DRFC/CAD EUR-CEA-FC-1 409

Identification of systems
with distributed parameters

J.-M. MORET

october 1990

ASSOCIATION EURATOM-CEA.

CEN./CADARACHE
13108 SAINT PAUL LEZ DURANCE CEDEX

bEPARTEMENT DE RECHERCHES
A ‘ SUR LA FUSION CONTROLEE

Identification of systems
with distributed parameters

J.-M. Moret
Association Euratom CEA sur la Fusion Controlée
Centre d'Etudes Nucléaires de Cadarache B.P. n° 1
13108 Saint-Paul-lez-Durance Cédex, France.

The problem of finding a model for the dynamical response of
a system with distributed parameters based on measured data is
addressed. First a mathematical formalism is developed in order to
obtain the specific properties of such a system. Then a linear iterative
identification algorithm is proposed that includes these properties,
and that produces better results than usual non linear minimisation
techniques. This algorithm is further improved by an original data
decimation that allow to artificially increase the sampling period
without losing between sample information. These algorithms are
tested with real laboratory data.

1. INTRODUCTION

System identification deals with the problem of finding
mathematical models for ‘dynamical system based on measured data.
The area has matured mainly as a step in the conception of high
performance automatic control. In this context it aims at
determining in an adequate form the transfer function of a real
system without any a priori knowledge of the underlying physical
model, either that such a modelling would be too inaccurate or too
difficult to establish.

This technique has found another field of application in
experimental physics : it can be used as a tool for investigation of
dynamical processes. In this approach, the dynamical response of the
system is first identified from measurements of the temporal
relaxation following an external perturbation. The properties of this
experimentally established dynamical response are then used to build
a physical model for the system. They allow for instance to discard or
retain some given models or physical processes and to quantify their
characteristic coefficients.

A privileged example is the study of particle and heat
transport in Tokamak plasmas for which the method presented in
his paper has been developed. Up to now this problem has defied any
acceptable explanation. System identification will in this case provide
a blind and therefore less biased approach to the problem [1].

In the framework of automatic control, the present state of
the art in system identification consists in a collection of well
established and well understood methods [2]. All of them apply only
to lumped parameter systems, from the simple single-input single-
output system to the more general multi-input multi-output system.
Lumped parameter systems are described by a finite set of discrete
inputs and outputs. This covers most of the applications in electrical
and mechanical engineering (robotics, aircraft and sheep control,
tracking, etc.). Other systems however involve distributed
parameters, that is parameters that are no more discrete values, but

Identification of systems with distributed parameters 2

functions of one or more continuous variables. This is the case for
instance for heat transfer, particle diffusion, chemical reactions and
others. This paper is devoted to these systems.

In the next section, we will first give the transfer function of a
system with distributed parameters an ad hoc formalism. Section 3
will present an iterative algorithm for system identification. This
algorithm is also applicable to lumped parameter systems but is
especially well suited to overcome the numerical difficulties inherent
to systems with distributed parameters. In section 4 we will propose
a modification of this algorithm in order to improve the bad
conditioning of the problem. Appendix I recalls the basics of the z-
transfer functions. Interested readers will find in Appendix II an
implantation of the algorithms proposed in this report.

The exposed methods will be tested and presented with real
laboratory signals extracted from the Tore Supra Tokamak data base
[3]. These signals represent the relative perturbation of the plasma
electron temperature arising after the injection of a solid hydrogen
pellet. The measurements are performed in different locations in the
plasma discharge. The ablation duration (~ 500 us) is shorter than
the sampling period (1024 us), allowing to consider the stimulus
signal as a delta function. Apart from instrumental uncertainties,
noise also contains a contribution from quasi periodic plasma
oscillations. This phenomena is outside the scope of the present
study and will be considered as noise.

Identification of systems with distributed parameters 3

2. FORMALISM

In this section, we will develop a formalism for the
description of the dynamical response of systems with distributed
parameters. This formalism will give the transfer function of such
systems a form tractable by usual identification methods. In addition,
specific properties of these transfer functions will be established,
which have to be included in the identification procedure.

Let us first treat the simpler case of a single-input single-
output lumped parameter system such as one of those listed in the
introduction. If linear, such a system is described by an ordinary
differential equation

N M
d"yit) _ d™x(t)
ng'o T mgo P dt™ - 1

If in addition the coefficients a, and B, in the equation are time
independent, the system is stationary and its transfer function can be
expressed as a rational function in the Laplace variable : ‘

Bms™
9 : (2)

anS?

A

H(s) = ﬁz; =

Mz

n=0

It is well known that time discretisation of this transfer
function yields to an analogous expression in the z-variable which can
be favourably used for identification purposes (see Appendix I).

For systems with distributed parameters, the signals x and y
are no more discrete values depending only on the time, but are
functions of one or more continuous variables. In the most common
situations, this variable is the spatial position, but it could also be the
particle momentum of a distribution function, the energy in neutron
diffusion, the wave length in wave propagation problems, etc.. The
system is then described by a partial differential equation. A few

Identification of systems with distributed parameters 4

examples are listed below :

Particle diffusion :

ang;.t) = S(r.t) + V - (D Vn(r.t)

n : particle density
S : particle source per unit time and volume
D : diffusion coefficient

Conductive heat transfer :

Q(_C%r_iﬁ = Qlr.t) + V - (x VT(r.t)

T : temperature

Q : energy source per unit time and volume
C: specific heat

x : heat conduction coefficient

Convective heat transfer :

éLC_gltr_,tﬂ =Qlr.t) + V - (vC T(r,t)

v : convection velocity
Magnetic field penetration :

0
—aliz-CD-VX(Il_(i‘_(VXB))

