
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr G. Boero, président du jury
Dr M. Mattavelli, directeur de thèse

Prof. A. Prihozhy, rapporteur
Dr M. Raulet, rapporteur
Dr A. Schmid, rapporteur

Optimizing Dataflow Programs for Hardware Synthesis

THÈSE NO 6059 (2013)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 23 JANVIER 2014

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
GROUPE SCI STI MM

PROGRAMME DOCTORAL EN MICROSYSTÈMES ET MICROÉLECTRONIQUE

Suisse
2014

PAR

Ab Al Hadi Bin AB RAHMAN

For my parents,

my wife, and our two daughters.

Acknowledgements

I would like to express my gratitude and thanks to all individuals that have made this thesis

possible. First and foremost is to my thesis director, Dr. Marco Mattavelli for giving me the

opportunity to work on this very exciting research project, and also for all the advice and

encouragement he has given me throughout the years. Next, I would like to thank these people

who have contributed directly to the work in this thesis: Prof. Anatoly Prihozhy with the

formulation of the pipeline synthesis and optimization tool and technique, Dr. Ihab Amer

and Hossam Amer on the work on dataflow program refactoring, Dr. Christophe Lucarz on

the first dataflow program analysis tool, Dr. Richard Thavot on the work to optimize buffer

size in dataflow programs, and the hardware implementation of the MPEG-4 decoder on an

FPGA evaluation board, Damien De Saint Jorre with the design of the MPEG-4 AVC/H.264

decoder, and fellow Ph.D students Endri Bezati and Simone Casale Brunet with their respective

synthesis and analysis tools Xronos and TURNUS, and the frequently lengthy discussions on

several design and implementation issues with dataflow programming. I would also like to

thank other lab members and scientists who have contributed indirectly to the work in this

thesis: Dr. Jörn Janneck, Dr. Ghislain Roquier, Dr. Junaid Ahmad, Dr. Romuald Mosqueron,

and Pascal Faure.

This work will not have been possible without the necessary financial support. For this, I

would like to thank the Malaysian Ministry of Higher Education and the Univesiti Teknologi

Malaysia, along with the arrangements with EPFL for the funds throughout the duration of the

work.

Last but not least, I want to thank my parents, Ab Rahman and Zaiton, my wife Zue, and my

two young daughters, Zahra and Dania, for their continuous love, dedication, and support.

Ab Al-Hadi Bin Ab Rahman

Lausanne, October 15th 2013

iii

Abstract

Digital signal processing (DSP) systems can be represented by a Dataflow Process Network

(DPN), which is a model of computation (MoC) based on a directed graph where a number

of concurrent processes communicate through unidirectional FIFO channels. One of the

formal programming languages that directly captures this MoC is the CAL dataflow language.

It features among others, platform-agnostic specifications and an actor-oriented approach in

systems design that makes it suitable for heterogeneous implementation of data-intensive

DSP applications as compared to classical and other design methodologies. In this thesis, a

new systems design methodology based on CAL is presented and validated for a complete

design flow from specification to implementation, with high-level synthesis and analysis. The

methodology is extended to rapidly explore design alternatives at high-level by the applica-

tion of several novel optimization techniques on critical parts of complex CAL designs for

hardware synthesis. The first optimization technique is by dataflow program refactoring with

an objective of minimizing system latency with data and task parallelism, and with memory

access reductions. The second optimization technique is refactoring by exploiting pipeline

parallelism with an objective of maximizing operating frequency and minimizing resource.

The third and final optimization technique is by minimizing and optimizing the FIFO buffer

interconnection sizes using two distinct approaches on the implementation and the dataflow

program level. As case studies, the efficacy of the optimization techniques are proven using

the standardized CAL specification of the MPEG-4 Part 2 Visual Simple Profile (SP) decoder

and the MPEG-4 Advanced Video Coding (AVC)/H.264 Constrained Baseline Profile (CBP)

decoder respectively for hardware and heterogeneous hardware/software implementations.

Results show that using appropriate combinations of the optimization techniques, throughput

can be improved by up to 12x compared to the original design. Compared to similar works

in literature using classical and other design methodologies, some design alternatives have

also shown to be comparable and superior in various performance criteria. Consequently,

this work proves the viability of complex systems design and implementation using dataflow

programming, not only for higher degree of productivity but also real-time performance.

Keywords: optimization techniques, dataflow programs, hardware implementation, heteroge-

neous platforms, digital signal processing, performance evaluation, design space exploration.

v

Résumé

Les systèmes de traitement de signaux numériques peuvent être représentés par des réseaux

de processus flux de données, qui est un modèle de calcul graphique, où un certain nombre

de processus concurrents communiquent via des canaux de communication unidirectionnels

de type FIFO. L’un des langages de programmation formels qui capte directement ce MoC est

le langage flux de données CAL. Ce language de haut niveau, indépendant de la plate-forme,

est également capable de synthétiser la description du modèle pour des implémentations

logicielles et matérielles. Dans cette thèse, une nouvelle méthodologie de conception dédiée

au langage CAL est présentée, validée et utilisée pour explorer rapidement des alternatives

de conception à un haut niveau d’abstraction, par l’application de nouvelles techniques

d’optimisation sur des descriptions CAL complexes. La première technique d’optimisation est

la technique dite de remaniement qui vise à minimiser la latence du système en exploitant

le parallélisme des tâches et des données, l’optimisation de la mémoire par la fusion de

données ainsi que l’élimination des accès à la mémoire redondants. La seconde technique

d’optimisation est une refactorisation qui consiste à diviser le chemin combinatoire le plus

long dans le flux de données, de telle sorte qu’une fréquence maximale de fonctionnement

plus élevée soit obtenue. Cette technique consiste à trouver le meilleur partitionnement

tel que les ressources soient minimisées. La troisième et dernière technique d’optimisation

consiste à minimiser et à optimiser la taille des tampons mémoires de type FIFO, en utilisant

diverses approches et techniques sur le modèle de flux de données lui-même, ainsi que sur sa

mise en œuvre sur la cible. Comme cas d’étude, l’efficacité des techniques d’optimisation est

étudiée sur l’implantation des spécifications CAL des décodeurs vidéo MPEG-4 Simple Profile

(SP) et MPEG-4 Advanced Video Coding (AVC)/H.264 Baseline Profile Contraint (CBP) sur des

cibles matérielles et des cibles hétérogènes logicielles/matérielles. Les résultats montrent que

l’utilisation des techniques d’optimisation permet d’améliorer les performances (en terme

de débits) par 12 comparés au modèle originale. Certaines alternatives de conception ont

également montré qu’elles étaient comparables ou de qualité supérieure dans divers critères

de performance comparé à l’état de l’art. Par conséquent, ce travail prouve la viabilité de la

méthodologie pour la conception et la mise en œuvre de systèmes complexes en utilisant la

programmation flux de données, non seulement pour son degré élevé de productivité ainsi

que pour ses performances en temps réel.

vii

Résumé

Mots-clés: techniques d’optimisation, des programmes de flux de données, le matériel la mise

en œuvre des plates-formes hétérogènes, traitement numérique du signal, de la performance

évaluation, la conception de l’exploration spatiale.

viii

Contents
Acknowledgements iii

Abstract v

Table of Contents xi

List of figures xviii

List of tables xxi

1 Digital systems design and implementation: state-of-the-art 1

1.1 Design methodology with imperative languages 2

1.2 Design methodology with high-level languages and models 5

1.2.1 SystemC and C . 5

1.2.2 Synchronous languages . 7

1.2.3 Pre-configured blocks and templates . 9

1.2.4 Dataflow programming models . 9

1.3 Conclusion . 14

2 Design methodology with CAL dataflow programming 17

2.1 CAL dataflow language . 19

2.1.1 CAL actor example: inverse quantization 20

2.2 Mapping and partitioning CAL programs . 21

2.2.1 SW and HW partitioning . 21

2.2.2 SW partitioning and scheduling . 23

2.3 Synthesizing CAL programs . 23

2.3.1 CAL to C synthesis . 24

2.3.2 CAL to HDL synthesis . 26

2.4 Analyzing CAL programs . 28

2.4.1 Causation trace . 29

2.4.2 Critical path analysis and evaluation . 31

2.4.3 CP evaluation technique . 33

ix

Contents

2.4.4 Computational load reduction . 33

2.5 Optimizing CAL programs . 34

2.5.1 Optimizing for software implementation 34

2.5.2 Optimizing for hardware implementation 35

2.6 Conclusion . 39

3 Minimizing system latency with refactoring 41

3.1 Background and related works . 41

3.2 Minimizing system latency in CAL programs . 43

3.2.1 Task and data parallelism . 43

3.2.2 Reducing number of memory access . 47

3.2.3 Automating the refactoring techniques . 49

3.3 Analyzing the MPEG-4 AVC/H.264 decoder using TURNUS 51

3.4 Exploiting data and task parallelism on MPEG-4 AVC/H.264 decoder 53

3.4.1 The half_quarter_interpolation actor . 53

3.4.2 The blocks_reorder actor . 59

3.5 Reducing number of memory access on MPEG-4 AVC/H.264 decoder 60

3.5.1 The picture_buffer actor . 60

3.5.2 The half_quarter_interpolation actor . 62

3.6 Experimental results . 62

3.7 Summary . 66

4 Maximizing system frequency with refactoring 67

4.1 Background and related works . 67

4.2 Pipeline synthesis and optimization for CAL programs 69

4.2.1 Dataflow graph relations . 70

4.2.2 Optimization tasks . 75

4.2.3 Synthesis and optimization algorithm . 77

4.3 Pipeline methodology for complex dataflow network 81

4.4 Experimental results . 85

4.4.1 ISO/IEC 23002-2 1D-IDCT . 85

4.4.2 MPEG-4 SP decoder . 86

4.5 Summary . 87

5 Minimizing resource with buffer size optimization 89

5.1 Background and related works . 89

5.1.1 Single appearance scheduling in SDF . 90

5.1.2 Finding minimum buffer sizes using model-checker for SDF 92

5.1.3 Buffer size minimization for DPN . 94

5.2 Buffer size assignment and reduction for CAL programs 97

x

Contents

5.2.1 Hardware program execution approach . 98

5.2.2 Dataflow program analysis (TURNUS) approach 102

5.3 Experimental results . 104

5.4 Summary . 107

6 Design case studies: MPEG-4 video decoders 109

6.1 Fundamentals of video codecs . 109

6.2 MPEG Reconfigurable Video Coding (RVC) Standard 112

6.3 MPEG-4 Simple Profile (SP) decoder . 113

6.3.1 Fundamentals . 114

6.3.2 CAL design and implementation . 116

6.4 MPEG-4 Advanced Video Coding (AVC)/H.264 decoder 118

6.4.1 Fundamentals . 118

6.4.2 CAL design and implementation . 122

6.5 Conclusion . 124

7 Multi-dimensional design space exploration 127

7.1 Background and related works . 128

7.2 Metrics for design space exploration . 129

7.3 Methodology for automatic data analysis . 131

7.4 Case study-1: MPEG-4 SP decoder . 132

7.5 Case study-2: MPEG-4 AVC/H.264 decoder . 139

7.5.1 Decoder_U/V . 140

7.5.2 Decoder_Y . 144

7.5.3 Combining Decoder_Y and Decoder_U/V 148

7.6 Comparison with related works . 150

7.7 Summary . 152

8 Conclusion 153

8.1 Summary . 153

8.2 Research impact . 155

8.3 Future work and direction . 155

Bibliography 167

Related Personal Publications 170

Curriculum Vitae 171

xi

List of Figures

1.1 Design flow of classical software/hardware co-design and implementation using

imperative languages. Note that design definition and entry in stage-4 is platform

dependent. 4

1.2 SystemC simulation methodology for hardware part of design. SystemC models

and testbench can be compiled using a standard C++ compiler, and can then be

simulated either using a standard simulator, or a waveform display tool. 6

1.3 Design simulation and implementation flow from C++/SystemC to RTL using

Catapult C. DPFSM in the interface synthesis stands for the Datapath Finite State

Machine. 8

1.4 Design methodology for automatically generating synthesizable RTL description

from Simulink, DSP blockset, and CoreGen using Xilinx System Generator. The

generated RTL description can be used directly for hardware simulation and

implementation, thus relieving the need to manually specify programs in RTL. 10

1.5 Actor-oriented-design versus object-oriented-design. 12

1.6 Systems design methodology using the PeaCE framework. 13

1.7 Systems design methodology using the tools COMPAAN and LAURA. 15

2.1 Design methodology for SW/HW co-design and implementation using CAL

dataflow programming. 18

2.2 CAL dataflow network example. Actors are interconnected by FIFO buffers. Each

actor contains a guarded atomic action and an encapsulated state. 20

2.3 The inverse_quantization actor used in the MPEG-4 simple profile decoder. 22

2.4 Steps and transformations for translating CAL programs to C in the ORCC frame-

work. 25

2.5 Steps and transformations for translating CAL programs to HDL using CAL2HDL. 27

2.6 Overview of the architecture for synthesizing CAL to HDL using Xronos. 28

2.7 The TURNUS framework within the design flow for profiling dataflow programs. 29

2.8 Example of a causation trace, where a node represents a single action firing, and

an edge represents a firing dependency. 30

xiii

List of Figures

2.9 Example of a critical path in the causation trace, shown by the orange/shaded

nodes from v0 to v25. 32

2.10 RTL architecture of the inverse quantization actor in Figure 2.3 using the Open-

Forge synthesizer. The red/bold interconnections are the control signals to

signify the start and end of actions execution. 36

2.11 Example to hold common subexpression in a local variable to reduce hardware

overhead. The improved implementation requires only a single multiplier, as

opposed to two multipliers in the original implementation. 38

3.1 Comparison between processing with sequential, task, and data parallelism. In

task parallelism, the task B is partitioned into distinct tasks B0,B1, and B2, while

in data parallelism, B is replicated 3-times to form B0,B1, and B2 44

3.2 Methodology to implement task and data parallelism for a critical action. . . . 46

3.3 With (bottom) and without (top) token merging before a write access. The

number of access to memory can be reduced significantly with merging the data

tokens before accessing the memory. 47

3.4 With (bottom) and without (top) the redundancy-elimination technique. The

intermediate storage buffer L can be eliminated for a significant reduction in

latency. 48

3.5 Methodology to implement the data-packing and the redundancy-elimination

techniques for a critical action. 50

3.6 Finding a minimum program/structure p for a given input y and output x using

a Universal Turing Machine U , based on the Kolmogorov complexity theory. . . 51

3.7 (a) data parallelism, where the actor half_quarter_interpolation is repli-

cated M times, and later merged. For each instantiated actor, it is possible to

perform (b) task parallelism, where the task is partitioned into N subtasks with

distinct set of operations. 54

3.8 Integer sample (shaded blocks with upper-case letters) and fractional sample

positions (unshaded blocks with lower-case letters) for quarter sample luma

interpolation. 55

3.9 Half quarter interpolation algorithm as implemented in CAL. The task is divided

into three subtasks s0, s1, and s2. 56

3.10 Quarter pixel interpolation algorithm as implemented in CAL. This task has to

be performed after the completion of half quarter interpolation. 57

3.11 Actors blocks_reorder and add for producing inter-prediction pixels. In the

original implementation, n is set to 1, where a single byte is sent serially for addi-

tion. Since the whole macroblock is available immediately from blocks_reorder,

the value of of n can be set up to 256. 59

3.12 Original implementation of the action writeData.Launch that takes in a single

pixel and stores into memory pictureBuffer. 61

xiv

List of Figures

3.13 Improved implementation of the action in Figure 3.12, that takes in 4 pixels in a

single firing, merge the pixels into a 32-bit word, before storing into memory. . 61

3.14 The original implementation of extracting and sending blocks for half/quarter

interpolation. The extracted block is stored in a redundant buffer ReadTable at

line 27. 63

3.15 The improved implementation of extracting and sending blocks for half/quarter

interpolation. The extract and send processes are performed simultaneously by

the action getReadAddrX at line 34. 64

3.16 Part of the half_quarter_interpolation actor, where ovals are actions and

arrows are transitions. The dashed arrow and the Mvx and Mvy checks represent

an improved implementation where the block is not stored if half and/or quarter

interpolation are not required. 65

4.1 The ISO/IEC 23002-2 1D IDCT algorithm in the two-operands-single-assignment

form. It consists of 25 subtractors, 19 adders, and 52 variables. Shifters assume

no cost in hardware implementation. 71

4.2 Dataflow graph of the ISO/IEC 23002-2 1D IDCT algorithm in the two-operands-

single-assignment form. There are a maximum of 7 stages for minimum granu-

larity. 72

4.3 Methodology to synthesize and optimize non-pipelined CAL actors to pipelined

CAL actors. 78

4.4 The algorithm for register width minimization on set of operator colorings . . . 79

4.5 The algorithm for estimating minimum color from conflict relation 80

4.6 Action pipelining methodology for complex CAL dataflow network. If the action

with the longest combinatorial path is in the trace critical path, then the action

needs to be extracted first before applying the methodology in Figure 4.3. . . . 82

4.7 Actor sample with a single action a. 82

4.8 2-stage pipeline of actor sample with two actions a1 and a2. FIFO interconnec-

tions between the two actors are equivalent to pipeline registers. 83

4.9 Multi-actor implementation of the inverse_quantization actor in Figure 2.3.

The action ac is now contained in the actor AC with a latency of 1. The action

can now be automatically pipelined using the methodology given in Figure 4.3. 84

4.10 Top level network after pipelining the critical actor AC using the automated

pipeline synthesis and optimization tool. The actor AC is now contained in

actors AC_0 to AC_n. 84

4.11 Slice versus throughput for all implementations of the 8x8 1D IDCT. 86

4.12 Frequency versus slice for various pipeline iterations of the MPEG-4 SP decoder.

The details of each iteration is given in Table 4.4. 87

xv

List of Figures

5.1 SDF graph example with actors X, Y, and Z, together with annotations for token

consumption and production. 91

5.2 SAS scheduling using runtime decisions from a non-SAS schedule. 93

5.3 Dataflow process network for generating a monotonically increasing sequence.

The result is an unbounded execution if data driven scheduling is used with

different output rates for g (2) and g (5). 95

5.4 Example of a dataflow process that merges the data on its inputs such that a

monotonically increasing integer sequence is obtained. 95

5.5 Dataflow process network example for which a demand driven scheduling results

in an unbounded buffer size configurations for a deadlock-free execution. . . . 97

5.6 Interconnect architecture of actors in hardware. The firing of an actor (producer)

is determined by the availability of data, and demand from the consumer. . . . 98

5.7 Tcl script to automatically find the close-to-minimum buffer size configuration

using the hardware program execution approach. 100

5.8 Results using the HEM technique on the Decoder_Y and Decoder_U/V of the

MPEG-4 AVC/H.264 decoder case studies. The decoders are simulated for several

iterations until a complete and deadlock-free execution are obtained for the

given buffer size. 105

5.9 Throughput versus buffer size graph for estimated (TURNUS) and actual (Model-

sim) results using the TEM and TEO techniques on the Decoder_Y of the MPEG-4

AVC/H.264 decoder case study. 106

5.10 Throughput versus buffer size graph for estimated (TURNUS) and actual (Mod-

elsim) results using the TEM and TEO techniques on the Decoder_U/V of the

MPEG-4 AVC/H.264 decoder case study. 107

6.1 Generic DPCM/DCT video encoder used in most video coding standards. . . . 112

6.2 Generic DPCM/DCT video decoder used in most video coding standards. . . . 112

6.3 The normative and informative components of the RVC framework. The norma-

tive components are the standard languages used to specify the abstract decoder

model and the standard library of the FU. The informative parts are examples

of tools that synthesize a decoder implementation possibly using proprietary

implementations of the standard library. 113

6.4 I-VOP decoding stages. 116

6.5 P-VOP decoding stages. 116

6.6 Top-level overview of the MPEG-4 SP decoder for the RVC standard. All actors

are atomic, except the Parser as hierarchical networks of actors. 118

6.7 Overview of the main stages in the MPEG-4 AVC/H.264 decoder. 119

xvi

List of Figures

6.8 Top-level overview of the MPEG-4 AVC/H.264 CBP decoder for the RVC standard.

All blocks are atomic actors, except the Parser, inverse Hadamard transform, in-

verse quantization (IQ), and the merger. These represent a hierarchical networks

of actors. 126

7.1 Example of analyzing six design points for Pareto set. The non-dominated points

are {D3,D5,D6}. 131

7.2 Overview of the data analyzer tool to systematically and efficiently evaluate the

design points in the exploration space. 132

7.3 3D plot of frequency, occupied slice, and throughput for MPEG-4 SP decoder

case study. 136

7.4 2D plot of throughput versus slice register for MPEG-4 SP decoder case study.

Dashed lines represent the Pareto frontier with the set {D0, D8, D9, D11, D15,

D16, D18, D19, D20, D21, D29, D30, D32, D33, D34, D35, D36, D37}. 137

7.5 2D plot of throughput versus slice LUT for MPEG-4 SP decoder case study.

Dashed lines represent the Pareto frontier with the set {D0, D8, D9, D10, D11,

D15, D16, D17, D18, D19, D20, D21, D22, D23, D29, D30, D31, D32, D33, D34, D35,

D36, D37}. 138

7.6 2D plot of throughput versus block RAM for MPEG-4 SP decoder case study.

Dashed lines represent the Pareto frontier with the set {D0, D1, D8D9, D10, D11,

D12, D13, D14, D15, D16, D17, D18, D19, D20, D21, D29, D30, D31, D32, D33, D34,

D35, D36, D37}. 138

7.7 2D plot of throughput versus frequency for MPEG-4 SP decoder case study.

Dashed lines represent the Pareto frontier with the set {D0, D1, D2D3, D4, D5,

D6, D7, D15, D29, D30, D31, D32, D33, D34, D35, D36, D37}. 139

7.8 Simplified top-level view of the MPEG-4 AVC/H.264 decoder. The Parser is to be

implemented on a general purpose CPU, while the main decoding components

and the merger on FPGA. 141

7.9 3D plot of frequency, occupied slice, and throughput for the Decoder_U/V com-

ponent of the MPEG-4 AVC/H.264 decoder case study. 142

7.10 2D plot of throughput versus frequency for the Decoder_U/V component of

the MPEG-4 AVC/H.264 decoder case study. Dashed lines represent the Pareto

frontier with all design points D0 to D9 in the set Pareto set. 143

7.11 3D plot of frequency, occupied slice, and throughput for the Decoder_Y compo-

nent of the MPEG-4 AVC/H.264 decoder case study. 147

7.12 2D plot of throughput versus slice LUT for the Decoder_Y component of the

MPEG-4 AVC/H.264 decoder case study. Dashed lines represent the Pareto

frontier with the set {D25,D26,D30D31,D32,D33,D34,D35,D37,D38,D39,D40,D41,

D42,D43}. 149

xvii

List of Figures

7.13 2D plot of throughput versus frequency for the Decoder_Y component of the

MPEG-4 AVC/H.264 decoder case study. Dashed lines represent the Pareto fron-

tier with the set {D0,D1,D2,D3,D4D5,D6,D7,D8,D9,D10,D11,D23,D24,D27,D28,

D29,D30,D31,D43}. 149

xviii

List of Tables
3.1 Results from profiling the original CAL description of the MPEG-4 AVC/H.264 de-

coder. The most critical actor is found to be the half_quarter_interpolation
with almost 70% on the CP executions, followed by the picture_buffer_y with

roughly 23%. 52

3.2 Logical Zeroing results for the intermediate version of the MPEG-4 AVC/H.264

decoder for reducing the overall CP by 15%. It consists of actors, actions, and the

required computational load (CL) reductions. 52

3.3 The subtasks of MPEG-4 AVC/H.264 half (s0, s1, s2) and quarter (s3) pixel inter-

polation for worst-case video block and their complexity in terms of memory

access and arithmetic operations. s0, s1 and s2 can be performed in parallel,

followed by s3. 55

3.4 Fractional sample positions based on Figure 3.8 and their required subtasks

given in Table 3.3. 55

3.5 Results of applying the refactoring and memory optimization techniques on

several actors in the MPEG-4 AVC/H.264 decoder. 66

4.1 CAL operator relative delays. The "+/-" operator is selected as the reference with

delay of 1.00. 73

4.2 Operator mobility for the IDCT with Tst ag e =4. Operator with mobility 0 means

that it can only be scheduled to a single stage, and 1 means that it can be sched-

uled to 2 different stages. 74

4.3 The 8x8 1D IDCT: Exploration of pipeline optimization space for 2, 3, 4, and 7

stage pipeline with asap, alap, best and worst case pipeline schedules. 86

4.4 Logical delay, routing delay, total delay, and maximum frequency after seven iter-

ations of pipelining the MPEG-4 SP decoder. Also shown are the corresponding

actors and actions at each iteration, along with pipeline type, T y pe = 0 for same

actor partitioning, and T y pe = 1 for separate actor partitioning. 88

5.1 Key notations used in the SPIN model. 92

5.2 Time steps from 0 to 9 and the corresponding data written to edges x, y , and z.

Result is based on the process network in figure 5.3. 96

xix

List of Tables

5.3 Comparison of total buffer size and throughput for fixed buffer configuration

b=8197, HEM, and HEO techniques on the Decoder_Y and Decoder_U/V of the

MPEG-4 AVC/H.264 decoder case studies. 106

6.1 Design complexity of the MPEG-4 SP decoder for each actor in terms of the

number of instances, number of FIFO interconnections, number of actions, and

the number of code lines (without blank and comments) in CAL, generated C,

and generated HDL. The total number of FIFOs and actions are normalized to

the number of instances. 117

6.2 Design complexity of the MPEG-4 SP decoder for each network and sub-network

in terms of the number of code lines in XDF (XML), number of instances, and

the total number of lines normalized to the number of instances. 117

6.3 Design complexity of the MPEG-4 AVC/H.264 decoder for each actor in terms of

the number of instances, number of FIFO interconnections, number of actions,

and the number of code lines (without blank and comments) in CAL, generated

C, and generated HDL. The total number of FIFOs and actions are normalized to

the number of instances. 123

6.4 Design complexity of the MPEG-4 AVC/H.264 decoder for each network and

sub-network in terms of the number of code lines in XDF (XML), number of

instances, and the total number of lines normalized to the number of instances. 125

7.1 Design points and the corresponding parameters and criteria for the MPEG-4

SP decoder case study. The units for L AT , F RE , and T HR respectively are clock

cycles per QCIF frame, MHz, and QCIF frames per second. 133

7.2 Specific refactoring for latency applied on the MPEG-4 SP decoder case study.

The unit for latency is clock cycles per macroblock. The techniques are applied

cumulatively from D0/D4 to D3/D7. 134

7.3 Specific refactoring for frequency applied on the MPEG-4 SP decoder case study.

Design points D36 and D37 in Table 7.1 refers to the frequency-reduction technique.135

7.4 Specific buffer size optimization technique for each design point of the MPEG-4

SP decoder case study. 135

7.5 Nadir and ideal objective vectors for each design criteria for the MPEG-4 SP

decoder case study. The units for L AT , F RE , and T HR respectively are clock

cycles per QCIF frame, MHz, and QCIF frames per second. 135

7.6 Performance summary of the original design for the following MPEG-4 AVC/H.264

decoder components: Full decoder, Decoder_Y, Decoder_U/V, and Parser. The

design is implemented on a Xilinx Virtex-5 FPGA (XC5VLX110T), and a general

purpose computer with Intel i7 2.3GHz CPU. The buffer interconnections are as-

signed using the HEO technique. The units for L AT , F RE , and T HR respectively

are clock cycles per QCIF frame, MHz, and QCIF frames per second. 140

xx

List of Tables

7.7 Design points and the corresponding parameters and criteria for the Decoder_U/V

component of the MPEG-4 AVC/H.264 decoder case study. The units for L AT ,

F RE , and T HR respectively are clock cycles per QCIF frame, MHz, and QCIF

frames per second. 142

7.8 Nadir and ideal objective vectors for each design criteria for the Decoder_U/V

component of the MPEG-4 AVC/H.264 decoder case study. The units for L AT ,

F RE , and T HR respectively are clock cycles per QCIF frame, MHz, and QCIF

frames per second. 143

7.9 Design points and the corresponding parameters and criteria for the Decoder_Y

component of the MPEG-4 AVC/H.264 decoder case study. The units for L AT ,

F RE , and T HR respectively are clock cycles per QCIF frame, MHz, and QCIF

frames per second. 144

7.10 Specific refactoring for latency applied on the Decoder_Y component of the

MPEG-4 AVC/H.264 decoder case study. The unit for latency is clock cycles per

macroblock. The techniques are applied cumulatively from D0 to D11. 146

7.11 Specific refactoring for frequency applied on the Decoder_Y component of the

MPEG-4 AVC/H.264 decoder case study. The techniques are applied cumula-

tively from 1 to 5. F = 6 and F = 7 in Table 7.9 refers to the frequency-reduction

technique . 146

7.12 Specific buffer size optimization technique for each design point of the De-

coder_Y component of the MPEG-4 AVC/H.264 decoder case study. 147

7.13 Nadir and ideal objective vectors for each design criteria for the Decoder_Y

component of the MPEG-4 AVC/H.264 decoder case study. The units for L AT ,

F RE , and T HR respectively are clock cycles per QCIF frame, MHz, and QCIF

frames per second. 147

7.14 Attributes of four of the largest devices in the Virtex-5 FPGA family. 148

7.15 Values of several design criteria for various throughput requirements in the

combined Decoder_Y and Decoder_U/V exploration space. 150

7.16 Comparison of the present work with similar works in literature for MPEG-4 SP

decoder implementation. The present work is shown for two design points in

the case of minimum and maximum throughput design. 151

7.17 Comparison of the present work with similar works in literature for MPEG-4

AVC/H.264 decoder implementation. The present work is shown for two design

points in the case of maximum and minimum throughput design. 152

xxi

1 Digital systems design and implemen-
tation: state-of-the-art

Digital systems and devices nowadays are prevalent in almost all aspects of everyday life: from

consumer electronics such as mobile phones, digital television, and personal computers, to

specialized electronics such as those used in industrial process, medicine, and transportation.

One of the major tasks behind these digital systems is the processing of signals characterized

by discrete symbols, usually by a mathematical manipulation to achieve a certain objective or

functionality. Systems that mainly perform this process are known as Digital Signal Process-

ing (DSP) systems, where the figure of merit or quality is typically defined by three criteria:

throughput, power, and resource. In mobile electronics for example, high throughput system

equates to high performance device; low power means longer battery life; and low resource

translates to low cost. Since the past few decades, the goal has always been to improve these

criteria by optimizing the algorithm and/or architecture of the design with some target objec-

tives and specified constraints. The optimization process typically begins with design analysis

and profiling to detect system bottleneck; followed by the task of improving a given criteria by

some design modifications that may (or may not) affect another criteria. The exploration and

evaluation of different design alternatives during the optimization process is called the Design

Space Exploration (DSE).

The quality of DSP systems also depend on the implementation platform. Software platforms

with limited processing cores and generally high operating frequency may not offer the best

combinations of performance and power compared to hardware platforms. On the other hand,

hardware designs are not always easy and known to be time consuming to develop, which

do not bode well with the ever increasing algorithm complexity and the decreasing time-to-

market. With the quest to achieve close to ideal electronic devices in the shortest amount

of time, the trend today is to exploit the synergism of software and hardware through their

concurrent designs, also known as co-designs [91]. This means that system implementations

involve both software and hardware platforms that are designed to run in parallel, with their

synchronization and communication using the relevant interfaces. This is otherwise known

1

Chapter 1. Digital systems design and implementation: state-of-the-art

as software/hardware heterogeneous implementation. In this chapter, the state-of-the-art in

specifying and implementing heterogeneous digital systems is presented, first using imperative

languages, then using high-level of abstraction, and finally a concluding remark based on

these methodologies.

