

where Hp and Hg are the normalized versions of the operators defined in
(75) and (79) respectively. The superscript n indicates the iteration number
(see section 8.1.2). The factor 3, set to 0.1, is constant during the solving
process. The given value corresponds to a majority of inversions where the
obtained profiles are just the smoothed versions of those obtained only by
minimization of the Fisher information. Of course K and f are pre-multiplied
by a diagonal matrix of weights inversely proportional to the errors on the
measurements. In addition, two edge conditions on g are imposed, namely:
99

gn, =0 and 8_p =0 (44)

p=0

The derivative at the origin is approximated by the difference between the
first two values of g. A weight ten times superior to the maximal weight is
attributed to these edge conditions to assure their fulfillment.

Further considerations on the choice of a are given in section 8.2.6 of
the appendix. A routine testing the presence of oscillations in the obtained
emissivity profile is also described there.

4.9.2 Modification of the equilibrium

Since the position of the pixels is determined by the plasma equilibrium
reconstruction, the accuracy of the inversion is limited by the accuracy of
the equilibrium reconstruction. Yann Camenen, engineer in charge of the
DMPX at CRPP, has developed a method to decrease the impact of the
latter. The trick is to consider that the chords of the DMPX that are on the
HF'S (High Field Side) and those that are on the LFS (Low Field Side) of the
magnetic axis are two sets of redundant chords that can be used separately
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to calculate an emissivity profile. The difference between both profiles may
be summed up by a parameter d, defined by:

dy = (gurs — grrs)’ - (8urs — Lrs) (45)

where ggrs and gy rg are the profiles reconstructed using the HFS and LFS
set of chords respectively. d, is then minimized by changing the geometry
of the flux surfaces. At present, this modification can be performed in four
different ways:

mode 1: radial translation The whole plasma is translated radially by
redefining the coordinate grid on which the poloidal flux is defined.

mode 2: radial deformation The last flux surface remains unchanged,
but the flux surfaces are radially moved by a factor that is maximal
at the magnetic axis and null at the last flux surface. Formally, it is
written:

wnew(R + h(R7 Z) “dR - [1 - ,O(R, Z)]7 Z) = ¢p(Rv Z) (46)

where dR is the radial displacement of the magnetic axis and h(R, Z)
a function that equals 1 inside the plasma and 0 outside.

mode 3: radial translation and deformation A combination of mode 1
and 2.

mode 4: radial and vertical translation The whole plasma is translated
radially and vertically. As the vertical resolution of the DMPX is poor
(the camera is placed at the bottom of the vacuum vessel), this mode
is not very advised.

The minimization process is performed by the Matlab fminsearch function.
This function allows to find a local minimum of a scalar function of several
variables. Our contribution to that particular work consisted in expressing
the modification of the flux surfaces in terms of poloidal flux in order to use
the -toolbox. This required among others the development of a routine
calculating the function h(R, Z). In addition to that, the starting condition
of the minimization process has been refined by setting the initial radial
displacement such that the chord receiving the maximal signal passes by
the magnetic axis. In the case of mode 3, the initial radial displacement is
divided equally between both kind of modifications.
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4.10 Fit of the magnetic island parameters
4.10.1 General aspects

The block concerning the inversion process of the perturbation signal is based
on the model of the magnetic islands. The inversion consists in finding the
parameters of the perturbation emissivity function g; (see equation (41))
that gives the best solution to equation (47), where the variable f;; is the
perturbed part of f;, the signal recorded on chord I:

fialt) = / &z gy (x, ) K, (x) (47)

There are different ways to fit the parameters of the model, depending on the
kind of filter that we use for the signal, the execution speed that is desired and
the accuracy of the solution. In order to minimize the number of operations,
the fit is always done in the following order: the position p, of the resonance
surface, the amplitude A of the perturbed flux, the initial orientation of
the island ®,, and finally the peak amplitude P of the perturbed emissivity.
That means that the fit of one element of the list is done keeping the previous
elements constant. Depending on the way the fit is performed, some of these
elements can be fitted simultaneously.

Like equation (6) has been transformed into its matricial equivalent (7),
equation (47) can be reexpressed by:

y=M-:z (48)

where y contains the perturbation signals, M is the equivalent of K and z
contains the coefficients of the functions integrated in M. The perturbation
signals obtained from the DMPX present, at time ¢,, large oscillations along
the detector array. These oscillations correspond to the geometry of the
magnetic islands. The position of the peaks, for instance, is a one-to-one
function of the real p;. The parameters of the model correspond better to
those of the real modes when the global behaviour of these oscillations is
reproduced than when the data are directly fitted in a least square sense.
These considerations are accounted for by fitting both the DMPX profiles
and their derivative along the chords. It may be written:

{wg'ydy} B {wgl.chiM } 'z (49)

where dy and dM are the derivatives of y and M along the detector array.
Both are normalised to be comparable to y and M respectively, by using the
ratio of the maximum of y and the maximum of its derivative. The factor w,
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sets the relative importance of the data and their derivative. The solution
of equation (49) is found with the Matlab backslash function. A parameter
describing the overall badness of the fit may be defined by:

2
Xmean

st S (] L2 ])

=1

Since the model is non-linear with respect to ps; and A, their interval of
possible values must be determined before solving equation (49).

Interval of possible values of ps. An estimation of p, can be deduced
from the value of the position pp,rs of the last unperturbed flux surface,
when looking from outside the plasma. py, s is the flux coordinate of the flux
surface that would contain completely the islands and be tangent to them.
Its determination is based on the study of the signal along the chords (at
time ¢,), and more precisely on the separation of the chords that are inside
the perturbation from those that are outside the perturbation. We note p,.in
the radial flux coordinate at which a chord is the closest to the magnetic axis.
Since p,i, is unique for a given chord, the transition from the chord selection
to pru s is direct. Section 8.2.7 of the appendix describes the method used to
determine py,rs and its uncertainty Apy,ss.

If m > 1 where m is the mode number, there is a certain symmetry of the
islands on both side of ps;. Thus, the interval of possible p; may be defined
as:

Plufs

T < Ps < Plufs it m>1 (51)

If m =1, the mode can spread over the magnetic axis and the inferior limit
can go close to zero. In our work, we have set:

Plufs .

1—0 S Ps S plufs it m > 1 (52)
These limits are here rather to increase the execution speed of the inversion
process than to limit the latter. Therefore, the error on py, ¢ is not necessary
in (51) and (52). The Matlab fminbnd function is used to fit the value of p.
It works in the same way as fminsearch but finds the minimum of a function
with only one varying parameter, and needs the limits of the interval of
possible values. Compared to fminsearch, the localization of the minimum is
generally faster and better. It is less sensitive to small local minima or to flat
zones. If the process converges towards one of the limits, an error message is
given.
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First estimation of the flux perturbation amplitude and the width
of the island. The islands are generated on 2-D grids whose cells must have
dimensions adapted to the width of the islands. It is thus important to have
a good approximation of the latter.

For a given pg, the width is estimated as follows. Using the t-toolbox,
we can generate an object containing the definition of the flux surfaces corre-
sponding to ps and py,ts. It is then possible to determine the mean distance
d,,, between both surfaces. In the case m = 1, the mean distance dj,ss from
the magnetic axis to the py, s, surface is more interesting. We obtain the first
estimation of the width w by:

w=0.8-min{2 - dp, duys} (53)

The 0.8 factor is added because it is advantageous to use a grid cell a bit
smaller than to restart the whole process of fitting of A because the expected
width was too large. The dimensions of the grid cell are set such that there
are at least 10 grid points across the islands at the position where they are
the largest. This condition is a good compromise between the smoothness
of the islands and the computational time. When the islands are small, the
number of grid points can become very large. In order to reduce a bit the
computational time, the dimension of the grids are set to be tangent to the
flux surface p = prps + 3 - Apyps. With the same aim in view, the width
used for the definition of the grid size cannot be smaller than 1cm.

Knowing the approximate width, it is then possible to generate the sta-
tionary helical flux and the flux perturbation on the good grid. The equation
of the approximated width of the island (17) can be rewritten in terms of
flux:

Equations (31), (53) and (54) show that A is approximatively a quadratic
function of w. The second derivative appearing in (54) is calculated by using
the expression of the helical flux in toroidal coordinates. An approximate
value Agpprop 0f A can thus be calculated and used to generate an island
structure. In case it is necessary, Agpproq is divided by 2 repetitively until the
island passes the width test (see section 3.6). If Aypp0r has been decreased,

a new approximative width is calculated with equation (54) and a new grid
is defined.

Interval of possible values of A. In this process, three values of A
are searched. The first value, A,,;,, is the value that gives an island whose
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radial extension corresponds to prs — 2A8ppfs.  Amin is the reference for
the eventual definition of a new grid cell size. Its search is initiated with
Agpprow-  Of course, it is searched only if this is relevant according to the
given p,. Otherwise, A,,;, is given by a tenth of the second A, Apfs. Apys
corresponds to an island radial extension limited by pj,fs. The last value,
Aoz corresponds to min{pufs + Apiugs, 0.99}. The routine that fits the
value of A to the desired last perturbed flux surface is described in section
8.2.8.

Logic of the global fit. The complete fit of the parameters operates as
follows:

® ppfs is determined.
e The interval of possible ps values is deduced.

e An arbitrary value of p, is taken from that interval and the limits of
the interval of possible A values are determined, as well as the grid cell
size.

e A, ® and P are fitted by minimization of x?,_,, (linear or non-linear).

e The lowest value of x2 . is attributed to the given p, and the process
is started again with another p, until the global minimum of x2,,, is
found.

In the next sections, the different elements relative to each resolution path
are described.