B : magnetic field
® : external flux source
o : electric conductibility

All these examples can be written in the general form :

Identification of systems with distributed parameters

(3)

(4)

(5)

(6)

ay(al'tt) = x{r.t) + L(r)y(r.t). (7)

where x(r.t) is a source term and L(r) the transport operator. The
source term plays here the same role as the input signal for a lumped
parameter system. It is necessary to restrict our analysis to separable
functions

x(r.t) = x{r) g(t) , (8)

where g(t) is a dimensionless function of the time and x(r) gives the
distribution of the source. L(r) is a linear differential operator with
no explicit time dependance. The latter property is verified when the
coefficients of the system are time independent, and allows together
with the former to rewrite equation (7) in the Laplace variable as

Ar.s) _ y{r,s)
SSge - X A0S 9)

To get a tractable form, we will now develop the transfer function of
the system in a Laurent series,

Ynl(r)
SLUY (10)

_¥r.s) _ -
H®) = "gs) ',Z:l

in which p, and y,(r) respectively denote the poles and the residues
of the transfer function. This can be understood as the expression of
the impulse response as a sum of exponential decays :

hir,t20) = D yn(r) ept. (11)
n=1

One can easily verify that

sHis)= 3 (P?n.__np(:_) ; yn(r)). (12)
n=1

Identification of systems with distributed parameters 6

Taking together equations (10) and (12) and the properties of L, we
get the Laurent series form of equation 9 :

é (pnYn) 2: [‘éz}; . (13)

To be valid on the whole s-plane, this equation must be
verified for each partial fraction of the sum. We conclude that the
poles and the residues of the transfer function are respectively

eigenvalues and eigenfunctions of the operator L:

Pn Yn(r) = Lr) yn(T) (14)

The normalisation of the eigenfﬁnctions is deduced from the source
term so that it satisfies :

> yalr) = xr). (15)
n=1

One particular feature of the transfer function of a system with
distributed parameters is that its poles depend neither on the
continuous variables of the system nor on the source term
distribution. This property must be adequately introduce in the
identification procedure, as it will be seen in the next section.

As an illustrative example, we consider the radial conductive
heat transfer in a cylinder of radius a. The basic description lies in
equation (4) written in cylindrical geometry :

oylr.t) _ 19 { oyr.t)
= x{r) glt) + £ (r) (16)

and subjected to the limit condition y(a) = O, where y represent the
temperature and x the heat source. In this case the eigenvalue
equation is :

pavelr) = £L2 [r s (17)

Identification of systems with distributed parameters 7

Its solutions are ﬁrst kind Bessel functions :

yalr) = Jolem §) - (18)
o K
Pn = - agC ; (19)

where o are the zeros of Jo. We note here that the value of the poles
increases rapidly :

P2 _ bs _ P4 _
o =527 5 12.9, 5 =240 (20)

That shows that the system has sparse time constants and makes
difficult the adequate choice of the sampling rate, as discussed in
section 4.

For practical reasons linked both to the time discretisation
and to the noise level of the data, we will limit the identification to
the N first poles. According to equation (10) the transfer function of a
system with distributed parameters can then be approximated by a
rational function in the Laplace variable, the denominator of which
being independent on the continuous parameters.

Identification of systems with distributed parameters 8

3. IDENTIFICATION ALGORITHM

In this section we will present an iterative linear method for
system identification that turned out to be more robust than usual
non linear minimisation methods. This method will be developed in
the more simple framework of a single-input single-output lumped
parameter system. It will be then extended to handle either multi-
input systems or systems with distributed parameters.

We try to model a system whose input x and output y have
been recorded over K samples, with a transfer function expressed in
term of the z-variable as

M
z bpzm
H(z)= 222 =§2 (21)
Z ap z™"
n=0

The knowledge of the noise characteristics is in our case of less
interest. We then decide to define the optimal model on the basis of
the error e between the effective output y and the modelled output y:

= y(k) - §lk) = ylk) - B(Z; k). (22)

The optimisation criterion is the usual minimisation of the output
* error variance, i.e. the loss function

K
=LY ek (23)
K21

It is well known that this loss function is not a quadratic
function in the system parameters. Its direct minimisation is
therefore not straightforward. Methods using non linear minimisation
techniques such as the Gauss-Newton algorithm exist [2]. For our
particular data however they lead to a poor result, as illustrated in
figure 1, and are not convenient for our purpose. This can be due
either to the fact that one can not prevent these search methods

Identification of systems with distributed parameters 9

from reaching a local minimum or to the fact that the loss function
curvature around its minimum is too small to be handled correctly
within the numerical precision.

0.1 T

0.1 0.2 0.3 0.4 0.5

time [s]

Fig. 1: Identification of a third order z-transfer
function with non linear minimisation of the
loss function (dashed line) and with the
proposed iterative algorithm (solid line).

To face up this difficulty, we propose the following algorithm.
The evaluation of the output error, given explicitly by

N

M
elk) = yik) - | Y, bmx(k-m)- Y, ank-n)|, (24)
m=0

n=1

can be slightly modified by substituting to the values of y the values of
y:

Identification of systems with distributed parameters 10

N

e'k) = z ap ylk-n) - i by xk-m) = Alz) k) - Bz) (k). (25)
m=0

n=0

In the last expression, the polynomials were normalised so that ag =
1. The model obtained by this way, known as an ARX model, has an
advantage : its output error €' is a linear combination of the system
parameters, the coefficients of the polynomials A(z) and B(z). The
latter can therefore be estimated through an explicit matrix
operation, by solving the linear over constraint system of equations :

N M
k)=-2, an¥l 2 x(k-m); k =N+1,...K. (26)
n=1 m=0

The drawback is the introduction of a bias in the parameter estimate
[4]. This can be understood by noting that e and e’ are linked by

= Alz) elk) . (27)

This shows that successive samples of e' depend on the present and
past values of e and are therefore no more independent realisations
of a random variable. This bias can be attenuated if we own an
approximation for Alz), Ag(z). In this case we can build a new error
signal

Adl2) elk) = Alz) Adlz) k) = Alz) AD) y(K) - Blz) AJ() k) (28)

which will be closer to e than e'. Therefore applying the ARX model

to the new input-output signal pair Ad(z) x{k) and A§f(z) y(k) will yield
to a less biased parameter estimate.