1.1 Design methodology with imperative languages

Figure 1.1 depicts a classical design flow for performing software/hardware co-design and

implementation. It is divided into six different stages. In stage-1, the overall design architecture

is conceptualized at a high level of abstraction, either manually or using a dedicated platform-

independent models such as UML and SysML ([28], [19]). Some of these models also allow

simulation and profiling, where results can be used for model refinements. Once this top-level

architecture is defined, the system can be mapped and partitioned into software and hardware

parts in stage-2. This can also be performed manually or automatically based on some design

criteria and attributes such as parallelism potential and complexity. In stage-3, the relevant

parts are further refined to obtain a suitable architecture for a given platform. During this stage,

the design language is chosen, and the specification is studied in detail for implementation. In

stage-4, the design is coded in the chosen language, typically using imperative languages such

as C/C++/Java and VHDL/Verilog respectively for software and hardware implementation.

Once the design is completely specified, the next step is the compilation process in stage-5.

For software designs, the compilation process begins with the pre-processing of the included

header files and symbolic constants. This generates the so-called expanded source code that

goes through the assembler for generating the assembly language for the platform. The

assembly language specification is then assembled into object code. The final step is to link

all the object codes in the program (and the library functions) to produce an executable file

that can be run on a microprocessor. As for hardware designs, the compilation process (also

known as RTL synthesis), begins with the analysis and translation of the program code from

behavioral or structural description to a gate-level representation. This representation is then

further refined to use platform specific gates and devices. For reconfigurable hardware or

FPGAs, the next step is the place and route process for the selected device, followed by the

generation of the bit stream for physical implementation. For custom hardware or ASICs,

an additional step of floor-planning is required before place and route, followed by a layout

process that can either be done manually or automatically. The layout is typically extracted as a

GDSII file that represents among others, the geometric shapes and text labels. This file is given

to the foundry for fabrication. In both FPGAs and ASICs, the final result is a custom hardware

block on the device that can be executed using relevant input stimulus. Note the difference

between software and hardware implementation: software design executes a sequence of

instructions using an existing hardware (i.e. microprocessor), while hardware design creates a

2

1.1. Design methodology with imperative languages

new specific hardware block for the design or function.

The final stage-6 is where the software and hardware designs are physically implemented

and verified on the platform. During this stage, the relevant communication interfaces are

also developed to synchronize the operations between the different platforms. The design

is first verified for correct operation individually for each platform, and then co-verified for

heterogeneous platforms. If all aspects of the design are satisfied, then the design can be

documented and delivered. However, if the program behavior is incorrect and/or the required

performance are not met, then the designer may 1) reiterate the design process at the design

entry (stage-4) by debugging and optimizing the code, and/or 2) modify the high level design

architecture (stage-1), by exploring different mapping and partitioning schemes (stage-2), and

different platform-dependent architecture (stage-3).

It should be noted that this classical systems design methodology is a tried and tested method,

and possibly the most common way today of specifying and implementing digital systems.

The imperative C and Verilog/VHDL programming languages respectively have also been

around since the 1970s and 1980s. For this reason, the compilation tools have matured and

proven to be very efficient. Many practical designs from various application domain have

been successfully implemented using this methodology. The main reason for the efficiencies is

the nature of the imperative languages that are generic, and their low level of abstraction that

provides very high level of details and controls. This is in fact, both an advantage and limitation.

The advantage is that designs can be implemented in almost infinitely different ways. The

drawback is that for substantially complex designs, there are too many implementation details

to consider that makes the use of imperative languages less productive, especially in the case

of hardware languages.

DSP algorithms and systems are getting increasingly complex with the incorporation of higher

functionality and/or quality by means of more advanced algorithms. This is evident for

example in video codecs, where the successive standards have shown to be significantly more

complex in order to support more advanced features. The result of this higher complexity is a

better compression ratio with superior subjective and objective quality. The trend of higher

design complexity is also evident in other DSP application domains such as in communication

systems, image processing, and cryptography. As pointed out however, the main drawback of

using classical design methodology is when the design is very complex. Therefore, we make

the following assertion: In time, it can be argued that the classical design methodology may

no longer be feasible to be used as DSP systems are becoming more and more complex.

Besides this major drawback, there are other limitations of using imperative languages for

current and future DSP systems, summarized as follows:

• Lower degree of analyzability. Imperative design languages are widely used due to their

3

Chapter 1. Digital systems design and implementation: state-of-the-art

Application Model
(SysML)

Platform Architecture

C/C++
Compiler

HDL
Synthesizer

EXE BIN

C/C++
Compiler

HDL
Synthesizer

EXE BIN

Interface

Code Entry
(C/C++/Java)

Code Entry
(VHDL/Verilog)

Simulation &
Profiling

Mapping
& Partitioning

Model
Refinement

Design
Definition

Design
Definition

1-Application
and architecture
model

2-Simulation, co-
verification and
profiling

3-SW/HW
Space
exploration

4-Design
definition and
entry

5-Compilation
and synthesis

6-Co-design or
individual
execution

Figure 1.1: Design flow of classical software/hardware co-design and implementation using
imperative languages. Note that design definition and entry in stage-4 is platform dependent.

4

1.2. Design methodology with high-level languages and models

flexibility to model any generic design. Because of this, imperative programs are also

more difficult to analyze for bottlenecks and optimizations, especially for an automated

approach.

• Platform dependent. Software specification of a program cannot be used directly for

hardware implementation and vice versa. In order to explore wide range of partitioning

schemes, a system has to be designed in its entirety for each platform, which increases

development time and cost.

• Do not explicitly expose parallelism. This is especially true for software implementa-

tion languages, where it is known to be difficult to specify and model parallelism in

the program, whereas current and future implementation focus on utilizing multi- and

many core processors.

• Slow design cycle. This is especially true for hardware implementation languages, where

design specification is known to be slow and tedious. With the ever decreasing time-to-

market, future systems and devices have short lifetime, and new designs are asked to be

released as quick as possible.

• Scalability is becoming more challenging. Due to the flexibility of imperative design

languages, there is often too much low level components and features that have to

be controlled. For DSP systems that focus mainly on data processing, the additional

controls (and sometimes unnecessary) make it challenging to scale for future designs.

1.2 Design methodology with high-level languages and models

Due to some of the limitations of implementing modern heterogeneous DSP systems using

imperative languages as discussed in the previous section, many high-level languages and

models have emerged, one of which is the CAL dataflow language used in this work. The

following reviews other design languages and models that are used as an alternative to the

imperative languages.

1.2.1 SystemC and C

Perhaps the most widely used specification for software/hardware co-design and simulation

is SystemC [94]. It aims to establish a common design environment consisting of C++ libraries,

models and tools, for both software and hardware parts of the design. SystemC enables

design specification at various level of abstraction from system, to behavioral, and to RTL

level. In SystemC co-design and simulation methodology, software designs remain the same

in C++ specification; hardware designs on the other hand utilize the SystemC class library

supported by the Open SystemC Initiative (OSCI), which provides the implementation of

5

Chapter 1. Digital systems design and implementation: state-of-the-art

SystemC Models
 - System level
 - Behavioral model
 - RTL level

SystemC Models
 - System level
 - Behavioral model
 - RTL level

SystemC
Testbenches

SystemC
Testbenches

C++ compiler
SystemC

Class library

Executable
(simulator)

C++ Debugger

Trace Files

Waveform
Display

Figure 1.2: SystemC simulation methodology for hardware part of design. SystemC models
and testbench can be compiled using a standard C++ compiler, and can then be simulated
either using a standard simulator, or a waveform display tool.

hardware specific objects such as concurrent and hierarchical modules, ports, and clocks. It

also contains a lightweight kernel for scheduling processes. The systemC hardware model

written by a designer, along with the testbench, can be compiled using a standard C++ compiler

(with the OSCI library). In addition to simulating the design using a standard C++ debugging

environment, trace files can also be generated to view signals using a standard waveform

display tool. Figure 1.2 illustrates this systemC hardware design and simulation methodology.

A higher level approach that is typically used with SystemC is called the Transaction Level

Modeling (TLM) [41]. It raises the level of abstraction one step above SystemC and features

a discrete-event model of computation. In TLM, the details of communication among com-

putational components are separated from the details of the computational components.

Communication is modeled by channels, while transaction requests take place by calling

interface functions of these channel models. TLMs speed up simulation and allow exploring

and validating design alternatives at a higher level of abstraction. The use of TLM typically

6

1.2. Design methodology with high-level languages and models

coincides with the SystemC model specification that is synthesizable to RTL for hardware

implementation. The generated RTL code from SystemC however, are not nearly as efficient

as manual specification. For these reasons, hardware design is still mostly implemented using

RTL languages, but with rapid functional verification using systemC and TLM.

While systemC and TLM are mainly used today for systems verification, there has been an

intensive research for synthesizing C to RTL for quite sometime. This again exploits the

commonality of specification languages for both software and hardware parts for higher degree

of co-design productivity. There is a large variety of system design tools and methodology that

use C programs for generating hardware code, for example the GAUT tool from LabSTICC [86]

and the Spark framework [49]. There is also a strong interest from major vendor industries

such as those from Altera (C2H [9]), Xilinx (Vivado HLS [11]), and Mentor graphics (Catapult C

[5]). Figure 1.3 illustrates a design flow for Catapult C that is capable of synthesizing C++ and

SystemC description into RTL for simulation and implementation (other tools follow similar

design flow). However, as pointed out in [90], synthesizing C model to hardware is still a

formidable task due to the following: 1) dynamic memory allocation cannot be casted to hard-

wired circuits, 2) pointer resolution in hardware is difficult, if not impossible, 3) C programs

were originally conceived for uni-processor sequential execution, which does not translate

well to concurrent processes in hardware, 4) the specification of hardware circuits entail some

structural information which is missing in C specification, and 5) detailed timing information is

missing, which is important in hardware for performance and interface requirements. While C

program is convenient and productive for co-designs due to the absence of HDL specifications,

these issues may limit the performance that can be achieved for such system.

1.2.2 Synchronous languages

As an alternative to C language based methods, another important class of high-level design

language is called the synchronous language. It is in fact a language designed to program

reactive systems, i.e. systems which maintain a permanent interaction with their environment.

This includes applications in automatic process control, monitoring, and signal processing.

The difference with imperative languages is the use of the following abstraction: 1) operators

react instantaneously with their inputs, i.e computations have zero duration, and 2) time is just

a succession of events, i.e. no explicit reference to a notion of physical time. The advantage

is that it permits a high level modular programming style that is simpler and more rigorous

for manipulation. Some of the variant of this class of language allows the synthesis of its

description to both software and hardware implementation languages, for example in the case

of the first of such language, called Esterel [1]. While Esterel adopts an imperative language

style, other variants such as Signal [21] and LUSTRE [51] adopt a dataflow based architecture.

The key feature of synchronous languages is the design abstraction that allows programmers

7

Chapter 1. Digital systems design and implementation: state-of-the-art

C++/SystemCC++/SystemC

Calypto
Catapult®

Scheduling

DPFSM

Analysis

DPFSM

RTL Generator

Interface S
ynthesis

RTL Synthesis

ASIC/FPGA

Functional
simulation

Cycle-accurate
simulation

RTL
simulation

Gate
simulation

C
onstraints

Figure 1.3: Design simulation and implementation flow from C++/SystemC to RTL using
Catapult C. DPFSM in the interface synthesis stands for the Datapath Finite State Machine.

8

1.2. Design methodology with high-level languages and models

to think of their programs as reacting instantaneously to external events. The hypothesis also

assumes that programs are able to react to an external event, before any further event occurs.

This is in contrast to interactive systems, which interact continuously with environments that

possess synchronization capabilities such as in operating systems. This is also in contrast to

transformational systems, whose data are available at the beginning, and which provide results

when terminating such as the case in DSP applications of video compression and multimedia

processing. While synchronous language provides a good design abstraction for control-

dominated systems, the semantics are still quite limited when it comes to programming

data-dominated DSP applications.

1.2.3 Pre-configured blocks and templates

Another design method consists of describing design architectures using pre-defined tem-

plates. It offers the advantage of using a well defined and pre-configured IP blocks that can

lead to optimized and efficient code generation for implementation. Using this methodology,

designers could rapidly specify a component from a library of IP blocks, and may integrate

and specify custom blocks (that do not exist in the library) using RTL languages and other

models. Examples of such method include the work of Lahiri et. al [73], the PICO framework

[20], and simpleScalar [117]. There also exists some commercially available tools such as

AccelDSP [6] from Xilinx , DSPBuilder [8] from Altera ,and SPW [3] and Cocentric System

Studio [4] from Synopsys. Some of these tools could also be integrated with MATLAB and

Simulink from Mathworks [10], and provide a subset of synthesizable constructs to RTL for

hardware implementation. Figure 1.4 illustrates an example of such design methodology for

the case of using Xilinx System Generator with design input from Simulink, DSP blockset, or

CoreGen for automatically generating synthesizable RTL description. The RTL description

can then be used directly for hardware simulation and implementation. Other design tools

follow roughly the same methodology. While these models have proven to be efficient in

their own right, frequently the designers still have to utilize low level RTL codes for some

specific functions. Furthermore, the methodologies are not standardized and some are quite

specific to a particular vendor/framework, which thus requires deep knowledge of the set of

tools and their appropriate usage. They also lack a formal high-level representation and the

semantics of the processes within the blocks and the associated model for the flow of data.

Dataflow programming models overcome these issues by formally defining the way processes

are executed and how the processing nodes interact with each other.

1.2.4 Dataflow programming models

Dataflow programming models have a rich history dating back to at least the early 1970s,

including the seminal work by Dennis [31] and Kahn [67]. Such model can be represented as a

9

Chapter 1. Digital systems design and implementation: state-of-the-art

Develop Executable
Spec in Simulink

Develop Executable
Spec in Simulink

Automatic RTL
generation

Develop System
Generator representation

Develop System
Generator representation

System
Generator

Xilinx DSP
blockset

Xilinx
CoreGen

Xilinx
Implementation flow

Download to
FPGA

Testbench
generation

Testbench
generation

RTL verification
with modelsim

Figure 1.4: Design methodology for automatically generating synthesizable RTL description
from Simulink, DSP blockset, and CoreGen using Xilinx System Generator. The generated RTL
description can be used directly for hardware simulation and implementation, thus relieving
the need to manually specify programs in RTL.

10

1.2. Design methodology with high-level languages and models

directed graph with nodes as concurrent processes and edges as interconnections through

a uni-directional FIFO, also known as the Kahn Process Network (KPN). A special case of

KPN is called the Dataflow Process Network (DPN) [77], where the processes are divided into

repeated actor firing that defines an execution of a quantum of computation. This reduces

the considerable overhead of context switching that incurs in KPN. However, DPN is a generic

model of computation whereby the processes could not be scheduled at compile time, and the

required bounds for the FIFO interconnections cannot be determined statically. The reason

for this is because the execution order typically depends on the input values. Different values

could change this order, and therefore may require different bounds. A special case of DPN

that overcomes these issues is called Synchronous Dataflow (SDF) [76], in which the number of

data samples produced or consumed by each processing node on each invocation is known a

priori. Using this model, execution order is static, regardless of the input values. An extension

to SDF is called the cyclo-static dataflow (CSDF) [26], where an actor contains finite cycles for

different sequence of firing. SDF and CSDF are highly analyzable due to their static nature, but

trades-off with the high expressive power (i.e. flexibility) of DPN. The different variations of

dataflow model is often referred to as the Model of Computation (MoC). One common property

across all of these dataflow models is that individual actors encapsulate their own state, and

thus do not share memory with one another. Instead, actors communicate with each other

exclusively by sending and receiving tokens along the channels connecting them.

The concept of actors as processing nodes was first introduced in [53] as means of modeling

distributed knowledge-based algorithms. It proposes an approach where the whole system

acts as a society of communicating knowledge-based problem-solving experts. These experts

can be further decomposed into actors at the lowest granularity level. The actors are objects

that interact purely in a local way by sending messages to one another. Actors have since

then been evolved over time, and also widely used, especially in embedded systems, where

actor-oriented-design (AOD) is a natural match to the heterogeneous and concurrent nature of

such systems. The interface of an actor is defined by ports and parameters, with the precise

semantics of dataflow actors depend on the MoC, but conceptually, it represents signaling

between components. This is in contrast to object-oriented-design (OOD) using software

imperative languages, which emphasizes inheritance and procedural interface. Figure 1.5

depicts the difference between AOD and OOD, taken from [29]. It is clear from this figure that

AOD explicitly abstracts parallelism among the actors, whereas OOD is viewed as a purely

sequential call to class methods.

11

Chapter 1. Digital systems design and implementation: state-of-the-art

Figure 1.5: Actor-oriented-design versus object-oriented-design.

The following reviews some of the available tools and languages for modeling dataflow-based

(primarily actor-oriented) digital systems, along with their strengths and limitations.

Ptolemy-II framework. One of the most long-running efforts on modeling, simulation, and

design of embedded systems using dataflow and actor-oriented architecture is the Ptolemy

project [34]. The core of the project is a heterogeneous simulation and design environment

supporting multiple models of computation, which started with Ptolemy classic, and later

evolved to Ptolemy II. In Ptolemy II, the semantics of a model is not determined by the

framework, but by a software component in the model called the director, which implements

a model of computation. A major emphasis of the project has been on understanding the

heterogeneous combinations of models of computation realized by these directors. One of the

main goals is to build frameworks that help deep understanding of the different domains in

embedded systems applications, and their implication on analysis and code generation.

PeaCE framework. PeaCE [50] is an acronym for Ptolemy extension as Codesign Environment.

It aims to extend the original Ptolemy project with the following objective: a design framework

common to all system level design activities, which include specification, cosimulation, design

space exploration, interactive partitioning, synthesis of software, hardware, and their interface.

Figure 1.6 depicts the design flow for PeaCE. The essential part here is that dataflow and

architectural specification is specified only once at high level, with manual partitioning and

scheduling, and automatic software and hardware code generation for implementation. The

dataflow specification for PeaCE is restricted to SDF for obtaining a deterministic program.

In order to improve design flexibility, the SDF model is extended to enable control structures

12

1.2. Design methodology with high-level languages and models

Dataflow SpecificationDataflow Specification Architecture SpecificationArchitecture Specification

Partitioning/SchedulingPartitioning/Scheduling

SW
C code generation

HW
VHDL code generation

Node-PE
Performance DB

Node-PE
Performance DB

Co-
simulation

Satisfied?

System
Prototyping

SW subgraph, schedule

System Performance

No

Yes

HW subgraph, schedule

C code VHDL code

Figure 1.6: Systems design methodology using the PeaCE framework.

defined by FSM inside SDF vertices. This however, still imposes a restriction on complex

systems designs compared to using a generic DPN. The PeaCE framework also does not report

any formal language or semantics for specifying the dataflow actors and networks, but rather

based on a graphical representation of the system. Furthermore, the current state of the work

mainly focuses on software code generation for multi-processor system-on-chip (MPSoC)

([74], [65]). As for hardware code generation, it has not been shown to be efficient compared

to other design methodologies, and also not been demonstrated to support a wide range of

complex design cases.

StreamIt language. StreamIt [118] is a formal dataflow programming language and a compi-

lation infrastructure, specially engineered for modern streaming systems. It is designed to

facilitate the programming of large stream applications, as well as their efficient mapping to

a wide variety of single- and multi-core processors and clusters of workstations. Similar to

the PeaCE framework, it aims to use SDF as its model of computation. In order to increase

design flexibility, it introduces novel constructs such as structured streams, parameterized

13

Chapter 1. Digital systems design and implementation: state-of-the-art

data reordering, and teleport messaging. Recent work in [113] also presents a hybrid static-

dynamic scheduler that strikes the right balance between the expressivity in dynamic actors

and the performance of static actors. StreamIt however, focuses exclusively on software imple-

mentation from high-level stream programs, and currently does not support any hardware

implementation.

COMPAAN/LAURA. The tools COMPAAN [71] and LAURA [126] have been developed sepa-

rately, with the former as a tool to compile imperative programs in MATLAB into a concurrent

representation in KPN, and the latter as a tool that takes in a KPN representation and compiles

it into a synthesizable RTL. COMPAAN starts the transformation process by converting a

MATLAB specification into a single-assignment-code (SAC) specification that describes all par-

allelism available in the original program. This results in a data structure representing a graph

with dependencies, used to create a KPN representation that can be analyzed and simulated

using the Ptolemy II framework. The KPN to RTL synthesis tool LAURA also supports the use

of IP cores for MATLAB functions defined in the original program. The design methodology

is illustrated in Figure 1.7 with the three step process from specification to implementation

using COMPAAN, LAURA, and commercial RTL synthesis tools. The methodology however,

have only been verified for simple design cases such as the DCT and the QR factorization

algorithms, and similar to the PeaCE framework, does not guarantee efficient implementation

for substantially complex design cases. Furthermore, this approach still uses a variation of the

imperative languages, which have been discussed has severe limitation in generating efficient

RTL codes.

1.3 Conclusion

In this chapter, several state-of-the-art systems design methodology have been discussed,

where for each one, their strengths and limitations were presented. We started with the design

methodology using imperative languages of C/C++ and Verilog/VHDL, and pointed out its

main drawback of implementing very complex applications, among others. Although this

methodology allows full range of details and controls, design productivity greatly diminishes

as applications become more and more complex. For this reason, there is a trend of using

high-level of abstraction design methodology, where several variations and approach were

discussed, including the use of SystemC and C, synchronous languages, pre-configured blocks

and templates, and dataflow programming models. The C programming language approach

exploits common specification for both software and hardware parts, but suffers from the dif-

ficulty of synthesizing to efficient RTL codes for hardware implementation. The synchronous

language approach defines new language semantics, but more suited to a control-dominated

signal processing applications. Using pre-configured IP blocks may result in efficient im-

plementation, but suffers from the constraints of the architecture to a given class. Finally,

14

1.3. Conclusion

Applications in MatlabApplications in Matlab

COMPAAN

IP Cores

Laura

VHDL SimulationVHDL Synthesizer

Commercial Tools

FPGA Implementation

Quantitative
results

Kahn
Process
Network

Synthesizable
VHDL

Figure 1.7: Systems design methodology using the tools COMPAAN and LAURA.

dataflow programming models are seen to be efficient for a large class of data-dominated

signal processing applications, but the currently available tools and techniques have some

limitations as follows: the Ptolemy II framework is mainly developed to explore different

models of computation and not used for implementation; the PeaCE framework lacks a formal

language, focuses more on MPSoC implementation, and is still lacking in hardware synthesis

and implementation; the StreamIt language focuses solely on single- and multi-core proces-

sors; and the COMPAAN/LAURA have issues in generating efficient hardware code due to the

use of a variation of an imperative language.

The CAL dataflow language used in this work was created at around the same time as the

other dataflow programming tools and languages: PeaCE, StreamIt, and COMPAAN/LAURA,

but offers a different approach to the design and implementation of DSP systems. While

15

Chapter 1. Digital systems design and implementation: state-of-the-art

others support only SDF model of computation, or the generation of KPN from another

representation, CAL allows the explicit specification of the three major dataflow model of

computation: SDF, CSDF, and DPN. In the next chapter, a new systems design methodology

using CAL is presented for the complete software/hardware co-design flow from specification

to implementation, with analysis, synthesis, optimization, and space exploration.

16

2 Design methodology with CAL
dataflow programming

CAL is one of the domain-specific dataflow programming languages, designed to raise the level

of abstraction in the design and implementation of DSP systems. It is based on the concept

of actors, and was created as part of the Ptolemy project. The final language specification

was released at the end of 2003 [33]. Since then, the design methodology, framework, and

tools have actively been developed with the purpose of providing a complete software/hard-

ware (SW/HW) co-design flow from specification to implementation, together with program

analysis, optimization, and space exploration. This chapter presents such a design flow with

developments on the associated tools and techniques at each main stage of the flow.

Figure 2.1 depicts a proposed design flow for SW/HW co-design and implementation with CAL

dataflow programming [23]. It is divided into six main stages. The first stage is the specification

stage, where the platform architecture is defined (CPU, FPGA, GPU, etc.), and the application

is coded using the platform-agnostic CAL language (Section 2.1). This means that the same

specification can be used for any target platform. The second stage is where this high-level

specification in CAL is functionally verified with a platform-independent simulator. During

this stage, programs can be profiled statically for complexity, and/or dynamically for longest

path in the network (Section 2.4). This allows the detection of bottlenecks early in the design

process. In the third stage, the design can be 1) refined by modifying the architecture of the

critical actors and actions obtained from profiling, called refactoring, and 2) mapped and

explored for various combinations of software and hardware partitioning. For software part,

the design can also be explored for different multi-core or many-core processor scheduling

and partitioning (Section 2.2).

The fourth stage is the code generation stage. For a given CAL program, the software part

and hardware part of the design respectively can be sent for synthesis to imperative C/C++

and HDL languages (Section 2.3). For co-design and implementation, the relevant interfaces

are also required to interconnect the different platforms, typically coded manually using

17

Chapter 2. Design methodology with CAL dataflow programming

Platform specific
profiling information

Application Model
(CAL)

Platform Architecture

C/C++
Compiler

HDL
Synthesizer

EXE BIN

C/C++
Compiler

HDL
Synthesizer

EXE BIN

Interface

CAL to C/C++ CAL to HDL

Simulation &
Profiling

CAL Mapping
& Partitioning

CAL program Platform specification (XML)

CAL program

CAL program CAL program

C program HDL program

C program HDL program

CAL
Refactoring

CAL program

Platform specific
profiling information

1-Application
and architecture
model

2-Simulation, co-
verification and
profiling

3-SW/HW
Space
exploration

4-Code
generation

5-Compilation
and synthesis

6-Co-design or
individual
execution

Figure 2.1: Design methodology for SW/HW co-design and implementation using CAL
dataflow programming.

imperative languages. In the fifth stage, the imperative language specifications can be com-

piled/synthesized using standard tools to obtain software executable and hardware binary files

for physical implementation (Section 1.1). In the final stage six, the design can be verified both

individually and as co-platforms. If the final design implementation behaves correctly with

the required performance, then it can be documented and delivered. If not, the design can be

refined at the CAL specification stage, with or without platform specific profiling information

obtained from stage six (Section 2.5).

There are several notable advantages of using this methodology compared to the classical

methodology given in Figure 1.1. First, the use of high-level dataflow specification allows

higher degree of program analyzability, explicit parallelism, and fast design cycle compared to

coding using imperative languages. Second, design entry is platform independent and can be

18

2.1. CAL dataflow language

utilized for any implementation platform. The ability to enter a design only once1 undoubtedly

would increase design productivity where a design does not have to be coded in its entirety

for each platform for exploring the partitioning space. Third, platform dependent design

optimizations can be performed at the highest abstraction level, which would result in rapid

exploration of design alternatives. Moreover, with optimizations performed mainly on the

architectural level of the design, larger improvement gains can typically be achieved compared

to low-level optimizations.

2.1 CAL dataflow language

The CAL dataflow language supports dataflow specification using the generic DPN, as well as

its subset of SDF and CSDF, thus presenting a wide range of design trade-off between flexibility

and analyzability. It directly captures the description of actors as making discrete steps enabled

by several conditions on the state of the actor, and the availability of input tokens. As depicted

in Figure 2.2, a CAL dataflow network can be represented by a directed graph G(A,F), where A

and F respectively are the actors and channels in the network. Each actor a ∈ A contains a set

of actions Ta , where each action τ ∈ Ta consists of a firing rule and a firing function. The firing

rule determines when the action could fire, which depends on the following conditions:

1. Availability of input tokens. If an action has input port(s), then the action is fired if and

only if there are sufficient data tokens on the input channel(s)

2. Guard conditions. If an action has a guard condition, then the action is fired if and only

if the guard condition satisfied.

3. Actor scheduler. If an actor contains a finite state machine scheduler, then an action is

fired if and only if the action is in the current firing state of the actor.

4. Priorities. If an actor contains a priority definition for a given action, then the action is

fired if and only if the priority condition is satisfied.

5. Availability of output space2. If an action has output port(s), then the action is fired if

and only if there are sufficient space on the output channel(s).

It should be noted that action firing can be non-deterministic, i.e. more than one action can

be enabled at a given time. This can be resolved by appropriate specification of guards and/or

priority conditions. The firing function determines how action(s) are executed when they are

satisfied by the firing rule, by performing the following steps:

1 different platforms may require different coding style
2This condition is not defined in the language specification, but required for practical design simulation.

19

Chapter 2. Design methodology with CAL dataflow programming

Figure 2.2: CAL dataflow network example. Actors are interconnected by FIFO buffers. Each
actor contains a guarded atomic action and an encapsulated state.

1. If the action has input port(s), then it first reads and consumes the input tokens from

the input channel(s).

2. If available, the algorithm in the action body is executed. If the algorithm contains

access to state variables, then the state variables are updated during this step.

3. If the action has output port(s), then it produces the output tokens on the output

channel(s).

4. If the actor contains a finite state machine scheduler, then it modifies the state of the

actor to the next action firing state.

A dataflow network in CAL typically consists of several interconnected actors, and is repre-

sented by a network file that specifies the list of actors, parameters, and interconnections with

their corresponding sizes. Each actor is described by the formal CAL dataflow language, with

an example given in the next subsection.

2.1.1 CAL actor example: inverse quantization

In order to further illustrate actor modeling with CAL, Figure 2.3 shows an example of a CAL

actor for the inverse quantization function used in the MPEG-4 simple profile decoder. The

structure is as follows. It contains three input ports DC, AC, and QP, and one output port OUT.

It also contains three actions dc, ac, and done, with the latter containing a guard condition

of count = 63. The actor also contains a finite state machine definition that begins with the

20

2.2. Mapping and partitioning CAL programs

state st_dc that first verifies that the firing rule for the action dc is satisfied, and then fires the

action using its firing function. The actor then goes to the next firing state st_ac, where action

selection between done and ac is selected based on the priority condition done > ac. This

means that if the firing rules for both done and ac are satisfied, then the scheduler would select

the done action due to the higher priority. In this case, the action ac is fired when the value

of the state variable count is less than 64. The firing of the ac and done actions respectively

cause the next firing state to be st_ac and st_dc. This process of selecting and firing an action

at every discrete step repeats forever as long as the firing rule of at least one action is satisfied.

It is clear from this example that the actor is specified at a high-level of abstraction; the algo-

rithm in the body of the action ac is mainly concerned with the mathematical manipulation

of the values of the variables for processing. There is no register inference or gate-level control

and operation as typically required for low-level RTL specification. This simplifies the design of

complex systems such that the focus can be made solely on processing the algorithm without

having to worry about the low level implementation details.

2.2 Mapping and partitioning CAL programs

The task of mapping and partitioning CAL programs for heterogeneous implementation can

be divided into two phases: 1) SW/HW partitioning for determining the optimum mapping

of a CAL program to software and hardware parts of the design for a given set of objectives

and constraints; and 2) SW partitioning and scheduling respectively for assigning actors

to processor cores and determining the order of execution of the actors assigned to the

cores. Note that for HW implementation, partitioning and scheduling are not relevant since

each action is assigned to its own dedicated resource with a self-scheduling based on the

input tokens and the actor scheduler. In other words, the way hardware implementation is

“partitioned and scheduled” depend entirely on the design architecture. The following reviews

the two phases of SW/HW and SW mapping and partitioning.

2.2.1 SW and HW partitioning

The choice of selecting SW or HW platforms for different parts of the design specification

mainly depends on the design requirements. This includes criteria such as throughput, re-

source, power, temperature, etc. Different SW/HW partitioning schemes may result in different

evaluation of the criteria; the problem then reduces to finding the best SW/HW partitioning

scheme for a given design that optimizes one or more of these criteria. For substantially

large and complex designs, there could be many design alternatives that can be explored

and evaluated for all possible partitioning schemes. Finding the global optimum solution is

certainly not trivial, and in some cases, may not even be possible.