4.10.2 Inversion of SVD or bandpass signals

As SVD signals and bandpass signals have the same behaviour, there are dealt
with in the same way. Since the orientation of the island ® and the amplitude
A of the flux perturbation must be fitted simultaneously, the fminsearch
function must be used to achieve the fit. This function needs start values for
A and ®. For A, the initial value is given by A;,rs. Although fminsearch
does not take limits on the input variables, we can define limits inside the
function that is minimized, and replace the calculated value of x2_.. by
realmaz (the largest real value existing in Matlab) if fminsearch proposes an
input value that exceeds the desired limits. Of course, A,,;, and A,,., are
used as limits. Limiting the search has many advantages: the computational
time is decreased; the generation of too large islands is avoided; and A cannot
be negative. For &, some new developments are required.
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First estimation of the orientation of the islands. Here the prob-
lem consists in finding a first estimation of ®;. Since we only look for
a rough approximation of ®(, the perturbation emissivity may be written
g1(x,t) = Af(x,t) (see section 3.5). The finished expansion of the islands
in space can be simulated by truncating )] such that only its extrema are
kept. This is performed by defining a relative cut level [, and by only keep-
ing the parts of . and v, that exceeds [, positively or negatively. In our
work, a good compromise has been found with [, = 0.5. Let us call Y. and
1, the truncated versions of v, and 1. A rough approximation g, of ¢, may
then be defined by:

G1(x,8) = A | (x) cos(@(t)) + () sin(@ (1)) (55)

Within this approximation, the factors A, cos(®) and sin(®) appearing in
equation (47) can be taken outside the integral. The terms appearing in the
generic equation (49) may then be described as:

y: N. x n; matrix of the filtered DMPX signals. n; is the number of time
samples.

M: N, x 2 matrix containing the line integrals of ¢, and ).
z: 2 X n; matrix containing A cos(®(t)) and Asin(P(t)).
wy: set here to 4.

Up to now, there is no constraint on the 7 /2 phase shift that must appear
between both lines of z. Unfortunately, this condition is not fulfilled spon-
taneously by the fit and must be introduced to obtain a consistent solution.
The rotation sense of the islands is determined by comparing the first and
the second line of z, that usually present a small phase shift. The problem
is solved on a time interval of two periods after ¢, with the addition of 3 it-
erative constraints to the equation system (49). The first one is a constraint
of continuity in time and is expressed as:

C, = lzm 213 - Ry 211] (56)

222 223 ... 22y R21

The second constraint is a constraint of periodicity and is expressed as:

C., — flnp+l  Rlnp+2 -+ flng 11 212 .- Zlm, (57)
5 =
Zonp+l  R2mp+2 - R2my R21 222 - R2n,
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where n, is the number of time samples corresponding to a time period of
the perturbation. The last constraint is the constraint of 7/2 phase shift. It
is written:

ZQ,md ny/4)+1 ZQ,md ny/4)+2

—Z1,rnd(np/4)+1 T R1,rnd(np/4)+2

22.my 22,1 22,2 o 22rnd(np/4) (58)
—Zlne TRL1 TRL2 - T RLrnd(ngp/4)

where rnd is the Matlab round function. v represents the rotation sense and
is defined by:

41 i >0

N { —1 else (59)

The constraints are added in the equation system (49) as follows:
y M
wy - dy wy - dM

wW-| ¢, | =w. 1, A (60)
C,™ 1,
C3(") 1,

where (n) is the iteration number, 15 is a 2 X 2 identity matrix and W
is a weight matrix that account for the difference of magnitude between
the signal and the coefficients of z. It also gives the relative weight of the
constraints and the data. The difference of magnitude is compensated by a
factor obtained from the maximum of y and z. The results are satisfying if
the importance of the constraints with respect to the data are set to 1 for Cq,
2 for C, and 5 for Cg. The iterative process is initiated with a null weight
on the constraints. It is stopped when the difference between z"*) and z(
falls under a certain level.

If the rotation sense cannot be determined with sufficient certainty, the
system is solved with both senses and the sense that gives the better fit is
kept. ®g is the orientation angle corresponding to ¢,. It is estimated using
211 and Z91 .-

Fit of A and ®,. Once the initial values of ®; and A are available, the
fminsearch function can enter into play. It calls a function that generates g,
and solves equation (49) with the following definitions:

y: N. x 1 matrix of the filtered DMPX signals at ¢,.

M: N, x 1 matrix containing the line integrals of g;.
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z: 1 x 1 matrix containing P.
wy: set here to 5.

fminsearch normally finds the best values for the fit. There is however a whole
set of tests that check whether the process converged towards a limit of the
allowed intervals, that assures that the found solution does not correspond to
a flat zone of x2,_ .., and that checks that the size of the grid cell is adapted.

4.10.3 Inversion of signals in frequency space

Due to the periodic behaviour of the perturbation, the analysis of the signals
in frequency space is particularly well adapted to our problem. Since the
Fourier transform is a linear operation, we can take a Fourier transform of
equation (47) on the time:

foa(v) = / 0z G (x, v) (%) (61)

where a hat symbolizes the Fourier transform and v is the frequency variable.
Due to the shape of g; (see equation (41)), it may not be possible to obtain a
usable analytical expression of ¢;. This mainly comes from the complicated
time dependence of the function H appearing in ;. The next paragraph
establishes of way of solving this problem.

Approximation of g;. A numerical Fourier transform of g; ends to an
amplitude spectrum containing a main peak at fp and secondary peaks at
harmonics of fg. The latter are not interesting since the DMPX spectra
is filtered to keep only the frequencies close to the dominant frequency of
the mode f;,. Therefore, a useful approximation of g; can result from its
projection on a single component of a Fourier series:

G1appr(X, 1) := P [g,(x) cos(27 faigt) + gi(X) sin(27 feigt)] (62)

The functions g, and g; are the components of the projection of g; on the
cosine and sine functions. They can be found as follows: for a given value of
A, 8 regularly spaced values of ® are defined and the 8 corresponding ¢, are
generated. For each value of x, a least square fit of ¢,(x) and g¢;(x) is done
to minimize the difference between g; and ¢ qpp- in each angular orientation.
Here, g1 and g1 4ppr have an absolute peak value of 1 and P does not come
into play. An example of gy 4 is shown in figure 11. The Fourier transform
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of g1,appr 1 given by:

400
Jlappr(x,v) = P [gr(x)/ dt e~ 2t cos(27 f4igt)

—00

+oo
+ gi(x) / dt e 2™ gin (27 fuigt) (63)

o0

With P’ as the product of P with the integration constant, we have:

G1.appr (X, V) = P'gr(x) —i-gi(x)] (64)

Note that in the reasoning, we have lost the information on the sign of fg,,
because if fy;, were negative and expressed as such in equation (62), then
G1.appr (X, ) would be given by the complex conjugate of the actual expression.

In expression (62), there is also no initial phase given to the islands. g,
and g; are independent of the frequency and also of ®y, but the latter is
involved in the sine and cosine functions and results in the multiplication of
P’ by a term e'®0.

9, approx With m=2, p_=0.5, and A=3000
1
0.3f |
0.8
0.2} | e
H0.4
0af |
r Ho.2
£ of ] ]
N
-0.2
-0.1} |
-0.4
-0.2f |
-0.6
-0.3 | s
. . ‘
0.5 0.6 0.7 0.8 0.9 1 11 1.2

R [m]

Figure 11: Representation of the approximative form g; 4, of the function g; appearing
in figure 7. Comparison shows only weak differences.
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Inversion. Although we work in frequency space, equation (49) still holds.
It is solved here with the following definitions:

y: N. x 1 matrix of the Fourier transform of the DMPX signals at f,.

M: N, x 1 matrix containing the line integrals of §1 appros-

z: 1 x 1 matrix containing V := P’ - %0,

wy: set here to 5.

The rotation sense is accounted for by solving (48) twice; the first time as
it is written, and the second time using the complex conjugate of M and dM.
Both values of x?2,.,, are compared and the rotation sense giving the lowest
one is kept. The initial phase ®, is equal to the phase of V. The calculation of
P requires the calculation of the integral appearing in the Fourier transform.
Writing W the window used in the Fourier transform, the integral may be
written:

+oo
F .= / dt e F st W () cos (27 fuigt) (65)

[e.9]

In terms of numerical calculation, it yields:

N/2
F~ Z W (n) cos®(2m fsign/At) (66)

n=—N/2

where N is the number of time increments in the time interval used for the
analysis. Note that the dt has no numerical equivalent because it does not
appear in the definition of the discrete Fourier transform. We finally have:

_ v

P
F

(67)
In the method presented above, the inversion is done for the dominant
frequency only. Note that it suffices to add columns to y and V to extend
the method to several frequencies fitted independently. Some tests have
been done in that direction using artificial signals but the results have shown
that the best information was in the dominant frequency only, and that the
combination of the different frequencies resulted in a worse solution.

For a given p,, only A is a non linear variable of g; 4, so that the
function fminbnd can be used with the limits A,,; and A,,.,,. As in the
previous case, a whole set of tests is in place to check that the final solution
is a real solution and that it is obtained on the good grid.
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4.10.4 Optimized interval of possible values of p;

The computational time is quite important in this work and any possibility
to reduce it is appreciated. In equation (55), we have given a rough approx-
imation of g; based on a truncation of ¢7. This expression allows a linear fit
of A and ®y, P being comprised in A. Despite the roughness of this model,
it gives finer limits of the interval of possible values of ps at a low cost in
computational time. The latter is low because the fit of A and ®, is linear,
the question of the grid cell dimension vanishes, and no islands are generated.
The implementation is done by using ¢, and v, in the definition of M (see
equation (49)) and works for any kind of signals (SVD, bandpass or FFT).
In the case of time signals, the phase shift constraints are not used and the
solving of (49) is performed for the time ¢, only.

4.10.5 Optimized fit of the orientation in the case of SVD or band-
pass signals

The combination of the functions g, and g¢; defined in equation (62) is a
reliable approximation of ¢g;. With them, the fit of the orientation passes
from non-linear to linear, and fminbnd may be used for the fit of A.

The inversion procedure is the same as that described in section 4.10.2
for the first estimation of the orientation of the islands. ¢, and s must only
be replaced by g, and g; in the definition of M, and w, must be set to 10
instead of 4. Note that the constraint on the phase shift has been tested to
be still necessary. @, is determined by z1; and 291, and P is determined by:

P — \/ Z%l + 232 (68)

4.10.6 Determination of the width of the islands

The knowledge of the width of the islands matters for the question of trans-
port and energy confinement because the superposition of neighbour islands
causes stochastic diffusion of the magnetic field lines and the plasma parti-
cles. There exist also some models of the perturbation dynamics and these
models could later be compared with the results given by our analysis. Here,
the width is determined in the flux and cylindrical coordinate systems.

