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Summary

Meta-analysis of microarray studies to produce an overall gene list is relatively straightforward

when complete data are available. When some studies lack information, for example, having

only a ranked list of genes instead of complete primary data, it is common to reduce all studies

to ranked lists prior to combining them. Since this entails a loss of information, we consider a

hierarchical Bayes modeling approach to combining studies using the type of information available

in each study: the full data matrix, summary statistics, or ranks for each gene. The model uses an

informative prior for the parameter of interest, which eases the detection of differentially expressed

genes. Simulations show that the new approach can give substantial power gains compared to

classical meta analysis and list aggregation. A large meta-analysis based on 11 published studies

providing data of the types cited above is also performed and shows credible results by identifying

genes known to be involved in ovarian cancer.
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1. Introduction

More and more studies use microarray data with mRNA measurement for thousands of genes

simultaneously. They are used to detect genes differentially expressed between several groups of

tissues. However, such data are highly variable and the results obtained are often non-reproducible

or not robust to even mild perturbations (Ramasamy and others, 2008). This large variability in

results may be due to improper analysis or insufficient control of false discoveries, increased by

the small size of the samples compared to the number of genes. It is therefore of great interest

to combine the results of different microarray studies that address the same question. Since the

first meta-analysis of microarray data (Rhodes and others, 2002) was performed, many different

methods have been developed to combine different studies. For example, one can combine p-

values (Rhodes and others, 2002, 2004), or effect size changes (Choi and others, 2003), using a

frequentist approach, use Bayesian hierarchical modeling as in Conlon and others (2007), or other

methods, as described in Guerra and Goldstein (2009).

Raw data contain the fullest information one can obtain from a study and give control over

preprocessing steps and analyses. Providing raw data is required by the MIAME (Brazma and

others, 2001), guidelines for publication of microarray data, and also by numerous journals.

However, publication of raw data is far from systematic; Larsson and Sandberg (2006) note that,

on GEO (Edgar and others, 2002), raw data are available for only 34% of the samples, many of

which did not meet the necessary quality standards. Jacob and others (2009) also point out that

authors frequently publish only lists of significant genes, which are of limited utility for combining

information across studies.

When raw data are not available and only ordered lists of genes, or ranks, are provided, one

can use list aggregation methods (Lin, 2010). Borda (1781) method is one of the simplest, and

combines the ranks of each gene in each study to obtain the final list of interesting genes. With

Rg = (R
(1)
g , . . . , R

(L)
g ) denoting the ranks of gene g in all L studies, Borda’s score for gene g is
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f(Rg), where the function f can be the arithmetic mean, which we will use in this paper, the

median, or the geometric mean, among other possibilities. Borda scores are ordered to obtain

the final list of interesting genes, where a small score implies high differential expression over all

studies.

Even if combining similar types of information is relatively straightforward (Sutton and oth-

ers, 2000; Guerra and Goldstein, 2009), each method has advantages and drawbacks. Combining

decisions, i.e., whether a gene is differentially expressed or not, might lead to a dramatically

reduced list of genes, as only a small overlap is likely to appear. This problem can also be en-

countered in combination of ranks, though ranks have the advantage of being robust. Combination

of p-values loses information on the magnitude and direction of the differentials, i.e. whether the

gene is over- or under-expressed. This is also the case for rank and vote aggregation. Combining

effect sizes loses least information, but requires access to the raw data, or, less preferably, to the

gene expression matrix, which, as mentioned previously, may be unavailable.

If the data to be combined are not of the same type, studies are either discarded, or data

are transformed to the least informative support, in order to meet the requirements for combi-

nation (DeConde and others, 2006; Boulesteix and Slawski, 2009). Both can lead to a large loss

of information and of power.

The purpose of this paper is to generalise the usual meta-analysis to combine results from

studies providing different levels of information: full data; summary statistics such as z-scores,

either full or partial; and incomplete lists of ranks. In Section 2 we describe a hierarchical Bayesian

model developed for this purpose, under which each type of data is modeled using a single

underlying parameter that measures the effect of each gene. A prior on this parameter is then

carefully chosen to ease the detection of differentially expressed genes. Model efficiency is assessed

using simulated microarray data in Section 3. Finally, a real data illustration is presented in

Section 4, where our model is applied on serous ovarian cancer, in order to detect differentially
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expressed genes between cancer and normal samples.

2. Bayesian hierarchical model

2.1 Data types

We aim to detect genes differentially expressed between two groups of samples, say, for concrete-

ness cancer and normal. We assume that each gene g included in the analysis has a parameter γg

representing its differential expression, but that this is not directly observed and instead, noisy

realizations, β
(l)
g are observed in study l, where β

(l)
g follows a normal distribution centered at γg,

β(l)
g ∼ N (γg, σ

2
β), l = 1, . . . , L. (2.1)

Possible priors for the parameter γg will be discussed in Section 2.3, but first, we describe the

four types of data that we consider:

1. Raw data: the most complete data one can obtain from a study, usually consisting of a ma-

trix of gene expression values along with some clinical information about the study patients.

If values are missing for technical reasons, we consider them to be missing completely at

random, as the missing values depend neither on the observed nor the missing data.