21

Chapter 2. Design methodology with CAL dataflow programming

1 actor inverse_quantization (i n t Q_SZ , i n t S_SZ)
2 i n t (s i z e =S_SZ) DC, i n t (s i z e =S_SZ) AC, i n t (s i z e =Q_SZ) QP / / inputs
3 ⇒
4 i n t (s i z e =S_SZ) OUT : / / output
5

6 / / s t a t e variables
7 i n t quant ;
8 i n t round ;
9 i n t count ;

10

11 / / action−1
12 dc : action QP: [q] , DC: [i] ⇒ OUT: [i]
13 do
14 quant := q ;
15 round := ((q & 1) ^ 1) ;
16 count := 0 ;
17 end
18

19 / / action−2
20 ac : action AC : [i] ⇒ OUT: [outp]
21 var
22 i n t v , i n t o , i n t outp
23 do
24 i f (i < 0) then i := − i ; end ;
25 v := (quant * ((i << 1) + 1)) − round ;
26 i f (i = 0) then o := 0 ;
27 else
28 i f (i < 0) then o := −v ;
29 else o := v ;
30 end
31 end
32 i f (o < −2048) then outp := −2048;
33 else
34 i f (o > 2047) then outp := 2047;
35 else outp := o ;
36 end
37 end
38 count := count + 1 ;
39 end
40

41 / / action−3
42 done : action ⇒
43 guard count = 63
44 end
45

46 schedule fsm st_dc :
47 st_dc (dc) −−> st_ac ;
48 st_ac (done) −−> st_dc ;
49 st_ac (ac) −−> st_ac ;
50 end
51

52 p r i o r i t y
53 done > ac ;
54 end
55 end

Figure 2.3: The inverse_quantization actor used in the MPEG-4 simple profile decoder.

22

2.3. Synthesizing CAL programs

There have been numerous attempts to explore design alternatives with different SW/HW par-

titioning. For example in Vulcan [48], the idea was to start with a hardware-only solution and

then migrate as many tasks as possible to software while satisfying the performance criteria.

The objective here is to reduce design cost by reducing the required hardware resource. In

contrast, the Cosyma [36] design system starts with a software-only solution and the subse-

quent migration of tasks to hardware in order to satisfy performance constraints. It should be

noted that these are early works where it is assumed that the CPU and ASIC worked mutually

exclusively. In a more recent approach using high-level synthesis (SystemCoDesigner [69],

SoCDAL [14]), the approach is to synthesize a high-level specification of the design to both SW

and HW as component “library” blocks that can be mixed and matched for implementation.

This library also contains other IP cores such as CPU and memory elements as well. By having

all these components in the library, a specific exploration method searches the design space

for the optimum solution based on the required design criteria. As for the SW/HW interface,

these works provide an automated interface generation based on the selected partitioning.

However, despite these efforts, manual partitioning of the application on SW and HW remains

a practical approach for embedded systems based on the expertise and knowledge of the

designer in comparison to the automated tools [107]. This is the approach taken in this thesis.

2.2.2 SW partitioning and scheduling

The problem of partitioning and scheduling a dataflow graph onto architecture with multiple

processing elements (i.e. processor cores) is known to be NP-complete. Therefore, heuristics

with polynomial-time complexity are widely used when dealing with large-scale dataflow

graphs. One of the approaches is based on static assignment [75] where partitioning is defined

at compile-time, whereas scheduling is performed at run-time. Partitioning is defined using

metrics extracted during the profiling stage using the so-called execution trace (defined in Sec-

tion 2.4). Once partitioning is defined by assigning each actor to its corresponding processing

core, the actors are then scheduled dynamically since CAL actors are in general based on the

DPN MoC. This may result in an unnecessary runtime overhead. However, static actors in the

network can be scheduled statically with less runtime overhead, such as using the approach in

[45], where it detects the so-called Statically Schedulable Region (SSR) for a static scheduling.

2.3 Synthesizing CAL programs

The CAL dataflow language was originally used to design and simulate a DPN model of

computation. At the beginning of its inception in late 2003, it was supported by a portable

interpreter infrastructure called Moses [60], which features a graphical network editor, and

allows the user to monitor actor execution including states and token values. CAL models

were also possible to be simulated in the Ptolemy environment. It was not until 2008 with

23

Chapter 2. Design methodology with CAL dataflow programming

the development of the OpenDF framework that it became possible to generate code from

CAL programs for implementation. For hardware code generation, OpenDF acts as a front

end tool to generate the so-called XLIM code (XML representation for describing a language

independent model) from a CAL model. The generated XLIM code is then used with another

tool called OpenForge (in the OpenDF framework) that is capable of translating XLIM models

to VHDL and Verilog for implementation on Xilinx FPGAs (more on OpenForge in the next

section). The tool flow from CAL to HDL in OpenDF is also known as CAL2HDL [64]. Apart

from HDL code generation, OpenDF was also designed to generate C code for integration with

SystemC [106], and an embedded C code for ARM11 [119].

The main issue with the OpenDF framework is that simulation and code generation are not

efficient (i.e. very slow) for substantially large and complex designs. This is mainly due to the

architecture that uses XML based processing with XSLT transformations. For this reason, the

ORCC framework [2] has been developed (completed in 2009) with the goal of overcoming this

issue. Essentially, it intends to move away from XSLT transformations and process CAL actors

and networks directly using programming objects. For hardware code generation, the initial

work was to port the OpenForge tool into the ORCC framework, which entails generating an

XLIM model from CAL. The code generator is called Orc2HDL [24], but was found to be not

quite as effective as expected due to XSLT transformations in the OpenForge. Naturally, the

following work involves eliminating the slow transformations altogether by processing the

objects from ORCC directly into the objects in OpenForge. The new code generator, called

Xronos [22] (pronounced chronos) is efficient, and supports new language constructs that

were not previously supported in the OpenDF framework. The only current limitation of the

HDL code generators using OpenForge (CAL2HDL, Orc2HDL, and Xronos) is the memory

element (i.e. block RAM) restriction to Xilinx FPGAs. Designs that utilize memory elements are

therefore, only synthesizable to Xilinx devices. Further work is expected to be done in the near

future to allow synthesis of generic (or other vendor specific) memory elements in the HDL

code generator. It should also be mentioned that apart from HDL code generation, the ORCC

framework also supports code generation for the following implementation languages (some

are experimental): C, C++, embedded C, Jade, Java, LLVM, OpenCL, PROMELA, and TTA.

2.3.1 CAL to C synthesis

The general overview of the CAL to C synthesis tool is given in Figure 2.4, where it takes as

input CAL actors and the network file, and generates one C file per actor, and a single C file for

the top level network. A hierarchical network composed of several networks is first flattened,

and transformed to a C scheduler. The action scheduler of each actor checks the presence and

values of tokens on its input ports, gets the tokens from the ports, and puts the tokens on its

output ports. For this, several well-defined functions are declared in both the actor and action

24

2.3. Synthesizing CAL programs

Figure 2.4: Steps and transformations for translating CAL programs to C in the ORCC frame-
work.

schedulers, for example hasTokens checks if tokens are present, peek peeks tokens from a

port, and hasRoom checks if the port has rooms to write tokens. The scheduler is designed to

switch to another actor only when none of the actions satisfy the firing rule.

For each actor, the first stage of the compilation process is to parse each CAL actor to an

Abstract Syntax Tree (AST). The AST uses the LL(k) parser bundled with OCaml called Camlp4.

The grammar parsed is embedded in the code where a Syntax Directed Translation generates

a node for each grammar rule or group of rules. The AST is then modified during instantiation

of the actor, i.e. it removes parameters and replaces them with local variable declarations

whose values are specified in the parent network. The next step is a series of transformations

to the AST, beginning with type checking. Every expression in the AST is annotated with the

type according to the inference rules. If an expression cannot be typed and invalid, then it

is not possible to generate code for the actor. If all expressions are well typed, the tool then

checks that expressions assigned to variables have types that are compatible with the type of

the variables. Once the AST has proven to be correct, the next step is the application of the

constant propagation algorithm that finds constant values for all executions, and propagate

them through the program. Actor variables are also translated to C global declarations during

this step. The last transformation converts the correct AST to an intermediate representation

that is closer to C. For this, the C Intermediate Language (CIL) is used for high degree of

readability. Before converting CAL to CIL, the names of the variables, actions, etc. are altered

to be valid C identifiers. CAL functional expressions are also transformed into CIL imperative

constructs, for example the if conditions and for loops. In compound expressions, temporary

variables are used to hold the results.

25

Chapter 2. Design methodology with CAL dataflow programming

The final structure of the CAL actor in C program is as follows. Each action becomes a func-

tionally equivalent C function, with the action scheduler implemented in a separate function.

The action scheduler determines which action should fire, and calls the relevant function that

contains the action to fire. Note that the action scheduler is called every time an action is

fired, therefore it is crucial that they are designed to be as fast as possible. This is achieved by

carefully checking the actions that are eligible to be fired (according to the state machine), and

select a fireable action based on the firing rule.

2.3.2 CAL to HDL synthesis

As mentioned, the CAL to HDL synthesis tool has gone through various evolution from the

OpenDF framework (CAL2HDL) to the ORCC framework (Orc2HDL and Xronos). The one

common property among all the tools is the use of the OpenForge backend, which is at

the heart of the code generation that defines the architecture of the generated hardware.

OpenForge was formerly known as Forge, that was developed by Lavalogic for synthesizing

Java programs to Verilog. It was then acquired by Xilinx in the year 2000 to bring support

for synthesizing C programs to HDL. Xilinx further developed the tool to support HDL code

generation from XLIM for use with the CAL dataflow language. Forge is in fact a complex tool

with various optimization features such as loop unrolling, dead code elimination, base address

uniquifier, memory splitter, reducer, and trimmer, ROM replicated, nested block optimizer,

loop variable resizer, etc. Since 2008, Forge became available as an opensource tool called

OpenForge.

The work in this thesis utilizes two synthesis tools: CAL2HDL and Xronos. The following first

describes how CAL2HDL generates HDL codes from a CAL program. Figure 2.5 depicts the flow

of steps and transformations for translating CAL programs to HDL. In essence, it is an XML

processing and transformation engine implemented using Java. The tool is divided into three

phases: Elaborate, Generate Network HDL, and Generate Instance HDL. In the elaboration

phase, CAL actors are first checked for syntax and validity, and then parsed into an initial XML

representation called calml. The top-level network file (called XDF) is flattened in the case

of a hierarchical network. During this phase, the actors are also instantiated in the top level

network, where the actors’ ID is included, variables annotated, operators canonicalized, and

dependencies resolved. The parsed calml actor is then transformed to another XML repre-

sentation called pcalml, which now includes dead code elimination, constant and network

expression evaluation, and actor parameter setting.

The following Generate Network HDL phase takes in the flattened XDF network and transforms

it to a top-level VHDL file. Some of the operations include port type evaluation, data width,

fanout, and buffer size annotation, and instance name addition. The top-level network is

generated as a VHDL file that simply instantiates and connects all actors in the dataflow

26

2.3. Synthesizing CAL programs

Figure 2.5: Steps and transformations for translating CAL programs to HDL using CAL2HDL.

network using FIFO buffers with size specified in the CAL program.

The final Generate Instance HDL phase is the generation of a Verilog file for each actor. The

first step is the transformation of pcalml to another representation called ssacalml, which

is a representation in a single static assignment (SSA) form. This is finally transformed to

XLIM to be used with OpenForge. The final XML format called SLIM is generated from XLIM,

which adds information for Verilog code generation, SSA φ function processing, name, loop,

and selector fix, casts insertion, and ports routing. The SLIM representation is loaded into

a Java Design class, which is a class for representing top-level hardware implementation.

First, the Java object representing the actor is analyzed and optimized for hardware. This

includes operator constant rule, loop unrolling, and variable re-sizer. Memory element is

also allocated (BRAM, ROM, register, etc.) and optimized which includes memory reducer,

splitter, and trimmer. Following this, a hardware scheduler is also generated based on the

specification in the SLIM representation. Finally, a completed Design object for an actor is

mapped and written as a Verilog file. The process of HDL code generation from CAL actors is

quite complex and consists of many XML transformations using XSLT, the major source for the

very slow code generation. However, it has been proven to generate very efficient HDL codes

for implementation, such as the work in [64].

The Xronos synthesizer, which was completed as recent as 2012, was developed with three

main objectives: 1) to integrate the HDL code generator into the ORCC framework to facili-

tate co-design with ORCC C code generator, 2) to speed up the code generation process by

eliminating all XML transformation process, and 3) to support all features of the RVC-CAL

language that was not supported before in CAL2HDL which include unsigned integer types,

procedures, and multi-token input and output. Essentially, Xronos is implemented in the

ORCC framework that already supports all features in RVC-CAL in its Intermediate Repre-

sentation (IR) in AST. This representation (after several transformation) is fed directly into

the OpenForge Design class via the IR representation, thus bypassing all computationally

extensive XML transformations from XLIM to SLIM.

27

Chapter 2. Design methodology with CAL dataflow programming

Figure 2.6: Overview of the architecture for synthesizing CAL to HDL using Xronos.

Figure 2.6 presents an overview of the Xronos architecture. It uses the ORCC compiler as

its front end, by first parsing the CAL actors and generating the IR for each one. The IR

is then serialized to create an actor object, which is transformed to a SLIM representation

used in OpenForge. The necessary transformation from SLIM to OpenForge Design class is

performed during this step, which include the SSA transformation, 3AC for each operation

with 4-tuples of (operator, operand1, operand2, result), casting for data type and size, repeat

pattern for multi-token input and output, function and procedure inlining, etc. The two IR

from ORCC and SLIM are used to build the final OpenForge Design class. The ORCC IR builds

the input/output of the design, and allocates the necessary memory element. The SLIM IR

builds the main scheduler of the actor by visiting all the actions firing rules and state machine

if available. It then constructs the scheduling and firing policy for the actor. Xronos is also

designed to automatically generate testbenches to aid in hardware simulation (used with the C

code generator for input stimulus), and a performance report for each action, which includes

the complexity (called gate depth), and the estimated latency (for static actions).

2.4 Analyzing CAL programs

The purpose of analyzing dataflow programs is to discover design bottlenecks. In large and

complex applications, the main problem is often in finding functions or regions that need to

be optimized in order to have the best speed-up for a minimum effort. In this context, the first

tool that was developed to profile CAL programs is known as the CAL Design Suite [83], where

the analysis is mainly performed on the executable software code from the generated C code

since the target platform is on multicore processors. For hardware platform analysis, the tool

had been extended to include hardware specific profiling information, i.e. the firing latency of

each action. Since CAL Design Suite was to some extent specific to a software platform, a new

framework called TURNUS was developed to profile directly at the dataflow program level via

a functional simulation. At this level, evaluation and validation are performed in a completely

28

2.4. Analyzing CAL programs

platform agnostic environment. Figure 2.7 presents the TURNUS framework in relation to

the design methodology. It takes as input, the application model (CAL) and the architecture,

and also implementation specific information such as bit-accurate clock cycles, execution

times, etc. The TURNUS profiler generates the so-called causation trace (explained in the next

chapter), which is used as the main tool for program analysis of the following profiling features:

computational load, critical path measurement, buffer size minimization and optimization,

and multi-clock domain (MCD) partitioning. Based on these information, a design can be

mapped and explored for various partitioning, scheduling, and buffer dimensioning. The

following presents a formal description of the causation trace and its analysis for critical path

and computational load reduction. The TURNUS approach for minimizing and optimizing

the buffer size is given in chapter 5, while the MCD partitioning is not considered in this work,

but briefly described in Section 2.5.2.

Application Model
(CAL)

Platform Architecture

C/C++
Compiler

HDL
Synthesizer

EXE BIN

C/C++
Compiler

HDL
Synthesizer

EXE BIN

Interface

CAL to C/C++ CAL to HDL

Simulation &
Profiling

CAL Mapping
& Partitioning

CAL to CAL
transformation

CAL Profiler

Causation trace analysis and
post-processing (heuristics)

Causation
trace

Computational
load

Critical path
measurement

Buffer size
min & opt

MCD
partitioning

TURNUS

Figure 2.7: The TURNUS framework within the design flow for profiling dataflow programs.

2.4.1 Causation trace

The results from profiling dataflow programs is the creation of all executed actions with their

dependencies that fully describe the program behaviour (with implication of relevant input

data), known as the causation trace (or simply trace). Figure 2.8 shows an example of a trace.

As given in [63], a causation trace, is a multi-directed acyclic graph G(V,E). Each single firing

29

Chapter 2. Design methodology with CAL dataflow programming

v
0

v
2

v
3

e
0,2 e

0,3

v
4

v
8

v
11

v
16

v
19

v
15

v
18

v
20

v
1

v
5

v
7

v
6

v
9

v
12

v
10

v
13

v
17

v
21

v
23

v
14

v
22

v
24

v
25

e
1,2

e
1,6

e
3,7

e
7,10

e
10,13

e
13,17

e
17,19

e
19,23

e
23,25

e
6,10

e
2,4

e
4,8

e
11,15

e
15,18

e
18,20

e
20,22

e
y,14 e

z,14

e
14,18

e
14,20

e
14,22

e
22,24

e
24,25

e
20,25

e
18,21

e
21,23

e
16,21

e
11,16

e
16,19

e
8,12

e
12,17

e
4,9

e
9,13

e
2,5

e
5,6

e
x,1

e
x,0

e
x,3

e
x,7

e
z,15

e
8,11

Figure 2.8: Example of a causation trace, where a node represents a single action firing, and an
edge represents a firing dependency.

of an action τ ∈T is represented by a node υi ∈ V. Thus, the set Vτ ⊆ V contains all the firings

of the action τ. Moreover, each single dependence between two fired actions is represented by

a directed arc en
i , j ≡ (υi ,υ j)n ∈ E. The latter defines an execution order υi ≺ υ j , meaning that

the execution of υ j depends on the execution of υi . It follows that V can be considered as a

partially ordered set of executed actions. Indeed constructing a consistent dependencies set E

is fundamental in order to define constraints on the execution order between any couple of

fired actions describing a platform-independent design behavior.

Weighted execution trace

The trace can be extended to a weighted execution trace, where the weights are defined

as wvi and wei , j for each executed action vi ∈ V and dependency ei , j ∈ E according to the

architecture model where each actor is supposed to be mapped. Weights can be estimated

with two different levels of abstraction and accuracy: a) abstract profiling counts how often

a set of basic operators (arithmetic-logic operation, flow control, memory access) are used

30

2.4. Analyzing CAL programs

during each step; b) platform-specific profiling extracts information from an HDL simulation

tool for hardware implementations or by using standard software profiling tools.

Once weights have been evaluated, the total computational load of an action τ is defined as:

clτ =
∑

{wvi |vi ∈ Vτ} (2.1)

Likewise, the computational load of an actor a ∈A is defined as:

cla =∑
{clτi |τi ∈Ta} (2.2)

And finally, the overall computational load of the actors set A is defined as:

clA =∑
{clai |ai ∈A } (2.3)

For the purpose of profiling dataflow programs for hardware implementation, a script has been

developed to automatically extract the weights (i.e. action firing latency in terms of the number

of clock cycles) of each executed action from a Modelsim simulator. The list of all executed

action with their associated weights are then organized to create an XML file with mean weight

wτ for action τ. This file is given to TURNUS for further hardware implementation specific

analysis and evaluation.

2.4.2 Critical path analysis and evaluation

The critical path (CP) is essentially the longest weighted path from source to sink nodes in

the causation trace. For example, the CP in the trace given in Figure 2.8 is shown in Figure

2.9, where the CP is defined from node v0 to v25. The CP length can be evaluated by post-

processing the weighted execution trace where the design configuration has been taken into

account. for an augmented graph is defined as G(Ṽ,E) such that Ṽ ⊃ V and Ẽ ⊃ E, where two

fictitious nodes are added. These are respectively the source node vS and sink node vT (both

with weight wvS = 0 and wvT = 0. All the nodes vi without incoming edges (i.e. δ−vi
= ;)

are connected to vS with a fictitious connection es,i with weight wes,i = 0. The same is done

for all the nodes vi without outgoing edges (i.e. δ+vi
= ;) where they are connected to vT

with a fictitious connection ei ,T with weight wei ,T = 0. The topological order of the nodes

31

Chapter 2. Design methodology with CAL dataflow programming

v
0

v
2

v
3

e
0,2 e

0,3

v
4

v
8

v
11

v
16

v
19

v
15

v
18

v
20

v
1

v
5

v
7

v
6

v
9

v
12

v
10

v
13

v
17

v
21

v
23

v
14

v
22

v
24

v
25

e
1,2

e
1,6

e
3,7

e
7,10

e
10,13

e
13,17

e
17,19

e
19,23

e
23,25

e
6,10

e
2,4

e
4,8

e
11,15

e
15,18

e
18,20

e
20,22

e
y,14 e

z,14

e
14,18

e
14,20

e
14,22

e
22,24

e
24,25

e
20,25

e
18,21

e
21,23

e
16,21

e
11,16

e
16,19

e
8,12

e
12,17

e
4,9

e
9,13

e
2,5

e
5,6

e
x,1

e
x,0

e
x,3

e
x,7

e
z,15

e
8,11

Figure 2.9: Example of a critical path in the causation trace, shown by the orange/shaded
nodes from v0 to v25.

32

2.4. Analyzing CAL programs

vi ∈ V remains the same by assigning to vS and vT respectively by the lowest and the highest

topological index of Ṽ such that vS ≺ vi ≺ vT .

2.4.3 CP evaluation technique

The critical path can be evaluated in different ways [122, 16, 83]. Indeed the technique pro-

posed in [16] seems to be the more convenient both for the reduced complexity of the algo-

rithm and for the additional profiling information that could be retrieved. For each node vi of

the causation trace, four new parameters are defined:

• The Early Start time ESvi defines its earliest possible starting execution time.

• The Latest Start time LSvi defines its latest possible starting execution time without

extending the overall program completion time.

• The Early Finish time EFvi defines its earliest possible ending execution time.

• The Latest Finish time LFvi defines its latest possible ending execution time without

extending the overall program completion time.

Moreover an additional parameter called Slack is introduced both for nodes and dependencies

represented respectively by Svi and Sei , j . This is used in order to define the maximum delay that

an executed action or a dependence can tolerate without impacting the overall completion

time. In order to extract the critical path, the graph is walked back starting from vT : at

each iteration a new node v∗
j ∈ Vc is reached by following one of the incoming critical edges

δ∗−vi
= {e∗j ,i ∈ δ−vi

∩Ec}. The sets VCP ⊆ Vc and ECP ⊆ Ec contain respectively the executed

actions and dependencies along this path. It follows that, for each action τ ∈T , the set of its

critical executions can be defined as VτC = {vi ∈ Vτ∩VC}. Similarly, the set of its executions

along the critical path as VτC P = {vi ∈ Vτ∩VCP}. So as, the set of critical actions is defined as

TC = {τ ∈T |VτC 6= ;}, and the set of actions along the critical path as TC P = {τ ∈T |VτC P 6= ;}.

The critical path can be considered completely determinate only when vS is reached. As a

result, the critical path length is defined as CP =∑
{wvi |vi ∈ VC P }+∑

{wei , j |ei , j ∈ EC P }. It also

must be noted that CP = LFvT .

2.4.4 Computational load reduction

CP analysis only provides a list of actions and actors that are in the most serial path of the

design; Here the analysis has been extended to determine the impact of reducing the com-

putational load of an action or a group of actions on the overall design performance, i.e. the

reduction in ∆CP that could be obtained by reducing the computational load of τ∗.

33

Chapter 2. Design methodology with CAL dataflow programming

The computational load ratio of an action τ is defined by:

`τ = clτ

cl0
τ

(2.4)

where clτ and cl0
τ represent respectively the current and the initial computational load values.

Hence,the computational load reduction ratio can be simply defined as ∆clτ = 1−`τ. The

problem is then to find a configuration `τCP = {`τ|τ ∈TCP}.

For this purpose, the Logical Zeroing algorithm has been used, proposed in [54]. This method

is based on an iterative heuristic algorithm where the most critical action τk is computed and

its computational load is neglected at each step k. For every executed action vτk

i , the weight

wv
τk
i

is reduced by the factor α< 1 which is found using a binary search algorithm on the CP

while maintaining τ∗ as the most critical action.

2.5 Optimizing CAL programs

After identifying the critical actors and actions via a dataflow program analysis, the next

step is to improve/optimize these actors and actions. One such way can be performed by

modifying the architecture of actors or actions such that an improvement versus an objective

function is achieved, called refactoring. Apart from this, the results from dataflow program

analysis can also be used to improve other factors such as the buffer interconnection sizes,

clock frequency for each actor, SW/HW partitioning, actor scheduling policy, etc. These

factors when applied for optimization, do not change the architectural structure of the design,

i.e. actor specifications remain the same, but improves design implementation by some

external factors. It is important to note that the optimization techniques for dataflow programs

are to some extent, platform dependent. An optimization technique applied for software

implementation target may not result in any gain (or in some cases, inferior performance) for

hardware implementation target and vice versa. This is due to the way that different platforms

are structured in terms of their processing elements, and the way programs are executed. The

following reviews some techniques for optimizing CAL dataflow programs for software and

hardware implementation.

2.5.1 Optimizing for software implementation

Refactoring and optimization of dataflow programs was first introduced in [83], mainly for

single and multi-core processor platform target. One of the most effective techniques to

improve performance in single-core processors is by actor merging. Although the degree of

34

2.5. Optimizing CAL programs

parallelism is often reduced, performance is improved by the reduction in the communication

cost associated with the FIFO buffer interconnections. More actors imply more interconnec-

tions, and higher cost of locking the FIFO for reading and writing operations. Merging actors

together reduces the number of FIFO interconnections which reduces the communication

cost. Actor merging technique is particularly suited for actors that are simple and at a low

granularity level, when the communication cost dominates the processing cost.

Actor merging however, is found to be less effective for multi-core processor implementation

since the degree of parallelism is reduced and the available processor cores could not be

exploited. Therefore, refactoring for increasing the level of task and/or data parallelism was

also proposed. The strategy was to expose parallelism at the highest granularity level, so as to

exploit the parallel processing cores as efficiently as possible. In the case of MPEG-4 decoders,

the serial decoding is refactored into separate parallel decoding for the Y, U, and V color spaces.

The different parallel components can be partitioned into the different processor cores and

executed in a parallel fashion. Fine-grain granularity parallelism in multi-core processor on

the other hand, is not quite effective due to the difficulty in finding the optimum partitioning

and scheduling of the parallel blocks on various processor cores.

Another strategy being proposed was to merge actions within an actor such that the total

number of action firing is reduced. The result is that actions become larger and more complex,

but the number of states and action calls can be reduced significantly. As mentioned in Section

2.3.1, the action scheduler for a given actor is called every time an action fires. If the scheduling

evaluation condition in the actor is complex, for example with many different states, multiple

guard checks, and priority conditions, then the scheduling may become the bottleneck of the

actor. By simplifying the scheduling conditions with less number of action firing, performance

can be improved significantly for both single and multi-core processor implementation.

2.5.2 Optimizing for hardware implementation

Dataflow program refactoring and optimization techniques for hardware implementation

target has not been analyzed before in detail with experiments on complex design cases.

It should be clear that some of the techniques proposed for software implementation are

not suitable for the virtually unlimited processing units available in a hardware platform.

This is the primary objective of this thesis: to provide some effective CAL dataflow program

refactoring and optimization techniques for hardware implementation target. Ultimately,

the final result in hardware is dependent upon the CAL design specification, and is affected

by both the HDL code generated and the results of conventional synthesis, place and route

in the hardware tool flow. An understanding of the way OpenForge generates RTL codes

with its hardware structure can provide a good starting point to perform effective program

optimizations. Such report on recommended coding practices is given in [97].

35

Chapter 2. Design methodology with CAL dataflow programming

State
variable

State
variable

State
variable

State
variable

Action Action Action
quant

round

count

dc ac done

Action
scheduler

Action

FSM
variable

Guard

FSM
variable

st_ac

st_dc

AC

DC

QP OUT

mux

mux

Figure 2.10: RTL architecture of the inverse quantization actor in Figure 2.3 using the Open-
Forge synthesizer. The red/bold interconnections are the control signals to signify the start
and end of actions execution.

Figure 2.10 presents the RTL architecture for the inverse_quantization actor example given

in Figure 2.3 using the OpenForge synthesis tool. State variables are mapped to registers

with the corresponding size; actions and the scheduler to dedicated combinatorial logic.

The action scheduler also takes as input the guard evaluation and the FSM states (with one

register allocated per state). If an output port is used by more than one action (output OUT for

action dc and ac), then a multiplexer is required to select the correct output at a given time.

A multiplexer is also required for state variables that are updated in more than one action

(variable count for action dc and ac). The multiplexers are controlled by the action scheduler.

The key feature in this architecture is the interconnections shown in red/bold lines between

the action scheduler and the actions. They are in fact the go and done signal pair for each

action, where at a given time, the action scheduler determines one action to fire (based on

FSM states, guards, and priorities) by sending the go signal for the action. Once the action has

completed executing the algorithm in the action body, it sends the done signal to the action

scheduler. The action scheduler in turn sends the new go signal for the next action to fire, and

so on.

The resulting performance of the actor largely depends on this cycle, called the scheduler-

action cycle; In order to obtain a high performance design, both the scheduler and the actions

execution need to be as fast as possible. This depends on two factors: the clock cycle latency

for the actions, and the operating frequency of the actor. In general, the clock cycle latency

36

2.5. Optimizing CAL programs

for action execution is one. It is also possible to obtain a zero latency action, for example an

action without a body such as the action done. Actions execute for more than one clock cycle

in the following cases:

• Memory read/write. This typically requires an additional two clock cycles for every

access to a memory element.

• Multitoken read/write. This requires one additional clock cycle for every token that

needs to be read/write.

• Division. Division algorithm that utilizes loops require additional clock cycles that

depend on the operands of the divisor.

• while/for each loops. This requires additional clock cycles that depend on the number

iterations for the loop.

• Guard evaluation with the above. Any complex guard evaluation increases the latency

for the action scheduler to select an action to fire.

Another important point to note here is that for a given actor, actions execute in series, one

after another as determined by the scheduler. If an actor contains many complex actions, then

an effective strategy is to re-factor complex actions into separate actors so that the complex

actions could now execute in parallel with actions from the original actor. This is the key

concept in our methodology for exploiting data and task parallelism in chapter 3. Another

effective strategy concerns with actions that perform multiple access to a memory element.

Memory optimization techniques can be applied to these actions so that the clock cycle latency

for the actions can be reduced.

Moreover for memory element utilization, resource can be traded-off with performance by

defining memory size/length in the power of two so that address calculation can be stream-

lined. If memory size is not defined as such, additional arithmetic operations may be required

to calculate the addresses, which could reduce performance, but allows smaller memory size.

Similarly, OpenForge currently does not optimize memory and variable bit width. The alloca-

tion of arithmetic resource (adder, multiplier, etc.) depend on the bit width sizes; If a variable

is defined for sizes that are larger than required, then the larger arithmetic resource will be

allocated that not only increase the implementation area, but may also reduce performance

by using larger units.

The second factor that impacts the performance of the scheduler-action cycle is the operating

frequency. The maximum operating frequency for a hardware design is defined by the longest

combinatorial path. For a given actor, this path is typically found on the most complex

37

Chapter 2. Design methodology with CAL dataflow programming

1 / / o r i g i n a l − action body with common subexpression b * 13
2 a = b * 13 + c ;
3 . . .
4 d = e − b * 13;
5

6 / / improved − l o c a l variable to hold the common subexpression
7 x = b * 13;
8 a = x + c ;
9 . . .

10 d = e − x ;

Figure 2.11: Example to hold common subexpression in a local variable to reduce hardware
overhead. The improved implementation requires only a single multiplier, as opposed to two
multipliers in the original implementation.

action in terms of the combinatorial logic. In order to obtain a high maximum operating

frequency, actions should be kept as small as possible. This can typically be achieved by

refactoring/partitioning the complex action into several smaller actions. This is the key

concept in our pipelining methodology in Chapter 4.

There are also other design strategies that can be applied to improve the performance of

an action execution. For instance, by using a local variable for common subexpressions.

Currently, common subexpressions are not searched and optimized. The strategy is to use local

variables to hold the common subexpression results for reuse when an action has a common

subexpressions that appear in more than one place. Unlike state variables, introducing local

variables causes no hardware overhead. An example of this is given in Figure 2.11. Another

recommendation based on the report in [97] is to use native CAL constructs such as FSM

specifications, guards, and priority statements over standard programming constructs such as

if and while. This is due to the architecture of the code generator that is designed to process

these language specific statements more efficiently. In this case, the gain is on the resulting

hardware resource.