Extension in flux coordinates. Knowing the parameters ps and A of
the islands, its extension in terms of the flux coordinate p is determined as
follows: the islands are generated and isolated as described in section 3.5.
The extrema of 1, ¢ in the zone of the poloidal cross-section covered by the
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islands are determined. The square root of these extrema gives the interval
[p1; p2] of values of p that contains the islands. This determination is very
accurate and reliable.

Width in cylindrical coordinates. The width of the islands is mea-
sured perpendicularly to the resonance flux surface. In section 8.1.3 of the
appendix, we show that the level curves of #* are perpendicular to the flux
surfaces. The determination of the width consists then in calculating 6* in
cylindrical coordinates (done with the tools of the 1¢-toolbox), in using the
Matlab contourc function to generate the level curves of *, in projecting the
islands on these level curves, in determining the limits of the islands on them,
and finally in calculating the width. The limits are determined by a level
condition of 1% of the peak value of the islands.

For the cases with the mode number m larger than one, the average of
the islands on the orientation is used in order to find a function w(®) giving
the width for any orientation. The returned width is the mean of w(®).

For the case m = 1, the determination of the width is a bit harder because
the island generally covers the magnetic axis. In that case, the island orienta-
tion is chosen such that the island has its maximum under the magnetic axis
on a vertical axis passing by it. This position is chosen because the corre-
sponding width has an intermediary value there. The island is projected only
on the level curves 0* = —x /2 and 0* = 7 /2, which are the curves that would
correspond to the vertical axis if the magnetic field was circularly symmetric
around the magnetic axis. As before, the determination of the width is done
via the determination of the crossing points between the island projection
and the said level. However, the level curve * = 7/2 usually crosses the
ends of the island. Therefore, the routine looks for the first minima (going
from bottom to top) of the projection between the limits found previously.
The upper limit is redefined by the position of this minima. However, in the
case m = 1, there is a certain probability that the island overlaps itself in the
central zone. Consequently, if the value of the island at this minima is above
the reference level, the projection is interpolated to simulate the end of the
island without overlapping, in order to calculate an approximative width.
This interpolation is done by selecting the first part of the projection (until
the minimum), by calculating the mean value of the second order derivative
during the downhill and by using it as an edge condition of the interpolation.

4.10.7 Determination of the rms current perturbation

Once A is fitted, it is possible to come back to an estimation of the cur-
rent perturbation. As said in section 3.6, the current obtained that way is
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underestimated. Developing equation (23), we have:

A-Al
Iy = 27/% (cos(ip) cos(mby) + sin(p) sin(mby)) (69)
Rk,‘ * Bp,k
I}, is a function of ¢. The root mean square value I, of the total current
perturbation is then defined by:

™

1 2
L = — do I?
rms g 27‘{' /0 90 k (70)

4.11 Phantom signal generator

The best way to check the consistency of the results is to know what they have
to be. This is the reason why a routine allowing the generation of artificial
signals, also called phantoms, has been created. The routine is made of two
routines, one for the generation of stationary signals and the other for the
generation of perturbation signals. Both kind of signals are then merged with
the possibility to add absolute or relative gaussian noise on the final signals.

The block that generates the stationary signals takes as inputs the defini-
tion of a magnetic configuration and the emissivity profile in flux coordinates.
It uses the 1-toolbox to calculate the transfer matrix K.

The block that creates the perturbation signal takes as input the param-
eters of the islands that are simulated. Since the value of A has no intuitive
sense, the input of A is replaced by the input of the desired island width.
The corresponding A is found by an iterative process based on the approxi-
mative relation (17) between A and the width. Once the right A is found, the
base functions g, and g; of the approximative perturbed emissivity defined in
equation (62) are calculated, and used to build the matrix M (see equation
(49)). z is defined by:

cos(2m - m + fror - ty — Po)
Sin(2m - m - fror -ty — Do)

(71)

where t; is a line vector representing the time basis. The perturbation signals
are then given by:
fi(t) =G-z (72)

By merging the stationary and the perturbation signals, we can use the
complete inversion process as if the signals were raw DMPX signals, thus
assuring to have a comprehensive testing.
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5 Results and discussion

The results of the stationary and the perturbation profile inversions are pre-
sented below. In each case, examples with phantoms are also given to assess
the reliability of the processes.

5.1 Stationary profile inversion
5.1.1 Phantoms

Figures 12 and 13 present the results obtained for a phantom corresponding
to the profile given in figure 12. The signal is free of noise, but a 0.5% relative
error has been added since the inversion routine needs a certain value for the
error on the signal. The process using the modification of the flux surfaces
has not been used.

Stationary emissivity profile, phantom, no noise
0.6 T T T T T

— Initial profile
—— Solution profile

0.5 *

—0.1 1 1 1 1 1 1 ! ! !
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

Figure 12: Profile g(p) obtained from the inversion of the phantom DMPX signal using
all the chords. No noise added on the signal.

Figures 14 and 15 present the results obtained for a phantom correspond-
ing to the profile given in figure 14. A 2% relative gaussian noise has been
added to the signal. The process using the modification of the flux surfaces
has not been used.

47



Stationary DMPX profile, phantom, no noise
0.16 T T T T

0.12 *

0.1 *

0.06 - -

0.02 -

~0.02 1 1 1 1 ! !
0 10 20 30 40 50 60 70

Chords, HFS to LFS

Figure 13: Phantom DMPX signal and fit generated by the reconstructed emissivity
profile. No noise added on the signal.

Stationary emissivity profile, phantom, with noise
0.6 T T T T T

T T
—— Initial profile
— Fit

0.5 —

-0.1 I I I I I I ! ! !

Figure 14: Profile g(p) obtained from the inversion of the phantom DMPX signal using
all the chords. 2% noise added on the signal.
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Stationary DMPX profile, noised phantom
0.16 T T T

T
—— Signal
— Fit
0.14 - b
0.12 - b
0.1 b
0.08 - b
0.06 - -

0.04 - -

0.02 - -

-0.02 1 1 1 1 ! !
(0] 10 20 30 40 50 60 70

Chords, HFS to LFS

Figure 15: Phantom DMPX signal and fit generated by the reconstructed emissivity
profile. 2% noise added on the signal.

5.1.2 Real signals

We present in figures 16 and 17 the results of the inversion of the stationary
DMPX profile obtained for the shot 27481 at 0.4 seconds. The results ob-
tained with or without the process using the modification of the flux surfaces
can be compared. A 2ms average of the signals has been used to generate
the DMPX profile.

In order to improve the results obtained from the perturbation profile
inversion, the stationary profile inversion has been performed for all the in-
teresting shots using the modification of the flux surfaces of type 3. The
obtained parameters are given in table 1. One of the interesting discharges
is the shot 22621. However, at the time of that shot, the DMPX was much
closer to the plasma than today. So all the chords passed close to the cen-
tral zone of the plasma. As the signal corresponding to the periphery of the
plasma is always mixed with the signal coming from the central zone, the
stationary inversion is hard to obtain. Thus, we have decided not to modify
the flux surface description for this shot.
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Stationary emissivity profile, shot 27481 at 0.4 sec, no flux modification

12 T T T T T T T T
—— HFS chords
—— LFS chords
All chords
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2 |
ol
_2 1 1 1 1 1 1 1 1 1
o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p
Stationary emissivity profile, shot 27481 at 0.4 sec
10 T T T T T T
—— HFS chords
—— LFS chords
— All chords
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Figure 16: Top. Profiles g(p) obtained from the inversion of the 2ms average of the
DMPX signals using the HFS chords only, the LFS chords only or all the chords. Here, the
flux surfaces are not modified. Bottom. Same figure but the flux surfaces are modified
according to the mode 3 defined in section 4.9.2, with a global radial shift of -0.22 cm and
a radial deformation of -0.31 cm. Shot 27481 at 0.4 seconds.

20



Stationary DMPX profile, shot 27481 at 0.4 sec, no flux modification
3 T T T T T

—— Signal
— Fit

25+ -

1.5 -

0.5 -
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Chords, HFS to LFS

Stationary DMPX profile, shot 27481 at 0.4 sec
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—— Signal
— Fit
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Figure 17: Top. 2ms average of the DMPX signals and fit generated by the recon-
structed emissivity profile. Here, the flux surfaces are not modified. Bottom. Same
figure but the flux surfaces are modified according to the mode 3 defined in section 4.9.2,
with a global radial shift of -0.22 cm and a radial deformation of -0.31 cm. Shot 27481 at
0.4 seconds.



Shot | time [s] | dR; [cm] | AR, [cm]
24141 1.375 1.45 -0.38
27481 0.4 -0.22 -0.31
27481 0.875 -0.18 0.00

Table 1: Values obtained for the modification of the flux surfaces using the mode 3 of

the procedure based on the constraint of correspondence between the profile reconstructed
with the HFS chords and the LFS chords. dR; is the radial translation and dRs the radial
deformation of the plasma.