2. Full lists of z-scores or other statistics: A list recording a value of a statistic for each gene.

The statistic can be any result of a statistical analysis based on a gene expression matrix,

but is most often a t-statistic or a p-value. Without loss of generality, we assume that the

values are standardized and can be therefore considered to be z-scores.

3. Partial z-scores: This third type of data gives the value of some statistic for each of the top

k genes. Here missingness is not at random, as only the most significant genes are observed.

As for Type 2, we assume that the values can be transformed to z-scores.

4. Partial list of ranks: A list, often incomplete, of the “best” genes detected by a statistical
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analysis based on a gene expression matrix. This list usually gives the top k most significant

genes, with k often between 20 and 100.

We develop a hierarchical model for each of the previously defined data types. We consider

one study of each type to simplify the representation of the model.

The first data type consists of a p×N data matrix Y , containing the gene intensities for the

p genes, for n1 cancer samples and N − n1 normal control samples. We suppose that the first n1

columns of the matrix contain the cancer samples. The intensities for each gene are denoted by

Ygj and are modeled using a parameter µg representing the baseline mean and a parameter β
(1)
g

which represents the differential expression of a gene g in the Type 1 study,

Ygj ∼ N (µg + β(1)
g I{j6n1}, σ

2
g), σ−2g ∼ Gamma (b1, b2) , j = 1, . . . , N .

The second type of study provides a vector of z-scores, Z = (Z1, . . . , Zp), which result from

performing gene-by-gene two-sample t-tests, or other similar tests, on a full data matrix, in order

to compare the gene expression of cancer and control samples. In what follows the calculations

are the same for each gene, so we omit the index g. The setting is the same as for the full data.

Let, Y 1, S2
1 and Y 2, S2

2 denote the sample mean and sample variance of the cancer and normal

groups respectively. The two-sample t-statistic is given by

Tobs =
Y 1 − Y 2√(
1
n1

+ 1
N−n1

)
S2
p

, S2
p =

(n1 − 1)S2
1 + (N − n1 − 1)S2

2

N − 2
.

Since X = (N − 2)S2
pδ

2 ∼ χ2
N−2, with δ2 = σ−2 and ν = (N − n1)n1/N , we first notice that, if

N is large enough, X/(N − 2) ≈ 1, and then we obtain

Tobs ∼ β(2)
√
νδ2 + tN−2

.∼ N
(
β(2)
√
νδ2, 1

)
,

where β(2) represents differential expression of a gene in a Type 2 study. We can thus model the

z-statistics for the Type 2 data as

Zg | β(2)
g , δ2g ∼ N

(
β(2)
g

√
δ2gν, 1

)
, δ2g ∼ Gamma(f1, f2).
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We now consider partial lists of z-scores, for which only the k largest absolute values are

observed. For observed genes, we use the same model as for the Type 2 data, and for missing

ones we impute them, borrowing information from the other studies. The z-scores decompose

into Z = (Zo, Zm), for the observed genes and for the missing ones. We know that the observed

Zo are the largest k in absolute value of the entire vector. Let |zref| be the smallest observed

score. Then, for any missing gene g belonging to the set {Zm}, −|zref| < Zg < |zref|, and can be

imputed by

Zg | β(3)
g , δg ∼ N |zref|−|zref|

(
β(3)
g

√
δ2gν, 1

)
, δ2g ∼ Gamma(f1, f2),

where N b
a is the truncated normal distribution on the interval [a, b], and β

(3)
g is the differential

expression parameter for a gene g in the Type 3 study.

The last type of study consists of a partial list of ranks. For each gene g, a rank Rg is attributed

by sorting some statistics, such as z-scores, which are unobserved. We introduce a latent variable

ug to model the summary statistic that leads to R, i.e., Rg =rank(|ug|). Using the parameter

β
(4)
g to represent the differential expression of gene g in the Type 4 study, we have

ug ∼ N
(
β(4)
g

√
ν, σ2

u,g

)
,

with ν = (N − n1)n1/N . The variance σ2
u,g is gene-dependent, taking into account uncertainty

about the methods used to obtain the ranks. Since the ranks are incompletely observed, the

missing ranks are imputed by borrowing information from the other studies, as for the Type 3

data. We write R = (Ro, Rm), with corresponding u = (uo, um), where the subscripts o and m

denotes the sets of observed and missing genes. To impute the missing ranks, we first need to

impute the missing ug ∈ {um}. Let Rref be the smallest rank observed and let |uref| denote the

corresponding latent variable. Any missing gene g would be ranked higher than Rref, if it were

observed, or said differently, |ug| 6 |uref|. Thus ug is imputed according to

ug ∼ N |uref|
−|uref|

(
β(4)
g , σ2

u,g

)
.
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The missing ranks are then imputed by ordering the vector |u|.