We are now ready to set up the following iterative procedure :
starting with Agz) = 1, the most trivial choice, we perform a first
estimation of Alz) and B(z) based on the signals x and y. Then Adz) is
replaced by what is deduced from this estimate for A(z) and the
identification is applied to the signals Ag{(z) x{k) and A3(z) y(k). At each
iteration, the newly estimated A(z) replaces Agz). During this process
the transmittances A(z) Aj\(z) and B(z) Aj(z) will tend toward 1 and H(z)

Identification of systems with distributed parameters 11

respectively. This will transform equation (28) in equation (22),
yielding to the sought result.

Our laboratory data set has been used to test the method.
Figure 1 shows how it led to a more satisfactory identification than
the non linear minimisation of the identically defined loss function.
Table I presents for the same case some numerical results. One can
note that non linear minimisation produces a pair of complex poles
that has no physical ground. Figure 2 displays the system parameter
estimate evolution along the iterative process.

Non linear minimisation Iterative algorithm
Loss function J 1.57 % 0.99 %
Denominator a, -1.7808 £ 0.1410 -2.9505 = 0.0037
a, 1.0915 £ 0.2401 2.9014 + 0.0073
as -0.3094 £ 0.1055 -0.9509 *= 0.0037
Poles 0.9977 0.9990
0.3916 + 0.3960 i 0.9916
0.3916 - 0.3960 i 0.9599

Table I : Numerical result of the identification of a
third order z-transfer function with non
linear minimisation of the loss function and
with the proposed iterative algorithm. The
error bars are one standard deviation.

It is now easy to extend this method developed for a single-
input single-output system to a system with distributed parameters.
To do this we must rewrite the set of recurrent relations (26) for
each of the L discrete measurements of the distributed output signal,
keeping in mind that the transfer functions for all these signals have
common poles, i.e. common denominators, but distinct numerators :

Identification of systems with distributed parameters 12

N
yik) = - 2, anydk-n) + 2 bm x(k-m); (= 1,...L: k=N+1,..K. (29)

n=1

We have also taken into account the fact that the formalism-
developed in the previous section usually imposes M = N - 1. The
definition of the loss function must also be adapted :

S Biz) .\
LRI—E >y y,(k)-zé—)x(k)) . (30)

k=1 (=1

A(2) goefﬁcients,

2 & 6 8 10 12 14 16

iteration #
1 . : : B(z) coefficients
bl
05F |
0 / |
b2
-0.5 . 2 A \])) b0
2 4 6 8 10 12 14 16
iteration #

Fig. 2: Evolution of the transfer function polynomial
coefficients during the iterative process.

To illustrate this procedure, the identification has been
carried out on five signals simultaneously. Figure 3 shows these
signals and their respective estimates. In figure 4 (a), we have plotted
the z-poles identified once independently for each signal, and once

Identification of systems with distributed parameters ‘ 13

as common poles for all measurements of the distributed output. To
prove that both situations can not be statistically distinguished, we
have drawn a similar plot for the loss function, figure 4 (b). The value
of the loss function for each output in the common pole case is only
slightly worse than the value obtained by independent identifications.
The benefit of imposing common poles is a decrease in their
variance, as it can be seen on figure 4 (a). This is due to the fact that
by this mean more information can be used to identify a reduced set
of free parameters.

0-1 L] Al

03k - 1-_“";' 4;’.'. ;?1;3 i
%y oY Lﬁ'l " b ,
Lokl
A
iy
-0.5 . . . s :
0.1 0.2 0.3 04 0.5
time [s]

Fig. 3: Identification of a third order transfer
function for a system with a distributed
output. Output is measured at five different
locations. Poles are common to all these
measuremerits.

Identification of systems with distributed parameters : 14

(a) z-plane poles (b) loss function [%]

l == F - 2)
099 —:::t:::::::::::::t::::::t::::::t::-: 18 i
i 23
098+ . 1.6F
097+ - 14}
---------------------------------- +~
096-.} = 1.2+
0.95+ { . iF = .
094+ ‘ . 0.8+ +
093} } . 0.6t
0.92}+ . 04+
091+ . 0.2F
0.9 - . 0
2 4 2 4
output # .output #

Fig. 4: (a) Value of the identified z-plane poles for

the case of the previous figure. Crosses are
obtained with an independent identification
for each output while dashed lines represent
the one standard deviation confidence
interval of the three common poles of a
simultaneous identification.
(b) Value of the loss function J for each output
obtained either with independent
identification (+) or with a common pole
identification (x).