5.1.3 Discussion

When looking at the results obtained for the phantoms, we can see on the
DMPX profiles (fig. 13 and 15) that the fits and the phantoms are in excellent
agreement. On the signals with additional noise, the fit follows nearly exactly
the noiseless shape, demonstrating the weak sensitivity of the process to the
noise. However, as far as the emissivity profiles are concerned, we can see
that although the general trends are respected, the obtained solution is not
very good in the low p region. At first, we thought that this was only due
to the component of the regularization that minimizes the second derivative
of the profile. Therefore, we tried to invert the DMPX profile by using only
the minimization of the Fisher information. We obtained exactly the same
results, with only less local smoothing. The origin of this behaviour has
finally been found in the definition of the error for the phantoms. With an
error relative to the signal, the smoothing uses the large error allowed close to
p = 0 to decrease the second order derivative or the Fisher information there
at the cost of accuracy. In the case of the phantom without noise, the profile
obtained by setting an absolute error on the signal is much better in the low
p region (see figure 18). It can be wondered wether the errors on the real
signals are absolute or relative, since if they are relative, the reconstructed
emissivity profile will always be too flat in the low p regions. In the DMPX,
the main part of the error on the signal comes from the electronics and should
thus be an absolute error. However, in our analysis, the error is calculated
as the standard deviation of the signal on the time window used for the
average. All the perturbations occurring in the plasma during that time
interval will appear as errors in our treatment, but their relative or absolute
feature cannot be known. It is thus hard to say whether the flattening of the
profile is spread on the whole profile or concentrated in the low p region.
The effect of the procedure of flux modification shown in figures 16 and
17 is striking. Although the deviation between the DMPX signals and the fit
is not taken into account in the process, we see that the deviation is reduced
after the latter. The comparison between both pairs of figures demonstrates

92



Stationary emissivity profile, phantom, no noise, absolute error
T

0.5 T T T T T T T
- Initial profile
—— Solution profile

0.45- 1

Figure 18: Profile g(p) obtained from the inversion of the phantom DMPX signal using
all the chords. No noise added on the signal and error set as 0.5% of the mean of the
signal. Compare with figure 12.

the relevance of the procedure.

The values given in table 1 are small but exceed the error of the equilib-
rium reconstruction process, above all in the shot 24141. Nevertheless they
have been retained for the rest of the analysis. As the reconstruction process
is especially accurate at the edge of the plasma, it could have been interesting
to develop a new mode of deformation based on the mode 3 but allowing also
vertical deformation. Serious developments and testings of this deformation
procedure should be envisaged in order to establish which mode provides
the best compromise between the DMPX and the magnetic reconstructions.
In this discussion, the argument given by Granetz [2] on the evidence of a
discrepancy between the X-ray emissivity contours and the magnetic flux
surfaces should not be forgotten. If this argument really holds, it is possi-
ble that the procedure of deformation of the flux surfaces simply converges
towards the real emissivity level curves without any need of correspondence
with the initial flux surfaces (to a certain limit).
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5.2 Perturbation profile inversion

The results presented here mainly consist in the tables of values found for the
parameters of the islands appearing in three shots, at four different times.
The different paths of resolution described in section 4 have all been used,
and their respective results are a good indication of the sensitivity and the
reliability of the method. All the analysis have been performed with the use
of the flux modifications given in table 1. As before, phantoms have been
used to assess our work. In table 2, a list of all the parameters of interest
that appear in our treatment is given.

Parameters Definition

ta [s] Time of analysis given by the time selection block,
see section 4.7.

Ps.appr Approximative value of ps found by the process
described in section 4.10.4

Ps Position of the resonance surface in flux coordinates.

P Smallest p reached by the island. Univocally determined
by the value of A (see section 4.10.6).

P2 Largest p reached by the island. Univocally determined
by the value of A (see section 4.10.6).

Plufs p value of the last unperturbed flux surface seen
from the outside (see section 4.10.1).

A prags Uncertainty on Apyy,s.

A Factor linked to the amplitude of the flux perturbation
(see equation (30)).

w [m] Width of the island, obtained from the procedure
described in section 4.10.6. Symbol * means that the
width is approximative

Lims [A] Estimation of the total rms value of the current
perturbation (see section 4.10.7).

P Peak value of the perturbation emissivity (see
equation (41)).

Y Rotation sense of the islands (see equation (59)).

P Angle describing the orientation of the islands
at the analysed time.

Table 2: Definition of the parameters used in the tables of results.
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5.2.1 Phantoms

The behaviour of our inversion procedure has been tested with many phan-
toms representing different magnetic islands: various mode numbers, width,
positions and noise. All gave satisfying results. The results presented below
correspond to a mode simulated with the following parameters:

m = 2
frot = 2000 [Hz]
ps = 0.5
w = 0.05|m]
P = 03

The stationary emissivity profile is defined by:

Gstat = (1 - p2)1.5 (73)

The flux geometry corresponds to shot 27481 at 0.4 seconds. After adding
the stationary and the perturbation parts, a relative gaussian noise of 10%
has been added to the phantom. Figures 19, 20 and 21 show the results
obtained for the FFT, the SVD, and the bandpass filters respectively. Table
3 gives the values obtained for each path of resolution.

Parameters | FFT | SVD | Bandpass approx | Real
Ps 0.500 | 0.496 0.504 | 0.500
A 2051 | 2298 2279 | 2176
w |m)| 0.048 | 0.050 0.051 | 0.050
Ay [rad| 0.01 | 0.52 0.09 | 0.00
P 0.30 | 0.46 0.33 | 0.30
Y +1 -1 +1 +1

Table 3: Table of results for the phantom. The results are presented for the fits of signals
produced by the FFT, the SVD and the bandpass filters. The last column gives the real
value of the parameters. The parameters are defined in table 2.

Discussion. The uncertainty allowed on p; in the options of fminbnd is
set to 0.01. As we can see in table 3, all the paths results in a p, value
that is comprised in the uncertainty interval. The values of A vary more
from one path to the other, but the impact of this variation on the obtained

29



FFT, perturbation DMPX profile, noised phantom
40 T T T T T

—— signal (real)
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Figure 19: Real and imaginary parts of the dominant frequency component of the FFT of
a phantom DMPX signal. The signals corresponding to the fitted perturbation emissivity
are drawn in red. Note that both scales of the vertical axis are not the same.

SVD, perturbation DMPX profile, noised phantom at 0.398015 sec
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Figure 20: Signal given by the SVD filter of a phantom DMPX signal. The signal
corresponding to the fitted perturbation emissivity is drawn in red.
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Bandpass, perturbation DMPX profile, noised phantom at 0.398875 sec
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Figure 21: Signal given by the bandpass filter of a phantom DMPX signal. The signal
corresponding to the fitted perturbation emissivity is drawn in red.

widths is small and the latter are also very close to the real value. The peak
value of the perturbation emissivity function is best estimated in the FFT
and the bandpass paths, as well as the initial orientation of the island and
the rotation sense. On figure 20, we see that the fit is not excellent because
the filtered signal does not exactly correspond to the signal of the originally
simulated island. The SVD filter mixes here some other information with the
real perturbation signal. It is thus not surprising that the peak value given
by the SVD path is wrong.
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5.2.2 Assessment of the stability of the p, search procedure

ps is the ultimate parameter of the model. Its exactitude determines that of
the others. Tts search is based on the minimization of the parameter x2 .
by fminbnd. In order to find a correct value, x2,, must be quite smooth in
function of ps. Figures 22 and 23 show 2., in function of p, in fits using
g1 and g; respectively. The signals come from the bandpass block for shot
27481 at 0.4 seconds.

Discussion. The examples of profiles of x2,.. in function of p, given in
figures 22 and 23 have the same behaviour as those of other shots. Therefore,
the process of minimization of X2 _, can be used without any fears on the
reliability of the result. Note that taking the fit of the derivative of the signal
along the chords into account in the definition of x? ., drastically improves
the x2,..,(p) profiles.
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Search of P using the rough approximation of 9, shot 27481 at 0.399130 sec

1.4 T T T T T T T

szean

335 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Figure 22: x2 ., in function of ps using the rough approximation g; for shot 27481 at

0.399130 seconds.

Search of Py using the real 9, shot 27481 at 0.399130 sec
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Figure 23: x2,..,, in function of p, using the complete model of g; for shot 27481 at
0.399130 seconds.
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5.2.3 Shot 22621

Shot 22621 has a mode m = 1 with a large amplitude in the vicinity of 1.075
seconds. Its signal frequency is centered at 6050 Hz. This shot has been
analyzed by our inversion process and the results are presented below.

Parameters | FFT | SVD | Bandpass | Bandpass approx
ta [9] 1.0767 | 1.0766 1.075575 1.075575
Ps.appr 0.157 | 0.152 0.153 0.153
Ps 0.148 | 0.149 0.155 0.150
P 0.007 | 0.007 0.011 0.011
P2 0.374 | 0.374 0.379 0.379
Plufs 0.388 | 0.388 0.388 0.388
Aprugs 0.021 | 0.021 0.021 0.021
A 5698 5779 5881 5881
w |m| *0.189 | *0.189 *0.190 *0.190
Lims [A] 7821 7931 8075 8075
P 2.77 3.24 3.15 3.15
¥ +1 -1 +1 +1

Table 4: Table of results for shot 22621 at times close to 1.075 seconds. The results are
presented for the fits of signals produced by the FFT, the SVD and the bandpass filters.
The second and the last columns correspond to linear fits of ®g, i.e. fits realized with
91,appr- The parameters are defined in table 2.

Parameter | Rough linear | Non-linear | Fine linear
Py [rad] 3.72 3.25 3.25

Table 5: Results of the determination of ®, via three different ways, using §;, g1 and
91,appr Tespectively. Shot 22621 and bandpass signals.

Discussion. The quality of the obtained fit enables us to get confidence
in the model of the islands and its implementation.
The values presented in table 4 show a very small difference between
Ps.appr a0d pg. Since pg 4, can be found in less than a minute while several
minutes are required to find ps, ps appr could be used for low computational
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FFT, perturbed DMPX profile, shot 22621 at 1.0767 sec
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Figure 24: Real and imaginary parts of the dominant frequency component of the FFT
of the DMPX signals of shot 22621 at 1.0767 seconds. The signals corresponding to the
fitted perturbation emissivity are drawn in red. Note that both scales of the vertical axis
are not the same.

SVD, perturbed DMPX profile, shot 22621 at 1.076560 sec
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Figure 25: Signal given by the SVD filter of the DMPX signals of shot 22621 at 1.076560
seconds. The signal corresponding to the fitted perturbation emissivity is drawn in red.
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Bandpass, perturbed DMPX profile, shot 22621 at 1.075575 sec
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Figure 26: Signal given by the bandpass filter of the DMPX signals of shot 22621 at
1.075575 seconds. The signal corresponding to the fitted perturbation emissivity of type
g1 is drawn in red, and the one corresponding to the fitted emissivity of type g1 appr is
represented by the blue dashed line.

g profile, shot 22621 at 1.0756 sec
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Figure 27: ¢ in function of p given by the magnetic equilibrium reconstruction in shot
22621 at 1.0756 seconds.