2.2 Combining all data types

Now that we have modeled each type of data separately using hierarchical models, we can combine

them using relation (2.1). As a summary, the full model combining all types of information is,

for g = 1, . . . , p and j = 1, . . . , N ,

Ygj | µg, β(1)
g , σ2

g ∼ N (µg + β(1)
g Ij6n1 , σ

2
g), σ−2g | b1, b2 ∼ Gamma(b1, b2),

Z(i)
g | β(i)

g , δ2g ∼ N
(
β(i)
g

√
νδ2g , 1

)
, i = 2, 3, δ2g ∼ Gamma(f1, f2),

ug | β(4)
g , σ2

u ∼ N
(
β(4)
g

√
ν, σ2

u,g

)
, σ−2u,g | d1, d2 ∼ Gamma(d1, d2),

β(i)
g | γg, σ2

β ∼ N (γg, σ
2
β), i = 1, . . . , 4, σ−2β | e1, e2 ∼ Gamma(e1, e2).

(2.2)

Representation of the model as a directed acyclic graph and calculations of the posterior distri-

butions for all parameters of (2.2) are available in the Supplementary Materials.

The parameter of interest γg indicates differential expression of the corresponding gene. A

value close to zero indicates no differential expression, while a value far from zero indicates that

the gene is differentially expressed between the two groups of samples, among all studies. As this

parameter is decisive, we need to choose its prior carefully.

2.3 Priors for the parameter of interest, γ

We know that most of the genes included in the analysis are not significant, and therefore a

large proportion of the γ’s should be null. On the other hand, some of the genes are differentially

expressed, and in order to be able to detect them easily, the corresponding γ should have a large

value. Three different priors for the parameter γ are considered, all based on the idea of shrink-

ing the parameters of the uninteresting genes towards zero, while leaving the parameters of the

differentially expressed genes large enough to be easily detected. The first is the spike and slab

prior (Mitchell and Beauchamp, 1988; George and McCulloch, 1993), which has been used in the



8 A. Leboucq, A. C. Davison and D. R. Goldstein

contexts of the detection of differentially expressed genes in microarrays by Ishwaran and Rao

(2003, 2005) and of multiple hypothesis testing by Pang and Gill (2009). The second is the horse-

shoe prior, introduced by Carvalho and others (2010), and used in several contexts (Carvalho

and others, 2009; Polson and Scott, 2010; Datta and Ghosh, 2012). Finally the normal-gamma

prior (Griffin and Brown, 2010) will be introduced. Computations of the posterior densities for

each of the models along with graphical representation of the priors can be found in the Supple-

mentary Materials.

The spike and slab prior (Mitchell and Beauchamp, 1988) uses a mixture of two normal

distributions centered at zero, one with very small variance for the non differentially expressed

genes, and the other with possibly large variance for differentially expressed genes,

γg | cg, τ2g ∼ N
(
0, cgτ

2
g

)
, τ2g | a1, a2 ∼ Gamma(a1, a2),

cg | α ∼ (1− α)δc? + αδ1, α ∼ U(0, 1),

where δa is the Dirac function putting unit mass at a. The parameter c is binary and can either

take the value of the hyperparameter c? = 0.005, very close to zero, which describes the spike of

the distribution and shrinks most of the γ’s to zero; or 1, leading to possibly large values of τ .

The horseshoe prior (Carvalho and others, 2010) uses half-Cauchy distributions, C+, as fol-

lows:

γg | λg ∼ N (0, λ2gτ
2), λg ∼ C+(0, 1), τ ∼ C+(0, 1).

The name of the prior is due to the shape of the distribution of the parameter κg = (1 + λ2g)
−1,

which follows a Beta(1/2, 1/2) distribution when λ ∼ C+(0, 1). The global shrinkage parameter

τ gives a measure of the underlying sparsity of the data: a small τ indicates large shrinkage.

The parameter λg is gene-dependent, yielding a highly adaptive prior. The posterior distribution

of γ is obtained by conjugacy of the prior. However, sampling from the posterior distributions

of λg and τ is not straightforward and we used the algorithm described in Scott (2011) (see

Supplementary Materials for more details).
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Finally, the normal-gamma prior, introduced by Griffin and Brown (2010) is defined as follows:

γg | ψg ∼ N (0, ψg), ψg | λ, τ ∼ Gamma

(
λ,

1

2τ2

)
, λ ∼ E(1),

τ−2 | λ ∼ Gamma

(
2,
M

2λ

)
, M =

1

p

p∑
g=1

γ̂2g , γ̂g =
1

L

L∑
i=1

β(i)
g .

Large shrinkage is obtained from small values of the parameter λ, whose prior is motivated by

the fact that λ = 1 corresponds to the Bayesian Lasso, and therefore, the exponential prior gives

more variability and flexibility around this value. The prior for τ2 is chosen by noticing that the

variance of ψg is vψ = 2λτ2, on which we choose an inverse gamma prior. We obtain posterior

densities by conjugacy of the priors for all parameters, except λ, for which a Metropolis–Hastings

step is necessary.

2.4 Practical consideration

The model presented in the previous sections is fully Bayesian. However, some adjustments are

needed for practical or computational reasons. First, we estimate the parameter µg representing

the baseline mean in the Type 1 data, directly from the data for each gene. Indeed, Type 1 data

are usually quite precise and they bring a lot of information, so we assume that this parameter

can be quite well estimated by

µ̂g =
1

N − n1

N∑
j=n1+1

Ygj .