Another strategy to reduce hardware resource is to introduce and apply resource sharing

techniques. One of the approaches is as follows. In the current implementation, any function

or procedure calls within an action are in-lined, i.e. a dedicated resource is allocated for the

function or procedure. If two actions in the actor calls the same function or procedure, then

the implementation would result in a redundant duplicated resource, since these actions never

execute in parallel. The strategy here is to implement the function or procedure as an action

that is called by the finite state machine, thereby creating only one instance of the function

or procedure. This approach is quite trivial and is applied in the present work, although only

a minor reduction in resource is observed. Another direction for resource sharing is at the

lowest granularity level within an action. In this case, the objective is to share arithmetic

operators. This approach is more challenging to implement and currently not possible to

38

2.6. Conclusion

be implemented at the dataflow program level, but only at the code generation level. It is

currently not being considered since it falls outside the scope of this work.

At the higher granularity level than an individual actor, the following optimizations can be

made. First is FIFO buffer interconnection size for each communication channel. For hardware

designs, this is a very important aspect in that it impacts not only the resource usage, but

also functionality and performance. Buffer size selection that are too small may cause the

system to deadlock, while those that are too large may be inefficient in terms of resource. The

methodology to minimize and optimize buffer interconnection size is one of the objectives of

this thesis, given in Chapter 5.

Secondly, another effective strategy is to analyze and optimize the execution of adjacent

actors. This is sometimes referred to as cross-actor optimizations. It involves analyzing the

behavior of two adjacent actors, and determining if actions can be re-factored by merging or

partitioning some or all of the algorithm in the action body into different or existing actors,

with the objective of improving one or more of the design criteria. This strategy has been

identified before in [64] as possible optimization strategy, but has never been implemented,

analyzed and explored in detail.

The final strategy that is discussed here is the multi-clock domain implementation. This is

another powerful technique in which different actors are assigned different clock domain

with the purpose of reducing the average clock cycle speed. This is a very important objective

for reducing the dynamic power consumption. The hardware code generators CAL2HDL

and Xronos already supports this implementation where adjacent actors with different clock

domains are interconnected with an asynchronous FIFOs, instead of the usual synchronous

one. Indeed, several works have explored this possibility, with [103] presents an architec-

ture to exploit the so-called Globally Asynchronous Locally Synchronous (GALS) design by

introducing a clock manager to each clock domain. Another work in [9] aims to find the

optimum clock frequency for each actor such that the makespan of the overall design remains

constant, compared to the design with a single clock domain. It should be noted that the

two optimization strategies (cross-actor and multi-clock optimizations) are not implemented

in the present work due to the scope and time limitation, but remains an interesting future

direction.

2.6 Conclusion

In this chapter, a design flow for a complete software/hardware co-design using CAL dataflow

programming has been presented, from specification to implementation, with program map-

ping and partitioning, high-level synthesis, analysis, and optimization. The design flow is

constructed in the ORCC framework, that allows dataflow program specification and sim-

39

Chapter 2. Design methodology with CAL dataflow programming

ulation using the CAL language, automatic synthesis of all language constructs to various

implementation languages including for software and hardware, and program analysis for

profiling and bottleneck detection. These tools within ORCC have been validated in this work,

and have proven to be effective, and work seamlessly even for very complex applications.

However, what is lacking from the design flow is the optimization tools and techniques that

can be applied on the dataflow program, especially for hardware implementation target. This

is a very important aspect in the design flow, where a design most likely has to be iterated

several times in order to achieve the desired performance.

The following is the primary contribution of this thesis: new optimization tools and techniques

that a CAL designer could use in order to improve and optimize designs at the dataflow

program level. The first one is given in the next chapter, in Chapter 3, a refactoring technique

to minimize system latency by exploiting task and data parallelism, and memory access

reduction. This is followed in Chapter 4 for the refactoring technique to maximize operating

frequency by action partitioning with a timing constraint and a minimum resource objective.

The final technique in Chapter 5 aims to minimize resource by reducing and optimizing the

buffer interconnection sizes between actors, which include two different approaches: on

the hardware execution level, and on the dataflow program level. In Chapter 6, complex

design case studies are described, including two MPEG-4 video decoders: the MPEG-4 Part 2

Visual Simple Profile (SP) and the MPEG-4 Advanced Video Coding (AVC)/H.264 Constrained

Baseline Profile (CBP) decoders. In Chapter 7, these video decoders are used as case studies

to explore and evaluate design alternatives, obtained by appropriate combinations of the

refactoring and optimization techniques.

40

3 Minimizing system latency with refac-
toring

Minimizing system latency is a very important objective in systems design. Latency is defined

as the number of clock cycles to process a given set of computational elements. This chapter

presents some refactoring techniques and design architectures to achieve this objective of low

latency, as applied on high-level dataflow programs for hardware implementation target. Two

strategies are proposed to reduce system latency: 1) by exploiting data and task parallelism,

and 2) by reducing the number of access to memory. We first describe how these methods can

be applied for CAL programs in the general case, and present some remarks on automating

the refactoring process. We then apply the TURNUS profiling tool to find the critical actors

in the MPEG-4 AVC/H.264 decoder case study such that the refactoring techniques can be

applied most effectively. These techniques are shown analytically and experimentally to be

very effective for improving system throughput, and could be applied seamlessly on the high

level program.

It should be noted that in this chapter, the refactoring techniques make a fairly extensive use

of some of the actors in the MPEG-4 AVC/H.264 decoder case study as examples. Since the

main focus of this chapter is on the refactoring techniques, we defer the description of the

MPEG-4 decoder case study and its CAL specification in chapter 6.

3.1 Background and related works

Techniques for reducing system latency by exploiting parallelism and optimizing memory

access in dataflow programs have been reported in literature. For example in [17] and [35]

where CAL has been used to design and implement motion estimation algorithms in video

encoder and decoder respectively. Both designs utilize algorithms that are naturally parallel

(full-search and diamond-search), therefore allows explicit specification of data and task

parallelism. In terms of memory usage, both use a cache-based approach, where a frequently

41

Chapter 3. Minimizing system latency with refactoring

used search window is stored in a local buffer so that it does not have to be fetched from

memory each time. The problem in these approaches is that they are algorithm-specific and

could not be generalized to any complex algorithms, i.e. a non-search based algorithm. The

work in [110] proposes an automated technique to determine the possible parallelism factor of

a given algorithm, and then generates RTL code for a given resource constraint. However, the

implementation is restricted to synchronous dataflow (SDF). Furthermore, the case studies

were only made for very small examples such as an adder, multiplier and second order FIR and

IIR filters. The technique has no guarantee that it will work for dynamic dataflow actors with

complex control and structures. The work in [46] describes several ways of how concurrency

can be exploited in dataflow programs, including how system latency can be improved by

reducing the number of access to memory. However, the case study was mainly targeted to

multi-core platforms where this issue has only minimal effects on the overall performance.

Since the techniques and architectures presented in this chapter are to some extent, specific to

MPEG decoders, it is worthwhile to review some of the related works in parallel architectures

and memory optimizations in the decoders. Most of the works in literature focus on optimizing

the decoding process itself where there are high potential for parallelism, and where most of

memory access are made, i.e. intra and inter predictions for reducing spatial and temporal

redundancies. Since predictions in video decoders are processed in blocks, various parallelism

techniques can be exploited in the algorithm. Moreover, for inter prediction that utilizes past

frames to decode a current frame, large amount of memory bandwidth is required to store and

retrieve the frames.

The following presents some techniques on exploiting data and task parallelism on MPEG

decoders as reported in literature. The work in [111] presents a coarse-grain parallel processing

of luma and chroma intra blocks with group-based write-back approach to fully utilize the

parallel blocks. In a slight contrast, the approach in [79] attempts to rearrange the equations in

the intra prediction algorithm so as to obtain efficient parallel hardware implementation. This

is achieved by simplifying the equations in the standard reference software, and instantiating

multiple parallel prediction mode blocks. This approach is also quite similar to the work in

[112], for optimizing the inter prediction process where the 6-taps half pixel interpolation filter

equation is simplified to facilitate parallelism. Furthermore, the level of parallelism in inter

prediction can be increased by having parallel fractional pixel filtering, such as the work in

[81] with four parallel units. Besides prediction units, there are also works on increasing the

parallelism of the deblocking filter unit, such as the works in [72] and [92] where six and two

parallel filters are used respectively. In [72], the six filters implement independent memory for

each line of 4x4 block to achieve a latency of 49 clock cycles per macroblock, while in [92], the

two parallel units process horizontal and vertical edges simultaneously with overall latency of

112 clock cycles per macroblock.

42

3.2. Minimizing system latency in CAL programs

In terms of memory optimizations, the objective is mainly to minimize the bandwidth such

that the required throughput is guaranteed; this is achieved by making sure that no redundant

data is loaded for macroblock processing. In [80], the following strategy is proposed: data for

pixel interpolation is loaded specifically for a particular block size and fractional position type,

and data is reused whenever possible for vertical and horizontal filtering. This results in an

average of 70%-80% reduction in the required bandwidth. The work in [125] on the other hand,

proposes a novel 3-D cache where the memory index is composed of vertical and horizontal

positions of the requested area within a frame, with 3 concatenated tags of picture order count

number, row, and line positions. The authors reported a bandwidth reduction of roughly 62%.

It should be noted that most of the work in implementing parallelism in video decoders for

hardware implementation utilize low-level RTL languages. Although effective, the task of mini-

mizing system latency can be difficult and time-consuming, and often very hard to find system

bottlenecks, especially for complex systems. In contrast, dataflow programming language

is designed for having higher degree of analyzability by focusing more on the algorithm by

means of a dataflow process, and hiding low-level hardware implementation details such as

register allocation, bit-accurate memory access, and gate-level control. This greatly simplifies

the process of identifying critical parts in the system, and simplifies the way to implement

data and task parallelism and memory optimizations.

3.2 Minimizing system latency in CAL programs

3.2.1 Task and data parallelism

Possibly the most common method for minimizing latency in hardware designs is by exploiting

task and data parallelism. In this work, task parallelism refers to the execution of a given task

in a concurrent fashion, where the task is partitioned across several parallel subtasks. In order

for the subtasks to execute in parallel, they should not have any precedence relations, i.e.

each subtask should have no dependencies with any other subtask. If there are dependencies

between the subtasks, then it refers to pipeline parallelism, which is described in chapter 4.

In contrast, processing with data parallelism refers to the execution of several similar tasks

in a concurrent fashion, where the task is replicated several times. In this case, input data is

partitioned accordingly and sent to each of the replicated task. Similar to task parallelism,

in order for the tasks to execute in parallel, they should not exhibit any precedence relations.

Figure 3.1 shows timing diagram comparisons between processing sequentially, with task

parallelism, and with data parallelism. The latency to process task B can be reduced by up to

3x when exploiting data or task parallelism.

Naturally, task and data parallelism are most effective to be applied on parts of the program

that are long, complex, and are processed in serial. In dataflow programs, these can be

43

Chapter 3. Minimizing system latency with refactoring

A DCB

Process

Time

Process

Time

A DCB0

B1

B2

serial

Task parallelism

A DCB0

Process

Time

B1

B2

Data parallelism

Figure 3.1: Comparison between processing with sequential, task, and data parallelism. In task
parallelism, the task B is partitioned into distinct tasks B0,B1, and B2, while in data parallelism,
B is replicated 3-times to form B0,B1, and B2

.

44

3.2. Minimizing system latency in CAL programs

easily identified in actions where extensive computations with many clock cycles are required

to complete the firing. In a complex dataflow network, the relevant actions can be found

automatically using a dataflow program analysis tool TURNUS as explained in Section 2.4.

Using this tool, actions that are in the most serial path of the program can be found. This serial

path can of course be reduced by increasing the degree of parallelism of the critical actions, i.e.

by reducing the number of clock cycles required to fire critical actions.

The choice of performing task or data parallelism largely depends on the algorithm in the ac-

tion body. Task parallelism is more suited to algorithms that perform irregular computations,

i.e. extensive computational requirements that are not repetitive and not fired continuously.

Partitioning this type of action into subtasks results in latency improvement in a single ac-

tion firing. On the other hand, data parallelism is effective when the action is being fired

continuously with regular computations. In this case, replicating the complex action into

separate actors such that multiple actor instances could execute in parallel would result in

significant latency reduction because of the continuous firing. It is interesting to note that

task parallelism is also effective to be performed for actions with regular computations, but

not the other way around. If the computation is irregular, the replicated action in another

actor instance most likely would not be fired in parallel with another actor instance, therefore

only results in a redundant additional resource. The detection for the type of critical action for

regularity is quite trivial and could easily be integrated with TURNUS.

Once the critical action is found and the parallelism technique has been chosen, the next

step is to apply the technique on the action. Given a critical actor a ∈ A with critical action

τai where i ⊂ {1 . . .k} for k actions in actor a, the following describes the necessary steps for

performing task and data parallelism:

1. Partition/replicate critical action. For task parallelism, the task in action τai is parti-

tioned into M subtasks with actions τai 1 . . .τai M . The technique to partition the action

can be performed manually, or automatically with an optimization objective, such as

the one given in chapter 4. In order to obtain a true task parallelism, the subtasks should

not have any dependencies among each other. For data parallelism, the action τai

is replicated N times to obtain actions τai 1 . . .τai N , without a feedback dependencies

among the replicated actions.

2. Create parallel actors. The partitioned/replicated actions τai 1 . . .τai M /τai N are extracted

and transformed into actors by appropriate wrapping with the relevant inputs and

outputs. The key idea here is to instantiate the actors a0 . . . aM /aN such that they can

be executed in parallel for as much time as possible. Since actions are fired if there are

sufficient input tokens, maximum parallelism among the actors can be obtained by

sending the input tokens in parallel to the actors.

45

Chapter 3. Minimizing system latency with refactoring

3. Manage the split and merge actors. Another key feature when applying task and data

parallelism is the split and merge actors. The split actor is used for splitting the original

serial input data to actor a into parallel input data to actors a0 . . . aM /aN . The merge

actor is used for merging the output from the parallel actors such that the correct output

sequence is obtained. In some cases, these actors do not have to be explicitly defined,

but can be integrated in the adjacent actors in the dataflow network.

Figure 3.2 summarizes the steps for implementing task and data parallelism starting from a

critical action. In the current implementation, the detection of a critical action, its suitability

for task and/or data parallelism, and action partitioning and replicating are performed auto-

matically, while the actual process of implementing task and/or data parallelism from creating

parallel actors, and managing the split and merge actors are performed manually. In Section

3.2.3, we present some remarks on fully automating the refactoring process.

Partition action
(task parallelism)

Critical action

Long &
Complex

Irregular
computations

regular
computations

Replicate action
(data parallelism)

Create
parallel actors

Manage split
& merge actors

Figure 3.2: Methodology to implement task and data parallelism for a critical action.
.

46

3.2. Minimizing system latency in CAL programs

0 78

15

16 23 31

0 7

0 31

0 31
1 byte data token

4 bytes merged data token

Memory location

Memory location

q=f(p)
q → L

L → q

q=f(p)p q

p q

0 n 31

0 n

0 31

0 31
n-bits data token

n-bits merged data token

Memory location

Memory location
31-n

….

Figure 3.3: With (bottom) and without (top) token merging before a write access. The num-
ber of access to memory can be reduced significantly with merging the data tokens before
accessing the memory.

3.2.2 Reducing number of memory access

Another very effective method at reducing system latency at the architectural level is by

reducing the number of access to memory. Given a task C that needs to access memory for

M number of times, by reducing the number of access by N , the latency to process task C

can now be reduced proportionally to M −N . There are several ways that memory access

can be optimized. In this work, we aim to reduce the access by 1) packing data tokens before

a memory access, which we call Data-packing, and 2) eliminating any redundant memory

access in the program, which we call Redundancy-elimination.

The data-packing technique aims to pack/merge data tokens before a write access, with the

corresponding split of the merged tokens when performing a read access. The main idea here

is to exploit the lower latency to pack tokens together compared to accessing the memory for

every token. Moreover, the latency to access memory is typically independent of the word size,

i.e. writing 1 byte or n bytes to a single memory location requires the same latency. As shown

in Figure 3.3, n-bits data token can be packed into a 32-bit word typically used in a memory

element such as an external RAM. The number of packed n-bits data tokens in a 32-bit word

can be computed as floor(32
n). If n = {1,2,4,8,16,32}, we fully utilize the bits in the memory

location, while all others for n < 32 would result in a storage of packed data tokens of less

than 32-bit. When individual tokens of size n needs to be read, the memory location and its

sub-location has to be accessed and masked correctly.

The redundancy-elimination technique aims to reduce the number of access to memory by

removing any unnecessary intermediate access. This is particularly useful for actors that

require sending output results after processing. The results after processing an algorithm

47

Chapter 3. Minimizing system latency with refactoring

0 78

15

16 23 31

0 7

0 31

0 31
1 byte data token

4 bytes merged data token

Memory location

Memory location

q=f(p)
q → L

L → q

q=f(p)p q

p q

0 n 31

0 n

0 31

0 31
n-bits data token

n-bits merged data token

Memory location

Memory location
31-n

….

...

Figure 3.4: With (bottom) and without (top) the redundancy-elimination technique. The
intermediate storage buffer L can be eliminated for a significant reduction in latency.

in a given action is sometimes stored in a temporary buffer, and later sent to the output

port by a different action that simply outputs the content from the temporary buffer. If the

sequence of data storage after processing is the same as the sequence of data output from the

storage element, then the results could be sent directly during processing, without requiring

an intermediate buffer. This technique is very effective in that large number of memory access

can potentially be eliminated, and therefore reduces the latency significantly. Figure 3.4 shows

the technique with ovals as dataflow actions. The function q = f (p) generates a set of data q

from a set of input data p. In the implementation without redundancy-elimination, q is stored

in a temporary memory element L, where the following action then sends q by reading from L.

In the implementation with redundancy-elimination, q is sent directly to the output without

storing to and reading from L.

Figure 3.5 shows the steps for applying the memory optimization techniques, starting from a

critical action τa1 obtained for example using TURNUS. If the action takes an n-bit data and

stores each one to a memory element L, and n < 32, then the data-packing technique can

be applied. The floor(32
n) data are first packed together and stored as a 32-bit word in a new

memory element L1 with a width of 32-bit. Because the data tokens are now packed together,

each time that these tokens need to be accessed, L1 has to be split, masked, and indexed

correctly. As for the redundancy-elimination technique, it can be applied to a critical action

τa1 that produces data tokens from a memory element L. The first step is to detect if L is being

written in another action, say for example τa2. The action τa2 is analyzed if the writing/update

sequence is similar to the output sequence in the action τa1. If so, then the output can be

sent directly during the execution of action τa2, without requiring an intermediate memory

element L. In this case, the action τa1 can also be eliminated.

48

3.2. Minimizing system latency in CAL programs

It should be noted that the techniques are mostly being performed manually, with only the

detection part being done automatically. In the next section, we present some remarks on

fully automating the refactoring process.

3.2.3 Automating the refactoring techniques

The refactoring techniques for parallelism and memory optimizations involve major modifica-

tions to the design architecture. For CAL programs that follows a DPN model of computation,

the flexibility afforded by the model makes the task of automatically generating a parallel or

a memory optimized architecture a very difficult, if not impossible task. This is because of

a large number of design styles, parameters, and controls that could be implemented in the

program that makes no guarantee if an automatic solution can be found. Even if an automatic

structure can somehow be found, the efficiency is also not guaranteed, compared to a manual

intervention where the most important feature can be controlled for maximum efficiency.

Some of the specific issues are summarized below:

• For task and data parallelism, the difficult part is on creating an actor automatically

for a partitioned/replicated action. This includes generating the relevant interfaces

and controls, that also depends on adjacent actors. Finding an a generic automatic

technique for generating these features with maximum efficiency is also a very difficult

task.

• For the data-packing technique, the difficult part is when the merged data needs to

be loaded for a read access. There are many different ways that a read access can

be performed, either sequentially or randomly, and in any order. Finding a generic

automated technique with high efficiency for all cases is also a very difficult task.

• For the redundancy-elimination technique, the difficult part to be performed automati-

cally is analyzing the update sequence of the processing and output actions, since they

can be implemented in a variety of ways for example using FSM, guards, or loop in the

action body. Furthermore, with an almost infinite way of updating the sequence, it is

very difficult to find a generic and efficient implementation that outputs the correct

sequence from an arbitrary sequence.

The problem of automatically finding a program structure can be related to the Kolmogorov

complexity theory [80], which mainly concerns with finding a minimum description for a

given string of output values, given by:

C f (x) = min{|p| : f (p) = x} (3.1)

49

Chapter 3. Minimizing system latency with refactoring

Critical action
(τ
a1
)

Takes n-bit data,
to memory L

(Data-packing)

n < 32

Merge
floor(32/n) tokens,

store in L
i

For each load
of L

i
 in (τ

a1
)

Split L
i
 into

n-bits

Produces Token,
from memory L
(Redundancy-

elimination)

L updated from
another action (τ

a2
)

Analyze L update
sequence in (τ

a1
)

and (τ
a2
)

Output from
action (τ

a2
)

Eliminate
action (τ

a1
)

Figure 3.5: Methodology to implement the data-packing and the redundancy-elimination
techniques for a critical action.

50

3.3. Analyzing the MPEG-4 AVC/H.264 decoder using TURNUS

U(p,y)y x

p?

Figure 3.6: Finding a minimum program/structure p for a given input y and output x using a
Universal Turing Machine U , based on the Kolmogorov complexity theory.

where the objective is to find the smallest |p| to represent the output string x using a com-

putable function f . For programs with input specifications, this can be extended to a condi-

tional Kolmogorov complexity with a Universal Turing Machine U [70],

Cu(x/y) = min{|p| : U (p, y) = x} (3.2)

where the objective now includes the input y , as depicted in Figure 3.6. The key idea here

is that if x can be described as a function, then the minimum p can be found. However,

in systems design where x typically has the notion of being random (or incompressible), x

could not be expressed as a function, where in this case, p can be proven to be incomputable

[121]. Therefore, the program structure p could not be found automatically, but has to be

implemented manually, similar to some parts of the refactoring techniques that have been

presented.

3.3 Analyzing the MPEG-4 AVC/H.264 decoder using TURNUS

Before the refactoring techniques are applied, the first step is to analyze the dataflow program

to find regions that are critical. For this purpose, TURNUS framework (described in Section

2.4) has been used to 1) determine the critical path (CP) in a complex dataflow network, and

2) to rank the critical actors. The computational load reduction technique is also applied to

find the right refactoring directions. As case study, TURNUS has been applied on the MPEG-4

AVC/H.264 decoder design (Section 6.4).

51

Chapter 3. Minimizing system latency with refactoring

Table 3.1: Results from profiling the original CAL description of the MPEG-4 AVC/H.264
decoder. The most critical actor is found to be the half_quarter_interpolation with
almost 70% on the CP executions, followed by the picture_buffer_y with roughly 23%.

Critical actor |Va
CP| |Ea

CP| CP contributions (%)
half_quarter_interpolation 385669 1925548 69.7
picture_buffer_y 128306 506601 23.2
parser 37913 613065 6.9
blocks_reorder_y 1304 1298 0.2
deblocking_filter_y 27 31 0.0

Table 3.2: Logical Zeroing results for the intermediate version of the MPEG-4 AVC/H.264
decoder for reducing the overall CP by 15%. It consists of actors, actions, and the required
computational load (CL) reductions.

Actor Action Required CL
reduction (%)

half_quarter_interpolation_ getpixval_done 30.0
launch1
half_quarter_interpolation_ getpixval_done 30.0
launch3
half_quarter_interpolation_ getpixval_done 28.5
launch2
half_quarter_interpolation_ getpixvalquarter 15.5
launch1
half_quarter_interpolation_ getpixvalquarter 9.8
launch3

Table 3.1 shows the top 5 critical actors with the number of critical execution (|Va
C P |) and

number of dependencies on the CP (|Ea
C P |) for a given actor a. The analysis was evaluated for

5 Foreman QCIF frames with total number of action execution, |V | = 5251653 and the total

number of executions in the critical path, |VC P | = 553238.

The computational load reduction technique has also been applied in order to find the right

refactoring directions. Table 3.2 summarizes the results for one of the design alternatives of

the MPEG-4 AVC/H.264 decoder. In order to obtain a 15% reduction in the CP, it is necessary

to reduce the computational load of the actions in the list by the given amount.

The analysis above is compared to actual refactoring results of the critical actions in terms of

the performance obtained on hardware. When the actors half_quarter_interpolation_
launchx (for x = {1,2,3}) are refactored by improving the average latency by 22%, an overall

15% latency reduction is observed. This agrees with the analysis that on average, 23% compu-

tational load reduction is required for the actors in order to obtain the same (15%) CP length

52

3.4. Exploiting data and task parallelism on MPEG-4 AVC/H.264 decoder

reduction. Consequently, this also proves the accuracy of the analysis in relation to actual

implementation performance.

3.4 Exploiting data and task parallelism on MPEG-4 AVC/H.264 de-

coder

This section presents some examples of applying the task and data parallelism refactoring

techniques presented in Section 3.2.1 on the design case study, based on the critical actors

and optimization directions given by TURNUS.

3.4.1 The half_quarter_interpolation actor

Based on the CP analysis in Table 3.1, this actor contributes the most to the CP, and is the

most critical. Figure 3.7 shows how data and task parallelism can be exploited for this

actor. In data parallelism (a), the video blocks are sent in an alternate fashion from the

picture_buffer to the half_quarter_interpolation using M dedicated channels. Us-

ing this approach, M similar tasks are essentially executed concurrently, where the task

(half_quarter_interpolation) is replicated M times. The input data (from picture_buffer)

is partitioned accordingly by block and sent to each of the replicated task. In this case, the

blocks vary in size where their dimension W ×H ∈ {4×4,4×8,8×4,8×8,16×8,8×16,16×16}.

On the other hand, in task parallelism (b), a given task is executed in a concurrent fashion,

where the task (half_quarter_interpolation) is partitioned across N parallel subtasks.

Each subtask performs a different set of operations, which requires the final merging of results

as shown by the interconnection between fM N and gM N .

For this specific actor, task parallelism is implemented as follows. The task of computing half

and quarter pixels for a given video block W ×H can be partitioned into 4 subtasks s0, s1, s2,

and s3 with computational requirements for the worst case block size of 16×16 given in Table

3.3. Each subtask is also found to be independent of each other except for s3, i.e. s0, s1 and

s2 can all be performed in parallel, followed by task s3. The execution of subtasks for a given

video block depends on the sample location defined in Figure 3.8, with the required subtasks

summarized in Table 3.4. Hence, we can see that most of the sample location requires at

least two subtasks which can be performed in parallel. Figures 3.9 and 3.10 respectively show

algorithms for half and quarter pixel interpolation as implemented in CAL. For half pixel

interpolation, the subtasks s0, s1, and s2 are shown respectively at lines 1, 17, and 33. The

functions computeHalfPixel and sixTapFilter in Figure 3.9, and computeQuarterPixel in Figure

3.10 respectively are based on equations 6.8, 6.8 without the Clip function, and 6.9.

53

Chapter 3. Minimizing system latency with refactoring

picture_buffer

half_quarter_interpolation_1

half_quarter_interpolation_M

......
Write
frame

p
1

p
M

i
1

i
M

o
1

o
M

Rd1

Rd
M

Rd
M

i
M1

i
MN

...

half_quarter_interpolation_M1

half_quarter_interpolation_MN

g
MN

P
1

P
M

PMo
m

f
MN

(a) Data parallelism

Merger

b
1

b
m

... bp
Interpolated
block

(b) Task parallelism

Figure 3.7: (a) data parallelism, where the actor half_quarter_interpolation is replicated
M times, and later merged. For each instantiated actor, it is possible to perform (b) task
parallelism, where the task is partitioned into N subtasks with distinct set of operations.

Further analysis of the subtasks in Table 3.3 shows that the required number of memory access

and arithmetic operations are still relatively large and being performed serially, especially for

subtasks s0 and s1. Therefore, a higher degree of task parallelism can be obtained by further

partitioning these subtasks. As shown in Figures 3.9 and 3.10, the subtasks contain a loop that

performs 6-tap filter operation for x number of times, where x = {1312,592}. The strategy here

is to partition the loop by h, and create several parallel instances of this operation, such that

each of them performs filtering for only x/h times.

The estimated latency reduction for both data and task parallelism will now be derived, based

on the example above. Given B video blocks to be processed by the task (half_quarter_-

54

3.4. Exploiting data and task parallelism on MPEG-4 AVC/H.264 decoder

Table 3.3: The subtasks of MPEG-4 AVC/H.264 half (s0, s1, s2) and quarter (s3) pixel interpola-
tion for worst-case video block and their complexity in terms of memory access and arithmetic
operations. s0, s1 and s2 can be performed in parallel, followed by s3.

Subtask # of distinct memory access # of 6-taps FIR filter # of 2-taps FIR filter
s0 9184 1312 -
s1 9184 1312 -
s2 4144 592 -
s3 768 - 256

Figure 3.8: Integer sample (shaded blocks with upper-case letters) and fractional sample
positions (unshaded blocks with lower-case letters) for quarter sample luma interpolation.

Table 3.4: Fractional sample positions based on Figure 3.8 and their required subtasks given in
Table 3.3.

Fractional position(s) d,h,n a,c i,k b f,q j e,p,g,r
Required subtask(s) s0 s0, s1 s0, s2 s1 s1, s2 s2 s0, s1, s3

55

Chapter 3. Minimizing system latency with refactoring

1 / / subtask s0
2 i f (xFrac = 0 or xFrac = 1 or xFrac = 3) then
3 _x = xMin ;
4 while (_x < xMax+1) do
5 _y := 0 ;
6 while (_y < height) do
7 tabPix [4 * _x] [4 * (2 + _y) + 2] :=
8 computeHalfPixel (tabPix [4* _x] [4 * _y] , tabPix [4* _x] [4 * (1 + _y)] ,
9 tabPix [4 * _x] [4 * (2 + _y)] , tabPix [4 * _x] [4 * (3 + _y)] ,

10 tabPix [4 * _x] [4 * (4 + _y)] , tabPix [4 * _x] [4 * (5 + _y)]) ;
11 _y := _y + 1 ;
12 end
13 _x := _x + 1 ;
14 end
15 end
16

17 / / subtask s1
18 i f (yFrac=0 or (xFrac !=0 and yFrac =1) or (xFrac !=0 and yFrac =3)) then
19 _x := 0 ;
20 while (_x < width) do
21 _y := yMin ;
22 while (_y < yMax+1) do
23 tabPix [4 * (2 + _x) + 2] [4 * _y] :=
24 computeHalfPixel (tabPix [4* _x] [4 * _y] , tabPix [4 * (1 +_x)] [4 * _y] ,
25 tabPix [4 * (2 +_x)] [4 * _y] , tabPix [4 * (3 + _x)] [4 * _y] ,
26 tabPix [4*(4+ _x)] [4 * _y] , tabPix [4 * (5 + _x)] [4 * _y]) ;
27 _y := _y + 1 ;
28 end
29 _x := _x + 1 ;
30 end
31 end
32

33 / / subtask s2
34 i f ((xFrac=2 and yFrac != 0) or ((xFrac=1 or xFrac =3) and yFrac = 2)) then
35 _x := 0 ;
36 while (_x < width) do
37 _y := yMin ;
38 while (_y < yMax+1) do
39 tabPix [4 * (2 + _x) + 2] [4 * _y] :=
40 computeHalfPixel (tabPix [4* _x] [4 * _y] , tabPix [4 * (1 + _x)] [4 * _y] ,
41 tabPix [4*(2+ _x)] [4 * _y] , tabPix [4 * (3 + _x)] [4 * _y] ,
42 tabPix [4*(4+ _x)] [4 * _y] , tabPix [4 * (5 + _x)] [4 * _y]) ;
43 _y := _y + 1 ;
44 end
45 _x := _x + 1 ;
46 end
47 _x := 0 ;
48 while (_x < width) do
49 _y := 0 ;
50 while (_y < height + 5) do
51 tabIntermPix [4 * (2 + _x) + 2] [4 * _y] :=
52 s i x T a p F i l t e r (tabPix [4 * _x] [4 * _y] , tabPix [4 * (1 + _x)] [4 * _y] ,
53 tabPix [4 * (2 + _x)] [4 * _y] , tabPix [4 * (3 + _x)] [4 * _y] ,
54 tabPix [4*(4+ _x)] [4 * _y] , tabPix [4 * (5 + _x)] [4 * _y]) ;
55 _y := _y + 1 ;
56 end
57 _x := _x + 1 ;
58 end
59 end

Figure 3.9: Half quarter interpolation algorithm as implemented in CAL. The task is divided
into three subtasks s0, s1, and s2.
56

3.4. Exploiting data and task parallelism on MPEG-4 AVC/H.264 decoder

1 / / subtask s3
2 i f (not (xFrac=0 and yFrac =2) and not (xFrac=2 and yFrac =0)
3 and not (xFrac=2 and yFrac =2)) then
4 x_idx := 0 ;
5 while (x_idx < width) do
6 y_idx := 0 ;
7 while (y_idx < height) do
8 pix1 :=
9 i f ((xFrac=1 and yFrac <2) or (xFrac=2 and yFrac =1) or (xFrac=3 and

10 yFrac =0)) then tabPix [4 * (2 + x_idx) +2] [4*(2 + y_idx)]
11 else i f (xFrac != 0 and yFrac =3) then tabPix [4 * (2 + x_idx) + 2] [4 * (3 + y_idx)]
12 else i f ((xFrac=1 and yFrac =2) or (xFrac=3 and yFrac =2)) then
13 tabPix [4 * (2 + x_idx) +2] [4 *(2 + y_idx) + 2]
14 else i f (xFrac =0) then
15 i f (yFrac =1)then tabPix [4 * (2 + x_idx)] [4 * (2 + y_idx)]
16 else tabPix [4 * (2 + x_idx)] [4 * (3 + y_idx)] end
17 else tabPix [4 * (2 + x_idx) + 2] [4 * (2 + y_idx)]
18 end end end end ;
19 pix2 :=
20 i f (xFrac=0 or (xFrac=1 and yFrac ! = 0)) then
21 tabPix [4 * (2 + x_idx)] [4 * (2 +y_idx) + 2]
22 else i f (xFrac=3 and yFrac ! = 0) then tabPix [4 * (3 + x_idx)] [4 * (2 + y_idx) + 2]
23 else i f (xFrac =2) then tabPix [4 * (2 + x_idx) +2] [4 *(2 + y_idx) + 2]
24 else i f (xFrac=1 and yFrac =0) then tabPix [4 * (2 + x_idx)] [4 * (2 + y_idx)]
25 else tabPix [4 * (3 + x_idx)] [4 * (2 + y_idx)]
26 end end end end ;
27 tabPix [4 * (2 + x_idx) + xFrac] [4 * (2 + y_idx) + yFrac] :=
28 computeQuarterPixel (pix1 , pix2) ;
29 y_idx := y_idx + 1 ;
30 end
31 x_idx := x_idx + 1 ;
32 end
33 end

Figure 3.10: Quarter pixel interpolation algorithm as implemented in CAL. This task has to be
performed after the completion of half quarter interpolation.