Identification of systems with distributed parameters

15

4. DATA DECIMATION

We have seen both in the example treated in section 2 and in
the real data identification of the previous section that a system with
distributed parameters is usually characterised by sparse time
constants. To give the smallest time constants the best chance to be
correctly identified, it is obviously necessary to keep the sampling
rate as fast as possible. The consequence of this choice is numerical
difficulties in two operations. First the inversion of the correlation
matrix necessary to minimise the loss function is ill conditioned. The
reason is that two contiguous columns in the independent variable
matrix used to build up this correlation matrix are formed with two
successive samples in the data. If the sampling period is small, these
columns will not differ very much, thus producing a nearly singular
matrix. The second difficulty arises in the calculus of the roots of the
denominator, i.e. the poles of the system. All the time constants long
compared to the sampling period correspond to z-plane poles close
to one. The reader can convince himself that in this case the jacobian
of the mapping between the A(z) polynomial coefficients and the z-
plane poles

Jy=— (31)
aai

has a large determinant. This means that a small error on the
estimate of the denominator will be amplified when computing its
roots.

We propose a parade to these problems by artificially reducing
the sampling rate but keeping between sample information. In this
way we avoid data decimation which would statistically degrade the
identification quality. To access the signals between two sampling
times, we make use of the modified z-transform, defined by

yizm)= D yk+m)zk;0<m<1. (32)
k=-<

Identification of systems with distributed parameters 16

Let us first expand the z-transfer function in partial fractions :

N
Hz)=28 -5 (33)

A(z) no1 L- znz' 1

The impulse response invariance allows to give an expression for the
modified z-transfer function :-

H(z,m) = Z CozZf (34)

A(z) L1 -zpz

This can be understood by noting that the impulse response at time
(k+m)T is

oo

h(k.m)= D cy eP-kT epnmT, (35)
n=1

To be used in a recurrent relation for signal estimation in the
temporal space, expression (34) must be written as a rational

function :
N
H(z,m) = “; A:j o = B’A(“(ZZ)) , (36)
where
N |
Quiz) = [] (1 - ziz! 2 ni Z7. (37)

i=1 i=0
i#n

In order to include this new expression in an identification
process, we must find a relation between the coefficients of B(z,m)
and the parameters of the system, i.e. the coefficients of A(z) and
B(z). To this purpose, we write the B(z,m) coefficients in a vector
notation, B(m) being the row vector formed with the B(z.m)
coefficients :

Identification of systems with distributed parameters 17

ZP O .- 0 qo qu1 - 41N

am):(cl C2"'CN) O Zgl O q20 q?l Q2:N-1 . (38)

0 0 O0zF/\dno QN1 -+ ONNI
Q will symbolise the last matrix whose rows are the coefficients of
the Q, polynomials while Z(m) will represent the diagonal matrix

formed with the m-th power of the z-poles. Using the particular case
for m = 0O,

Bm = 0)=(cyc2---cN)Q, (39)
we can formulate the desired relation :

Bm)=B Q'Zm)Q =B Pm). (40)

The recurrent relation for the output signal estimator between
sampling times can now be explicitly given :

N-1 N-1 N
ylk,m) = Z bn 2 Pnim) x(k-i) - Z an ylk-n,m) . (41)
n=1

n=0 i=0

We note that, given the P(m) matrix, this expression is a linear
combination of the system parameters. When compared with the non
decimated case, we see a change in the independent variable set :
raw input signal is now filtered through a finite impulse response
filter whose coefficients are given by the rows of the P(m) matrix.

It turns out that the iterative identification algorithm
presented in the previous section is particularly well suited to handle
this formulation. In fact the P(m) matrix, which depends on the
coefficients of the A(z) polynomial, can be approximated at each
iteration using the previous estimate of these coefficients. In this way
we can identify the system parameters with an artificially enhanced
sampling period. The advantage is that intermediate samples can be
kept in the regression process, an information that would have been
thrown away by a simple decimation. This longer sampling period
will improve the problem conditioning, thus lessen the constraints

‘Identification of systems with distributed parameters 18

on the quality of the matrix inversion. In the context of adaptative
control, this will also make the real time implantation of the
algorithm easier.

(a) z-plane poles (b) condition number
100 1:.;_-1—_1- R o 1014 T 7 v TrrYy T T
= N Teseel e \‘
i . -4 i \
i “‘\ i 1013 - ‘\‘ .
i) 3
o “\ - 1012 r \\\ -
1.,
i] 1011} \‘\ 4
\J[“’.
1010} .
I i 109 + .
‘t\
108 + \ .
!
10- * : - 107 e i
0 0.005 001 0.015 0.02 10-3 102 101
sampling period [s] sampling period [s]

Fig. 5: (a) Position of the z-plane poles of a third
order transfer function identified with an
increasing apparent sampling period.

(b) Condition number improvement when the
apparent sampling period is increased.

The modification of the algorithm has been tested on our
laboratory data. Figure 5 (a) shows how the z-plane poles move away
form the critical z = 1 point when the apparent sampling period is
increased. In this representation, constant s-plane poles sit on
straight lines crossing z = 1 when the sampling period tends toward
zero. A small discrepancy appears for the third pole at the highest
sampling period. In this situation, the corresponding time constant

Identification of systems with distributed parameters 19

only slightly exceeds the sampling period, and that explains the
observed difference. Figure 5 (b) demonstrates the drastic
improvement in the conditioning, inferred here from the ratio of the
largest to the smallest singular value of the covariance matrix.

Identification of systems with distributed parameters 20

5. CONCLUSION

Identification of the dynamical response of a system with
distributed parameters requires an ad hoc treatment. First the poles
of such a system do not depend on the continuous parameters, a
feature that has been included in the proposed identification
procedure. In addition those systems are characterised by sparse
time constants. The determination of the system dynamic is
therefore an ill posed problem. This makes difficult the use of non
linear minimisation algorithms. These techniques were favourably
replaced by an iterative algorithm whose steps consist in a simple
linear minimisation. The bad conditioning of the problem was further
improved by a data decimation technique allowing to increase the
apparent sampling period without losing intermediate samples.