This empirical step also reduces the computational cost. The second parameter that is empirically

estimated is δ2g , which appears in Type 2 and 3 data. Taking δ2g ∼ Gamma(f1, f2) leads to iden-

tifiability issues and considerably increases the computational cost, as it requires a Metropolis–

Hastings step to sample from the posterior distribution. We therefore estimate the parameter δ2g

from the L1 full datasets (L1 > 2), as the inverse of the average gene variance over all Type 1

studies:

δ̂2g =

(
1

L1

L1∑
l=1

σ̂2,(l)
g

)−1
.
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We also implemented a version of the model where a single δ2 was sampled for all genes through

a Metropolis–Hastings step, but it appeared to be less efficient than the empirical version, while

also increasing the computational cost; thus we prefer to estimate δ2g from the data.

The model was coded in R using C code for the Gibbs sampler part, to decrease computational

time. We performed 31 500 iterations, discarding the 1500 first iterations and using thinning of

10 to reduce autocorrelation. The part concerning Type 4 data (ranks) is run 40 times more at

each step to reduce the correlation between the draws. Indeed, for this particular type of data,

each gene depends on its neighbours, making consecutive draws highly correlated. We obtain

3 000 independent realizations from the posterior distribution of the parameters. Values of the

hyperparameters for the spike and slab prior (Section 2.3) are taken to be a1 = 5 and a2 = 50

as suggested by Ishwaran and Rao (2003). The values of the other priors are b1 = d1 = e1 = 5

and b2 = d2 = e2 = 50. Different values of the hyperparameters were tried but they did not

affect the results. Computational time for p = 200 and N = 50, was of the order of 900 seconds

for the spike and slab and the horseshoe priors, and 1 200 seconds for the normal-gamma prior.

This last prior requires a larger computational time as one of its parameter is updated using a

Metropolis–Hastings step.

2.5 Discriminating between differentially expressed and non-differentially expressed genes

Once values have been sampled from the posterior densities, we need a cutoff or a posterior

quantity to decide whether a gene is differentially expressed or not. This problem was discussed

in Carvalho and others (2010) and Scott (2009) for the horseshoe prior in the context of linear

regression. These authors show that a simple thresholding rule, based on weights, leads to strong

control of the false positives by automatically penalizing for multiple hypothesis testing (Scott,

2009), while maintaining high power. In the case of the horseshoe prior, the weight used, while

not formally being the posterior probability of inclusion, can be used and interpreted informally
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as such. Carvalho and others (2010) proposed to call g a signal if the corresponding weight is

larger than 0.5, where the weights are identified as the quantity multiplying the response in the

expression for the posterior mean of the parameter of interest. Datta and Ghosh (2012) show

that this simple thresholding rule attains the risk of the Bayes oracle, introduced by Bogdan and

others (2011), and Scott (2009) and Datta and Ghosh (2012) illustrate, by simulations, that this

rule controls the number of false positives. In our context, we can use these results to construct a

thresholding rule for our priors. Our parameter of interest is γg for all the priors, whose posterior

mean is

γ̂g = E(γg | λ2g, τ2, σ2
β , βg) =

λ2gτ
2

σ2
β + Lgλ2gτ

2

Lg∑
l=1

β(l)
g ,

where Lg is the number of studies that contain gene g, rearrangement and we may write

γ̂g =

(
Lgλ

2
gτ

2

σ2
β + Lgλ2gτ

2

)
1

Lg

Lg∑
l=1

β(l)
g .

The quantity wg,HS = Lgλ
2
gτ

2/(σ2
β + Lgλ

2
gτ

2) is a signal to noise variance ratio, λ2gτ
2 being

the prior variance of γg and σ2
β/Lg being the variance of the average signal. The thresholding

rule, inspired by Carvalho and others (2010) consists in calling gene g differentially expressed if

wg,HS > 0.5 and noise otherwise.

This thresholding rule can be applied in the same way to the other priors, using the appropriate

form of the posterior weights, wg,NG = Lgψg/(Lgψg + σ2
β), for the normal-gamma prior, and

wg,SAS = Lgcgτ
2
g /(Lgcgτ

2
g + σ2

β), for the spike and slab prior.

3. Numerical examples

3.1 Simulations for microarray data

We applied Model (2.2) with the different priors presented in Section 2.3 on simulated microarray

data. We generated several studies according to the simulation design presented in Section 3.2.

We consider five studies, two of Type 1 and one each of the other types. Each study consists of a
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set of p = 200 genes, of which the first g = 10 are set to be differentially expressed, and N = 50

patients, of which n1 = 40 are cancer samples. The model using the different priors of Section 2.3

is fitted to 500 simulated sets of such studies, using different levels of differential expression. The

performance of the three priors is compared to Borda’s method in Section 3.3. We also compare

the performance of several ways to include studies in Section 3.4.

3.2 Simulation design for microarray data

The simulation design we used is inspired by DeConde and others (2006), who took the idea

from Kooperberg and others (2005). We consider p genes, of which g are differentially expressed,

with N samples belonging to M = 2 groups (cancer or normal) and L such studies. Let xijml

denote the expression level of the ith gene for the jth sample belonging to the mth group (either

cancer or control) and for study l, with i = 1, . . . , p, j = 1, . . . , N , m = 1, 2 and l = 1, . . . , L. The

expression level xijml is generated by decomposition into a mean expression µi, the differential

expression parameter δim and noise Zijml, as

xijml = µi + δim + Zijml, µi ∼ U(0, 1),

δim =

{
a(2Bi − 1)Gi, m = 1, i = 1, . . . , g,
0, otherwise.