57

Chapter 3. Minimizing system latency with refactoring

interpolation), the estimated latency for serial implementation is simply given by:

L =
B∑

b=0
(t b

r + t b
p + t b

s) (3.3)

where t b
r , t b

p , and t b
s are the latency to receive, process, and send a single block b ∈ B . By imple-

menting data parallelism with M replicated tasks, the latency is taken as the last instance to

finish executing all of its given blocks, i.e. max(L′
1, . . . ,L′

M), where L′
m ,m ∈ M is the estimated

latency of instance m to process all its blocks B/M , i.e.

L′
m =

B/M∑
b=0

(t Mb+m
r + t Mb+m

p + t Mb+m
s) (3.4)

The superscript Mb +m refers to a specific block for an instantiated task that depends on

the number of instantiated tasks M , the current block b, and the instance sequence m. For

example if M = 2, the instance m = 1 and m = 2 respectively process all odd and even num-

bered blocks. The latency reduction is therefore, L−max(L′
1, . . . ,L′

M), where it is expected that

L′
m < L.

The latency reduction for task parallelism will now be estimated. Given a block bmn ∈ B that is

to be processed by instance m and subtask n, the latency for serial implementation is given

by:

L = tbm1 + tbm2 + . . .+ tbmN (3.5)

where tbm1 , . . . , tbmN are the composition of latencies for processing the block with N sequential

subtasks. By performing the N subtasks in parallel with the merge task in subtask n = 1, the

new latency is reduced to:

L′ = tbm1 + t c
bm2

+ . . .+ t c
bmN

(3.6)

The superscript c refers to the latency to receive the results from subtask n, where t c
bmn

< tbmn

58

3.4. Exploiting data and task parallelism on MPEG-4 AVC/H.264 decoder

is expected due to the parallel computations. The latency reduction is therefore,

L−L′ = (tbm2 + . . .+ tbmN)− (t c
bm2

+ . . .+ t c
bmN

) (3.7)

3.4.2 The blocks_reorder actor

This actor is also one of the actors in the CP. The following describes a strategy to increase its

level of data parallelism. Figure 3.11 shows an implementation of the blocks_reorder actor,

where originally, the output is sent per byte to the add actor to produce the predicted pixel. By

analyzing the design of the blocks_reorder actor, all bytes for a single macroblock (256 bytes

altogether) are available immediately after combining the variable blocks from the output of

the half_quarter_interpolation actor. Therefore, all the pixels for one macroblock can

be sent to the output in parallel to 256 parallel adders. However, this approach is not very

efficient due to the very large additional resource that would be required for the adders and

the buffer interconnections. The better approach here is to send n where n < 256 parallel

pixels from the blocks_reorder and instantiate n parallel adders, where the value of n can

be found by incrementing the value continuously until this actor no longer appears in the CP

of the top-level network. In our case, n = 16 is found to be the optimum number of parallel

output bytes that is required to remove this actor from the CP.

blocks_reorder

addResidual
output Predicted

pixel
n x 8

n x 8

n x 8

X

Y
Z

MB

Half/quarter
output

B

Figure 3.11: Actors blocks_reorder and add for producing inter-prediction pixels. In the
original implementation, n is set to 1, where a single byte is sent serially for addition. Since
the whole macroblock is available immediately from blocks_reorder, the value of of n can
be set up to 256.

The following presents an estimated latency reduction for n parallel output bytes from the

blocks_reorder actor, compared to the original implementation. The latency to obtain a

single pixel from the output of the add actor is given by L = t1 + tadd , where t1 is the latency to

59

Chapter 3. Minimizing system latency with refactoring

send one byte from the blocks_reorder to the add actor, and tadd is the latency of the add
operation. By sending n parallel bytes from the blocks_reorder actor, the latency to obtain

a single pixel from the add actor is given by

L′ = t1

n
+ tadd (3.8)

The latency for addition remains the same due to the implementation of n parallel adders.

Note that the other adder operand from the residual output is not taken into account in the

analysis since the residual component is not in the CP, i.e. the bottleneck comes from the

output of the blocks_reorder actor. The estimated reduction in latency is given by:

L−L′ = t1 × (n −1)

n
(3.9)

3.5 Reducing number of memory access on MPEG-4 AVC/H.264 de-

coder

This section presents some examples of applying the data-packing and redundancy elimi-

nation techniques presented in Section 3.2.2 on the design case study, based on the critical

actors and optimization directions given by TURNUS.

3.5.1 The picture_buffer actor

Data-packing technique. The main functionality of the picture_buffer actor is to receive

and store the current decoded pixels into memory, and send them as a reference frame in

terms of variable blocks for predicting the next frame. The actor first stores the whole frame

before proceeding to load the reference frame. Hence, large amount of memory bandwidth

is required for both the store and load operations. Here, the estimated latency reduction

is derived for this operation in the case of merging 4 bytes before a write access in a single

macroblock. Let tr be the latency to receive one token and te the latency to write a token to

memory, both in terms of clock cycles per byte. In the implementation without data-packing,

the total latency to write one macroblock to memory is L = (tr +te)×MBSZ where MBSZ = 16

is the size of one macroblock in terms of bytes. In the implementation with data-packing, it

would take 4× tr clock cycles to receive 4 tokens and merge, and te clock cycles to write the 4

bytes into memory. However, since the action takes 4 bytes per firing, the number of firing

is now 16
4 = 4. Therefore, the new latency is L′ = (4× tr + te)×4. The potential reduction in

60

3.5. Reducing number of memory access on MPEG-4 AVC/H.264 decoder

1 writeData . Launch : action WD: [wd] ⇒
2 guard i < MBSZ
3 do
4 pictureBuffer [picIdx] [xAddr] [yAddr] := wd;
5 i := i + 1 ;
6 . . .
7 end

Figure 3.12: Original implementation of the action writeData.Launch that takes in a single
pixel and stores into memory pictureBuffer.

1 writeData_new . Launch : action WD: [wd0, wd1, wd2,wd3] ⇒
2 guard i < (MBSZ >> 2)
3 do
4 pictureBuffer [picIdx] [xAddr] [yAddr] :=
5 (wd0<<24) or (wd1<<16) or (wd2<<8) or (wd3) ;
6 i := i + 1 ;
7 . . .
8 end

Figure 3.13: Improved implementation of the action in Figure 3.12, that takes in 4 pixels in a
single firing, merge the pixels into a 32-bit word, before storing into memory.

latency per macroblock is given by:

L−L′ = 3

4
× te ×16 = 12× te (3.10)

which is an estimated 12 times less memory access required per macroblock compared to the

original implementation without data-packing.

The technique to merge a group of pixels for reducing the number of memory access is simple

and effective. The slightly tricky part is when the stored pixels need to be loaded from memory,

and sent as variable blocks to the inter prediction unit. The pixels are stored in a raster-scan

fashion with each memory location containing 4 pixels, but they need to be read as blocks

with individual pixels for a given dimension and location. The basic methodology is as follows.

Given a block B with location {RaOffx,RaOffy} and dimension {RaWidth,RaHeight} that needs

to be extracted from a frame F , the first step is to determine the correct memory location that

contains the first pixel on the top-left of the block. With the row obtained directly with the

value of RaOffy, the column is obtained by performing a modulo by 4 of RaOffx for a particular

pixel location in memory. RaOffx % 4=(0,1,2,3) respectively means that it is the first, second,

third, and fourth pixel. The adjacent pixels are taken accordingly until RaWidth has been

reached. This is repeated for the other rows until RaHeight has also been reached.

61

Chapter 3. Minimizing system latency with refactoring

Redundancy-elimination technique. By analyzing the CAL design of this actor given in Figure

3.14, there is a redundant intermediate storage called ReadTable, where on line 27, the

extracted block from the main buffer called pictureBuffer is copied into another buffer

called ReadTable. In the action readData.launch at line 36, the buffer ReadTable is accessed

serially to send each pixel in the block. Here we can see that there is a redundant memory

access when extracting the block, when in fact, the block can be sent directly during extraction.

The improved implementation is given in Figure 3.15. The action getReadAddrY at line 27 gets

the current y-position of the block, and the action getReadAddrX at line 34 directly extracts

and sends the block for one line directly from the main buffer. Since the blocks are sent directly

during extraction, the latency to store and load data to and from an intermediate memory is

eliminated. This is a memory access reduction of 2× ((W +5)× (H +5)) per block for a block

size of W ×H . Note the additional “5” term during extraction, which is due to the block that

requires an offset by 5 pixels for interpolation.

3.5.2 The half_quarter_interpolation actor

Redundancy-elimination technique. Using a slightly different approach, the redundancy-

elimination technique can also be applied on the most critical actor, the half_quarter
_interpolation. The interpolation for half and/or quarter pixel is performed based on the

values of the motion vectors, Mvx and Mvy. If both values are zero, then it is not necessary

to perform half and/or quarter pixel interpolations, so the block can be sent directly for

reordering. In the original implementation, the blocks are stored regardless if half and/or

quarter pixel interpolation are required. The check for the motion vectors are performed

after the blocks are stored. The implementation can be improved by performing the check

before the blocks are stored, therefore eliminating the latency for storing blocks that are not

required to be processed. This is shown in Figure 3.16. In the improved implementation

(dashed arrow), the next action firing after getMvSz is selected to be getBlock or sendBlock,

depending on the values of the motion vectors. If both are zero, then the block is not written

into memory, but gets sent directly. However, this technique would only result in significant

latency reduction if there are many blocks that do not require any interpolation or only integer

interpolation.

3.6 Experimental results

Table 3.5 summarizes the results of applying the refactoring techniques on the MPEG-4

AVC/H.264 components case studies presented in the previous section. The re-factored

CAL actors are synthesized to HDL for implementation on Xilinx Virtex-5 FPGA. Xilinx XST

synthesis tool and Modelsim hardware simulator have been used to evaluate the designs in

terms of resource and performance.

62

3.6. Experimental results

1 getReadAddr : action
2 RA : [RaOffX , RaOffY , RAWidth , RAHeight] ,
3 FRAME_TO_READ : [FrameNumToRead] ,
4 ENABLE_READ : [ReadEnabled] ⇒
5 guard
6 ReadEnabled
7 var
8 bool found := false ,
9 i n t (s i z e =SZ_NBPIC+1) r e f Id x := 0 ,

10 i n t yAddr := 0 , i n t xAddr := 0
11 do
12 i f FrameNumToRead=listFrameNum [0] then
13 r e f I dx := 0 ;
14 found := true ;
15 end
16 i f (not found and FrameNumToRead=listFrameNum [1]) then
17 r e f I dx := 1 ;
18 found := true ;
19 end
20 RaOffX := c l i p _ i 3 2 (RaOffX , −2*MB_WIDTH, picWidthInMacroB*MB_WIDTH) ;
21 RaOffY := c l i p _ i 3 2 (RaOffY , −2*MB_WIDTH, picHeightInMacroB *MB_WIDTH) ;
22 readIdxMax := 0 ;
23 yAddr := RaOffY + 2*MB_WIDTH;
24 while (yAddr < RaOffY + RAHeight + 2*MB_WIDTH) do
25 xAddr := RaOffX + 2*MB_WIDTH;
26 while (xAddr < RaOffX + RAWidth + 2*MB_WIDTH) do
27 ReadTable [readIdxMax] := pictureBuffer [r e f I dx] [xAddr] [yAddr] ;
28 readIdxMax := readIdxMax + 1 ;
29 xAddr := xAddr + 1 ;
30 end
31 yAddr := yAddr + 1 ;
32 end
33 readIdx := 0 ;
34 end
35

36 readData . launch : action ⇒ RD: [rd]
37 guard
38 readIdx < readIdxMax
39 var
40 i n t (s i z e =9) rd
41 do
42 rd := ReadTable [readIdx] ;
43 readIdx := readIdx + 1 ;
44 end
45

46 readData . done : action ⇒
47 guard
48 readIdx = readIdxMax
49 end

Figure 3.14: The original implementation of extracting and sending blocks for half/quarter
interpolation. The extracted block is stored in a redundant buffer ReadTable at line 27.

63

Chapter 3. Minimizing system latency with refactoring

1 getReadAddr : action
2 RA : [RaOffX , RaOffY , RAWidth , RAHeight] ,
3 FRAME_TO_READ : [FrameNumToRead] ,
4 ENABLE_READ : [ReadEnabled] ⇒
5 guard
6 ReadEnabled
7 var
8 bool found := f a l s e
9 do

10 i f FrameNumToRead=listFrameNum [0] then
11 r e f I dx := 0 ;
12 found := true ;
13 end
14 i f (not found and FrameNumToRead=listFrameNum [1]) then
15 r e f I dx := 1 ;
16 found := true ;
17 end
18 RaOffX := c l i p _ i 3 2 (RaOffX , −2*MB_WIDTH, picWidthInMacroB*MB_WIDTH) ;
19 RaOffY := c l i p _ i 3 2 (RaOffY , −2*MB_WIDTH, picHeightInMacroB *MB_WIDTH) ;
20 yAddr := RaOffY + 2*MB_WIDTH;
21 _RaOffY := RaOffY ;
22 _RaOffX := RaOffX ;
23 _RAHeight := RAHeight ;
24 _RAWidth := RAWidth ;
25 end
26

27 getReadAddrY : action ⇒
28 guard
29 (yAddr < _RaOffY + _RAHeight + 2*MB_WIDTH)
30 do
31 xAddr := _RaOffX + 2*MB_WIDTH;
32 end
33

34 getReadAddrX : action ⇒ RD: [rd]
35 guard
36 (xAddr < _RaOffX + _RAWidth + 2*MB_WIDTH)
37 var
38 i n t rd := 0
39 do
40 rd := pictureBuffer [r e f I d x] [xAddr] [yAddr] ;
41 xAddr := xAddr + 1 ;
42 end
43

44 doneGetReadAddrX : action ⇒
45 guard
46 not (xAddr < _RaOffX + _RAWidth + 2*MB_WIDTH)
47 do
48 yAddr := yAddr + 1 ;
49 end
50

51 doneGetReadAddrY : action ⇒
52 guard
53 not (yAddr < _RaOffY + _RAHeight + 2*MB_WIDTH)
54 end

Figure 3.15: The improved implementation of extracting and sending blocks for half/quarter
interpolation. The extract and send processes are performed simultaneously by the action
getReadAddrX at line 34.

64

3.6. Experimental results

getMvSz

getBlock

sendBlock

ComputeHalf-
Quarter

- get motion vectors
 and block size

- store block in
 memory

- compute half and
 quarter interpolation

- send interpolated
 block

Mvx=0 and Mvy=0

Mvx!=0 or Mvy!=0

Figure 3.16: Part of the half_quarter_interpolation actor, where ovals are actions and
arrows are transitions. The dashed arrow and the Mvx and Mvy checks represent an improved
implementation where the block is not stored if half and/or quarter interpolation are not
required.

For the half_quarter_interpolation actor, data parallelism is applied based on the method

described in Section 3.4 by replicating the process 4 times. For this, a latency reduction by 3.6x

is achieved, from 566,097 to 156,445 clock cycles per frame. Task parallelism is also applied by

partitioning the task into 3 subtasks where a further latency reduction of 53853 clock cycles is

obtained. In terms of resource, these techniques require significantly more slice and block

RAM by up to 4.3x for both of these criteria. In terms of frequency, all designs result in the

same value since the longest combinatorial path remains the same.

For the blocks_reorder actor, we instantiate 4 parallel 8-bit adders with 4 parallel input

coming from the blocks_reorder actor instead of 1 in the original implementation, where a

small gain of around 1000 clock cycles per frame is observed. However, when 16 parallel 8-bit

adders are instantiated, a significant gain of about 90,000 clock cycles per frame is obtained,

which corresponds to 3x improvement. The resource also increased significantly in terms of

block RAM where an additional 78 is required, although the required occupied slice increased

only by slightly. In terms of frequency, all designs result in the same value since the longest

combinatorial path remains the same.

For the picture_buffer actor, memory optimizations are applied where for data-packing,

the number of clock cycles is reduced by almost 40,000 per frame. For redundancy-elimination

technique where it is applied after data-packing, a further latency reduction of about 100,000

clock cycles is observed. In terms of resource, data-packing requires slightly more due to extra

logic to merge tokens and different ways to access memory, while the redundancy-elimination

technique results in less slice, due to elimination of intermediate memory.

65

Chapter 3. Minimizing system latency with refactoring

Table 3.5: Results of applying the refactoring and memory optimization techniques on several
actors in the MPEG-4 AVC/H.264 decoder.

Latency fmax Occupied
Actor Technique (c.c./frame) (MHz) slice BRAM
half_quarter_- original 566097 56 1794 13
interpolation Data parallelism (4x) 156445 56 6882 48

Task parallelism (3x) 102592 56 7733 57
blocks_reorder original 134131 146 585 3

Data parallelism (4x) 132930 146 653 5
Data parallelism (16x) 44015 146 884 83

picture_buffer original 499460 74 851 37
Data-packing 460765 74 991 37

Redundancy-elimination 360465 74 828 36

Here, the gain in latency is shown only for a given actor. The gain in the overall network

when the actors are instantiated depends on the refactoring order and its contribution to the

execution trace critical path. Different ordering of the techniques applied to the complex

network would result in different design points in the exploration space. Theoretically, the

best ordering is the one applied to the higher rank actor in the current critical path. In

practice however, the possible computational load reduction of the critical actors are unknown.

Therefore, finding the best refactoring techniques and directions at each subsequent stage

can be reduced to a combinatorial problem, where the selection can be made using heuristics

at each refactoring stage.

3.7 Summary

In this chapter, we have presented several refactoring techniques to minimize system latency

which include data and task parallelism, and memory access reductions. First, background

and related works on dataflow program refactoring, parallelism, and memory optimizations in

video decoders were given. This is followed by a generic method to apply the refactoring tech-

niques in dataflow programs. The MPEG-4 AVC/H.264 decoder case study was first analyzed

and profiled using TURNUS where the critical path and computational load information were

obtained. Based on these information, we then presented and applied specific refactoring

techniques for some of the critical actors. The techniques have been proven analytically and

experimentally to be very effective with significant reduction in system latency.

66

4 Maximizing system frequency with
refactoring

In hardware designs, circuit pipelining is typically implemented to allow designs to operate

at a higher maximum frequency by partitioning its data processing elements that are in the

combinatorial critical path. By partitioning the relevant parts, the length of the critical path

can be reduced, thus allowing a higher maximum operating frequency, and consequently, the

design throughput as well.

This chapter presents such techniques that are applied at the level of dataflow programs,

as opposed to traditional low-level RTL programs. First, background and related works on

circuit pipelining are given, followed by our novel pipelining techniques for dataflow programs.

This includes the mathematical modeling of the synthesis and optimization tasks by dataflow

graph relations, its corresponding algorithms, and a methodology to pipeline complex designs.

The final part of the chapter presents results on pipelining a single-actor design, and a more

complex MPEG-4 decoder.

4.1 Background and related works

In computing, a pipeline is a set of data processing elements connected in series, so that the

output of one element is the input of the next one. The elements of a pipeline are executed

in parallel or in time-sliced fashion; in this case, some amount of buffer storage (pipeline

registers) is inserted in between elements. The time between each clock signal is set to

be greater than the longest delay between pipeline stages, so that when the registers are

clocked, the data that is written to the following registers is the final result of the previous

stage. A pipelined system typically requires more resource (circuit elements, processing units,

computer memory, etc.) than one that executes one batch at a time, because each pipeline

stage cannot reuse the resource of the other stages.

67

Chapter 4. Maximizing system frequency with refactoring

Key pipeline parameters are number of pipeline stages, latency, clock cycle time, delay,

turnaround time, and throughput. A pipeline synthesis problem can be constrained either

by resource or time, or a combination of both [61]. A resource-constraint pipeline synthesis

limits the area of a chip or the available number of functional units of each type. In this case,

the objective of the scheduler is to find a schedule with maximum performance, given avail-

able resource. On the other hand, a time-constraint pipeline synthesis specifies the required

throughput and turnaround time, with the objective of the scheduler is to find a schedule that

consume minimum resource.

Sehwa [95] is the first pipeline synthesis program. For a given constraint on the number

of resource, it implements a pipelined datapath with minimum latency. Sehwa minimizes

time delay using a modified list scheduling algorithm with a resource allocation Table. HAL

[98] performs a time-constrained, functional pipelining scheduling using the force directed

method which is modified in [62]. The loop winding method was proposed in the Elf [42]

system. A loop iteration is partitioned horizontally into several pieces, which are then arranged

in parallel to achieve a higher throughput. The percolation based scheduling [102] deals with

loop winding by starting with an optimal schedule [15] which is obtained without considering

resource constraints. Spaid [52] finds a maximally parallel pattern using a linear programming

formulation. ATOMICS [43] performs loop optimization starting with estimating a latency

and inter-iteration precedence. Operations which cannot be scheduled within the latency

are folded to the next iteration, the latency is decreased and the folding is applied again. The

above listed tools support resource sharing during pipeline optimization.

SODAS [66] is a pipelined datapath synthesis system targeted for application-specific DSP

chip design. Taking signal flow graphs (SFG) as input, SODAS-DSP generates pipelined datap-

aths through iteratively constructive variation of the list scheduling and module allocation

processes that iteratively improves the interconnection cost, where the measure of equidis-

tribution of operations among pipeline partitions is adopted as the objective function. Area

and performance trade-off in pipeline designs can be achieved by changing the synthesis

parameters, data initiation interval, clock cycle time, and number of pipeline stages. Through

careful scheduling of operations to pipeline stages and allocation of hardware modules, high

utilization of hardware modules can be achieved.

Pipelining is an effective method to optimize the execution of a loop with or without loop

carried dependencies, especially for digital signal processing [62]. Highly concurrent imple-

mentations can be obtained by overlapping the execution of consecutive iterations. Forward

and backward scheduling is iteratively used to minimize the delay in order to have more silicon

area for allocating additional resource which in turn will increase throughput.

Another important concept in circuit pipelining is Retiming, which exploits the ability to move

registers in the circuit in order to decrease the length of the longest path while preserving its

68

4.2. Pipeline synthesis and optimization for CAL programs

functional behavior [78]. A sequential circuit is an interconnection of logic gates and memory

elements which communicate with its environment through primary inputs and primary

outputs. The performance optimization problem of pipelined circuits is to maximize the

clocking rate or equivalently minimize the cycle time of the circuit. The aim of constrained

min-area retiming is to constrain the number of registers for a target clock period, under the

assumption that all registers have the same area, the min-area retiming problem reduces

to seeking a solution with the minimum number of registers in the circuit. In the retiming

problem the objective function and constraints are linear, so linear programming techniques

can be used to solve this problem. The basic version of retiming can be solved in polynomial

time. The concept of retiming proposed by Leiserson et al [78] was extended to peripheral

retiming in [85] by introducing the concept of a "negative" register. These works assume that

the degree of functional pipelining has already been fixed and consider only the problem of

adding pipeline buffers to improve performance of an asynchronous circuit.

The works discussed are mainly targeted at the generation and optimization of hardware

resource from behavioral register transfer level (RTL) descriptions. As to our knowledge, there

is no available tool that performs these functions at the level of a dataflow program. The

development of the CAL dataflow language allows the application of these techniques at a

higher abstraction level, thus provides the advantages of rapid design space exploration to

explore pipeline throughput and area trade-off, and simpler transformation of a non-pipelined

to a pipelined behavioral description.

4.2 Pipeline synthesis and optimization for CAL programs

The design abstraction of CAL dataflow programs can be loosely defined as pipelined imple-

mentations, where actors are the processing elements that are connected to adjacent actors

by FIFO buffers. The key difference however, is that actors may contain many actions that are

controlled by a local scheduler. In this case, data may not necessarily be written at FIFO buffers

at every clock cycle as in true pipelined circuits. Furthermore, an action may require to execute

for more than a single clock cycle, for example when a state variable access is performed. A

dataflow program only becomes a fully pipelined implementation if every actor in the network

contains just a single action that executes in a single clock cycle.

The idea behind our pipeline synthesis is to partition a single action that is contained in an

actor, into several actions in separate actors that are interconnected by pipeline registers. The

optimization task is to find the best way to partition the action with the objective of minimum

pipeline resource.

The first step is to make the action body (i.e. sequence of operations) more analyzable. This

is achieved by limiting each arithmetic operator to two operands, and assigning a unique

69

Chapter 4. Maximizing system frequency with refactoring

output variable for each operator, essentially transforming each operator to a two-operands-

single-assignment form. Figure 4.1 shows the ISO/IEC 23002-2 1D IDCT algorithm, with each

operation represented as such. The algorithm uses 25 subtractors, 19 adders, and 52 variables.

It also takes in eight inputs in parallel (x0 to x7), and produces eight outputs in parallel (o0 to

o7). The transformed algorithm can be represented as a dataflow graph (DFG) as shown in

Figure 4.2, which can then be analyzed using mathematical relations.

4.2.1 Dataflow graph relations

Let N = {1, . . . ,n} be a set of algorithm operators and M = {1, . . . ,m} be a set of algorithm

variables. In the example of Figures 4.1 and 4.2, N = 44 and M = 52. The following matrices

describe operator-variable and precedence relations.

1. The operators/input variables relation. The operators / input variables relation is de-

scribed with the F (n,m) matrix:

F =

f1,1 · · · f1,m

...
. . .

...

fn,1 · · · fn,m

where fi , j ∈ {0,1} for i ∈ N and j ∈ M . If fi , j = 1, then the j variable is an input for the i

operator, otherwise it is not. For example in the sequence of operations in Figure 4.1, if

x1 is variable 0 ∈ M , and the + operator on line 1 is operator 0 ∈ N , then f0,0 = 1 since x1

is the input for the given operator.

2. The operators/output variables relation. This relation describes which variables are

outputs of the operators. It is represented with the H(n,m) matrix:

H =

h1,1 · · · h1,m

...
. . .

...

hn,1 · · · hn,m

where hi , j ∈ {0,1} for i ∈ N and j ∈ M . If hi , j = 1, then the j variable is an output for the i

operator, otherwise it is not. For example in Figure 4.1, if xa is variable 8 ∈ M and the

+ operator on line 1 is operator 0 ∈ N , then f0,8 = 1 since xa is the output for the given

operator.

3. The operator direct precedence relation. This relation describes a partial order on the set

of operators derived from analysis of the data dependencies between operators on the

dataflow graph. The relation is represented with the Pdi r ect (n,n) matrix:

70

4.2. Pipeline synthesis and optimization for CAL programs

1 xa := x1 + x7 ;
2 xb := x1 − x7 ;
3 x11 := xa + x3 ;
4 x31 := xa − x3 ;
5 x71 := xb + x5 ;
6 x51 := xb − x5 ;
7 y2 := (x31 >> 3) − (x31 >> 7) ;
8 y3 := y2 − (x31 >> 11) ;
9 xa1 := y2 + (y3 >> 1) ;

10 x32 := x31 − y2 ;
11 y21 := (x51 >> 3) − (x51 >> 7) ;
12 y31 := y21 − (x51 >> 11) ;
13 xb1 := y21 + (y31 >> 1) ;
14 x52 := x51 − y21 ;
15 x32 := x33 − xb1 ;
16 x53 := x52 + xa1 ;
17 y22 := (x11 >> 9) − x11 ;
18 x12 := (y22 >> 22) − y2 ;
19 y23 := (x71 >> 9) − x71 ;
20 x72 := (y23 >> 2) − y23 ;
21 x13 := x12 + x71 ;
22 x73 := x11 − x72 ;
23 y24 := x2 + (x2 >> 5) ;
24 x21 := (y24 >> 2) + (x2 >> 4) ;
25 xa3 := y24 − (y24 >> 2) ;
26 y25 := x6 + (x6 >> 5) ;
27 x61 := (y25 >> 2) + (x6 >> 4) ;
28 xb3 := y25 − (y25 >> 2) ;
29 x22 := xb3 − x21 ;
30 x62 := x61 + xa3 ;
31 xa4 := x0 + x4 ;
32 xb4 := x0 − x4 ;
33 x01 := xa4 + x62 ;
34 x63 := xa4 − x62 ;
35 x41 := xb4 + x22 ;
36 x23 := xb4 − x22 ;
37 o0 := x01 + x13 ;
38 o1 := x41 + x53 ;
39 o2 := x23 + x33 ;
40 o3 := x63 + x73 ;
41 o4 := x63 − x73 ;
42 o5 := x23 − x33 ;
43 o6 := x41 − x53 ;
44 o7 := x01 − x13 ;

Figure 4.1: The ISO/IEC 23002-2 1D IDCT algorithm in the two-operands-single-assignment
form. It consists of 25 subtractors, 19 adders, and 52 variables. Shifters assume no cost in
hardware implementation.

71

Chapter 4. Maximizing system frequency with refactoring

Figure 4.2: Dataflow graph of the ISO/IEC 23002-2 1D IDCT algorithm in the two-operands-
single-assignment form. There are a maximum of 7 stages for minimum granularity.

72

4.2. Pipeline synthesis and optimization for CAL programs

Table 4.1: CAL operator relative delays. The "+/-" operator is selected as the reference with
delay of 1.00.

No. CAL operator type Time delay
1 +/- 1.00
3 * 3.00
4 > / < 0.10
6 bitand/bitor 0.02
8 not 0.01
11 if 0.05
12 other . . .