In this way a system identification method has been elaborated
and tested, that applies particularly well to distributed parameter
systems, either for control purposes, or for fundamental study of
their dynamic. Work involving this method as a tool for investigating
transport in the Tore Supra Tokamak is in progress.

Identification of systems with distributed parameters 21

APPENDIX I

In this appendix we will briefly expose, for those who are not
familiar with, the main features of a z-transfer function.

The z-transform is a particular formulation of the Laplace
transform for sampled signals. Such a signal, recorded with a
sampling period T, can be represented by a sum of delta functions :

ut) = Y, uk) 8§t - kT). (42)
k:-oo
The Laplace transform of this signal then reduces to
qs)=f ut)eddt= » uk)esT, (43)
-0 k=-°°

It is of course tempting to rewrite this particular expression as

wz)= Y, uk)zk, (44)
k:-oo

defining in this way the z-transform u(z) of the sampled signal u(k).

The most useful property of the z-transform is its ability to
delay a signal. It is easy to show that the z-transform of the one
sampling period delayed signal u(k-1) is given by z'! u(z), a statement
that we will abusively summarise as

zlulk)=uk - 1). (45)

This property allows to apply a z-transfer function expressed as a
rational function in the z'! variable

Identification of systems with distributed parameters 22

H(z) =22 —— (46)

to any input time sequence x(k) easily. The output of such a system is
estimated with the recurrent relation

N M .
k)= - Y, any(kn)+ Y bmx(k-m), (47)

m=0

where the numerator and denominator have been normalised so that
ao = 1.

It is shown in section 2 that continuous time systems are also
characterised by transfer functions expressed in the Laplace variable
as rational functions. It is thus necessary to discretise these systems
in a way such that the mapping between the s-plane and the z-plane
do not alter this form. Among the numerous discretisation
approximations, we will retain two methods. The first one is the
bilinear transformation, which is an approximation valid for small
values of s :

s=lnz-21-2° (48)

The advantage of this transformation is that it can be made exact for
all imaginary values of s = jw with the substitution

T2+ jo

41 2 -jo - e-%aman:rzﬂ' (49)

It is therefore well adapted when one wants to keep a link with the
Fourier formalism. The second methods, known as the impulse
response invariance method, states that both the continuous and
discrete time impulse response of the system match, This imposes a
mapping between the residues and the poles of the s-plane transfer
function, respectively r, and p,. and those of H(z), respectively c,

Identification of systems with distributed parameters 23

and A

Zp = ePT | (50)
Iy =Ch. (51

Here the asterix represents the complex conjugate. This
approximation is widely used since it is exact for all two valued
stimuli, including delta function, step, square wave and binary
random sequence.

Identification of systems with distributed parameters 24

APPENDIX II

The interested reader will find in this appendix three
implantations of the algorithms described in this report. Two of them
use MATLAB™ and are as far as possible compatible with its
"Identification Toolbox". The third is written in C and includes calls
to the LINPACK library. It offers less flexibility but will find its place on
a super-computer for large scale problems.

zti.m Identification of a multi input system with distributed
parameters. It requires a modification of idsim.m to
handle more than one output.

ztim.m Identification of a multi input single output system with
data decimation.

zti.c Identification of a multi input system with distributed
parameters.

Identification of systems with distributed parameters 25

zti.m
function [th,thm] = zti(z,nn,ny,maxiter,tol,Tsamp)

$2TI Computes iteratively the parameter estimate of an output-error
model for a MIMO system.

TH = Z2TI(Z,NN)

TH: Returned as the estimated parameters of the output-error
model along with estimated covariances and structure information.
For the exact format of TH, see HELP THETA. B polynomial order is
[B(yl,ul) B(yl,u2) ... B(y2,ul) B(y2,u2) ...]. In addition, entry
TH(2,8) contains the condition number of the covariance matrix
and entry TH(2,9) the number of outputs NY.

Z: The output-input data Z=(yl y2 ... ul u2 ...], with yn and un
being column vectors.

NN: Initial value and structure information, given either as

NN = [na nb nk], the orders and delays of the above model, or as
NN = THI, with THI being a theta matrix of the standrad format.
In the latter case the iteration is initialized at THI. In the
former case if NN = -[na nb nk], inputs will be prefiltered for
-1 zeros (this feature 1is not available from THI).

When called as [TH,THM] = ZTI(Z,NN), ZTI will return in row k of
THM the k-th iteration parameter estimate in 'alphabetical
order’.

Some parameters associated with the algorithm are accessed by

TH = 2TI(Z,NN,NY, MAXITER, TOL, T)

NY: The number of outputs, one by default. See HELP AUXVAR for an
explanation of the others, and their default values.

OO OO0 O O OO O OO OO OO G0 OF OO0 o0 o0 O o0 OO OO O OP OO O o OP o0 oP o0 o do

$ default arguments

if nargin < 3, ny = 1., end

if nargin < 4, maxiter = -1; end
if nargin < 5, tol = -1; end

if nargin < 6, Tsamp = -1; end
if maxiter < 0, maxiter = 10; end
if tol < 0, tol = .01; end

if Tsamp < 0, Tsamp = 1; end

% z consistency checks

[Ncap,nz] = size(z); nu = nz - ny; nuy = nu*ny;

if nz > Ncap, error('Data organised in column vectors'), end

if nu <= 0, error('ZTI makes sense only if an input is present'), end

% model orders or initial theta

[nk,nc] = size(nn);

if nk == 1

if nc ~= 2*nuy + 1, error('Orders should be nn = [na nb nk]'), end
prefilt = any(nn < 0); nn = abs(nn); A = [1 zeros(l,nn(1l))]:;

else

nuy = nn(l,3); ny = nn{(2,9); nu = nuy / ny;

if nz ~= nu + ny, error('THI not matching number of IOs'), end
A = real(poly(roots ([l nn(3,1:nn(1,4))]) .~ (Tsamp/nn(1,2)))):
prefilt = 0; nn = nn(l, [4:nuy+4, 2*nuy+7:3*nuy+6]);
end