Bi ∼ Be(p), Gi ∼ Γ(5, 1), Zjl ∼ N (0,Σl),

where a is a differential expression parameter, usually chosen equal to 0.5, and Σl is a block

matrix of size p × p, having B blocks (in these simulations, we take B = 1 and a ∈ [0.2; 2]),

diagonal elements σ2
il and off-diagonal elements σiσjρb, where ρb ∼ U(0.5, 1). The variance σ2

il is

generated as σ2
il = (0.3−0.02µi)Gil, where Gil ∼ Γ(5, 0.1). The variance parameter of a gene thus

depends on the mean in a way that genes with smaller mean expression have a larger variance,

and variance varies across studies.
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The data matrix obtained for study l is

X =



µ1 + δ1,1 + Z1,1,1,l . . . µ1 + δ1,1 + Z1,n1,1,l µ1 + Z1,n1+1,2,l . . . µ1 + Z1,N,2,l

... . . .
...

... · · ·
...

µg + δg,1 + Zg,1,1,l · · · µg + δg,1 + Zg,n1,1,l µg + Zg,n1+1,2,l · · · µg + Zg,N,2,l
µg+1 + Zg+1,1,1,l · · · µg+1 + Zg+1,n1,1,l µg+1 + Zg+1,n1+1,2,l · · · µg+1 + Zg+1,N,2,l

... · · ·
...

... · · ·
...

µp + Zp,1,1,l · · · µp + Zp,n1,1,l µp + Zp,n1+1,2,l · · · µp + Zp,N,2,l


.

This simulation design mimics the behaviour of real microarray data and is particularly realistic,

unlike other simulation designs, which consist in generating independent normal distributions.

This simulation design is completely independent of our model, which is not favoured in the

simulations, so the comparison with Borda’s method, presented in Section 3.3, should be fair. In

the next sections, the simulation design can be used as such to obtain a Type 1 study. For Type

2 and 3 studies, a matrix X is generated and z-scores are obtained by applying limma (Smyth,

2005) from the bioconductor package in R. For Type 4 data, after generating another matrix X

and applying limma, the absolute values of the z-scores are ordered to obtain the ranks.

3.3 Comparison of the different methods and models

We want to assess the performance of the different models in terms of detection of differentially

expressed genes, for different degrees of differential expression. We also compare the performance

of the models with Borda’s method, which reduces all studies to ranks. We use Borda’s method

with the arithmetic mean as a comparison method because it is very simple, intuitive, not com-

putationally intensive and has no tuning parameter. The median was also applied to combine

the scores but it did not change the results of the simulations. There are many other methods

for rank aggregation, but Lin (2010) shows that Borda’s method with the arithmetic mean is

best overall compared to other more complicated methods such as cross entropy Monte Carlo

or Markov Chain methods. We also considered paired comparisons, using the Bradley and Terry

(1952) model, but as its performance was worse than Borda’s method, it was not compared with
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our model.

For each value of the parameter a, we generated 100 datasets based on the simulation design

presented in Section 3.2. For each dataset, we fitted the model using each of the three priors, and

we also applied Borda’s method. We recorded the values of the parameters γ̂g and ŵg for each

prior and each gene g, along with the Borda scores. Figure 1 compares the priors and Borda’s

method in terms of the detection of differentially expressed genes; the absolute values of the

posterior means of γ are ranked for each of the three priors and the number of true differentially

expressed genes present in the top 10 is recorded; the same thing is done for Borda’s method

but using Borda scores. Our model detects the differentially expressed genes more easily than

Borda’s method, no matter which prior is chosen, and for all values of the differential expression

parameter a.

It is also interesting to see how the priors perform in terms of false positives. For this analysis,

we discard Borda’s method, as it was identified as the worse method in Figure 1. Moreover, the

only way to obtain a definition of a false positive for Borda’s method is to use permutation

p-values, which can be computationally intensive in high dimensional settings. In Figure 2, we

present the receiver operating characteristic (ROC) curves, which plot the false positive rate

against the true positive rate, for the three priors, for different values of a and for 500 simulations.

Our models perform well in terms of ROC for values of a > 0.3, which happens to be the case

in real genomics microarray data, where a realistic value for a is around 0.5. The different priors

detect differentially expressed genes equally well in Figure 2, especially for small values of a,

whereas for larger values, they all perform almost perfectly (plots not shown). The spike and slab

prior seems to be best in each panel of Figure 2, closely followed by the normal-gamma prior,

particularly when a = 0.5. The horseshoe prior performs less well, but it remains competitive and

has high power. Since the normal-gamma prior requires a Metropolis–Hastings step to sample

one of its parameters, we may prefer the spike and slab prior, which performs at least as well,
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and is much faster to run.