Pdi r ect =

p1,1 · · · p1,n

...
. . .

...

pn,1 · · · pn,n

where pi , j ∈ {0,1} for i , j ∈ N . If pi , j = 1, then the i operator is a direct predecessor for

the j operator, otherwise it is not. For example in Figure 4.1, the operations on lines 1

and 3 are direct predecessors, therefore, p0,2 = 1.

4. The operator precedence relation. The direct/indirect precedence Ptot al relation between

operators can be inferred by applying the transitive closure operation to the Pdi r ect (n,n)

matrix:

Ptot al = Pdi r ect ∪P 2
di r ect ∪ . . .∪P i

di r ect ∪ . . .∪P n
di r ect (4.1)

where P i
di r ect is Pdi r ect in power of i. Pdi r ect defines the direct precedence relation and

Ptot al defines the precedence relation. For example in Figure 4.1, the operations on

lines 1 and 7 are indirect predecessors, i.e. the two operations are linked by another

operation on line 4. Therefore, ptot al0,6 = 1, but p0,6 = 0.

The operators/variables precedence relations guarantee that the dependencies between oper-

ators and variables are respected when creating pipeline schedules. In order to meet timing

requirement, the timing delays for all operators need to be estimated. In this case, the relative

delay of an adder is used, where an adder is assigned a time delay of 1.00. All other operators

are assigned time delays relative to the delay of an adder, as shown in Table 4.1.

With this information, the Ptot al matrix can be extended to include the maximum delay

between two operators on the dataflow graph. This is defined by the G matrix:

73

Chapter 4. Maximizing system frequency with refactoring

G =

g1,1 · · · g1,n

...
. . .

...

gn,1 · · · gn,n

where gi , j at i , j ∈ N is a real value . If gi , j = 0 then there exist no path between i and j operators

on the dataflow graph, and the corresponding element of the Ptot al matrix is also equal to

zero. If gi , j > 0 then there is a path between the operators. Essentially, the maximum value

tmax in the G matrix defines the longest path in the dataflow network, i.e. the maximum time

delay to execute the action. For a single stage, the minimum time delay tmi n is the maximum

delay for a single operator. Therefore, the range of stage-time-delay (Tst ag e) that can be set is

between tmax and tmi n .

Based on the G matrix and Tst ag e , the mobility of each operator can be determined, i.e. the

possibility of a given operator to be scheduled to various pipeline stages. The earliest stage

that an operator i may be scheduled as is called asap(i), and the latest as alap(i). Hence the

mobility of operator i is given by alap(i)-asap(i). If an operator may be scheduled to only

one stage, then mobility equals to zero. Table 4.2 shows the mobility all 44 operators with

Tst ag e = 4 for the IDCT example.

Table 4.2: Operator mobility for the IDCT with Tst ag e =4. Operator with mobility 0 means that
it can only be scheduled to a single stage, and 1 means that it can be scheduled to 2 different
stages.

Mobility Operators
0 1,2,3,5,6,7,8,9,12,13,15,16,21,22,23,25,35,36,37,38,39,40,41,42,43,44
1 10,11,14,17,18,19,20,24,26,27,28,29,30,31,32,33,34

Given Tst ag e , the number of required pipeline stages can be also determined, i.e. the ceiling of

tmax /Tst ag e . Let K = {1, . . . ,k} be a set of pipeline stages. The distribution of operators onto

pipeline stages is described with the X matrix:

X =

x1,1 · · · x1,n

...
. . .

...

xk,1 · · · xk,n

In the matrix, the number of rows is equal to the number k of pipeline stages and the number

of columns is equal to the number n of operators. A xi , j ∈ {0,1} variable for i ∈ N and j ∈ K

takes one of two possible values. If xi , j = 1 then the i operator is scheduled to the j stage,

74

4.2. Pipeline synthesis and optimization for CAL programs

otherwise it is not scheduled to the stage. The X matrix essentially describes a distribution of

the operators on the stages.

Searching from all possible X matrices in the optimization space is inefficient, since not all X

matrices would result in valid pipeline schedules. For example, two adjacent operators with

direct precedence relation may not be assigned to the same pipeline stage due to the Tst ag e

constraint. The operator conflict relation is as follows,

C =

c1,1 · · · c1,n

...
. . .

...

cn,1 · · · cn,n

where ci , j ∈ {0,1} for i , j ∈ N . If ci , j = 1, then the i operator conflicts with the j operator (i.e.

cannot be assigned on same pipeline stage), otherwise it is not.

and the operator non-conflict relation,

nC =

nc1,1 · · · nc1,n

...
. . .

...

ncn,1 · · · ncn,n

where nci , j ∈ {0,1} for i , j ∈ N . If nci , j = 1, then the i operator does not conflict with the j

operator, otherwise it is.

Note that the matrices C and nC are not necessarily their complement due to the Tst ag e

requirement and the precedence relations between the operators.

4.2.2 Optimization tasks

Since one possible and valid X matrix describes a particular pipeline schedule, a global

optimum schedule can be found by searching for a schedule that meets a required optimization

objective among all possible and valid X matrices. In our case, we would like to find a pipeline

schedule X with minimum pipeline register resource for a required Tst ag e .

LetΩ be a set of all possible and valid X matrix. The objective function as follows finds the

matrix X with minimum total pipeline register width:

75

Chapter 4. Maximizing system frequency with refactoring

min
X∈Ω

k∑
s=1

{ m∑
j=1

[max
i∈N

(fi , j ×xs,i)−max
i∈N

(hi , j ×xs,i)]×

wi d th(j)+
m∑

j=1
[max(τ j , max

e=s+1,...,k,i∈N
(fi , j×

xe,i))− max
e=s,...,k,i∈N

(hi , j ×xe,i)]×wi d th(j)
}

(4.2)

where τ j = 1 if the j variable is an output token and τ j = 0 otherwise; × is the arithmetic

multiplication operation.

There are two parts in equation 4.2. The first one estimates for each stage s the width of

registers inserted in between the stage and the previous neighboring stage. The second one

estimates for each stage the width of transmission registers.

There are three constraints related to our optimization tasks – operator scheduling, time, and

precedence constraints.

The operator scheduling constraint describes the requirement that each operator should

belong to only one pipeline stage:

al ap(i)∑
s=asap(i)

xs,i = 1 f or i ∈ N , (4.3)

where s is a pipeline stage from the range asap(i) to alap(i), i.e the earliest and latest that

operator i can be scheduled to respectively.

The time constraint describes the requirement that the time delay between two operators i

and j must not be larger than tr equi r ed if the operators are scheduled to one pipeline stage s:

xs,i ×xs, j × gi , j ≤ tr equi r ed f or i , j ∈ N and s ∈ K , (4.4)

where gi , j is the longest path between i and j operators on the algorithm dataflow graph. It is

easy to see that if the operators are in the same stage and xs,i = xs, j = 1 then the inequality as

follows must hold: gi , j ≤ tr equi r ed . If the operators are not in the same stage the longest path

length may be larger than the stage delay.

76

4.2. Pipeline synthesis and optimization for CAL programs

The operator precedence constraint describes the requirement that if the i operator is a

predecessor of the j operator on a dataflow graph then i must be scheduled to a stage whose

number is not greater than the number of stage which j operator is scheduled to:

al ap(i)∑
s=asap(i)

(s ×xs,i)−
al ap(j)∑

s=asap(j)
(s ×xs, j) ≤ 0

f or (i , j) ∈ Pr ecedenceRel ati on, (4.5)

where Pr ecedenceRel ati on ⊆ N ×N is described by the Ptot al matrix. Constraints 4.3, 4.4,

and 4.5 together define the structure of the optimization space.

Given an objective function with a set of constraints, an exact solution can be found and is

typically implemented using the techniques of integer linear programming (ILP). However, ILP

formulation is known to exhibit high computational complexity for relatively large functions

such as that given in our case. The following section describes our algorithm and approach to

finding the optimum pipeline schedule for a given Tst ag e constraint.

4.2.3 Synthesis and optimization algorithm

The general overview is given in Figure 4.3. Starting from a non-pipelined CAL actor and

the pipeline stage-time requirement, ASAP and ALAP schedules are generated based on the

F, H ,Pdi r ect ,Ptot al , and G matrices. From this, operator mobility is determined and operators

are arranged in order of mobility. This is then used in the coloring algorithm [89] that generates

all possible and valid pipeline schedules X based on the C and nC relations. For each pipeline

schedule, total register width is estimated, and the least among all schedules is taken as the

optimal solution, which is finally used to generate pipelined CAL actors.

The algorithm to select possible and valid pipeline schedule is based on the coloring algorithm

that colors the nodes such that no edge (i , j) ∈ E , i , j ∈V has two end-points with the same

color. For any two adjacent nodes i and j, the inequality as follows holds: color (i) 6= color (j).

A chromatic number χ(G) of the undirected graph G is the minimum number of colors over all

possible colorings.

However, since our conflict and non-conflict graphs are directed graphs, coloring on directed

graphs is presented using the following additional requirement: for directed edge (i , j) ∈ E the

inequality as follows should hold: color (i) < color (j). In the pipeline optimization task, if

the directed operator conflict graph has a chromatic number χ(G) then the pipeline can be

constructed on χ(G) stages. The problem of purely directed graph chromatic number can be

77

Chapter 4. Maximizing system frequency with refactoring

CAL actor
(non-pipelined)

Stage-time
requirement

ASAP & ALAP
schedules
generation

Operator
Mobility ordering

Operator
coloring

Operator
mobility ordering

Estimate total
register width

Smallest
register
width?

Best schedule =
current schedule

More
sample?

Generate
pipelined

CAL actors
no

no

yes

yes

Figure 4.3: Methodology to synthesize and optimize non-pipelined CAL actors to pipelined
CAL actors.

78

4.2. Pipeline synthesis and optimization for CAL programs

1 RegWidthColoringStep (top) begin
2 i f top >= n then
3 completeColorings := completeColorings + 1 ;
4 regWidth := totalRegisterWidth (ColorStack) ;
5 i f minRegWidth > regWidth then
6 optimalColors := colorStack ; minRegWidth := regWidth ;
7 i f not MeetOptimizationTimeConstraint () then e x i t ;
8 end i f
9 return ;

10 end i f
11 for c in minColor (top) to maxColor (top) do
12 colorStack (top) := c ;
13 i f RegWidthLowerBound (colorStack , asap , alap) >= minRegWidth then
14 cutBranches := cutBranches + 1 ; continue ;
15 end i f
16 i f top < n−1 then
17 oper := order (top +1) ;
18 minC := estimateMinConflictColor (ColorStack , top , oper , Confl ictRelat ion) ;
19 maxC := estimateMaxConflictColor (ColorStack , top , oper , Confl ictRelat ion) ;
20 minP := estimateMinNonConflictColor (ColorStack , top , oper ,
21 NonConflictRelation) ;
22 maxP := estimateMaxNonConflictColor (ColorStack , top , oper ,
23 NonConflictRelation) ;
24 minColor (top +1) := maximum(asap (order (top +1)) ,minC+1 ,minP) ;
25 maxColor (top +1) := minimum(alap (order (top +1)) ,maxC−1,maxP) ;
26 i f minColor (top +1) > maxColor (top +1) then continue ; end i f
27 end i f
28 coloringStep (top +1) ;
29 end for
30 end

Figure 4.4: The algorithm for register width minimization on set of operator colorings

reduced to the problem of longest directed path length in the operator conflict graph. This

problem has polynomial complexity.

The algorithm in Figure 4.4 works as follows. The recursive function takes in an input parameter

top, which indicates the top record in the stack of operators. Depending on the top value, the

function can return the control, generate the next complete coloring solution and compare it

with the best current one, choose the next correct color of the current operator and generate

the next record in the stack for procedure recursive call. In the next top+1 record, the minimum

and maximum colors of the next operator is determined. If the minimum color is larger than

the maximum color, then recoloring of the current operator is performed. The computation

of minimum and maximum colors for operators are performed for both the conflict and

non-conflict relations.

Figure 4.5 shows an algorithm to estimate minimum colors from a conflict relation. Among all

79

Chapter 4. Maximizing system frequency with refactoring

1 estimateMinConflictColor (ColorStack , top , op , Confl ictRelat ion) begin
2 minC := 0 ;
3 for i in 0 to top do
4 c := colorStack (i) ;
5 nd := order (i) ;
6 i f (nd , op) i s in Confl ictRelat ion then
7 i f minC < c then minC := c ; end i f
8 end i f
9 end for

10 return minC;
11 end

Figure 4.5: The algorithm for estimating minimum color from conflict relation

operators that are recorded in the stack as predecessors and are in conflict relation with the

given operator op, the operator with maximum color gives the value of minC that is returned

by the algorithm as minimum color of op operator. The computations of maximum color from

a conflict relation, minimum color from a non-conflict relation, and maximum color from a

non-conflict relation are performed in a similar way.

Once all operators have been colored and a valid pipeline schedule is generated, the total

register width is estimated to evaluate the efficiency of the schedule. From all possible pipeline

schedules, the one with the smallest total register width is saved and selected as the best

schedule.

The final step is to generate CAL actors from the optimal coloring. This is done by taking the

best pipeline schedule, partition the operators according to the scheduled stage, and print

the required operations, variables, registers, inputs and outputs declarations according to the

syntax of the CAL dataflow language. The top level XDF network of pipelined CAL actors is

also automatically generated based on the required number of pipeline stages.

It should be noted that our program is designed to generate potentially all possible and valid

pipeline schedules for a given Tst ag e constraint, therefore results in a global optimum solution.

The number of possible schedules depends on the mobility of operators; an algorithm with

many operators that can be moved among various stages would generate many possible

schedules, therefore could potentially take a long time to find a global optimum. In this case,

the basic coloring algorithm can be extended to include a branch-and-bound algorithm by

means of introducing a lower bound function on the register width using partial operator

coloring that is recorded in the stack.

80

4.3. Pipeline methodology for complex dataflow network

4.3 Pipeline methodology for complex dataflow network

The previous section presents a technique to efficiently partition a given algorithm in the

action body. For complex dataflow network where each actor may contain more than a

single action, loop operations, and access to state variables and/or memory elements, some

preliminary steps are required before the pipeline synthesis and optimization tool can be

used.

The proposed methodology to pipeline complex CAL dataflow network is given in Figure

4.6. Starting from a CAL program, it is first synthesized to HDL, and then to RTL, where the

information on the combinatorial critical path can be obtained. The action that dominates this

critical path is called the critical action. If the critical action is not in the trace critical path, then

partitioning this action into the same actor will only increase the latency for this particular

actor, but not the whole network. On the other hand, if the action is in the trace critical path,

then the action should be first extracted into its own actor (if the actor contains other actions)

before partitioning the action into other dedicated actors. By partitioning the action into

separate actors, we can guarantee that the different pipeline stages are executed in parallel

without reducing the latency. For example, the actor sample with a single action a in Figure

4.7 can be partitioned into two actors sample1 and sample2 with a buffer interconnection

between ports Out_a1 and In_a1.

81

Chapter 4. Maximizing system frequency with refactoring

CAL
Program

Action in Trace
Critical Path?

CAL to HDL
Synthesis

RTL
Synthesis

Critical
action

Pipeline
Synthesis &
Optimization

Critical Action
Extraction

no
yes

Figure 4.6: Action pipelining methodology for complex CAL dataflow network. If the action
with the longest combinatorial path is in the trace critical path, then the action needs to be
extracted first before applying the methodology in Figure 4.3.

.

1 actor sample ()
2 i n t (s i z e =SZ) Input ⇒ i n t (s i z e =SZ) Output :
3 a : action Input : [in] ⇒ Output : [out]
4 do
5 . . .
6 . . .
7 . . .
8 end
9 end

Figure 4.7: Actor sample with a single action a.

82

4.3. Pipeline methodology for complex dataflow network

1 actor sample1 ()
2 i n t (s i z e =SZ) Input ⇒ i n t (s i z e =SZ) Out_a1 , . . :
3 a1 : action Input : [in] ⇒ Out_a1 : [out_a1] , . .
4 do
5 . . .
6 end
7 end
8

9 actor sample2 ()
10 i n t (s i z e =SZ) In_a1 , . . ⇒ i n t (s i z e =SZ) Output :
11 a2 : action In_a1 : [in_a1] , . . ⇒ Output : [out]
12 do
13 . . .
14 end
15 end

Figure 4.8: 2-stage pipeline of actor sample with two actions a1 and a2. FIFO interconnections
between the two actors are equivalent to pipeline registers.

The technique to extract an action from an actor that contains other actions, into its own actor

is as follows. First, the action has to be analyzed for its main input and output ports. Along

with its original input port, the state variables read/used by the action has to be received also

via input ports. If the action modifies a state variable, then the value has to be sent as feedback

via an output port to the other actions that require this variable. In the case when the input

port of the critical action is also used by other actions in the original actor, the consumption of

the token from the port has to be properly controlled by guard conditions such that the two

actions do not consume the tokens at the same time. As for the output port, in the case when

other actions in the original actor are also using the same port as in the critical action, the port

has to be multiplexed correctly such that only a single output token from the port is taken at a

time. The final implementation of the critical action with its own dedicated actor contains

new definition of input and output ports, and the original action body. It is interfaced with

other actors that contain other actions from the original actor, and may consists of additional

actors that provide the necessary input and output control.

The above methodology works well for simple actions that consist of only basic arithmetic

and logical operations, and conditional statements. When an action also contains memory

accesses and loop operations, the problem becomes slightly tricky. If a memory element is

shared among several actions, then it will be inefficient to send the values in the memory

element of the original actor to the partitioned action in another actor, especially if the memory

size is large. A solution can be found if only a few memory location is read and write, where

they can be received and sent respectively using input and output ports. However, if this is not

the case, then it is necessary to resort to same actor partitioning where frequency and latency

trade-off has to be analyzed.

83

Chapter 4. Maximizing system frequency with refactoring

As for loop operations, the challenge is how to perform pipelining for an iterative process. If

the loop operation is static, i.e. the number of iterations can be determined statically, then

loop unrolling can be performed to obtain only basic operations in the action body, which

can then be pipelined. However, this has to be done carefully since unrolling a loop with

large iteration count can be inefficient in terms of resource. If this is the case, then it is again

necessary to resort to same actor partitioning where frequency and latency trade-off has to be

analyzed.

In order to illustrate the action extraction methodology, the actor example in Figure 2.3 is used.

The action ac is found to be the critical action that needs to be extracted due to its complexity.

The action does not perform any memory access and does not contain loop operations. The

state variables quant, round and count are sent to the extracted action as ports, along with

the input port AC. Since it is the only action that is using the input port AC, no further control

is required on this port. However, the output OUT is also used by the action dc, therefore a

new actor would need to be created to select the correct output at a given time. The top

level network after action extraction is shown in Figure 4.9. The critical actor AC can now

be automatically pipelined using the methodology in Figure 4.3, with the resulting top level

network shown in Figure 4.10.

Figure 4.9: Multi-actor implementation of the inverse_quantization actor in Figure 2.3.
The action ac is now contained in the actor AC with a latency of 1. The action can now be
automatically pipelined using the methodology given in Figure 4.3.

Figure 4.10: Top level network after pipelining the critical actor AC using the automated
pipeline synthesis and optimization tool. The actor AC is now contained in actors AC_0 to
AC_n.

84

4.4. Experimental results

4.4 Experimental results

This section is divided into two parts: results for pipelining the ISO/IEC 23002-2 1D-IDCT

algorithm (used in the MPEG-4 SP decoder) given in Figure 4.1 to demonstrate the automatic

synthesis and optimization techniques for various pipeline configurations, and the more

complex MPEG-4 SP decoder (described in chapter 6) by pipelining various actions in different

actors to demonstrate the methodology for pipelining complex dataflow network. All designs

have been written in CAL, pipelined using our automated tool, and synthesized to HDL for

Xilinx Virtex-5 FPGA implementation. Xilinx XST synthesis tool and Modelsim hardware

simulator have been used to evaluate the designs in terms of resource and performance.

4.4.1 ISO/IEC 23002-2 1D-IDCT

The first step is to determine the range of the number of possible pipeline stages for imple-

mentation. From the DFG in Figure 4.2, the relative time delay of each adder and subtractor

are assigned to 1.00, the longest path length from source to sink is found to be 7.00. Therefore,

Tst ag e = 1.00 synthesizes to a 7-stage pipeline, Tst ag e =2.00 to a 4-stage pipeline, Tst ag e =3.00

to a 3-stage pipeline, Tst ag e =4.00 to a 2-stage pipeline, and Tst ag e ≥7 to a non-pipelined

implementation.

For each of the n-stage pipeline for n = {2,3,4,7}, ASAP, ALAP, best and worst schedules are

generated. Table 4.3 summarizes the result. For a 2-stage pipeline of Tst ag e =4.00, the highest

total register width is the worst-case with 494, followed by ASAP with 364, ALAP with 312,

and the best case with only 260. This results in a register-width reduction of 90% compared

to the worst-case. The optimization space for this pipeline configuration is 24,336. For a

3-stage pipeline, register width reduction between best and worst cases is almost similar, with

88.9%. However, the optimization space is significantly more with 29,555,604 possible pipeline

schedules. The 4-stage design shows the highest number of optimization space with more

than 63 million schedules, with register width reduction of 43.8%. The smallest reduction is in

the 7-stage pipeline with only 21.9%. This configuration also results in the most total register

width with up to 2028 in the worst case. It is interesting to note that for 7-stage pipeline, the

schedules generated are the lowest among all n-stage pipeline configurations due to the lower

mobility of operators.

The result for FPGA implementation is shown in Figure 4.11. Non-pipeline implementation

results in 1650 total slice (sum of slice register and slice LUT) with throughput of 764 Mpixels/s

(with maximum operating frequency of 115 MHz, mean latency of 6.7 pixels per clock cycle). As

pipeline stages is increased from 2-stages to 4-stages, a roughly linear increase in throughput

and resource is observed. However, for 7-stage pipeline, the throughput is saturated to that

of 3-stages and 4-stages pipeline. The maximum throughput obtained is 1654 Mpixels/s (at

85

Chapter 4. Maximizing system frequency with refactoring

Table 4.3: The 8x8 1D IDCT: Exploration of pipeline optimization space for 2, 3, 4, and 7 stage
pipeline with asap, alap, best and worst case pipeline schedules.

Total Register-Width Register-Width Schedules Feasible
Nstage Tstage asap alap best worst Reduction (%) Generated Schedules

2 4.00 364 312 260 494 90.0 24336 24336
3 3.00 520 624 468 884 88.9 29555604 29555604
4 2.00 832 832 832 1196 43.8 63002926 63002926
7 1.00 1664 1716 1664 2028 21.9 4505752 4505752

Figure 4.11: Slice versus throughput for all implementations of the 8x8 1D IDCT.

roughly 200 MHz) with total slice of 3419 for the 4-stages pipeline, which corresponds to 2.07x

more slice and 2.16x higher throughput compared to non-pipeline implementation. However,

for the best case (resource optimized) 4-stages pipeline, it utilizes only 70% more slice with a

throughput increase of 2.08x. The reason for throughput saturation in the 7-stages pipeline is

due to the path that is now dominated by interconnect and registers, rather than the operators.

4.4.2 MPEG-4 SP decoder

The strategy employed here is to iteratively find the critical action in this complex network,

and synthesize the action into 2-stage pipeline implementation at every iteration. Eventually,

the combinatorial path will be dominated by the routing delay, in which case, a very fine-grain

action descriptions in the network is obtained.

86

4.5. Summary

Figure 4.12: Frequency versus slice for various pipeline iterations of the MPEG-4 SP decoder.
The details of each iteration is given in Table 4.4.

Figure 4.12 shows a graph of frequency versus resource after seven iterations of pipelining,

and Table 4.4 with details for each iteration. From the iterations, it is found that five actions

in four actors appear as critical: the actor inverse_dc_pred with actions read_intra and

getdc_inter; the picture_buffer actor with action read_address; the inverse_quant
actor with action ac; and the idct actor with action calc_row. In the final implementation,

all actions are pipelined into 2-stages, except the inverse_dc_pred with 4-stages. This actor

is also found to be outside of the trace critical path, therefore the critical actions are simply

partitioned into the same actor. All other critical actions are extracted and pipelined into

separate actors. The final frequency obtained is 96 MHz, which corresponds to 26% increase in

frequency compared to the original non-pipelined implementation. The additional resource

(in terms of slice LUT) required is around 18% more between these two points.

4.5 Summary

In this chapter, we have presented a novel pipeline synthesis and optimization technique

that allows automatic partitioning of dataflow actions into pipeline stages for a given timing

constraint using minimum pipeline resource. The technique is designed based on dataflow

graph relations and matrices that describe the algorithm in the action body. Using these

models, an algorithm has been developed based on the coloring algorithm to efficiently search

the optimization space for a pipeline schedule that meets the required objective of minimum

resource. Furthermore, a methodology for pipelining complex CAL dataflow network has

also been proposed, including a technique to extract a critical action into a separate actor. In

the final section, we provided experimental results based on two design cases, the ISO/IEC

87

Chapter 4. Maximizing system frequency with refactoring

Table 4.4: Logical delay, routing delay, total delay, and maximum frequency after seven iter-
ations of pipelining the MPEG-4 SP decoder. Also shown are the corresponding actors and
actions at each iteration, along with pipeline type, T y pe = 0 for same actor partitioning, and
T y pe = 1 for separate actor partitioning.

Iteration Actor Action Type Logical Routing Total F_max
(ns) (ns) (ns) (MHz)

1 inverse_dc_pred read_intra 0 9.4 3.8 13.2 75.8
2 picture_buffer read_address 1 9.4 3.3 12.7 78.7
3 inverse_dc_pred read_intra 0 9.1 3.5 12.6 79.4
4 inverse_dc_pred read_intra 0 5.3 7.2 12.5 80.0
5 inverse_quant ac 1 6.5 4.7 11.2 89.3
6 inverse_dc_pred getdc_inter 0 5.5 5.1 10.6 94.3
7 idct calc_row 1 2.9 7.5 10.4 96.3

23002-2 1D-IDCT and the MPEG-4 SP decoder, where in both cases, significant throughput

improvements have been achieved using minimal additional resource. It should be noted

as well that the techniques are generic and applicable to any dataflow networks and actors,

including another of our design case study – the MPEG-4 AVC/H.264 decoder. Results are

given in chapter 7.

88

5 Minimizing resource with buffer size
optimization

The objective of the refactoring techniques presented in previous chapters is to improve

system performance at the cost of higher computing resource. In contrast, this chapter

presents techniques to minimize resource by reducing the size of the buffer interconnections

between dataflow actors. The selection of the sizes of each FIFO buffer in a dataflow network

is crucial as it impacts both the system functionality and performance, not to mention the

implementation resource as well.

In this chapter, two novel approaches to optimize the size of the FIFO buffers in CAL programs

are presented: First based on a hardware program execution, and second based on TURNUS

critical path and execution trace analysis. Both provide methodologies to find the close-to-

minimum buffer size for deadlock-free execution, and further extension to explore larger

buffer sizes to obtain higher throughput.

This chapter is organized as follows. The next chapter presents background and related works

on minimizing buffer sizes for both, a restricted SDF and a generic DPN MoC. This is then fol-

lowed by our techniques for assigning and minimizing buffer sizes for CAL dataflow programs,

using the two different approaches as mentioned. Each technique is also supplemented with

experimental results on two design components of the MPEG-4 AVC/H.264 decoder. The final

section presents chapter summary.

5.1 Background and related works

At the implementation level, actors can be executed in parallel. Therefore, high throughput

system is obtained if as many actors as possible are executed (i.e. fired) at a given time. As

mentioned in Section 2.1 regarding action firing rule, an action in an actor fires if enabled by:

1) availability of input tokens, 2) value of input tokens, controlled by guard conditions, 3) the

actor scheduler, 4) the action priority, and/or 5) the availability of free space to store output

89

Chapter 5. Minimizing resource with buffer size optimization

tokens. In order to ensure that actions are enabled and fired as quick as possible (hence results

in higher throughput), conditions (1) and/or (5) have to be met as fast as possible. A dataflow

network with large buffer sizes between actors would satisfy these conditions (for both actors)

at a higher rate since input tokens are rapidly available from the buffers, and output tokens

can always be generated due to large output buffers. However, setting all buffers to large values

may not result in area-efficient implementation. On the other hand, buffer sizes that are too

small between actors may introduce system deadlock. This is a condition when one or more

actor stalls while waiting for input tokens that will never arrive, or actions that could not fire

due to an insufficient space on the output buffer.

Since CAL programs is based on the DPN MoC, the problem of finding bounded buffer sizes

for deadlock-free execution is undecidable [96], which means that it is not possible to find a

bounded buffer size for all possible execution order. This is due to the non-determinism of

DPN actor execution where the order of action firing depends on the input token. In this case,

a given set of bounded buffer sizes for a dataflow network results in a complete execution of

only a subset of all execution orders; The same buffer size configuration that works on a given

execution order may not result in deadlock-free execution for other execution orders.

Due to this limitation of finding a strictly bounded (i.e. bounded for all execution order) buffer

memory requirement in DPN, a subset of DPN called the synchronous dataflow graphs (SDF)

have been used that allows the construction of a bounded memory for all complete execution

order at compile-time, if it exists. This is due to the static nature of SDF actors that consume

and produce fixed number of tokens. However, it comes at the cost of lower design flexibility

where action selection and order of firing could not depend on the value of the input tokens,

which is a main feature in video codec design. Since CAL programs allow the implementation

of SDF actors, the following reviews some techniques and approaches to finding the minimum

buffer size requirements for designs using only SDF actors.

5.1.1 Single appearance scheduling in SDF

Most of the work on minimizing buffer sizes in a SDF network is designed for an embedded

software target with an additional requirement of minimum code size. These two constitute

the total memory requirement for a design implemented on a software platform. The work

in [25] presents such optimization techniques, where a scheduling policy called the Single

Appearance Scheduling (SAS) is introduced that results in minimum code size. The actor

execution order based on this scheduling policy is then used to find the minimum buffer size

requirement between the actors. Figure 5.1 illustrates an example of SAS scheduling. Here,

the actor X produces 2 tokens and actor Y consumes 3 tokens on edge eXY for every firing.

Similarly, the actor Y also produces 1 token and actor Z consumes 2 tokens for every firing. In

order to obtain the SAS schedule, the balance equations as follows can be solved:

90

5.1. Background and related works

Figure 5.1: SDF graph example with actors X, Y, and Z, together with annotations for token
consumption and production.

vX ×pX = vY × cY (5.1)

vY ×pY = vZ × cZ (5.2)

where vX , pX , and cX respectively are the number of firing, the number of tokens produced,

and the number of tokens consumed for actor X (similarly for actors Y and Z). With known

number of token consumption and production for every actor, equations 5.1 and 5.2 become,

vX ×2 = vY ×3 (5.3)

vY ×1 = vZ ×2 (5.4)

This can be easily be solved with vX = 3, vY = 2, and vZ = 1. The SAS schedule with minimum

code size is therefore 3X2YZ. If the actors are fired in the sequence XXXYYZ, then the simple

network can be executed forever without deadlock. The minimum number of firing of each

actor in a SAS schedule is represented by a repetitions vector qG for a graph G . For this example,

qG = [3,2,1]. The required buffer size for this scheduling policy can be inferred by the token

consumption or production, i.e. eXY = 6 since the actor X is fired 3 times (similarly since actor

Y is fired 2 times), and eYZ = 2 since the actor Y is fired 2 times (similarly since Z is fired once).

The total buffer size for this schedule is 8.

The problem with the approach above is that it prioritizes code size over buffer size, which

may not lead to a global minimum buffer size. For example, using a non-SAS schedule 2XYXYZ

in Figure 5.1 results in buffer size of only 6, but larger code size. The task of minimizing buffer

91

Chapter 5. Minimizing resource with buffer size optimization

sizes for any arbitrary schedule is known to be NP-complete, and is the main feature of the

works in [40], [47], and [82], where a model-checker has been used to find an exact solution to

the problem.