62



time applications. Recalling that the uncertainty on py is set to 0.01, we can
see that all the paths of resolution give nearly the same values of ps. This
demonstrates the reliability of the process and its accuracy.

Here, according to the parameters of the mode, p; should be equal to 0.
This is not the case because the magnetic axis does certainly not coincide
with one of the grid points. Thus, the maximum of v, on the grid does
not correspond to p = 0 but to p = p;. We also note that the values of
p2 agree well with one another. This is also the case for the values of py, s,
demonstrating the efficiency of the process of chord selection. py and py,gs
also agree with one another. That shows that py,rs is a good choice for the
determination of limits or initial values for A and p,.

Here, the determination of the width gives only approximative results (see
section 4.10.6). The results are quite relevant with respect to one another
despite this approximation.

The only negative aspect, as in the case of the phantom signal, is the fact
that the SVD path results in a rotation sense opposed to the others. The
origin of this behaviour has not been found in the implementation. It is even
more strange when you remember that the bandpass path and the SVD path
are the same except in the choice of the signal filter. It is maybe due to an
intrinsic behaviour of the SVD itself.

The SVD and the bandpass paths can be subdivided in a path using
the approximation ¢ qppr of g1 to make a linear fit of ®; and a path using
directly ¢g; and making a non-linear fit of ®,. We have decided to study their
difference only with the bandpass path. As we can see in tables 4 and 5
and in figure 26, there are nearly no differences between the results obtained
in both ways, except the calculation time that is smaller in the first case.
We also note that the &, found by the rough approximation of g; is quite
reliable.

As the mode under study is positioned on the surface ¢ = 1, it is inter-
esting to have a look at the value of ¢(ps) where ¢(p) is the profile obtained
from the equilibrium reconstruction based on the magnetic field measure-
ments. On figure 27, it can be read ¢(ps) ~ 1.16. When looking at the
quality of the obtained fit, we can have enough confidence in the p, found
by our process. Therefore, the p, that we find could be used to correct the
equilibrium reconstruction, by forcing the g-profile to have the correct value
at the given p;.
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5.2.4 Shot 24141

Shot 24141 has a mode m = 2 with a large amplitude in the vicinity of 1.375
seconds. Its signal frequency is centered at 5350 Hz. This shot has been
analysed by our inversion process and the results are presented below.

Parameters | FFT | SVD | Bandpass | Bandpass approx
ta [s] 1.3738 | 1.3745 1.374155 1.374155
Ps.appr 0.640 | 0.642 0.639 0.639
Ps 0.658 | 0.662 0.660 0.660
P 0.474 | 0.493 0.474 0.465
P2 0.777 | 0.768 0.776 0.777
Plufs 0.799 | 0.863 0.816 0.816
Aprugs 0.065 | 0.095 0.048 0.048
A 9167 | 8081 9110 9502
w |m| 0.081 | 0.072 0.079 0.081
Lims [A] 9857 | 8750 9827 10250
P 1.31 2.19 2.01 1.98
¥ +1 -1 +1 +1

Table 6: Table of results for shot 24141 at times close to 1.375 seconds. The results are
presented for the fits of signals produced by the FFT, the SVD and the bandpass filters.
The second and the last columns correspond to linear fits of ®g, i.e. fits realized with
91,appr- The parameters are defined in table 2.

Parameter | Rough linear | Non-linear | Fine linear
P 3.52 3.36 3.15

Table 7: Results of the determination of ®, via three different ways, using §;, g1 and
91,appr Tespectively. Shot 24141 and bandpass signals.

Discussion. The filtered signal is quite noisy with respect to the other
shots. Nevertheless, the inversion process does not seem perturbed by this
noise.

Most comments are the same as those made for shot 22621. The main
differences concern P and A. The P of the FFT path is much smaller than
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FFT, perturbed DMPX profile, shot 24141 at 1.3738 sec
T
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Figure 28: Real and imaginary parts of the dominant frequency component of the FFT
of the DMPX signals of shot 24141 at 1.3738 seconds. The signals corresponding to the
fitted perturbation emissivity are drawn in red. Note that both scales of the vertical axis
are not the same.

SVD, perturbed DMPX profile, shot 24141 at 1.374540 sec
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Figure 29: Signal given by the SVD filter of the DMPX signals of shot 24141 at 1.374540
seconds. The signal corresponding to the fitted perturbation emissivity is drawn in red.
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Bandpass, perturbed DMPX profile, shot 24141 at 1.374155 sec
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Figure 30: Signal given by the bandpass filter of the DMPX signals of shot 24141 at
1.374155 seconds. The signal corresponding to the fitted perturbation emissivity of type
g1 is drawn in red, and the one corresponding to the fitted emissivity of type g1 appr is
represented by the blue dashed line.

q profile, shot 24141 at 1.3742 sec
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Figure 31: ¢ in function of p given by the magnetic equilibrium reconstruction in shot
24141 at 1.3742 seconds.
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the others, maybe because of the time dependence of the frequency of the
mode. If the latter changes fast, the power at one particular frequency can
be underestimated by our method. The small A value of the SVD path can
be partly explained by the compensation that occurs through P.

Here, the difference between the ®(’s determined by the linear fit and the
non-linear fit are larger than in shot 22621, but we must keep in mind that
the impact of a certain A® on a mode m = 2 is twice smaller than on a mode
m = 1 because ® must go from 0 to m - 27 to achieve a complete round of
the cross-section.
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5.2.5 Shot 27481 at 0.4 seconds

Shot 27481 has a mode m = 2 with a large amplitude in the vicinity of 0.4
seconds. Its signal frequency is centered at 2000 Hz. This shot has been
analysed by our inversion process and the results are presented below.

Parameters | FFT | SVD | Bandpass | Bandpass approx
ta [9] 0.4014 | 0.3984 0.399130 0.399130
Ps,appr 0.538 | 0.516 0.521 0.521
Ps 0.563 | 0.548 0.551 0.566
P 0.422 | 0.411 0.377 0.418
P2 0.694 | 0.660 0.679 0.694
Plufs 0.700 | 0.703 0.703 0.703
Aprugs 0.026 | 0.027 0.027 0.027
A 4155 3132 4783 4129
w |m)| 0.068 | 0.062 0.070 0.067
Lims [A] 4305 3146 4823 4242
P 1.63 2.36 2.21 2.39
¥ +1 +1 +1 +1

Table 8: Table of results for shot 27481 at times close to 0.4 seconds. The results are
presented for the fits of signals produced by the FFT, the SVD and the bandpass filters.
The second and the last columns correspond to linear fits of ®g, i.e. fits realized with
91,appr- The parameters are defined in table 2.

Parameter | Rough linear | Non-linear | Fine linear
P, 3.35 3.21 291

Table 9: Results of the determination of ®, via three different ways, using g;, g1 and
91,appr Tespectively. Shot 27481 at 0.4 seconds and bandpass signals.

Discussion. Here, the SVD path gives a rotation sense that concords with
those of the other paths. Therefore, the error on the rotation sense does not
come from a sign inversion in the implementation.
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FFT, perturbed DMPX profile, shot 27481 at 0.4014 sec
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Figure 32: Real and imaginary parts of the dominant frequency component of the FFT
of the DMPX signals of shot 27481 at 0.4014 seconds. The signals corresponding to the
fitted perturbation emissivity are drawn in red. Note that both scales of the vertical axis
are not the same.

SVD, perturbed DMPX profile, shot 27481 at 0.398370 sec
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Figure 33: Signal given by the SVD filter of the DMPX signals of shot 27481 at 0.398370
seconds. The signal corresponding to the fitted perturbation emissivity is drawn in red.
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Bandpass, perturbation DMPX profile, shot 27481 at 0.399130 sec
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Figure 34: Signal given by the bandpass filter of the DMPX signals of shot 27481 at
0.399130 seconds. The signal corresponding to the fitted perturbation emissivity of type
g1 is drawn in red, and the one corresponding to the fitted emissivity of type g1 appr is
represented by the blue dashed line.
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Figure 35: ¢ in function of p given by the magnetic equilibrium reconstruction in shot
27481 at 0.39913 seconds.
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5.2.6 Shot 27481 at 0.875 seconds

Shot 27481 has a mode m = 2 with a large amplitude in the vicinity of 0.875
seconds. Its signal frequency is centered at 3350 Hz. This shot has been
analysed by our inversion process and the results are presented below.

Parameters | FFT | SVD | Bandpass | Bandpass approx
ta [s] 0.8768 | 0.8768 0.876630 0.876630
Ps,appr 0.478 | 0.433 0.431 0.431
Ps 0.494 | 0.472 0.482 0.482
i 0.342 | 0.346 0.344 0.339
P2 0.620 | 0.580 0.581 0.587
Plufs 0.610 | 0.644 0.610 0.610
Apruss 0.033 | 0.059 0.033 0.033
A 3129 2048 2126 2488
w |m| 0.065 | 0.055 0.053 0.057
Lims [A] 3065 1965 2058 2409
P 0.85 2.99 2.64 2.56
Y +1 -1 +1 +1

Table 10: Table of results for shot 27481 at times close to 0.875 seconds. The results are
presented for the fits of signals produced by the FFT, the SVD and the bandpass filters.
The second and the last columns correspond to linear fits of ®¢, i.e. fits realized with
J1,appr- LThe parameters are defined in table 2.

Parameter | Rough linear | Non-linear | Fine linear
b, 1.05 0.37 0.27

Table 11: Results of the determination of ®y via three different ways, using §;, g1 and
91,appr Tespectively. Shot 27481 at 0.875 seconds and bandpass signals.

Discussion. The comments made for the other shots could be applied to
this one. Nevertheless, the difference with respect to the original g-profile is
more important here than in the other cases.
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FFT, perturbed DMPX profile, shot 27481 at 0.8768 sec
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Figure 36: Real and imaginary parts of the dominant frequency component of the FFT
of the DMPX signals of shot 27481 at 0.8768 seconds. The signals corresponding to the

fitted perturbation emissivity are drawn in red. Note that both scales of the vertical axis
are not the same.