3.4 What do we gain from including all studies?

In order to highlight the gain of power from the inclusion of several types of data rather than only

considering full raw datasets, we performed 500 simulations, generating two Type 1 datasets, and

one dataset of each of the other types, and included the different studies as follows:

1. only the two Type 1 studies (full raw data);

2. the two Type 1 studies and the full list of z-scores;

3. the two Type 1 studies and the partial list of ranks;

4. the two Type 1 studies and the partial list of z-scores;

5. the two Type 1 studies, the full list of z-scores and the partial list of ranks; and

6. all the studies.

We fitted the model using the spike and slab prior to these data and plotted the ROC curves for

several values of the differential expression parameter a in Figure 3. Using all the information

available results in a clear increase of power compared to the case where only full data are

combined.

More formally, we tested whether the differences between the black (full studies only) and the

pink (all data included) ROC curves are significantly different, using a non-parametric test intro-

duced by DeLong and others (1988). We used the roc.test from the pROC R package (Robin

and others, 2011), and found that all tests are highly rejected, as presented in Supplementary

materials for different values of a. This result indicates a significant improvement of the power

of the model when all studies are included.
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4. Real data

We now integrate results from studies of the four types defined in Section 2.1, in order to find dif-

ferentially expressed genes between serous ovarian cancer and normal samples. Electronic search of

the online databases (Pubmed, GEO, ArrayExpress) identifies 11 studies (Mok and others, 2009;

Yoshihara and others, 2009; Lili and others, 2013; Cancer Genome Atlas Research Network, 2011;

Welsh and others, 2001; Warrenfeltz and others, 2004; Meinhold-Heerlein and others, 2007; Zhang

and others, 2005; Bignotti and others, 2006; Martoglio and others, 2000; Donninger and others,

2004) comparing patients with serous ovarian cancer and healthy patients, and being of one of the

four types that we consider. The study conducted by Lili and others (2013) included also stroma

samples that we did not consider in this analysis. In what follows, the studies are denoted by the

first three letters of the name of the first author, except for TCGA, which comes from the Cancer

Genome Atlas team, and was downloaded via the curatedOvarianData R package (Ganzfried

and others, 2013). Of these datasets, MOK, YOS, LIL and TCGA, have full information (Type

1); WEL provides a full list of z-scores (Type 2); MAR and DON provide only a partial list

of z-scores (Type 3); and WAR, MEI, ZHA and BIG provide a partial list of ranks (Type 4),

see Table 1. Studies were conducted on different platforms, and so include different probes and

therefore different genes. Moreover, as some of them only provide partial lists, only a fraction of

these genes are visible. The distribution of the genes among the studies, given in Table 2, shows

that no gene appears in all studies and some genes only appear in very few studies.

Since the union of all genes for all the studies includes more than 27 000 unique genes, some

gene selection is essential before fitting the hierarchical model. We performed gene selection in

two steps, aiming to reduce the gene set to about 5 000 genes. The data were separated into full

(Types 1 and 2) and partial (Types 3 and 4), and we conducted gene selection on these two sets

separately. Based on the idea that the partial data include only genes that were found interesting

at the study level, it is important to include all the genes from these studies, as they are the best
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potential candidates for differential expression. The union of all genes provided by partial studies

comprised 1 201 genes. For the set of full data, we selected only genes common to all studies.

This intersection comprised 4 343 genes. The final set of genes consisted of the union of the genes

coming from the partial studies and the full studies and comprised 5 141 genes distributed as in

Table 2.

We fitted the hierarchical model using the spike and slab prior to the 11 studies on the reduced

gene set, with 31 500 iterations performed in order to obtain 3 000 independent samples from

the posterior distribution. This took 25 days, due to the large number of iterations of the Gibbs

sampler and the number of genes. We found a total of 296 differentially expressed genes (ŵ > 0.5),

among which 68 of the corresponding values of ŵ had 95% confidence intervals not containing

w = 0.5. Table 3 presents the names of the top 100 genes, the corresponding values of γ̂, which

gives information about the direction of the differential expression, and ŵ. A more complete list

of differentially expressed genes is in the Supplementary Materials. Bold genes from Table 3 are

known to be active in ovarian cancer (Jacob and others, 2009, for instance), which shows that

our model produces a credible list of differentially expressed genes.

5. Conclusion and discussion

Our Bayesian hierarchical model is useful in the context of genomic data analyses, where many

studies are available but not all provide raw data. Published results then become useless unless

raw data are available. The model allows the integration of various data types, avoiding loss of

information, which is common when performing meta-analysis or list aggregation, while main-

taining, or even increasing, the power of detection of differentially expressed genes. Our model

is adaptive, but is not heavily influenced by the choice of the hyperparameters. Choosing priors

that shrink the parameters of interest close to zero for uninteresting genes eases the detection of

the differentially expressed genes, contributing to the high power of our model. Comparisons of
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our model with different priors and Borda’s method show a clear improvement, increasing the

number of correctly identified genes by 15% on average. As Borda’s method with arithmetic mean

was found to perform well compared to other rank aggregation methods (Lin, 2010), our model

is a serious competitor.