5.1.2 Finding minimum buffer sizes using model-checker for SDF

Model-checker is essentially a tool to automatically verify the correctness properties of finite-

state systems. Among others, it has been used to solve NP-complete scheduling problems. The

use of model-checker to minimize buffer size requirement in SDF graphs was first reported

in [40], using the SPIN [55] model. The operational semantics of SDF is first encoded in

the model-checker using the state-space approach. From the derivation of the state-space

of the SDF graph (Γ,→) where Γ is the set of buffer configurations for all edges for a given

SDF, it is converted to an equivalent model-checking state-space (Γ×Γ,⇒); the first channel

quantity is the current configuration, and the second encodes the storage bounds required

for the schedule so far. For a finite schedule, the bounds in the last configuration are the

required channel bounds; for infinite schedules, the bounds converge to the required bounds.

The model-checking state-space is encoded in the SPIN modeling language Promela, with

parameters given in table 5.1. The verification challenge is formulated as follows:

“Every schedule will eventually require a storage capacity larger than BOUND.”

If this claim is false, SPIN will provide a counter example, which is a schedule within the

required bounds.

Table 5.1: Key notations used in the SPIN model.

Parameter Details
sz[i] Buffer size of edge i
ch[i] Current number of tokens on edge i
nf[j] Maximum allowed number of firings of actor j before its repetition count is reached
np[i] Maximum allowed number of firings of the producer actor of edge i without buffer

overflow on edge i
nc[i] Maximum allowed number of firings of the consumer actor of edge i without

buffer underflow on edge i
sl Current schedule length (sum of all actor firing counts so far)
prev_sl Schedule length in the previous iteration
ESL Expected schedule length (sum of repetition counts of all actors)
ls Loop count of an actor
ACTOR Number of actors
EDGE Number of edges

92

5.1. Background and related works

The technique of utilizing the model-checker directly runs the risk of state-space explosion for

large graphs. The work in [82] implements the SPIN model-checker with a modified bounded

greedy algorithm (BGA) called the BGA with buffer increase in order to overcome this issue.

Using the same verification challenge for SPIN, if it is proven true, then BOUND is a safe lower

bound on the buffer size requirement, but it may not be a tight bound, so the value of BOUND
is incremented for the next iteration. Eventually the verification will be proven false, where

SPIN has found a schedule with total buffer size <=BOUND as a counter example. The minimum

buffer size requirement is the value BOUND such that it is true for BOUND-1, but false for BOUND.

Binary search is used to narrow down the range of minimum buffer size requirement.

The buffer size increment technique is based on actor firing order using the BGA algorithm,

where each actor fires for the maximum number of times consecutively while respecting the

initial BOUND. If running BGA on the SDF graph leads to deadlock, then the buffer sizes on

the edges for which the producer actor could not fire due to insufficient buffer space (called

the constraining edges) is incremented. The process is repeated until deadlock is resolved

permanently, and a feasible buffer size distribution is obtained. For optimal buffer sizes, the

size on the constraining edges is incremented exhaustively in turn, each forming one branch

of the search tree. Following different branches along the search tree leads to different total

buffer size, and the least among the set is taken as the optimal solution.

The approach in [47] uses the NuSMV [30] model-checker to obtain minimum buffer size

requirement for SDF graphs. Similar to [82], it also aims to address the state-space explosion

problem in the original work in [40], but using a symbolic model-checker where the size of the

data structure does not increase with the increasing state-space size. Furthermore, in order

to optimize the code size due to a non-SAS scheduler, the authors also proposed a technique

called dynamic SAS. The schedule obtained with minimum buffer configuration is dynamically

modified to obtain an optimized code representation. For example, given a non-SAS schedule

ABCDBCDC, the technique to obtain a SAS a schedule is by introducing runtime decisions,

such as the one given in figure 5.2.

1 for (i =0; i <8; i ++) {
2 i f (i ==0) A () ;
3 else i f (i ==1 | | i ==4) B () ;
4 else i f (i ==3 | | i ==6) D() ;
5 else C() ;

Figure 5.2: SAS scheduling using runtime decisions from a non-SAS schedule.

This naive way of generating a SAS schedule may incur large runtime performance overheads.

The overheads can be reduced by using bit-shifting and bitwise comparisons instead of integer

and boolean comparisons. The final result is the possibility to obtain both an optimized code

size and buffer size.

93

Chapter 5. Minimizing resource with buffer size optimization

5.1.3 Buffer size minimization for DPN

As mentioned, the task of finding minimum buffer size for a deadlock-free DPN is undecidable,

i.e. could not be determined statically. Therefore, it is necessary to resort to dynamic analysis

where the task of finding buffer size configurations would need to depend on the input

stream. Similar to the approach for SDF graphs, the methodology to obtain feasible buffer size

configurations is done by determining the required scheduling. Dynamic scheduling policies

can generally be classified as data driven, demand driven, or some combination of the two

[124].

Data Driven Scheduling

In this scheduling policy, a process is activated as soon as sufficient data is available. This

results in a complete execution of the program because an execution stops if and only if all

of the processes are blocked from reading an empty channel. However, this requires that the

buffer sizes are unbounded to guarantee a complete execution.

Data driven scheduling can be described as follows. Given a generic DPN described by a

connected graph G(V ,E) where V is the set of vertices corresponding to processes, and E the

set of edges corresponding to the communication channels. At a given execution time, find

the set Ve ⊆ V of all enabled processes in G , where a process can either be blocked due to

empty input channel, or enabled. By assuming unbounded buffer sizes for all communication

channels, the graph G would execute forever as long as there are sufficient input data, whereby

Ve 6= 0 at any given time.

Figure 5.3 shows an example of a process network using data driven scheduling that would

require an unbounded buffer size configuration in order to obtain a complete execution.

The source processes g (2) and g (5) generates data forever from zero, and incrementally in

multiples of 2 and 5 respectively, i.e. the outputs of g (2) = (0,2,4, . . .) and g (5) = (0,5,10, . . .).

The process m merges the data on the inputs such that a monotonically increasing integer

sequence is obtained, with the algorithm given in figure 5.4, i.e. m = (0,2,4,5,6,8,10, . . .). The

process p simply consumes the result from process m and performs the print function.

Using data driven scheduling where it is assumed that the two generators g (2) and g (5)

outputs data at every time step, it is easy to see that tokens would eventually accumulate

without bound at edge y , since process m consumes data from edge x and y at different rates.

In this case, process m takes one data from edge y for every 2 data from edge x, as illustrated

in table 5.2. t is the time step of execution, and t →∞ if the network is to execute forever.

After step 3 of execution, two data accumulate on edge y , i.e. D y = (10,15); after 6 steps,

D y = (15,20,25,30), and after 9 steps, D y = (20,25,30,35,40,45). As time steps are increased,

more data is accumulated on edge y , which results in an unbounded execution.

94

5.1. Background and related works

Figure 5.3: Dataflow process network for generating a monotonically increasing sequence.
The result is an unbounded execution if data driven scheduling is used with different output
rates for g (2) and g (5).

1 i n t u = get (x) ; // get data from edge x
2 i n t v = get (y) ; // get data from edge y
3 do
4 {
5 i f (u < v) {
6 put (u) ; // output from edge x
7 u = get (x) ; // get data from edge x
8 }
9 i f (u > v) {

10 put (v) ; // output from edge y
11 v = get (y) ; // get data from edge y
12 }
13 i f (u == v) {
14 put (u) ; // output from ei ther edges
15 u = get (x) // get data from edge x
16 v = get (y) // get data from edge y
17 }
18 } forever ;

Figure 5.4: Example of a dataflow process that merges the data on its inputs such that a
monotonically increasing integer sequence is obtained.

95

Chapter 5. Minimizing resource with buffer size optimization

Table 5.2: Time steps from 0 to 9 and the corresponding data written to edges x, y , and z.
Result is based on the process network in figure 5.3.

Time step, t 0 1 2 3 4 5 6 7 8 9
Edge, x 0 2 4 6 8 10 12 14 16 18
Edge, y 0 5 10 15 20 25 30 35 40 45
Edge, z 0 2 4 5 6 8 10 12 14 15

Demand Driven Scheduling

In contrast to data driven scheduling where processes are enabled as long as data is available,

demand driven scheduling enables a process based on the demand of the consumer. The

demand typically starts with the process that produces the ultimate output of the program.

When a process attempts to consume data from and empty channel, it is suspended, and the

channel is marked as hungry, and the producer process for that channel is activated. When

this new process is activated, it may attempt to consume from an empty input channel, which

would cause another process to be activated in turn. When a process produces data on a

hungry channel, it is suspended, and the waiting consumer process is activated. In essence,

it is the reverse of data driven scheduling, where processes are activated from sink to source.

With this scheduling policy, the process network in Figure 5.3 could execute with bounded

buffer sizes, since the generators g (2) and g (5) are not enabled at every time step, but only

when they are in demand.

However, there are instances when demand driven scheduling could also result in an un-

bounded execution, as illustrated in Figure 5.5. The process n(5) directs its input to edge y if it

is a multiple of 5, else to edge z. The process g (1) generates an output incrementally by 1, i.e.

g = (0,1,2,3, . . .), while the processes p0 and p1 simply performs the print function. If p0 and

p1 generate demands at the same rate, then tokens will accumulate on the edge z since every

time p0 consumes a token on y , 4 tokens will accumulate on edge z. In general, after k token

are consumed by process p0, (i −1)×k tokens will be consumed by process p1, where i is the

parameter of process n. The token accumulation on edge z is due to the scheduling policy

that is based on the simultaneous demands of the sink processes p0 and p1.

Combined data and demand driven scheduling

A pure data or demand driven scheduling could result in unbounded buffer sizes for deadlock-

free execution, respectively for multiple source and sink processes. One of the earliest work

in combining the scheduling policies is given in [104], called Eazyflow. The execution of the

processes alternates between data and demand driven, where data driven execution begins if

there is a token deficit, and continues until there is a token surplus, at which point demand

driven execution resumes. The approach is based on classifying data streams as either eager or

96

5.2. Buffer size assignment and reduction for CAL programs

Figure 5.5: Dataflow process network example for which a demand driven scheduling results
in an unbounded buffer size configurations for a deadlock-free execution.

lazy; eager streams are associated with processes that consume and/or produce fixed amount

of data (i.e. SDF), while lazy streams are associated with processes that consume and produce

unpredictable amounts of data (i.e. DPN). Processes that produce eager streams would be

executed until it reaches a certain surplus to lazy streams. In this way, data driven scheduling

is partially used to supply data, and an unbounded accumulation of tokens would not occur

since the scheduling would then switch to a demand driven one. Another interesting approach

is presented in [99] and [100] where a DPN graph is transformed so that a data driven execution

of the new graph is equivalent to a demand driven execution of the original graph. For each

edge in a graph, a new edge is added to carry demands in the opposite direction. This edge

essentially acts as a control for a hybrid data and demand driven scheduling.

5.2 Buffer size assignment and reduction for CAL programs

There are relatively few works in literature concerning the assignment and reduction of buffer

sizes for CAL programs, although the importance of the task has been pointed out (Section

5.1). One related work is given in [37], but focuses only on finding an optimum scheduler

for DPN actors executed on a general purpose CPU. This work does not provide anything on

the buffer size configurations. In this section, our approaches to finding an optimum buffer

size configuration for CAL programs are presented. First, based on the hardware program

execution, and second, based on the dataflow program analysis.

The simplest way to assign buffer sizes to the communication channels in a CAL network

is by transforming the network G to produce a semantically equivalent network G0 that is

bounded by b0 (for all interconnections). This transformation may introduce deadlock such

that the network G0 represents only a partial execution of the original network G . However, if

the execution of the network G0 never stops and results in a complete execution, then we have

succeeded in implementing a complete and bounded execution. If the execution of G0 stops

and it represents only a partial execution of the original network G , then the bound b0 have

97

Chapter 5. Minimizing resource with buffer size optimization

been chosen to be too small. One or more of the channels require a buffer size more than b0

in order to obtain a complete and deadlock-free execution. Therefore, a larger bound b1 > b0

must be chosen. The bound can be chosen successively, b0 < b1 < b2 < . . . until eventually,

a complete execution is obtained. By definition, there exists a bound b that is finite if the

network G is to execute in finite time. After N iterations, a bound bN ≤ b0 is obtained that

corresponds to a complete execution of the network GN .

The problem with this approach is that all communication channels have the same value of

capacity, which in most cases, are not required for a complete and deadlock-free execution.

The following presents a technique to set different capacity limits for different channels, based

on the work in [96]. Essentially, having different capacity on the channels allow a much

smaller total buffer size compared to a single bound b, thus meeting our objective of finding a

minimum or close-to-minimum total buffer size.

5.2.1 Hardware program execution approach

As explained in Section 5.1, scheduling or the execution order of actors determine the required

buffer size for complete and deadlock-free execution of a network. In the approach using

hardware program execution, buffer sizes are assigned and optimized based on the execution

order given by the synthesized hardware architecture. The generic top-level overview of the

interconnection architecture between actors is given in Figure 5.6. Each actor port consists of

two forward channels Data and Send, and two feedback channels Ack and Ready. The actual

data is carried through the Data channel, while the Send channel signifies the validity of the

data. Once an actor has consumed this data token, then it asserts the Ack signal. At the same

time, the Ready signal is also asserted to signify that it is ready to accept more data tokens.

Actor-0 Actor-1

Data
p

... ...

Data
pc

Data
c

Send
p

Ack
p

Ready
p

Send
pc

Send
c

Ready
pc Ready

c

Ack
pc

Ack
c

Figure 5.6: Interconnect architecture of actors in hardware. The firing of an actor (producer) is
determined by the availability of data, and demand from the consumer.

Based on this architecture, it can be concluded that hardware scheduling is in fact based

on a hybrid data and demand driven scheduling, where producer actor(s) are executed not

only if there are sufficient input tokens, but also if the corresponding consumer actor(s) are

ready to accept data tokens. Typically, a consumer actor is not ready to accept data tokens

from a producer actor if the consumer actor could not produce data tokens (on the consumer

98

5.2. Buffer size assignment and reduction for CAL programs

output) due to an insufficient space on its output channel (i.e. ready=0). Once this output

space becomes available, then ready is asserted to 1 so that the producer can fire and send the

token to the consumer.

In a complex network, the execution order of actors largely depends on the set buffer sizes for

the interconnections. Having large buffer sizes imply the Ready signals to be asserted more

frequently, and therefore, more actor execution at a given time. On the other hand, smaller

buffer sizes typically results in less actor execution at a given time, and in cases where the sizes

are too small, none of the Ready signal may be asserted, which results in a deadlock condition

where no actor can be executed. The following presents two approaches to find 1) close-

to-minimum with deadlock free execution and 2) larger buffer sizes for higher throughput

requirement.

Finding close-to-minimum buffer size configuration

We call this the HEM (short for Hardware program Execution Minimum buffer size) technique,

and works as follows. The initial capacities of all channels are set to 1 on the RTL description of

the top network and a hardware simulation is performed. If execution stops due to deadlock, it

means that one or more actors are blocked writing to a full channel. Increasing the capacity of

channels that are not full does not allow execution to continue. It is necessary to increase the

capacity of one or more full channels. It is important not to increase the largest buffer because

this could lead to unbounded growth of that buffer. Therefore, only the capacity of the smallest

full channel is increased, because this guarantees that every full channel will eventually be

increased if necessary to unlock the program. The reasoning is that if the same channel is

increased repeatedly, then eventually it will no longer be the smallest full channel. If some full

channel other than the smallest full channel is increased, then some buffer could grow without

bound. The way to prevent this from happening is to increase the smallest full channel, and

to avoid additional tokens being added to destination actions with already sufficient input

tokens.

This technique has been implemented using a tcl script for a fully automated approach, with

the algorithm shown in Figure 5.7. The first step is to run a hardware simulation (using

Modelsim), and verify the Send signal of the output for deadlock. The verification is done

from tsi m −k to tsi m (tsi m is total simulation time and k is a constant), where if the Send

signal is not asserted at all during this time, then deadlock occurs. All buffer interconnections

and their sizes are then automatically stored in a Modelsim List file and analyzed by an

external Java program that doubles the smallest full buffers in the top RTL network. Hardware

simulation is run again using this new buffer size configuration, and this is repeated until a

deadlock-free execution is obtained. Note that the smallest full channel is doubled in capacity

every time deadlock occurs, instead of for example, incremented by 1. This is due to the

FIFO hardware architecture that is designed to be implemented as memory element with

99

Chapter 5. Minimizing resource with buffer size optimization

1 while { $run_again == 1} {
2 #run hw simulation
3 do run_script_ <design_name >. t c l
4 set n 0
5 set k 100
6 #get "send" u n t i l value = ’1 ’ or $x clock cycles reached
7 while { $n == 0 && $k < $x } {
8 #get "send" value at time $t_sim−$k
9 set n [exa −time [expr $t_sim − $k] <output_name>_send]

10 set k [expr $k + 100]
11 }
12 # i f "send" value not found for $y clock cycles
13 i f { $k >= $y } {
14 echo "deadlock with k = $k"
15 #get a l l buffers from waveform , save to l i s t f i l e
16 do < tcl _ <design_name>_add_l ist . t c l
17 # find smallest f u l l buffer , multiply by 2
18 java −j a r $java_program $design_name
19 set i t e r a t i o n s [expr $ i t e r a t i o n s + 1]
20 } e lse {
21 echo "done , no deadlock"
22 set run_again 0
23 }
24 }

Figure 5.7: Tcl script to automatically find the close-to-minimum buffer size configuration
using the hardware program execution approach.

addressable locations. Therefore, it is required that the buffer sizes are defined by values that

are in the power of 2.

This technique has been applied on two design components of the MPEG-4 AVC/H.264 de-

coder, with experimental results given in Section 5.3.

Reducing buffer sizes with a throughput constraint

Buffer size configuration that is the minimum or close-to-minimum typically does not yield

a design with high throughput. System throughput can be improved by using larger buffer

sizes, as explained in Section 5.1. A buffer size bound b for all interconnections (with a given

throughput) can be limited either directly ([99, 100]) or indirectly [38] using feedback channels

such that a lower total buffer size can be obtained, but with the same throughput as the one

with a buffer size configuration with bound b.

Indirect buffer size reduction with feedback channels works as follows. Given a connected

graph G = (V ,E) with a set of vertices V corresponding to the processes and a set of directed

edges E corresponding to the communication channels. For each edge ei = (vm , vn), add a new

100

5.2. Buffer size assignment and reduction for CAL programs

edge e ′i = (vn , vm) in the reverse direction. The channels corresponding to these new edges

are called the feedback channels. Let |ei | be the size of an edge ei , if bi −|ei | tokens is placed

on edge e ′i , then the total number of tokens for the pair of edges is bi = |ei |+ |e ′i |. Typically

there are no tokens initially on the communication channel, with |ei | = 0. The process is

modified such that it must consume one token from a feedback channel e ′i for each token that

it produces on edge |ei |. Thus the number of tokens on the pair of edges remain constant,

i.e. bi = |ei |+ |e ′i |. At the end of a complete execution, the number of data tokens on edge |ei |
can be obtained, where |ei | ≤ bi . Using the new buffer size configuration with this technique

does not modify the original order of execution for when the buffer bound bi is used for all

communication channels.

Instead of adding feedback channels, the buffer capacity of the channels can also be limited

directly by requiring the processes to be blocked when trying to write to a full channel. We call

this technique, HEO (short for Hardware program Execution buffer size Optimization) and

works as follows. First a large enough buffer bound b is searched for, such that a reasonably

high throughput with practical bounds is obtained, which can be found quickly for example

using a binary search. An RTL simulation of the program is performed for duration t based

on this buffer size configuration. At each time step of the simulation, the number of tokens

present in each buffer interconnection is recorded, where they are expected to fluctuate due to

constant token production and consumption. The minimum required size for a given buffer

interconnection channel is therefore the peak capacity (maximum number of tokens at any

given time) of the buffer for the duration t . The new buffer size configuration using this peak

capacity is expected to be less than the original bound b, but guarantees the same execution

order and therefore, throughput as well. The algorithm can be summarized as follows:

101

Chapter 5. Minimizing resource with buffer size optimization

• For each interconnection channel from i = 0. . .m, initialize to constant C to obtain a

given throughput P .

• Run hardware simulation for duration T , and update the peak-capacity C peak
i for each

FIFO channel at every time step.

• The final values of C peak
i after simulation time T are the minimized buffer size require-

ments for throughput P .

This technique has also been implemented using a tcl script for an automatic analysis and

optimization, and has also been applied on two design components of the MPEG-4 AVC/H.264

decoder, with experimental results given in Section 5.3.

5.2.2 Dataflow program analysis (TURNUS) approach

Rather than performing the analysis on the hardware execution level, finding feasible buffer

size configuration can also be made based on the execution trace obtained from dataflow

program analysis TURNUS. Using the makespan (Section 2.4) metric, the most optimal CAL

design for a given architecture is the one with shortest makespan, typically using unbounded

buffers. A design that uses a bounded and smaller total buffer size for a deadlock-free execution

results in larger makespan (lower throughput), but also achieves our objective of obtaining

a close-to-minimum buffer size configuration. In between the two scenarios, intermediate

configurations can also be obtained by gradually increasing the relevant buffer sizes in order

reduce the makespan. By repeatedly performing this task, the trade-off between total buffer

size requirement and throughput can be explored effectively.

Finding close-to-minimum buffer size

Recall that the longest weighted path in an execution trace is called the Critical Path (CP). Given

a buffer size configuration xβ with the corresponding total buffer size B(xβ), the objective is to

find the configuration xβ with the minimum B(xβ), while also minimizing the CP. Minimizing

the total buffer size also entails minimizing the size of every individual buffer interconnection

b fi , fi ∈ F .

The general idea to obtain the minimum buffer size configuration is based on constructing a

schedule using a topological sorting. Instead of using a platform-specific dataflow program

execution as in the previous approach, the schedule is obtained using an execution trace

where nodes represent action firing, and edges represent dependencies between the firing.

The dependencies can either be internal dependencies E I , or fifo dependencies EF . For each

ei , j ∈ EF , an additional discrete state variable stei , j is defined that takes either of the following

values: stF = {unavailable,requested,available}. For each fifo dependency the initial

102

5.2. Buffer size assignment and reduction for CAL programs

value is set to stei , j = unavailable. The topological sorting is based on a graph-walk method,

where at each execution step k, a single node vk
i ∈V is analyzed (starting from the sink node):

If the action is fireable, then it is added to the last position of the new topological sorted

vector V = {vi ≺ vi+1|vi ∈V , vi+1 ∈V }, its outgoing fifo dependencies are made available one

by one and consumer nodes are analyzed during the next execution step. Otherwise, if the

action is not fireable yet, the graph is walked back to analyze the parent step. In some cases,

dependencies on incoming fifo are not satisfied, therefore they are polled one by one where

the corresponding producer nodes are analyzed during the following execution step. The

analysis is complete after all input tokens are exhausted, in which case the final action firing

schedule is obtained based on this topological sorting. The buffer size configuration for this

final action execution ordering is found to be close-to-minimum since the execution is ordered

such that the sequence of action firing generates the least amount of token on a given edge for

a deadlock-free execution. Details on the implementation of this technique for the TURNUS

framework is given in [109]. This technique has also been applied on our design case study,

which we call the TEM (short for Trace Execution buffer size Minimization) technique. The

results are given in Section 5.3.

Buffer size and throughput exploration

Given the minimum and maximum buffer size configurations x0
β

and xmax
β

, the objective is to

find other buffer size configurations with total size B(xβ) where B(x0
β

) ≤ B(xβ) ≤ B(xmax
β

). The

buffer size configuration with the minimum size can be found using heuristics as presented

above; the maximum size is taken as the design with an unbounded or very large fifo sizes that

would result in a high throughput design. Correspondingly in terms of critical path,

C P (xmax
β ,λ) ≤C P (xβ,λ) ≤C P (x0

β,λ) (5.5)

where λ is a given scheduler for the buffer size configuration. Since the CP is a weighted

execution trace, the weights are platform-specific, where for hardware implementation, it is

simply the latency (i.e. number of clock cycles) for an action firing. For a fired action vi in

an execution trace, the weight wvi corresponds to the latency of the action for a buffer size

configuration xmax
β

. By reducing the relevant buffer sizes (which is shown next) to obtain new

buffer size configuration xβ, the weight is updated as follows,

wvi (xβ,λ) = wvi +w
xβ
vi

+wλ
vi

(5.6)

103

Chapter 5. Minimizing resource with buffer size optimization

Where wλ
vi

represents the execution time overhead introduced by the scheduler λ and w
xβ
vi

is the time overhead introduced by the finite buffer size configuration xβ. Since there are no

scheduling latency in hardware implementation, the term wλ
vi

will be ignored. The term w
xβ
vi

is in fact the additional latency incurred by a blocked action firing due to insufficient output

buffer space. It represents the time elapsed from the moment vi becomes fire-able until its

output buffer has enough space to store the produced tokens. Here we can see that in equation

5.5, the CP is longer for buffer configuration xβ compared to xmax
β

due to an additional weight

term w
xβ
vi

.

We will now present how the buffer sizes can be incremented for resource-throughput explo-

ration. For each exploration step, the size of the critical buffers CB is increased by the number

of blocked tokens τ̂(bi) for a buffer interconnection i , i.e. the next buffer configuration is given

by

xk+1
β = xk

β+ τ̂(b∗),b∗ ∈CB (5.7)

The set of critical buffers CB is retrieved from the blocked buffers of the critical actions C A in

the CP. By increasing the buffer size of the interconnections on the C A , the makespan can be

reduced since a higher output rate is obtained due to a larger output buffer space. This process

of finding the critical buffers, incrementing, and reevaluate CP can be performed repeatedly

until a saturation is reached where further increment of the critical buffers lead to no further

reduction in makespan. The implementation of this technique on the TURNUS framework is

given in [108]. This technique has also been applied on our design case study, which we call

the TEO (short for Trace Execution buffer size Oinimization) technique. The results are given

in the next section.

5.3 Experimental results

In this section, the efficacy of the four buffer size minimization and optimization techniques

presented in the previous section (HEM, HEO, TEM, and TEO) are evaluated and compared.

For case study, two main components of the MPEG-4 AVC/H.264 decoder are utilized (Figure

7.8), Decoder_Y and Decoder_U/V. They consists of respectively, 188 and 58 buffer intercon-

nections that need to be assigned. The performance is evaluated based on two criteria: total

buffer size and throughput. The total buffer size is obtained by summing the sizes of all the

FIFO buffers in the network in terms of bits. The throughput is obtained by first simulating the

design in hardware to obtain the latency, i.e. number of clock cycles per QCIF video frame.

Then, the design is synthesized and implemented on a Xilinx Virtex-5 FPGA to obtain the

104

5.3. Experimental results

maximum operating frequency. In this case, fmax = 114M H z is obtained for the Decoder_Y,

and fmax = 79M H z for Decoder_U/V. These frequency values are constant for all buffer size

configurations since the design architecture remains the same for all cases. The throughput is

calculated based on these latency and frequency values.

Figure 5.8 shows the results of applying the HEM technique on both designs (Section 5.2.1).

For Decoder_Y and Decoder_U/V respectively, we obtain such execution after 122 and 49

iterations with total buffer size of 314,892 and 1,126,691 bits. All other configurations are

incomplete and results in a deadlock. The throughput for these deadlock-free designs are

shown in Table 5.3, together with results for non-optimized buffer configuration with b = 8197

and the HEO technique. The throughput for using the HEM technique is reduced by 48% and

16% respectively for Decoder_Y and Decoder_U/V. In terms of resource, the HEM technique

uses the least amount, as expected, with up to 19x less total buffer size. The HEO technique

results in exactly the same throughput as the non-optimized b = 8197 buffer size configuration,

but uses 2.4x and 4.5x less total buffer size respectively for Decoder_Y and Decoder_U/V.

Figure 5.8: Results using the HEM technique on the Decoder_Y and Decoder_U/V of the MPEG-
4 AVC/H.264 decoder case studies. The decoders are simulated for several iterations until a
complete and deadlock-free execution are obtained for the given buffer size.

The following presents results using the TEM and TEO techniques, shown in Figures 5.9 and

5.10 respectively for Decoder_Y and Decoder_U/V. For both graphs, we can see that TURNUS

provides a quite accurate estimate on the expected throughput, compared to actual hardware

simulation for the buffer size configuration. The maximum throughput obtained is 797 and

1092 QCIF fps with total buffer size of 633704 and 194922 bits respectively for Decoder_Y

and Decoder_U/V. After these points, further increment of the buffer size results in no gain

105

Chapter 5. Minimizing resource with buffer size optimization

Table 5.3: Comparison of total buffer size and throughput for fixed buffer configuration b=8197,
HEM, and HEO techniques on the Decoder_Y and Decoder_U/V of the MPEG-4 AVC/H.264
decoder case studies.

Configuration Decoder_Y Decoder_U/V
method Buffer size Throughput Buffer size Throughput

(bits) (QCIF fps) (bits) (QCIF fps)
b=8197 19595264 916 4898816 1092
HEM 1126691 621 314892 941
HEO 8030232 916 1105094 1092

in throughput due to the local minimum. If the HEO and the TEO (final configuration)

techniques are compared, the HEO technique for Decoder_Y results in throughput of 916 QCIF

fps compared to 797 QCIF fps (15% higher), but also results in higher resource with almost 12x

more. For Decoder_U/V, the throughput are the same between TEO and HEO at 1092 QCIF

fps, but the HEO technique results in around 6x more resource. For minimum buffer size

comparison, the technique using TURNUS have shown to be superior in terms of resource,

with up to 5x less (Decoder_U/V), but also lower throughput with up to 20% less (Decoder_Y).

Figure 5.9: Throughput versus buffer size graph for estimated (TURNUS) and actual (Model-
sim) results using the TEM and TEO techniques on the Decoder_Y of the MPEG-4 AVC/H.264
decoder case study.

106

5.4. Summary

Figure 5.10: Throughput versus buffer size graph for estimated (TURNUS) and actual (Model-
sim) results using the TEM and TEO techniques on the Decoder_U/V of the MPEG-4 AVC/H.264
decoder case study.

It is also interesting to compare the complexity of each technique and their convergence time.

The un-optimized constant buffer size assignment is the simplest one, where virtually no time

is required to obtain the configuration. The next is the HEO technique, where a valid buffer

size configuration is obtained after a single simulation run to obtain the capacity of each buffer

interconnection (in the order of minutes for the case studies). The HEM technique performs

several simulation runs until deadlock is resolved. Therefore, the required time is design

dependent, where on average a valid buffer size configuration is obtained after about 2 hours

for the design case studies using a general purpose computer. For the TEM technique, the

minimum buffer size configuration is obtained on average after 3 hours. The TEO technique

to obtain other configurations are relatively fast afterwards, with several seconds for each one.

5.4 Summary

In this chapter, we have presented several buffer size minimization and optimization tech-

niques for CAL programs based on two different approaches: 1) using a hardware program

execution and 2) using a dataflow program execution trace. For each approach, two techniques

were implemented: first is finding the minimum or close-to-minimum size for a deadlock free

execution, and second is to use a larger buffer size for higher throughput. All the four tech-

niques have been applied on the U/V-branch and the Y-branch decoder part of the MPEG-4

AVC/H.264 decoder, and then evaluated and compared for performance. It can be concluded

107

Chapter 5. Minimizing resource with buffer size optimization

that using approach-1 results in the highest throughput design with large total buffer size,

while approach-2 results in the smallest buffer size but with low throughput. The techniques

have been proven to be effective in minimizing and optimizing the buffer interconnection

sizes, with up to 37x smaller size achieved compared to a direct un-optimized buffer size

assignment.

108

6 Design case studies: MPEG-4 video
decoders

This chapter introduces two complex video decoders that are used as design case studies in this

work. The video decoders are used to validate the efficacy of the refactoring and optimization

techniques presented in the previous three chapters. Furthermore, we also aim to validate and

prove the viability of our systems design methodology and the associated tools and techniques

using some of the most complex signal processing system available today - which is without

doubt the MPEG-4 video decoders.