Identification of systems with distributed parameters 26

¢ sort out orders

na = nn(l); nb = reshape(nn(2:nuy+l),nu,ny);

nk = reshape (nn(nuy+2:2*nuy+1l),nu,ny);

ni = max([na;nb(:)+nk(:)-1]); n = na + sum(nb(:)); Neff = Ncap - ni;
$ numerator for prefiltering : (1+g)”n

if prefilt & (any(nb(:)>na+l) | any(diff(nb(:))))
error('-1 zeros prefiltering requires constant nb <= na+l"')
end
P = ones (nu+ny,1l);
if prefilt
P(ny+l:ny+nu,l:na-nb(1)+2) =
ones (nu, 1)*dzag(f11pud(pascal(na nb(1l)+2)))';
end

% constant indices and allocation

33 = ni+l:Ncap; ncum = [0;cumsum(nb(:))] + na;
phy = zeros(Neff*ny,1); phi = zeros(Neff*ny,n):;
zf = zeros(Ncap,nz); t = zeros(n,1l) + Inf; thm = [];

¢ loop initiation and loop
iter = 0; G = Inf; condition = 0; ktrace = l:max(na, (n<21l)*n);

while iter < maxiter & G > tol
iter = iter + 1;

$ prefiltering
for k = l:nz, zf(:,k) = filter(P(k,:),A,z(:,k)); end

% build up regression matrix
for ky = 1l:ny
kk = (ky-1)*Neff+l:ky*Neff;
phy(kk) = zf£(jj, ky);
for k = 1l:na
phi(kk,k) = -z£(3j-k,ky)’
end
for ku = l:nu
1l = ky + (ku-1)*ny;
lphi = ncum(l):
for k = 1:nb(1l)
lphi = 1lphi + 1;
phi (kk, lphi) = zf(3jj-(k+nk(1l)-1),ny+ku);
end
end
end
tnew = phi \ phy;
if any(tnew == ()
condition = Inf;
disp('Identification leads to a rank deficient regression matrix')
disp('Iterations therefore terminated’)
break
end

thm = [thm; tnew']; g = tnew - t; G = norm(g);

% trace

clc

disp([' ITERATION # ' int2str(iter) ' '])
disp('Current th prev. th difference')
theta = [tnew(ktrace) t(ktrace) g(ktrace)]
disp(['Norm of difference: ' num2str(G)])

Identification of systems with distributed parameters

% update model
t = tnew; A = [1 t(l:na)."'];

end

% coefficient covariance matrix

if finite(condition)

R = phi.' * phi; e = phy - phi*t; R = e.'*e / Neff / ny * inv(R);
condition = cond(R);

else

R = zeros(n) + Inf;

end

% prefiltering convolution matrix
C = eye(n);
if prefilt
¢ = flipud(hankel([zeros(l,nb(1l)-1) P(nz,:)],...
[l zeros(l,nb(1l)=-1)1)):
for ku = l:nuy
kphi = size(C); k = kphi + size(c);
C(kphi(1)+1:k(1),kphi(2)+1:k(2)) = c;
end
end

% expanded numerators for prefiltering
tnew = C * t; R=C * R * C."';
if prefilt, nb = ones(l,nuy) + na; end

% build up theta matrix

th = [Inf Tsamp nuy na nb(:)' 0 0 zeros(l,nuy) nk(:)'l;
th(2,1) = Inf; th(2,2:7) = clock; th(2,2) = th(2,2) / 100;
th(2,7:9) = [13 condition nyl]; % 13 is the 2TI id

k = length(tnew); th(3,1:k) = tnew.'; th(4:k+3,1:k) = R;

% introduce correct loss functions
if finite (condition)
zf = idsim(z (:,ny+l:nz),th); e = z(:,1l:ny); e = zf(:) - e(:);
Ncap = Ncap * ny:
th(l1:2,1) = e.'*e * [1; (Ncap+n)/ (Ncap-n)] / (Ncap-n):
end

Identification of systems with distributed parameters

ztm.m
function ([th,thm] = ztim(z,nn,ns,maxiter, tol, Tsamp)

$ZTIM Computes iteratively the parameter estimate of an output-error
model for a SISO or MISO system with data decimation.

TH = ZTIM(Z,NN,NS)

TH: Returned as the estimated parameters of the output-error
model along with estimated covariances and structure information.
For the exact format of TH, see HELP THETA. In addition, entry
TH(2,8) contains the condition number of the identification.

Z : The output-input data Z=[y u], with y and u being column
vectors. For MISO systems, u=[ul u2 ... un]. For input such as
delta- or step- functions, it 1s recommended that the transition
sample index is a multiple of NS plus ones.

NN = [na nb nk], the orders and delays of the above model, or as
NN = THI, with THI being a theta matrix of the standrad format.
In the latter case the iteration is initialized at THI.

NS: The data decimation number.

when called as [TH, THM] = ZTIM(Z,NN,NS), ZTIM will return in row
k of THM the estimated parameter in 'alphabetical order' at the
k-th iteration.

%
%
%
%
%
%
%
%
%
%
%
%
2
%
% NN: Initial value and structure information, given either as
%
%
%
%
%
2
2
%
3
2
% Some parameters associated with the algorithm are accessed by
% TH = ZTIM(Z,NN,NS,MAXITER, TOL,T)

% See HELP AUXVAR for an explanation of these, and their default
% values.