The gain of power obtained by including all possible studies rather than only those providing

raw data is highly significant. Moreover, the simulation design used in this article is realistic by

mimicking the behavior of real microarray data, which reinforces the results that we obtained, and

indicates that our model is efficient for real microarray data. We emphasize that the simulations

are performed from an independent design and not from the model, meaning that no model is

favoured in the simulations. Applications on a set of 11 real datasets also show promising results

by retrieving many genes known to be involved in ovarian cancer. The criterion for detection

of differentially expressed genes is a simple thresholding rule which is easy to apply using the

posterior output. One of its main advantages is the absence of multiplicity correction, unlike that

needed in the frequentist approach.

One drawback of our model for application on microarray data is its large computational

requirements. It is infeasible to fit the model to the union of all genes from all studies, so gene

selection is essential. Even if our gene selection is not based on differential expression, we might

discard important genes. Including only the best candidate genes is unrealistic and is not appro-

priate to the chosen priors, which require a large proportion of uninteresting genes to be included

for the priors to be valid. The real data example of Section 4 performs a gene selection indepen-

dent of the model, as we only select genes corresponding to union or intersection of groups of

genes. However, it would be interesting to be able to fit the model to the full set of genes.

In this paper, all studies contribute equally to the model and to the detection of differentially

expressed genes. However, one might put more confidence in full studies, for example, where

the analysis as well as the preprocessing steps are entirely reproducible, rather than in lists of



Meta-analysis of incomplete microarray studies 19

interesting genes that are not reproducible. Due to the high adaptivity of our model, we can

easily associate weights to each of the studies to be combined, reflecting prior confidence in each.

We also assume that the genes are independent, which is not true in practice, though it is a

common assumption in the literature, even for single study analysis. Correlations between the

genes are included in the simulation design (Section 3.2), and do not seem to affect the efficiency

of the model. However we believe the model would perform even better if the elements on which

it is applied are independent. One could define modules, sets of genes that are correlated or are

related in some sense, and apply the model on these elements. This trick would solve the gene

selection and the dependence problems simultaneously. Indeed, using modules results in a huge

dimension reduction, by grouping genes together, and it also results in independence, as genes that

do not belong to the same module would be considered as independent. With the computational

time therefore reduced, our model would be even more interesting and competitive with other

methods.

6. Software

Software in the form of R and C code, is available on request from the corresponding author

(alix.leboucq@epfl.ch).

7. Supplementary Materials

The reader is referred to the on-line Supplementary Materials for technical appendices, additional

figures and details about simulations and real data.
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Fig. 1. Comparison of the model with the three different priors: horseshoe (HS), spike and slab (SAS)
and normal gamma (NG) priors, and Borda’s method. Here we compare the number of true differentially
expressed genes in the top 10 genes based on the value of γ̂ for our model, or the Borda scores for Borda’s
method. In the simulation design, 10 genes were selected to be differentially expressed, which is why we
look only at the top 10.
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Fig. 2. ROC curves for prior comparisons. Power of the model for each of the three priors: spike and slab
(SAS), horseshoe (HS) and normal-gamma (NG) priors, for several values of the differential expression
parameter a.
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Table 1. Summary of the 11 studies included in the meta-analysis. SOC denotes serous ovarian cancer.
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ROC curves for different study combinations
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(b) a = 0.3
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(c) a = 0.5

Fig. 3. Comparison of the power of several data combinations for two full studies, one full list of z-scores,
one partial list of ranks and one partial list of z-scores. The different combinations are as follow (in the
same order as the legend): black : only full studies, red : the full studies and the full list of z-scores, green:
the full studies and the partial list of ranks, blue: the full studies and the partial list of z-scores, cyan:
the full studies, the full z-scores and the partial list of ranks, pink : all the studies. The ROC curves are
plotted for several values of the differential expression parameter a.

Table 2. Distribution of the genes by studies for the entire gene set and after gene selection. The table
show the number of genes appearing in k studies, k = 1, . . . , 11, before and after gene selection.

Number of studies 1 2 3 4 5 6 7 > 8
Number of genes (before) 7228 4655 4623 5936 4208 400 12 1

Number of genes (after) 778 19 1 0 3940 390 12 1
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Table 3. Top-100 list of differentially expressed genes. Genes are ordered according to the value of ŵ, from
the most to the least differentially expressed. The estimates ŵ are obtained from the fit of our model to
the 11 studies selected for the analysis. The estimate of γ̂ is also given for each gene and indicates the
direction of differential expression. Bold genes are known to have a role in ovarian cancer.

Rank Genes ŵ sd(ŵ) γ̂ sd(γ̂)

1 CP 0.99 < 10−2 3.07 0.38
2 TOP2A 0.99 < 10−2 2.60 0.38
3 BCHE 0.99 0.01 -2.49 0.41
4 NEK2 0.99 0.01 2.48 0.38
5 TTK 0.99 0.01 2.48 0.38
6 CENPA 0.99 0.02 2.45 0.38
7 SPP1 0.99 0.02 2.31 0.39
8 MELK 0.99 0.02 2.35 0.39
9 PRAME 0.99 0.02 2.41 0.39