SVD, perturbed DMPX profile, shot 27481 at 0.876780 sec
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Figure 37: Signal given by the SVD filter of the DMPX signals of shot, 27481 at 0.876780
seconds. The signal corresponding to the fitted perturbation emissivity is drawn in red.
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Bandpass, perturbation DMPX profile, shot 27481 at 0.876630 sec
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Figure 38: Signal given by the bandpass filter of the DMPX signals of shot 27481 at
0.876630 seconds. The signal corresponding to the fitted perturbation emissivity of type
g1 is drawn in red, and the one corresponding to the fitted emissivity of type g1 appr is
represented by the blue dashed line.
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Figure 39: ¢ in function of p given by the magnetic equilibrium reconstruction in shot
27481 at 0.8766 seconds.
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5.2.7 Discussion of the perturbation inversion process

The results given by the inversion of the phantom have shown that the in-
version process is stable and reliable, with a certain reserve for the determi-
nation of the rotation sense when using the SVD filter. This last point could
be explained as follows: in the SVD filter, only the topos and the chronos
corresponding to the second singular value are kept. The perturbation sig-
nals are then generated by multiplying the topos and the chronos. If there
is originally a phase shift between the chords, it disappears in the operation.
Thus, the rotation sense becomes hard to determine. It could be argued that
the third topos and chronos should be used in the recombination to avoid this
behaviour, but experience has revealed that these components have nothing
to see with the desired signals.

The fit obtained in the case m = 1 is much better than the fits obtained
in the other cases. The model is hence closer to the real perturbation in the
case m = 1. This behaviour may be due to a better approximation of the
helical flux perturbation by a poloidal flux perturbation in the case m = 1,
where the toroidicity has less impact since the island has less radial extension.
It could also be due to the choice of relation between the flux perturbation
and the perturbation emissivity. The linear relation is maybe too simple and
could be replaced by a power relation.

In our work, ps has always proved to be the best determined parameter.
This may be due to the fact that the sharp peaks appearing on the DMPX
filtered profile produce well identifiable transition points that are a direct
function of p,. This feature is best exploited when the fit of the derivative
along the chords is accounted for in 2, .

As far as the introduction of the rotation constraint is concerned, the
FFT path is the cleanest way of all the available paths, because the sine and
cosine components are intrinsically combined as such in the formulation of
G1.appr- Therefore, the value given by the FFT path for the rotation sense
should be considered as the correct one. Since the different examples have
shown that the approximation g q,p can be used as well as g;, there is no
difference of reliability between the FFT path and the others for the other
parameters like ps or A. However, the variation in frequency may result in
a spreading of the perturbation power among different frequencies, implying
a bad estimation of P within the FFT path. Therefore, the bandpass path
would be recommended for the determination of P. In conclusion, for reasons
of accuracy and computational time, we would advise to use firstly the process
of rough approximation of pg, followed by the treatment using the FFT path.
The obtained values of ps; and A may then be used to obtain P via the signals
coming from the bandpass filter. The SVD path should be kept for special
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shots where the other procedures failed to find the good parameters. The
non-linear fit of ®; could be abandoned.

At present, the determination of the width is not very accurate. This
mainly comes from the setting of the dimension of the grid cell. In fact, as
we have noted, A must change quite importantly to obtain a variation of w.
The only way to detect more finely the impact of small variations of A is
to decrease the cell dimension. Unfortunately, this results in an important
increase of the computational time. Therefore, we could imagine to design
a special routine for the search of A using a very small cell size, with a grid
fitted to the dimensions of the islands, and that would be used only when p;
is known, as well as a good estimation of A. The number of points along the
chords should also be increased, of course.

5.3 Further developments

At the beginning of this work, the question whether it was possible to obtain
a simultaneous inversion of the stationary and the perturbation DMPX sig-
nals was posed. As described by Ingesson [3], the tomographic inversion is
always based on the fitting of some base functions. Starting from what has
been done here, we could imagine to make a linear combination of the pixel
functions used for the stationary inversion process and of some space func-
tions representing the islands. The fit of the coefficients could be performed
under a least square constraint. The functions representing the islands could
only be fitted with respect to their amplitude, so that we would need tens of
functions to describe the different possible combinations of parameters of a
magnetic perturbation. The roughest approximation that could be used for
such functions would be QZC and QZS, permitting thus a great reduction of the
number of functions since the angular parameter is removed. In our work, we
tried to fit the perturbation DMPX signal with all these functions at the same
time for 40 values of p,. It failed completely. The fit was good, but the com-
bination of the functions was not physical. To go further, the constraint on
the time evolution would be required, but this would correspond to modelize
more and more the perturbation. Thus, since the DMPX is a single camera
system, we are compelled to use strong assumptions on the 2-D behaviour
of the emissivity function, namely the assumption of constant emissivity on
flux surfaces and the island model. The inversion process has no advantages
in being done simultaneously for the stationary and the perturbation parts.

Further developments could be envisaged in different areas. The first one
is the physics of the islands itself. With some cares taken on the determina-
tion of the width of the islands, the inversion process could be run at different
times of a shot with a slow growing island structure to analyze the dynamics
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of the width of the perturbation. The obtained results could also be compared
with the results of other diagnostics like SXR at TCV (SXR is a complete
set of soft X-ray cameras used for tomographic inversion). The equilibrium
reconstruction routine could also be modified to use the results of the DMPX
analysis. Further developments of the inversion process itself could involve,
for instance, the routine that finds the minimum of x2_,.. A custom routine
would be welcome and could decrease the computational time. The model
could also be improved by the calculation of a real helical flux perturbation.
The choice of a linear relation between the flux perturbation and emissivity
could be replaced by a power relation. All these possibilities show that the
subject is not exhausted and that some good surprises may result.
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6 Conclusion

In this work, we tried to solve the problem of soft X-ray emissivity profile
inversion in quasi-axisymmetric equilibria. With this aim in view, we have
used the magnetic island model proposed by Reimerdes [5] and developed it
to obtain a model of the perturbation emissivity function. Some approxima-
tions of this model have also been made to decrease the complexity of the
fitting work. In order to achieve the fit of the DMPX data by the model,
a whole set of filters have been created. Their main functions are to re-
move the spikes occurring in the DMPX signals, to select an appropriate
time sample, and to obtain the stationary and the perturbation signals. The
last developments consist of the procedures of inversion for both types of
signals. They involve the determination of the parameters of the poloidal
flux modification and some other parameters like the radial flux coordinate
of the last perturbed flux surface. These procedures have been optimized to
reduce the computational time. Apart from the stationary profile inversion
that has been developed from an existing base, the whole work described in
this report has been implemented in the form of Matlab routines by ourselves
(see section 8.3 of the appendix for a dictionary of the routines).
The main results of our work are given below:

e The DMPX is a diagnostic adapted to the study of MHD perturbations,
and particularly magnetic islands. The filtered data show clearly the
presence of the perturbations and provide a good target for the fitting
work.

e The modification of the poloidal flux allows a better fit of the recon-
structed DMPX profiles with the experimental data.

e The quality of the obtained fits shows that the model of the magnetic
islands corresponds to the experiment to a certain extent, with a best
match if m = 1. The tests have also revealed that the model is sufficient
to obtain a good accuracy on the determination of pg, which is one of
the most successful results of this work. The provided estimation of
the width of the islands could also be useful for further developments.

e In the actual configuration of the DMPX, it seems useless to develop
an inversion process that does not separate the stationary and the
perturbation signals. The parameters of the islands are much better
determined in our way.

e The developed method has a high degree of automation and may be
applied to different shots with a minimal prior work.
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To conclude, this project has allowed us to get a better understanding of
the problem of magnetic perturbations, and especially magnetic islands. We
wish that our work is robust enough to provide a base for further develop-
ments. Above all, we hope that it will contribute to the understanding of
energy diffusion and to the improvement of the confinement in tokamaks.
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8 Appendix

8.1 Additional theory
8.1.1 Regularization by the second order derivative

The second order regularization favours a solution of (7) with minimal cur-
vature. It minimizes the norm of a vector containing the Laplacian of the
solution g. The object function may hence be defined by:

O(g) =Il Ag I°= (Lg)" - (Ag) (74)

If A denotes a matrix representation (finite differences) of the Laplacian, we
may write:
Olg)=g"-AT-A-g=g' 'H-g (75)

The disadvantage of this definition for the object function is that it will
always tend to flatten the deduced profile.

8.1.2 Regularization by the Fisher information.

The Fisher information Iz of a probability distribution p(x) is defined by:

Iy = /p/(x)ng; (76)

p(z)

where the prime denotes the derivative with respect to x. By identifying I
as the soft X-ray emissivity, we see that minimizing the Fisher information
of g implies a smoothing localized to the small g regions, regions of the
plasma where the information contained in the X-rays is the least accurate.
The implementation of the concept is tractable if the latter is reduced to a
weighted first order linear regularization. We start by defining O(g) as:

0(g)=(Vx-8)" (Vx-8)+(Vy-8)" (Vy-g) (77)

where Vi and V, are finite-difference matrix representations of the deriva-
tives with respect to z and y. It may be written:

O(g):g~(VXT'VX+VyT'Vy)-g::g~H~g (78)

The introduction of the weighting, corresponding to the Fisher information,
is performed by adding a diagonal weight matrix W, where W;; > 0:

H=V," W.V,+V,7 . W.V, (79)

79



In order to keep the method linear, an iterative process is used for the def-
inition of W. The starting point is given by W = 1, the identity matrix.
Equation (12) is solved with the H given by (79). The obtained g is used to
determine a new weight matrix W such that:

L. = 9i
Wy { Winae - 0ij  else (80)

where §;; is the Kronecker symbol and W, is the value obtained for the
smaller positive g;. The new W is then used for a new solution of equation
(12) and so on until the difference between the values of W become less than
a certain value. We can resume this by:

(K" K +aoH™) . g™ = K" . f (81)

where the (n) and (n + 1) superscripts correspond to the iteration number.
For each iteration, the value of « is chosen to give the best fit as possible.
Generally, only 3 or 4 iterations are needed to find a stable expression of W.