% default arguments

if nargin < 4, maxiter = -1; end
if nargin < 5, tol = -1; end

if nargin < 6, Tsamp = -1; end
if maxiter < 0, maxiter = 10; end
if tol < 0, tol = .01; end

if Tsamp < 0, Tsamp = 1l; end

% z consistency checks

[Ncap,nu] = size(z); nu = nu -1;
if nu > Ncap, error('Data organized in column vectors'), end
if nu == 0, error('ZTIM makes sense only with an input'), end

% model orders or initial theta

[nk,nc] = size(nn);:
if nk == 1
if nc ~= 2*nu+l, error('Orders should be nn = [na nb nkl'), end
A= [];
else
if nu ~= nn(l,3), error('THI not matching number of inputs'), end
A = real(poly(roots ([l nn(3,1:nn(1,4))])."(Tsamp/nn(1,2))));
nn = nn(l, (4:nu+4,2*nu+7:3*nu+6]); t = [];
end

¢ sort out orders
na = nn(l); nb = nn(2:nu+l); nk = nn(nu+2:2*nu+l);

Identification of systems with distributed parameters 29

ni = max([na nb+nk-1]); n = na + sum(nb);
if any(nb ~= na), error('ZTIM requires na = nb'), end
if any(nk ~= 0) , error('2TIM requires nk = 0'), end

¢ some usefull variables

badcond = 1/ (Ncap*eps) ;

js = l:ns:Ncap+l-ns; ji = ni*ns+l:ns:Ncap+l-ns;
Neff = length(ji); Ncap = Neff*ns;

Js = 1:Neff; Ji = Js + ni;

% initial estimate

if isempty(A)

phi = zeros(Neff,n);
for k=1l:na

phi(:,k) = -z(ji-k*ns,1);
phi(:,na+k:na:na*nu+k) = z(ji-(k-1)*ns,2:nu+l);
end

condition = cond(phi);
if condition > badcond, error('Rank deficient matrix'), end

t = phi \ 2(ji,1);
A= [1 t(l:na)."'];
clc
disp([INITIAL ESTIMATE'])
disp(['Conditioning: ' num2str (condition)])
disp([' th-vector'])
theta = t
end

$ iterations
iter = 0; G = Inf; thm = t.';
phi = zeros (Ncap,n); phy phi(:,1):

while iter < maxiter & G > tol
iter = iter + 1;

$ computes polynomials for between-sample estimation
p = roots(A);
for k = 1l:na, Q(k,:) = poly(p([l:k-1 k+l:na])); end
Qinv = inv(Q):

% build up regression matrix

for km = 0O:ns-1
jj = Js + Neff*km;
P = real(Qinv * diag(p.”(km/ns)) * Q);

v = filter(1l,A,z(js+km,1));
for k = l:na
phi(3j, k) = -v(Ji-k):
for ku = l:nu
u = filter(P(k, :),A,z(Js,ku+l));
phi(jj,k+ku*na) = u(Ji);
end
end
phy(3j) = v(Ji);
end
condition = cond(phi):
if condition > badcond
condition = Inf;
disp('Identification leads to a rank deficient regression matrix')
disp('Iterations therefore terminated')
break
end
tnew = phi \ phy; thm = [thm; tnew'];

Identification of systems with distributed parameters

% trace

clc
disp ([’ ITERATION # ' int2str(iter)])
disp(['Conditioning: ' num2str(condition)])

disp('Current th prev. th difference')
g = tnew - t; G = norm(g);

theta = [tnew t g]

disp(['Norm of difference: ' num2str(G)])

$ update model
t = tnew; A = [1 t(l:na).'];
end

% covariance matrix

if finite(condition)

e = phy - phi*t; R = e.'*e / (Ncap-n) * inv(phi. '*phi);
else

R = zeros(n) + Inf;

end

% build up theta matrix

th = [Inf Tsamp*ns nu na nb 0 0 zeros(l,nu) nk];
th(2,1) = Inf; th(2,2:7) = clock; th(2,2) = th(2,2) / 100;
th(2,7) = 13; th(2,8) = condition; th(3,1:n) = t.'; th(4:n+3,1:n) = R;

$ introduce correct loss functions
if finite(condition)

e = idsim(z(js,2:nu+l),th) - z(js,1);
th(l:2,1) = e.'*e * ns / (Ncap-n) * [1; (Ncap+n)/(Ncap-n)];
end

Identification of systems with distributed parameters 31

zti.c

include <stdio.h>
include <malloc.h>
include <string.h>
include <math.h>
/* external LINPACK routines */
void SQRDC (); woid SQRSL (); wvoid SPPDI ():
void filter (y, x, n, A, na)
double *y; /* output filtered signal */
double *x; /* input signal */
int n; /* number of samples */
double *A; /* A coeff. without the leading 1 */
int na; /* A degree */
{ register int ka, k; /* counters */
for (k = 0; k < na; k++) ylk] = 0; /* initial values */
for (k = na; k < n; k++) {
ylk]l = x[k]; /* B is assumed to be 1 */
for (ka = 0; ka < na; ka++) ylk] -= Alkal*ylk - ka - 1];