10 ADH1B 0.99 0.02 -2.33 0.41
11 KIAA0101 0.99 0.02 2.41 0.40
12 NMU 0.99 0.02 2.30 0.39
13 IGFBP6 0.99 0.03 -2.22 0.39
14 KLK6 0.99 0.02 2.24 0.39
15 EVI1 0.99 0.01 2.67 0.45
16 CLDN3 0.99 0.02 2.38 0.41
17 SST 0.99 0.02 2.27 0.41
18 FOLR1 0.99 0.03 2.22 0.39
19 WFDC2 0.99 0.03 2.30 0.40
20 UBE2C 0.99 0.03 2.22 0.38
21 CD24 0.99 0.03 2.47 0.45
22 HMGA2 0.99 0.04 2.21 0.43
23 SPARCL1 0.99 0.04 -2.00 0.38
24 KIF2C 0.99 0.04 2.08 0.40
25 ELF3 0.99 0.05 2.11 0.41
26 MAL 0.99 0.05 2.07 0.42
27 CDKN2A 0.98 0.05 2.09 0.41
28 PAX8 0.98 0.05 2.05 0.41
29 FOXM1 0.98 0.05 2.05 0.40
30 CENPF 0.98 0.06 2.02 0.40
31 TNNT1 0.98 0.06 2.01 0.42
32 CLDN4 0.98 0.06 2.05 0.42
33 HMMR 0.98 0.07 1.99 0.42
34 LCT 0.98 0.07 1.94 0.41
35 KIF11 0.98 0.07 1.92 0.41
36 TRIM31 0.98 0.08 1.92 0.43
37 CDC20 0.98 0.08 1.88 0.42
38 TACSTD1 0.98 0.08 2.61 0.63
39 CCNB1 0.97 0.09 1.87 0.44
40 PTTG1 0.97 0.10 1.93 0.48
41 PRSS8 0.97 0.10 1.87 0.46
42 CCNE1 0.97 0.11 1.80 0.45
43 RRM2 0.96 0.11 1.84 0.47
44 EHF 0.96 0.11 1.90 0.48
45 S100A1 0.96 0.11 1.82 0.47
46 ATP6V1B1 0.95 0.13 1.75 0.50
47 KLK7 0.95 0.13 1.72 0.48
48 ABCA8 0.95 0.13 -1.77 0.49
49 ALDH1A1 0.95 0.13 -1.70 0.47
50 SCNN1A 0.94 0.14 1.73 0.51

Rank Genes ŵ sd(ŵ) γ̂ sd(γ̂)

51 C7 0.94 0.14 -1.69 0.52
52 PDHA2 0.94 0.15 1.70 0.52
53 ANXA8 0.94 0.17 2.22 0.74
54 GLDC 0.94 0.15 1.66 0.49
55 LAMP3 0.94 0.16 1.72 0.54
56 KRT7 0.93 0.16 1.57 0.50
57 CKS2 0.93 0.16 1.61 0.50
58 AOX1 0.93 0.16 -1.63 0.53
59 EZH2 0.93 0.16 1.60 0.49
60 MYH11 0.93 0.16 -1.63 0.51
61 NY-REN-7 0.92 0.20 2.41 0.94
62 CCNA2 0.91 0.18 1.51 0.53
63 TK1 0.91 0.18 1.50 0.52
64 MAD2L1 0.91 0.18 1.51 0.54
65 ACTG2 0.91 0.18 -1.53 0.56
66 SCGB2A1 0.91 0.19 1.65 0.64
67 MUC1 0.90 0.19 1.52 0.57
68 SLC2A1 0.90 0.19 1.46 0.53
69 SULT1C2 0.89 0.20 1.47 0.57
70 MGP 0.87 0.21 -1.37 0.55
71 THBD 0.87 0.21 -1.38 0.57
72 IGF2BP3 0.86 0.22 1.36 0.58
73 SPINT2 0.86 0.22 1.36 0.58
74 ZIC1 0.86 0.22 1.38 0.60
75 CGN 0.85 0.24 1.44 0.66
76 RNASE4 0.85 0.22 -1.31 0.57
77 EFEMP1 0.85 0.22 -1.33 0.60
78 APOA1 0.85 0.23 1.31 0.59
79 DXYS155E 0.84 0.28 2.22 1.21
80 TFAP2A 0.83 0.23 1.25 0.57
81 NDP52 0.83 0.29 2.21 1.27
82 FRY 0.82 0.24 -1.25 0.62
83 DEFB1 0.79 0.25 1.12 0.59
84 TYMS 0.79 0.25 1.12 0.56
85 GRPR 0.79 0.25 1.15 0.60
86 MYBL2 0.79 0.25 1.13 0.58
87 MAOB 0.79 0.25 -1.11 0.56
88 CNN1 0.77 0.25 -1.08 0.57
89 CLDN7 0.77 0.26 1.14 0.64
90 BLM 0.77 0.25 1.09 0.59
91 CXCL10 0.76 0.25 1.07 0.61
92 KIF23 0.76 0.25 1.04 0.56
93 KLF4 0.76 0.25 -1.03 0.56
94 CDKN3 0.75 0.26 1.03 0.57
95 HTR3A 0.75 0.25 1.02 0.57
96 EPCAM 0.75 0.27 1.09 0.67
97 GNG11 0.75 0.26 -1.01 0.55
98 KIF14 0.74 0.25 1.00 0.55
99 NDN 0.74 0.25 -0.99 0.54

100 RAD54L 0.74 0.25 0.98 0.55
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