8.1.3 Straight field line angle 6*

In tokamaks, the toroidal geometry implies that the toroidal magnetic field
has a strength inversely proportional to the main radius coordinate. Conse-
quently, the angle of a field line with respect to the toroidal direction (pitch
angle) varies in function of the poloidal angle. In order to exclude the effects
of toroidicity and shaping, a poloidal variable 6*(6, q) is introduced, so that
the magnetic field follows straight lines in the 6* — ¢ plane, for a given ¢. It
yields:

B-Vvor 1
vor_1 (82)
B-Vyo ¢
Generally, an axisymmetric magnetic field B can be written:
B = I(¢,)Ve + Vip, x Vo (83)

where I(1),) is a scalar function, v, is the poloidal flux and ¢ the toroidal
angle coordinate. Replacing (83) into (82) gives:

90" 11(1y)
00 g R? (84)

N

Vip, x V- V8-
M

The 1/R? factor appears because of the R—dependence of Vi, where R is
the major toroidal radius. J is the Jacobian of the coordinate transformation
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of the flux coordinate system (1), ¢, #) into the cylindrical coordinate system
(R, v, Z). J is greatly simplified when the toroidal symmetry assumption is
taken into account, and may be calculated with the poloidal flux given by the
equilibrium reconstruction. Integrating equation (84) over ¢ and normalising
it by the condition 6*(27) = 27 yields:

179 (R27)~
[27do (R2)

0°(0,q) = 2 (85)

poloidal angle 6
straight field line angle 6"

toroidal angle ¢

Figure 40: In figure (a), the level curves of §* are superposed on the poloidal cross-
section of the flux surfaces. The flux surface represented in red is the ¢ = 2 surface. In
figure (b), the trajectory of the magnetic field lines on that surface are represented in the
coordinate systems (i, 6) and (@, 6*). Courtesy of Reimerdes [5].

The flux coordinate system is useful for working in tokamak plasmas
because it converts the complicated cross-section of the plasma into a circular
one. Now, using the new coordinate 6* instead of # enables, in addition, to
obtain a circular symmetry in the cross-section. This coordinate is capital
in defining the angular periodicity of the magnetic islands, which must take
into account the variation of the pitch angle along the field lines. Figure 40
shows the different properties of 6*. Note that the convention of definition of
f used in our work does not correspond to that appearing in this figure. In
fact, for reasons of simplicity in the implementation, our convention defines
the position # = 0 as the high field side of the midplane of the cross-section
and the positive sense of # as the clockwise direction.
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Another property of #* is the perpendicularity of its level curves to the
magnetic field lines. Equation (82) may be rewritten and developed as:

1 1 1

B-V0*=-B-Vp=-B,— 86

Using the approximation ¢ = ;%; where r is the radius measured from the

magnetic axis and B, is the poloidal magnetic field, equation (86) becomes:
B.-V0* =B, (87)

As V0* is perpendicular to the level curves of 6%, the latter are perpendicular
to the poloidal magnetic field, and thus to the flux surfaces. This demon-

stration is done without the approximative expression of ¢ in Miyamoto [4,
p. 170].

8.1.4 Toroidal and helical flux

Formally, the toroidal fluz 1) is defined as the magnetic flux through a given
poloidal surface. It is logical then to use the flux surfaces defined by v, as
the reference surfaces. It yields:

elahy) = /S L dsB (38)

where B, the toroidal magnetic field, and S(1,) is the poloidal surface delim-
ited by the last closed flux surface and the shell corresponding to 1,. This
odd definition of the surface of integration is due to the desire to have an
identical global behaviour between v, and ;. ¢ may be defined by:

_diy
q = d—wp

Expression (89) shows the redundancy occurring between v, 1; and ¢q. At
TCV, 9 is not stored in the data basis and is calculated with (89).

As it has been seen in section 2.1.4, the magnetic islands are three di-
mensional phenomena. The islands are modelized by a current perturbation
flowing at the resonance surface g, and along the magnetic field lines. Such
a current implies both poloidal and toroidal magnetic field components. The
unique way to describe both at the same time is to use the concept of helical
fluz. The helical flux is a magnetic field line invariant that labels the flux
surfaces in the presence of an isolated magnetic island chain. It is calculated
on surfaces that have a helicoidal geometry corresponding to the magnetic

(89)
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field lines of the chosen resonance surface. Rosenberg et al. [6] give a general
way to calculate the helical flux corresponding to a given resonance surface.
They find that the helical equilibrium flux v across the whole plasma can
be calculated from the poloidal flux 1, and the toroidal flux v, as:

V5 = Upo — qi@bt,o (90)

We give now another approach of expression (90) that uses the concept of
magnetic field rather than that of flux. The poloidal flux of a zero shear field
(i.e. ¢ = constant) may be written as ¥, ,—,, = ¥+/qs (see equation (89)).
Equation (90) is thus equivalent to subtracting an artificial zero shear field
with a safety factor g, from the equilibrium field. The resulting magnetic
field changes sign at the resonance surface (along é,). This is a necessary
condition for the apparition of the island topology when combining with the
field perturbation. In this way, a small current perturbation always creates
magnetic reconnection, and thus magnetic islands.

This combination always results in the presence of an extremum of
at ¢s. The position of this extremum is mainly determined by ¢ since 1), is
a function of ¢g. Due to the toroidal symmetry of the equilibrium field, and
to the angular periodicity of the perturbation, the nature of the extremum
is not important for our work. Therefore, 1§ is redefined after calculation
such that the extremum is always a maximum (i.e. turned upside down if

needed).

8.2 Additional descriptions of the data processing blocks
8.2.1 Signal pre-processing

The spike removal process operates as follows:

e The routine checks that each detector has a valuable signal. If needed,
the missing signals are interpolated by a cubic spline. The interpolation
is performed only if there are no consecutive problematic detectors.

e The time derivative of each signal is calculated and for each detector, a
level is determined by the standard deviation of the time derivative and
the mean of its absolute value. Each point above this level is considered
as belonging to a spike.

e As there is no reliable information during spikes, they must be fully
removed. From each point labelled as a spike, the time derivative is
followed in both temporal directions and the samples are recorded as
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belonging to a spike until the derivative changes its sign or goes to zero.
In this way, a matrix of the same size as the one of the data is formed,
and contains 0 or 1 if the data point is in a spike or not. Only the
samples detected as belonging to a spike are replaced by interpolated
values.

e In order to have a minimal impact of the filter on the temporal be-
haviour, the replacement of the data that are in spikes is done by the
means of an interpolation along the detection wires only. The latter
uses a cubic spline interpolation with a tension of 10 and a constraint
on the derivatives at each edge (these parameters correspond to the
function interpos written for Matlab by the CRPP team). This process
requires the absence of spikes on the first and last wires. Therefore,
those wires are always interpolated along time, before being interpo-
lated along the detector axis.

e In the presence of large spikes along the wires, the above process fails
and results in the creation of even larger artificial spikes. To prevent
this behaviour, the routine is designed to identify all the spikes that
extend over more than seven wires and to replace them by a local two
dimensional interpolation performed by the Matlab griddata function.

e The routine is also designed in order to pass the signals several times
through the filtering process, such that a maximum of spikes are de-
tected and removed and that no artificial spikes are created.

8.2.2 Bandpass filter

The filter uses the filtfilt function of Matlab with the order set to 2. The
advantage of filtfilt over a usual filter design is that it implies no phase
distortion. This is achieved by passing the signal in one direction in the
filter, then passing it a second time in the other direction (starting from
the end). Note that this process loses the causality of the signal, but as
we are mainly interested in a sine function, it is not really important. This
function of Matlab also takes care of the edges of the filtered signal and
prevent artificial peaks from being created.

8.2.3 SVD

The Singular Value Decomposition (SVD) is a mathematical tool used in
linear algebra for matrix decomposition. Formally, it is defined by:

M=U-S-V” (91)
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where M is the L x ' matrix that is decomposed, U and V are L x L and
C x C' unitary matrices respectively. S is a diagonal matrix of rank K, the
rank of M. By convention, the diagonal elements of S, the singular values,
are ordered from the largest to the smallest.

This decomposition is equivalent to the so-called biorthogonal decompo-
sition, that consists in decomposing a function of two variables into a com-
bination of two sets of functions of only one variable each. Applied to our
case, this may be written:

s(dt)= > SU(d)Vi(t) (92)

where s(d,t) is the signal given by the detector (or wire) d at time t. Uy
and V} are the columns of U and V respectively. They are called topos and
chronos and are orthogonal eigenmodes. With the SVD, most of the signal is
contained in the first terms of the sum, and the truncation of the end of the
expansion corresponds to the best approximation of the signal in the least
square sense.

8.2.4 Time selection

For our work, the most interesting times are not only the times where the
average of the absolute value of the signals across the detectors is maximal,
but also the times where the signals show the characteristic signature of the
mode, i.e. the times where the orientation of the magnetic islands is such
that the mode number m can be easily identified from the analysis of a signal
profile along the detectors. Hence, the routine first identifies the times where
the number of extrema along the detectors is equal to m+1, and then selects
the times among them that have the largest signal in absolute value.

The first selection uses an interpolation of the signals along the detectors
in order to remove the noise. As the profiles along the detectors must pass
by zero between each extremum at the interesting times, the selection is then
based on the number of crossing of a given level by the said profiles.

8.2.5 Fourier transform filter

This block operates as follows:
e A fast Fourier transform (FFT) of each DMPX signal is performed.

e The unnecessary part of the negative frequencies is removed, as well as
the signal under 1 kHz.
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e Let us call < f, > (v) the average along the detectors of the am-
plitude of the signal Fourier transform. An analysis is performed on
< fl > (v) in order to determine the dominant frequency of each
present mode. This analysis is constructed as follows: the absolute
maximum of < fl > (v) is determined and the corresponding frequency
stored. Then, < f; > (v) is set to zero on a 3kHz interval around that
frequency, and the next maximum is determined. The loop ends when
the value of < f; > (v) at the maximum falls under a level determined
by twice the value of the mean of < f; > (v).

e Since the frequency of a magnetic island can evolve with time, as well
as its width and amplitude, the time interval used for the calculation of
the FF'T must be reduced around the most interesting time. Therefore,
the bandpass filter block is called with the frequency limits given by a
2 kHz interval around the mode frequency determined above. The time
selection block uses the data given by the bandpass filter to define a
new time interval for the analysis.

e An FFT is performed on the new time interval.

e The precise frequency limits of the mode are determined with a level
test on the new < f; > (v).