}

int zti (u, y, nu, ny, ncap, A, na, nb, maxiter, tol, thm, R)
/* returns the number of iterations or -1 when out of memory or -2
when identification lead to a rank deficient regression matrix */

double *u; /* nu input signals of ncap samples */
double *y; /* ny output signals of ncap samples */
int nu; /* number of input signals */
int ny:; /* number of output signals */
int ncap; /* number of samples */
double *A; /* init. A coeff. without the leading
1 */
int na; /* denominator degree */
int nb; /* numerator degree plus 1 */
int maxiter; /* maximum number of iterations */
double tol; /* convergence tolerance */
double **thm; /* model parameters , storage format 1is
(al a2 ... bO(ul,yl) bl(ul,yl)
b0 (u2,yl) bl(u2,yl) ... bO(ul,y2)
bl(ul,y2) ... }, repeated for each

iteration. The final result 1s

returned at the end of thm */
double **R; /* upper triangle of the covariance

matrix, stored column wise */

{ int ni, /* number of initial conditions */
neff, /* number of usefull samples */
n, /* number of free parameters */
neq:; /* number of eguations */
double *uf, /* filtered inputs */
yf, / filtered outputs */
phy, / dependant variable vector */
phi, / independant variable matrix */
res, / residue after linear regression */
aux; / auxilliary space for SQRDC */
double g, G: /* norm of diff. */

Identification of systems with distributed parameters 32

int job,info /* LINPACK job selector and result */

register int x, i, j, /* counters */
ku, ky, /* input output counter */
ka, kb, /* A, B coefficient counter */
iter=0; /* iteration counter */

/* usefull quantities */

neff = ncap - (ni = na > nb ? na : nb - 1);
n = na + nu*ny*nb;

neq = neff*ny;

/* memory allocation */

uf = (double *) malloc (ncap*nu*sizeof (double)):

vE = (double *) malloc (ncap*ny*sizeof (double))

phy = (double *) malloc (neg*sizeof (double)):

phi = (double *) malloc (neg*n*sizeof (double)):

res = (double *) malloc (neg*sizeof (double)):

aux = (double *) malloc (neg*sizeof (double));

*thm = (double *) malloc (maxiter*n*sizeof (double)):

*R = (double *) malloc (n*n*sizeof (double));

if ('uf || 'yf |l 'phy || 'phi || !res || taux || !'*thm || !*R)
return - 1;

memset (*thm, 0, maxiter*n*sizeof (double));

/* iterate */
G = 2*tol;
while (iter < maxiter && G > tol) {

/* prefiltering */
for (ku = 0; ku < nu; kutt)

filter (uf + ku*ncap, u + ku*ncap, ncap, A, na);
for (ky = 0; ky < ny:; ky++)

filter (yf + ky*ncap, y *+ ky*ncap, ncap, A, na):;

/* build up regression matrix */
memset (phi, 0, neg*n*sizeof (double));
/* has been altered by SQRDC */
for (ky = 0; ky < ny:; ky++) |
memcpy (phy + ky*neff,
yf + ky*ncap + ni, neff*sizeof (double));
for (ka = 0; ka < na; kat+)
memcpy (phi + ka*neq + ky*neff,
yf + ky*ncap + ni - ka - 1, neff*sizeof (double)):
for (ku = 0; ku < nu; ku++)
for (kb = 0; kb < nb; kb++)

memcpy (phi + (na + kb + (ky*nu + ku) *nb) *neq + ky*neff,

uf + ku*ncap + ni - kb, neff*sizeof (double));

}
for (k = 0; k < neg*na; k++) phifk] *= -1;

/* solve over constraint system */
job = 0; SQRDC (phi, &neg, &neq, &n, aux, NULL, NULL, &job) ;
/* save upper triangle of phi for covariance matrix */
for (3J =0, k = 0; 3 < n; j++)

for (i = 0; 1 <= j; i++) *(*R + k++) = phi[j*neq + i];
job = 110;
SQRSL (phi, &neq, &neq, &n, aux, phy, NULL,

res, *thm + n*iter, res, NULL, &job, &info):

/* rank deficiance test */
if (info != 0) {

free (uf); free (yf):; free (phy);

Identification of systems with distributed parameters

free (uf); free (yf); free (phy);

free (phi); free (res); free (aux);

fprintf (stderr, "2TI - rank deficient matrix.\n");
return - 2;

}

/* computes difference with the previous iteration */
if (iter > 0) {
for (k = 0, G = 0; k < n; k++) {
g = *(*thm + n*(iter - 1) + k) - *(*thm + n*iter + k)i
G += g*g;
} G = sqrt (G / n);
}

/* update iteration */
memcpy (A, *thm + n*iter, na*sizeof (double));
iter++;

}

realloc (*thm, n*iter*sizeof (double)):;

/* covariance matrix */

job = 1; SPPDI (*R, &n, NULL, &job);

for (k 0, G =0; k < neg; k++) G += reslk]l*res(k]; G /= neqg;
for (k 0; k < n*(n + 1) / 2; k++) *(*R + k) *= G;

/* clean up memory */

free (uf); free (yf):; free (phy):
free (phi); free (res); free (aux);
return iter;

Identification of systems with distributed parameters

34

REFERENCES

[1] TH. DUDOK DE WIT, B. JOYE, J.B. LISTER, J.-M. MORET, in
Proceedings of the 17th Europ. Conf. on Cont. Fusion and
Plasma Physics, Amsterdam, 1990, published by European
Physical Society, p. 187.

[2] L. LJUNG, System identification, (Prentice-Hall, London, 1987).

[3] EQUIPE TORE-SUPRA, in IAEA Conf. on Plasma Phys. and Nuclear
Fusion, Nice, 1988, published by the International Atomic
Energy Agency, vol. I, p. 9.

[4] G. FAVIER, «Filtrage, modélisation et identification de systémes
linéaires stochastiques a temps discretr, (Ed. du CNRS, Paris,
1982).

Identification of systems with distributed parameters 35