8.2.6 Stationary inversion: further considerations

The error of the fit with respect to the measurements is resumed by a pa-
rameter o defined by:

where the hat means that the weighting relative to the uncertainty is not
used. o is a vector containing the absolute errors on the measurements.
The value of @ determines the proportion of smoothing that is allowed.
A target value of x? must hence be defined. It should reflect the compro-
mise between the smoothing and the accuracy. The method adopted here
operates as follows: a subset of pixels is taken out of the original set such
that N, = N./2. A new transfer matrix is calculated on the basis of the
original K. A direct inversion based on the least square fit and taking the
edge conditions into account is performed and results in a certain value of
x2. The latter may be seen as the value that would correspond to a minimal
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smoothing. Including the smoothing, the target value of x? is then defined
by:

1 — 2
x?argetzmaﬂf{mm{2-x2,x2+ QX,l},O'l} (94)

X?Mget is smaller than 1 to avoid false solutions and larger than 0.1 to assure
a sufficient smoothness.

At the end of the inversion process, a test of the smoothness is done on
the obtained g-profile. It looks for consecutive alternated extrema of g along
p. If the test routine finds such oscillations, it compares the local average
of the derivative of g at these positions with the standard deviation of that
derivative along the whole profile. If the local average is larger than the half
of the standard deviation, the routine restarts the inversion process with a
doubled value of x7,,,.,. If the test fails again, the process is restarted until
X?Mget equals 1. The next step is too increase (3 until it reaches 1. If the test
still fails, the errors on the signal are doubled and the process starts once
more with x7,.,, = 0.1 and 3 = 0.1.

8.2.7 Determination of pjugs

Since pp,rs is one of the crucial parameters of the inversion procedure, it is
given by the combination of two different ways of identifying the chords.

The first method calculates the standard deviation along the time coor-
dinate for each chord and compares it with its mean along the chords. Under
a certain level, the corresponding chords are identified as being outside the
perturbation. If the analyzed signals come from the FFT filter, the standard
deviation is simply replaced by the amplitudes of the signals at the frequency
corresponding to the maximal mean amplitude.

The second method takes the signal corresponding to the time ¢, and
analyzes its second derivative along the chords. It identifies the extrema of
the latter and compares their values to its standard deviation. The rapid
variation of slope along the detectors observed at the transition between
outside and inside chords can be thus detected. In order to remove the noise,
an interpolation of the signal along the chords is taken with a small tension
(value of 1 in the Matlab interpos function) for this analysis. If the analyzed
signals come from the FFT filter, the amplitude signal is used as before.

The final set of chords is deduced by taking a rounded mean of the tran-
sition chord numbers given by both methods. Thus, we obtain a limiting
chord on each side of the magnetic axis. This process is not accurate to
more than one chord. Therefore, we take also both neighbors of the limiting
chords. As the function psitbzp2p gives the smallest value of the normalised
poloidal flux along each chord, it is then easy to determine a p,,;, for each
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interesting chords and to finally obtain py, ¢s by taking the mean value of the
Pmin’s. The error Apy, s on ppy,rs is simply calculated by taking the standard
deviation of the p,.;,’s.

8.2.8 Fit A to a given radial limit

The routine that fits the value of A to the desired last perturbed flux surface
Ptarget WOTks as follows:

e For a given A, an island is generated.

e The corresponding flux coordinate of the last unperturbed flux surface,
Pmaz 15 calculated by finding the maximal value of 1), in the zone
covered by the island.

e The function fminsearch is used to find the value of A that minimizes

(ptarget - pmax)Q-

e As the variation of p,,4, in function of A is weak, it happens quite often
that fminsearch identifies flat zones (same values of p,,q, for different
values of A) as minima. To avoid this behaviour, an independent test
checks the result. If it fails, the routine is called in a closed loop with
different initial values of A. The quality of the first approximation of
A given to the routine is thus important.

8.3 Dictionary of the developed Matlab routines

We give here a dictionary of the Matlab routines developed within our project.
Most of them can be called independently, but for each, the main calling
routine is given.

A by rho finds the value of A that corresponds to a given maximal radial
extension of the islands in flux coordinates (see section 8.2.8). It is
called by fit real isl.

chi2 rhos returns a value of 2, for a given set of island parameters and
signals coming from the SVD or the bandpass filters. It uses g;, the
rough approximation of g; (see section 4.10.4). It does not use the
constraint on the phase shift. It is called by fit rhos.

chi2 rhos fft returns a value of x2,_,, for a given set of island param-
eters and signals coming from the FF'T filter. It uses g;, the rough
approximation of g; (see section 4.10.4). It is called by fit rhos.
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chi2 rhos t uses g;, the rough approximation of g;, and the periodicity
constraint. It is mainly used to obtain the first estimation of ®q (see
section 4.10.2). It is called by fit real isl.

chi2mean A returns a value of x2,., for a given set of island parameters.
The signals come from the SVD or the bandpass filters. chi2mean A
also returns the fitted parameters. It uses gi gppros, the fine approxi-
mation of g; (see section 4.10.5). It checks the input value of A. It is
called by fit real isl.

chi2mean A fft returns a value of x2 .., for a given set of island param-
eters and signals coming from the FF'T filter. It also returns the fitted
parameters. It uses g approz, the fine approximation of g; (see section
4.10.3). It checks the input value of A. It is called by fit real isl.

chi2mean A phase returns a value of x2,,. for a given set of island
parameters and signals coming from the SVD or the bandpass filters.
It also returns the fitted parameters. It uses g; (see section 4.10.2). It
checks the input value of A. It is called by fit real isl.

data preproc calls mpxdata to load the DMPX data and processes them
as described in section 4.3. It is called by the filters, or by filt data.

filt data generates a data structure containing the raw data given by
data preproc or gen mpx_sig, the filtered data, the time basis,
the frequency basis and some other useful parameters. It is mainly
called by real isl prep.

find dR returns a value of d, (see section 4.9.2) for a given modification
of the poloidal flux. It is called by mpx inv_stat.

FishSecMix solves equation (43) and returns the obtained stationary emis-
sivity profile (see sections 4.9.1 and 8.2.6). It is called by prof inv.

fit real isl fits A, Phig and P for a given p, using gi or g1 qppr (see section
4.10). The input signals can come from all the filters. It is called by
fit real isl all

fit real isl all is the basic routine for the fit of the perturbation DMPX
signals. It generates all the results. It is called by you!

fit rhos returns the value of pg 4, the approximative value of p, found
with g;. The input signals can come from all the filters. See section
4.10.4. It is called by fit real isl all
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gen mpx_ sig generates a comprehensive DMPX phantom. It is called by
filt data.

gen mpx_sig statio generates a stationary DMPX phantom. It is called
by gen mpx _sig or filt data.

gmapping returns the 2-D cylindrical coordinate stationary emissivity cor-
responding to a profile given as g(p). It is called by
gen mpx_sig statio.

integ chords returns the integrals on the DMPX chords of a function de-
fined on a poloidal cross-section. The geometry factor accounting for
the slit of the DMPX is used. This routine is called by nearly every-
thing.

isl _av returns the average of an island structure on the orientation. It is
mainly called by chi2mean A phase.

isl _basis_fct returns the function g, and g; defined in equation (62). It is
called by chi2mean A fft.

isl _comstr calculates the stationary helical flux and the total helical flux
for a given set of island parameters. It also isolates the islands and
checks their size. It fits the grid cell dimensions to a specified island
width. It is called in all the routines relative to fit real isl.

isl _width calculates the width of the islands and their extension in flux
coordinates. It is called by fit real isl

min_chi2 solves equation (43) with @ = 0. It is mainly used to ob-
tain a value of x7,.,.; (see sections 4.9.1 and 8.2.6). It is called by
FishSecMix.

modif pert returns the functions ¢, and ), of equation (55)(see section
4.10.2). It is called by chi2 rhos for instance.

mpx _inv_stat inverses the stationary DMPX profile and searches the best
poloidal flux modification. It is called by real isl prep.

mpx_transf mat calculates the transfer matrix K of equation (43) (see
section 4.9.1). It is called by prof inv.

mpxdata loads the calibrated DMPX signals and the DMPX geometry. It
is called by data_preproc.
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new minfisher solves equation (43) with § = 0 and returns the obtained
stationary emissivity profile (see section 4.9.1). It may be called by
prof inv.

pert flux calculates the flux perturbation base functions ¢, and 1, defined
in equations (32) and (33) of section 3.4.

plas grid redefines the grid on which the poloidal flux is defined. The
grid may be set to be tangent to a desired flux surface, and the grid
cell dimensions can be specified. It is called by real isl prep and
isl _constr.

PO _fit solves equation (49) of section 4.10. It is called in many places.

prof inv inverses the stationary DMPX profile. It is called by
mpx _inv_ stat.

real isl prep loads the filtered DMPX signals and the magnetic data. If
required, it also searches the best modification of the poloidal flux.
It determines the value of pj,rs (see section 8.2.7). It is called by
fit real isl all

sig fft corresponds to the block described in section 4.8. It is called by
filt data.

sig_filter corresponds to the block described in section 4.5. It is called by
filt data.

sig  SVD corresponds to the block described in section 4.6. It is called by
filt data.

sim _rot constructs an island structure corresponding to a specified width.
It also simulates the DMPX signals produced by the rotation of this
structure. It is called gen mpx _sig.

SndOrdReg solves equation (43) without the Fisher object function and
returns the obtained stationary emissivity profile (see section 4.9.1). It
may be called by prof inv.

time sel corresponds to the block described in section 4.7. It is called by
filt data.
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