This chapter is organized as follows. First, the fundamentals of video codecs are presented, i.e.

on both sides of compression and decompression, based on the reference [105]. Then, the Re-

configurable Video Coding (RVC) standard is presented, which adopts CAL as its specification

language, and proposes a new way of specifying video codecs. The following section presents

the two MPEG-4 decoders that are used in this work: the MPEG-4 Part 2 Visual Simple Profile

(SP) and the MPEG-4 Advanced Video Coding (AVC)/H.264 Constrained Baseline Profile (CBP)

decoders. Both were implemented for the RVC standard, using a subset of the CAL language

called RVC-CAL. In these sections, the fundamentals of the standards are first presented,

followed by their design and implementation with CAL. Finally in the last part, a concluding

remark is provided based on all of these video coding standards in relation to the main work in

this thesis.

6.1 Fundamentals of video codecs

Video codec is a tool that enables compression or decompression of digital video. The purpose

of compression is to reduce the size (in case of storage) or bandwidth (in case of transmission)

of a raw video data. The compressed video data then needs to be decompressed for recovering

and viewing the video, which is performed by a video decoder. Compression is achieved by

removing the redundancy , i.e. components that are not necessary for the reproduction of

109

Chapter 6. Design case studies: MPEG-4 video decoders

data. This typically involves statistical redundancy and can be effectively compressed using

lossless compression. However, lossless compression of image and video information gives

only a moderate amount of compression, for example the JPEG-LS with a compression ratio of

around 3-4 times. Lossy compression is necessary to achieve higher compression (at around

40-80 times depending on the standard), at the expense of a loss in visual quality. In this case,

the decompressed data is not identical to the source data, but for natural scenes and images,

typically do not affect the viewer’s perception of visual quality. All video coding standards today

feature lossy compression, where some loss in visual quality is trade-off with the significantly

higher compression ratio.

Most video coding methods exploit both temporal and spatial redundancy to achieve com-

pression. In the temporal domain, there is usually a high correlation (similarity) between

frames of video that were captured at around the same time. For example, successive frames

are often highly correlated, more so if the frame rate is high. In this case, redundancy can

be removed by constructing the current frame based on other frames. In the spatial domain,

there is usually a high correlation between pixels that are close to each other, i.e. the values

of neighboring samples are often very similar. In this case, redundancy can be removed for

example by constructing a given block in the current frame by using neighboring blocks.

The study group who develop video coding standards for the International Standards Organi-

zation (ISO) is called the Moving Picture Experts Group (MPEG). It has been responsible for

a series of important standards, starting with the MPEG-1 (compression of video and audio

CD playback), and following on with the very successful MPEG-2 (storage and broadcasting

of television-quality video and audio). The MPEG-4 (coding of audio-visual objects) is the

next standard to be developed, that deals specifically with audio-visual coding. Another group

who develop video coding standards, but for the International Telecommunication Union

Telecommunication Standardization Sector (ITU-T) is called the Video Coding Experts Group

(VCEG). It has been responsible mainly for a series of standards related to video communica-

tion over telecommunication networks and computer networks. The first standard was the

H.261 for videoconferencing, followed by the H.262 that was developed jointly with the MPEG-

2 standard. The H.263 standard was also developed which provides further enhancement

and are more efficient. Another joint video project between MPEG and VCEG is the MPEG-4

Advanced Video Coding (AVC)/H.264. It is the current video coding standard, and possibly

the most widely used today. This standard, together with the MPEG-4 Part 2 Visual and the

MPEG-2/H.262 standards have had a particularly strong impact and have found their way into

a wide variety of products.

All of the video codecs that is compatible with the H.261, MPEG-2/H.262, H.263, MPEG-1,

MPEG-2, MPEG-4 Visual and MPEG-4 AVC/H.264 have been based on the same generic design

that incorporates a motion estimation and compensation front end (sometimes described

110

6.1. Fundamentals of video codecs

as DPCM), a transform stage and an entropy encoder. The model is often described as the

hybrid DPCM/DCT codec. The most recent HEVC decoder also follows such model. Figure 6.1

and Figure 6.2 depict a generic DPCM/DCT video encoder and decoder respectively. In the

encoder, video frame n (Fn) is processed to produce a coded (compressed) bitstream, and in

the decoder, the compressed bitstream is decoded to produce a reconstructed video frame F′
n.

The encoding process is as follows:

1. An input video frame Fn is presented for encoding and is processed in units of a mac-

roblock (e.g. 16x16 luma and 8x8 chroma regions).

2. Fn is compared with the reference frame, e.g. the previous encoded frame (Fn−1). A

motion estimation function find a 16x16 region in this reference frame (or a sub-sample

interpolated version) that matches the current macroblock in Fn according to some

criteria. The offset between the current macroblock position and the chosen reference

region is a motion vector MV.

3. Based on the chosen motion vector MV, a motion compensated prediction P is gener-

ated.

4. P is subtracted from the current macroblock to produce a residual or difference mac-

roblock D.

5. Each sub-block is quantized (X).

6. The DCT coefficients of each sub-block are reordered and run-level coded.

7. Finally, the coefficients, motion vector, and associated header information for each

macroblock are entropy encoded to produce the compressed bitstream.

The decoding process is as follows:

1. A compressed bitstream is entropy decoded to extract coefficients, motion vector, and

header for each macroblock.

2. Run-level coding and reordering are reversed to produce a quantized, transformed

macroblock X.

3. X is rescaled and inverse transformed to produce a decoded residual D′.

4. The decoded motion vector is used to locate a 16x16 region in the decoder’s copy of the

reference frame Fn−1. This region becomes the motion compensated prediction P.

111

Chapter 6. Design case studies: MPEG-4 video decoders

Figure 6.1: Generic DPCM/DCT video encoder used in most video coding standards.

Figure 6.2: Generic DPCM/DCT video decoder used in most video coding standards.

5. P is added to D′ to produce a reconstructed macroblock. The reconstructed macroblocks

are saved to produce decoded frame Fn.

Note that the encoder also requires a decoding path as shown in Figure 6.1. This is necessary

to ensure that the encoder and decoder use identical reference frames (Fn−1) for motion

compensated prediction. The detailed description of each encoder and decoder components

are dependent on the video coding standards, and can be found in [105] for MPEG-4 Part 2

Visual and MPEG-4 AVC/H.264 standards.

6.2 MPEG Reconfigurable Video Coding (RVC) Standard

The reconfigurable video coding (RVC) standard in the ISO/MPEG proposes a new paradigm

for specifying and designing complex video codecs [87]. An overview of RVC framework is

given in Figure 6.3. Together with the encoded video data, RVC also requires a specification of

the decoder that consists of a network description (FNL) and the bit-stream syntax description

(BSDL). These descriptions provide details of the video decoder that is required to decode

the video data. The video decoder is first assembled from the so-called Video Tool Library

112

6.3. MPEG-4 Simple Profile (SP) decoder

Figure 6.3: The normative and informative components of the RVC framework. The normative
components are the standard languages used to specify the abstract decoder model and the
standard library of the FU. The informative parts are examples of tools that synthesize a
decoder implementation possibly using proprietary implementations of the standard library.

(VTL) that consists of various video decoding components (also called Functional Units (FU))

designed using the RVC-CAL language. The assembled decoder in RVC-CAL can then be

synthesized to software and/or hardware implementation languages using the relevant tools.

The implemented decoder can finally be used to decode the video data. It is clear that this

new methodology of dynamically assembling the video decoder, instead of having a fixed

implementation, allows higher degree of flexibility, reusability, and modularity across various

platforms and performance requirements. Currently, the RVC standard covers two MPEG-4

codecs, the MPEG-4 Part 2 Visual codec for the Simple Profile (SP) and the MPEG-4 Advanced

Video Coding (AVC)/H.264 codec for the constrained baseline (CBP) and the progressive

high profiles (PHP). The HEVC codec description for the RVC standard is currently under

development.

6.3 MPEG-4 Simple Profile (SP) decoder

MPEG-4 SP decoder is one of the decoder profiles in the MPEG-4 Part 2 Visual standard for

decoding digital video. The standard is in fact a successor to the popular MPEG-2 standard,

and offers improvements in 1) compression efficiency by making use of more advanced

compression algorithms, and 2) flexibility by providing an extensive set of tools for coding and

113

Chapter 6. Design case studies: MPEG-4 video decoders

manipulating digital media. The grouping of the tools for a particular type of application is

called profiles. The standard defines 21 different profiles. Some examples include those used

for coding arbitrary shaped objects (Core and Main profiles), scalable objects (Core Scalable

and Scalable Texture), and high-quality video (Simple Studio and Core Studio). In this thesis,

one of the most popular profiles in the standard is used, the Simple profile, primarily for low

bit rate and low resolution applications that are mandated by network bandwidth, device size,

etc. Example are mobile phones, some low end video conferencing systems, and electronic

surveillance systems.

6.3.1 Fundamentals

The MPEG-4 SP decoder is capable of decoding video objects using two different tools: I-

VOP and P-VOP respectively for intra-coded (spatial encoding/decoding) and inter-coded

(temporal encoding/decoding) rectangular Video Object Plane (VOP) in progressive format.

The overview of the I-VOP and P-VOP decoding tools respectively are given in Figure 6.4 and

6.5. The details of the stages in I-VOP decoding tool is as follows:

• Entropy decoding: VLD and RLD. VLD, or variable length decoding, is used to extract

coefficients, motion vectors, and header for each macroblock. They are based on

Huffman codes, and are defined on a pre-calculated coefficient probabilities. Frequently-

occuring symbols are represented by short codes, while less common symbols are

represented with long ones. The extracted information is then sent to the Run-level

decoder (RLD) where a triplet of (last, run, level) is extracted. last indicates whether this

is the final non-zero coefficient in the 8x8 block, run signals the number of preceding

zero coefficients and level indicates the coefficient sign and magnitude.

• Reorder. The decoded run-level is re-ordered to a macroblock representation from a

zig-zag scan representation. The purpose of having a zig-zag scan representation is

to efficiently group together zero-valued coefficients (which typically dominates the

non-zero-valued coefficients). During this step, the intra prediction process may also

be performed, where the DC and AC coefficient of an 8x8 block is predicted from the

neighboring blocks.

• Inverse quantization: Q−1. The reordered data is rescaled using the scaling parameter

QP, which can take values from 1 to 31. Larger values of QP produce a larger quantization

step size, and therefore higher compression and distortion. The typical method of

performing the inverse quantization is described by the following. The DC coefficient in

114

6.3. MPEG-4 Simple Profile (SP) decoder

an intra-coded macroblock is rescaled by

DC = DCQ ×dc_scaler (6.1)

where DCQ is the quantized coefficient, DC is the rescaled coefficient and dc_scaler

(typical value is 8) is a parameter defined in the standard. All other transform coefficients

(including AC and inter DC) are rescaled as follows. If QP is odd and FQ 6= 0, then

|F | = QP × (2×|FQ |+1). If QP is even and FQ 6= 0, then |F | = QP × (2×|FQ |+1)−1. If

FQ = 0, then |F = 0|.

• IDCT . The rescaled data is sent for inverse transform using an 8x8 block to produce the

decoded video data in terms of pixels. The action of the IDCT can be described by the

following equation:

Xi j =
N−1∑
x=0

N−1∑
y=0

CxCy Yx y cos
(2 j +1)yπ

2N
cos

(2i +1)xπ

2N
(6.2)

where X is the transformed block in time-domain, Y is the block in the frequency domain,

and N is the size of the transform block. Cx and Cy are defined as follows:

Ci =
√

1

N
(i = 0) (6.3)

and

Ci =
√

2

N
(i > 0) (6.4)

Each macroblock in a coded I-VOP contains a header (defining the macroblock type, which

blocks in the macroblock contain coded coefficients, signalling changes in quantization

parameter, etc) followed by coded coefficients for each 8x8 block. In the decoder, the sequence

of the variable-length codes are decoded to extract the quantized transform coefficients which

are re-scaled and transformed by an 8x8 IDCT to reconstruct the decoded I-VOP.

The P-VOP coding tools include one additional tool called the motion compensation, in addi-

tion to the tools in the I-VOP. During this step, the current frame is predicted and constructed

from the previously decoded frame using a motion vector. This implies that a memory element

115

Chapter 6. Design case studies: MPEG-4 video decoders

is required to store one previously decoded frame to use for motion compensation. The default

block size for motion compensation is 16x16 samples for luma, and 8x8 samples for chroma,

resulting in one motion vector per macroblock. The decoded residual data is added to the

prediction to reconstruct a decoded macroblock, performed by the Motion-Compensated

Reconstruction (MCR). Furthermore, Macroblocks within a P-VOP may be coded in Inter mode

or Intra mode. Inter mode typically give the best coding efficiency, but intra mode may be

useful in regions where there is not a good match in a previous VOP, such as a newly-uncovered

region.

Figure 6.4: I-VOP decoding stages.

Figure 6.5: P-VOP decoding stages.

6.3.2 CAL design and implementation

The MPEG-4 SP decoder was the first video coding application specified in CAL. It was origi-

nally developed by Xilinx using a serial decoding architecture, and then modified in [83] to

exploit coarse-grain parallelism for the three color spaces of Y, U, and V. The top-level overview

is given in Figure 6.6. The decoder is a network formed by a set of interconnected actors.

The Parser (that performs entropy decoding) is a hierarchical networks of actors, while all

other blocks are atomic actors specified in CAL. Note that for readability, only one edge is

represented when two actors are connected by more than one edge.

Although the decoder is the simplest one among all other profiles in the MPEG-4 Part 2 Visual

standard, it is still substantially complex. The document that describes all the tools and

profiles [13] in this standard run to over 500 pages, with large parts pertaining to the core

encoding and decoding process utilized by all profiles. The overview of the complexity of the

design is given in Table 6.1. Overall, this original design consists of 44 actor instances, 103

FIFO interconnections, and 349 total actions. In terms of lines of code, CAL implementation

consists of 4185 lines (without blanks and comments), while the generated C and VHDL codes

respectively are 12,773 and 60,212 lines, roughly 3x and 14x more. Table 6.2 presents the design

complexity of the dataflow networks and sub-networks in terms of the number of code lines

for the specification in XDF, which is in XML format. The overall number of lines is 579 for a

total of 8 dataflow networks.

116

6.3. MPEG-4 Simple Profile (SP) decoder

Table 6.1: Design complexity of the MPEG-4 SP decoder for each actor in terms of the number
of instances, number of FIFO interconnections, number of actions, and the number of code
lines (without blank and comments) in CAL, generated C, and generated HDL. The total
number of FIFOs and actions are normalized to the number of instances.

Sub- Actor # of # of # of CAL # of Gen. C Gen. HDL
network inst. FIFOs actions lines # of lines # of lines
Parser byte2bit 1 1 2 68 116 323

parseheaders 1 1 70 1269 3841 17632
splitter_btype 1 1 9 82 637 1384
block_expand 1 3 5 95 255 733
mv_sequence 1 1 11 253 527 1929
mv_recon 1 3 19 349 1182 5185
splitter_b 1 2 11 125 520 1757
splitter_mv 1 1 12 50 555 1392

Texture_- dc_split 3 1 2 59 137 296
Y/U/V dc_addr 3 1 7 231 396 2911

inv_dc_pred 3 5 10 253 762 3020
inv_scan 3 2 6 110 359 2066
inv_ac_pred 3 4 5 158 298 1268
inv_quant 3 3 3 82 257 665
idct 3 1 8 285 467 3493

Motion_- motion_addr 3 2 12 380 848 3402
Y/U/V picture_buffer 3 3 2 27 144 2269

interpolation 3 2 4 133 307 1390
add 3 3 8 131 398 1159
Merge 3 3 3 45 206 614

TOTAL 44 103 349 4185 12773 60212

Table 6.2: Design complexity of the MPEG-4 SP decoder for each network and sub-network in
terms of the number of code lines in XDF (XML), number of instances, and the total number
of lines normalized to the number of instances.

Network/ XDF (XML) # of Total
Sub-network # of lines instances # of lines
Top 94 1 94
Parser 128 1 128
Texture_Y/U/V 64 3 192
Motion_Y/U/V 55 3 165
Total 341 8 579

117

Chapter 6. Design case studies: MPEG-4 video decoders

Parser

DC
addr

DC
Split

DC
pred-1 IS

AC
pred-1

IQ IDCT

motion
addr

Picture
buffer

Inter-
polation

add

merge
Bit-stream

[0 1 1 0 1 ..]

Decoded
data

DC
addr

DC
Split

DC
pred-1 IS

AC
pred-1

IQ IDCT

motion
addr

Picture
buffer

Inter-
polation

add

DC
addr

DC
Split

DC
pred-1 IS

AC
pred-1

IQ IDCT

motion
addr

Picture
buffer

Inter-
polation

add

Y-BRANCH TEXTURE & MOTION DECODING

U-BRANCH TEXTURE & MOTION DECODING

V-BRANCH TEXTURE & MOTION DECODING

Figure 6.6: Top-level overview of the MPEG-4 SP decoder for the RVC standard. All actors are
atomic, except the Parser as hierarchical networks of actors.

6.4 MPEG-4 Advanced Video Coding (AVC)/H.264 decoder

The MPEG-4 Advanced Video Coding (AVC)/H.264 decoder is currently the most commonly

used format for decoding high definition video. It has also been the current video decoding

standard since its completion in May 2003. The intent was to create a standard capable of

providing good quality at substantially lower bit rates (i.e. higher compression ratio) than

previous standards, without increasing the complexity of the design too much that it would be

impractical or excessively expensive to implement. Indeed, the average compression ratio of

around 60:1 is better than the MPEG-4 Part 2 Visual at 40:1, but comes at the cost of nearly 2x

higher complexity. In large part, this is due to the adoption of many new technologies such

as variable block size motion estimation and compensation, intra-frame prediction, integer

transforms, etc. Similar to the MPEG-4 Part 2 Visual, the standard defines 21 set of profiles

with different supported features for a given profile. In the present work, the Constrained

Baseline Profile (CBP) is used, primarily for low cost applications such as in videoconferencing

and mobile applications.

6.4.1 Fundamentals

The overview of the main stages in the MPEG-4 AVC/H.264 decoder is given in Figure 6.7.

The decoder first receives a compressed bitstream from the Network Abstraction Layer (NAL)

(with additional information for transmission and storage), and then entropy decodes the

data elements to produce a set of quantized coefficients X. These are scaled and inverse

transformed to give D′
n. Using the header information decoded from the bitstream, the

decoder creates a prediction block P. Finally, P is added to D′
n to produce uF′

n, which is filtered

118

6.4. MPEG-4 Advanced Video Coding (AVC)/H.264 decoder

Figure 6.7: Overview of the main stages in the MPEG-4 AVC/H.264 decoder.

to create each decoded block F′
n. Note that the decoding procedure is almost similar to the

previous standards. In the context of the CBP profile, the difference mainly lies in three aspects:

1) the use of the concept of slice, where a slice is a set of macroblocks in raster scan order,

2) the use of a deblocking filter to smooth out the decoded picture, and 3) the details of the

functional blocks. The following provides further details on each of these features.

In contrast to the MPEG-4 Part 2 Visual standard that decodes one full video frame either using

I-VOP or P-VOP, the MPEG-4 AVC/H.264 standard allows a single video frame to be decoded

using both intra and inter predictions. For this, a group of macroblocks in a single video frame

is partitioned into slices, that could either be an I slice or a P slice. An I slice may contain

only I macroblock types that are predicted using intra prediction from decoded samples in

the current slice. A P slice may contain P and I macroblock types, where a P type is predicted

using inter prediction from one or more reference picture(s). Furthermore, an inter-coded

macroblock may be divided into macroblock partitions, i.e. blocks of size 16x16, 16x8, 8x16, or

8x8 luma samples (and associated chroma samples). If the 8x8 partition size is chosen, each

8x8 sub-macroblock may be further divided into sub-macroblock partitions of size 8x8, 8x4,

4x8 or 4x4 luma samples (and the associated chroma samples). The different block size is often

referred to as the Variable-block size (VBS).

The next main feature of the MPEG-4 AVC/H.264 decoder is the deblocking filter for reducing

blocking distortion. It is applied after the inverse transform to smooth block edges and improve

the appearance of decoded frames. Filtering is applied to vertical and/or horizontal edges of a

4x4 blocks in a 16x16 macroblock (except for edges on slice boundaries), first in the vertical

direction, then the horizontal direction. The important filter parameter is the boundary

strength, bS. Typical values range from 0 for no filtering, to 4 for strongest filtering. The

standard defines a set of rules for choosing the bS parameter (in the encoder), but essentially,

filtering is designed to be stronger at places where there is likely to be significant blocking

distortion, such as the boundary of an intra coded macroblock or a boundary between blocks

that contain coded coefficients.

119

Chapter 6. Design case studies: MPEG-4 video decoders

The following presents details of other functional blocks in Figure 6.7:

• Entropy decoding . The entropy decoder used in the CBP profile is called the Context-

Based Adaptive Variable Length Coding (CAVLC). The method is applied on the decoding

side to produce a zig-zag ordered 4x4 (and 2x2) blocks of transform coefficients. Similar

to previous standards, it uses a run-level coding to represent strings of zeros compactly.

The zig-zag scan are often sequences of ±1, and CAVLC signals the number of high-

frequency ±1 coefficients (’Trailing Ones’) in a compact way. CAVLC is also designed

to take advantage of the correlation in the nonzero coefficients in neighboring blocks.

For this, the number of coefficients is encoded using a look-up table and the choice

of look-up table depends on the number of nonzero coefficients in the neighboring

blocks. Besides this, CAVLC also takes advantage of the nonzero coefficients that tends

to be larger at the start of the reordered array (near DC coefficient), and smaller towards

the higher frequencies. For this, it adapts the choice of VLC look-up table for the level

parameter depending on recently coded level magnitudes.

• Reordering . The reordering process in the decoder is similar to the previous standard

as explained in Section 6.3.1, i.e. from a zig-zag scan representation to a macroblock

representation.

• Transform and quantization. The MPEG-4 AVC/H.264 decoder uses three transforms

depending on the type of residual data that is to be coded: a Hadamard transform for

the 4x4 array of luma DC coefficients in intra macroblocks predicted in 16x16 mode, a

Hadamard transform for the 2x2 array of chroma DC coefficients (in any macroblock),

and a DCT-based transform for all other 4x4 blocks in the residual data. The DCT trans-

form is slightly different than the one in the previous standard, where 1) it is an integer

transform where all operations can be carried out using integer arithmetic, without loss

of decoding accuracy, 2) the core part can be implemented using only additions and

shifts, and 3) scaling multiplication is integrated into the quantizer, reducing the total

number of multiplications. The IDCT in the MPEG-4 AVC/H.264 standard is defined

explicitly using a sequence of arithmetic operations with the following:

Y =

1 1 1 0.5

1 0.5 −1 −1

1 −0.5 −1 1

1 −1 1 −0.5

[

X
]
⊗

a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2

1 1 1 1

1 0.5 −0.5 −1

1 −1 −1 1

0.5 −1 1 −0.5

 (6.5)

where Y is the transformed block in time-domain from a block in frequency-domain, X,

120

6.4. MPEG-4 Advanced Video Coding (AVC)/H.264 decoder

with a = 0.5 and b =
√

2
5 . The Hadamard transform at the decoder is defined as follows:

WQD =

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

[

ZD

]

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 (6.6)

where WQD is a transformed block in time-domain block for a 4x4 luma DC coefficient,

and ZD is a block in the frequency-domain. A similar 2x2 matrix is used for transforming

a 2x2 chroma DC coefficient.

The basic inverse quantization operation is that of rescaling the coefficients using a

quantization parameter, QP. In addition, the MPEG-4 AVC/H.264 standard defines two

additional parameters, Qstep and PF, where V =Qstep ×PF×64 is defined for 0 ≤QP ≤ 5

for each coefficient position so that scaling becomes:

W′
i j = Zi j Vi j ×2 f loor (QP/6) (6.7)

• Intra prediction. In intra decoding mode, a prediction block P is formed based on

previously reconstructed blocks, and is added to the transformed block for filtering. For

the luma samples, P is formed for each 4x4 block or for a 16x16 macroblock. There are a

total of nine optional prediction modes for each 4x4 luma block, four modes for a 16x16

luma block and four modes for the chroma components. During encoding, the encoder

selects the prediction mode for each block that minimizes the difference between P and

the block to be encoded. At the decoding side, the current block is predicted using this

prediction mode.

• Inter prediction. The inter prediction process is similar to previous standards (MPEG-

4 Part 2 Visual SP), but with two notable differences. The first is the variable-block

size from 16x16 down to 4x4, and the second is the use of quarter-pixel sub-sample

prediction. In the former, large partition size is appropriate for homogeneous areas of the

frame, while small partition size may be beneficial for details areas. In the latter, quarter-

pixel interpolation results in higher design complexity, but offers better compression

performance. The samples at half sample positions is decoded by applying a 6-tap filter

to the nearest integer position in the vertical or horizontal direction, for example,

b = Clip((E −5×F +20×G +20×H −5× I + J +16) >> 5) (6.8)

121

Chapter 6. Design case studies: MPEG-4 video decoders

where b is the half pixel sample, and E ,F,G , H , I , and J are the integer samples. The

Clip function clips the value in the range from 0 to 255. The samples at quarter sample

positions is decoded by applying a 2-tap filter to the nearest integer position in the

vertical or horizontal direction, for example,

a = (G +b +1) >> 1 (6.9)

where a is the quarter pixel sample, G is the integer sample, and b is the half pixel sample.

Furthermore, the MPEG-4 AVC/H.264 standard also supports encoding motion vector

for each partition. This takes the advantage that neighboring partitions are often highly

correlated and so each motion vector is predicted from vectors nearby, i.e. previously

decoded partitions.

6.4.2 CAL design and implementation

The design of the MPEG-4 AVC/H.264 CBP decoder for the RVC standard was first introduced

in [44]. Figure 6.8 presents the top-level overview of the video decoder. Similar to the CAL

design of the MPEG-4 SP decoder, the MPEG-4 AVC/H.264 CBP decoder is designed to exploit

coarse-grain parallelism for the three color spaces of Y, U, and V. The Y-branch decoder consists

of a residual part (transform and quantization), intra prediction part (for block sizes of 16x16

or 4x4), inter prediction with half and quarter pixel interpolation, and deblocking filter. The

U/V-branch decoder is similar, except that the intra prediction part supports block size of 8x8,

and inter prediction part with bilinear pixel interpolation.

The document that describes all the tools and profiles [12] in the MPEG-4 AVC/H.264 standard

runs to almost 300 pages, with large parts pertaining to the core encoding and decoding

process utilized by all profiles, including the CBP profile used in this work. The overview of

the complexity of the CAL design is given in Table 6.3. Overall, this original design consists

of 90 actor instances, 268 FIFO interconnections, and 1282 total actions. In terms of lines of

code, the CAL implementation consists of 20,562 lines, while the generated C and VHDL codes

respectively consist of 64,828 and 353,538 lines, roughly 3x and 17x more. Table 6.4 presents

the design complexity of the dataflow networks and sub-networks in terms of the number of

code lines for the specification in XDF, which is in XML format. The overall number of lines is

4131 for a total of 27 dataflow networks.

122

6.4. MPEG-4 Advanced Video Coding (AVC)/H.264 decoder

Table 6.3: Design complexity of the MPEG-4 AVC/H.264 decoder for each actor in terms of the
number of instances, number of FIFO interconnections, number of actions, and the number
of code lines (without blank and comments) in CAL, generated C, and generated HDL. The
total number of FIFOs and actions are normalized to the number of instances.

Sub- Actor # of # of # of CAL # of Gen. C Gen. HDL
network inst. FIFOs actions lines # of lines # of lines

Parser algo_synp 1 1 35 4781 11066 81014

intra_split 1 4 8 278 542 4304

block_exp 1 4 23 420 1144 4563

block_split 1 2 15 211 794 3593

mmco 1 6 23 479 1295 8347

reflist 1 10 13 609 1160 11554

mgnt_interpred 1 5 1 69 328 1052

mvlx_reconstr 1 7 38 1805 4903 34907

refidx_frame_num 1 3 5 60 254 782

mv_reord 1 5 14 259 917 2726

Res_Y is_zigzag_4x4 2 1 30 211 1052 3466

hadamard_1ht1d 2 1 8 110 358 1055

transpose_4x4 4 1 31 220 1079 3586

hadamard_scale 1 3 20 298 1101 5514

hadamard_reord 1 1 30 211 1052 3465

intra_16x16 1 3 10 398 487 1305

scaler_4x4 1 3 17 297 1149 7939

it_4x4_1d 2 1 8 110 358 1057

it_addshift 1 1 1 52 89 157

mgnt_4_16 1 1 5 100 239 1414

Res_U/V hadamard_chroma 2 2 2 90 190 1489

is_zigzag_4x4 2 1 30 211 1052 3471

iq_chroma 2 2 4 194 229 604

scaler_4x4 2 3 5 194 5436 5243

it_4x4_1d 4 1 8 112 358 1057

it_addshift 2 1 1 51 89 157

transpose_4x4 4 1 31 220 1079 3586

mgnt_4_8 2 1 5 86 236 1234

Pred_Y picture_buffer 1 14 108 1259 4413 18846

parser_info 1 5 19 292 1096 4793

neighbour_16x16 1 3 10 232 699 5253

mgnt_16x16 1 2 16 127 735 2797

intra_16x16 1 5 17 398 813 5923

add_16x16 1 2 1 67 126 209

neighbour_4x4 1 3 12 269 572 4236

mgnt_4x4 1 4 18 458 1243 9456

intra_4x4 1 5 22 464 1268 13203

123

Chapter 6. Design case studies: MPEG-4 video decoders

split_16_to_4 1 1 4 72 200 1002

add_4x4 1 2 1 67 126 209

mgnt_4_16 1 1 4 72 200 1001

hq_interp 1 5 9 370 837 8802

blocks_reorder 1 3 20 464 986 5471

add_inter 1 2 1 67 126 209

select 1 4 9 97 372 911

deb_filter 1 3 7 168 422 3853

Pred_U/V picture_buffer 2 12 22 433 4413 10194

parser_info 2 4 12 185 720 3704

neighbour_8x8 2 3 9 234 570 4320

mgnt_8x8 2 2 11 197 602 3071

intra_8x8 2 5 15 434 866 6357

add_8x8 2 2 1 67 126 209

bilinear_interp 2 5 7 186 425 1939

blocks_reorder 2 3 20 442 986 5384

add_inter 2 2 1 67 126 209

select 2 3 6 71 268 674

deb_filter 2 3 9 201 612 4895

Merger display_poc 1 4 9 169 538 3411

render_y 1 4 14 248 671 7841

render_u 1 4 14 246 664 7888

render_v 1 4 14 246 664 7888

merger 1 3 3 57 307 739

TOTAL 90 268 1282 20562 64828 353538

6.5 Conclusion

In this chapter, the fundamentals of video codecs have been presented, followed by an ap-

proach on how the codecs can be specified in a new way using the RVC standard. This is

followed by the two MPEG-4 decoder case studies that are used in this work: the MPEG-4 Part

2 Visual SP decoder, and the MPEG-4 AVC/H.264 CBP decoder. It is shown that fundamentally,

both are very complex systems with extensive processing requirements. This is also apparent

in the CAL design and implementation of these decoders, with close to 100 actors and more

than 1200 actions in the case of MPEG-4 AVC/H.264 decoder. In the next section, We show

how the appropriate combinations of the refactoring and optimization techniques presented

in the previous three chapters can be used to rapidly and effectively explore the design and

implementation space of these complex decoders.

124

6.5. Conclusion

Table 6.4: Design complexity of the MPEG-4 AVC/H.264 decoder for each network and sub-
network in terms of the number of code lines in XDF (XML), number of instances, and the
total number of lines normalized to the number of instances.

Network/ XDF (XML) # of Total
Sub-network # of lines instances # of lines
Top 280 1 280
Parser 348 1 348
Cavlc_expand 88 1 88
Gen_inter_info 277 1 277
Decoder_Y 292 1 292
Decoder_U/V 264 2 528
Prediction_Y 240 1 240
Prediction_U/V 208 2 416
Residual_Y 125 1 125
Residual_U/V 81 2 162
DCR 86 1 86
IS_IQ_Y 87 1 87
IT4x4 50 3 150
I_IQ_U/V 81 1 81
Intra16x16 120 1 120
Intra4x4 145 1 145
Inter_Y 128 1 128
Intra8x8 118 2 236
Inter_U/V 113 2 226
Disp_renderer 116 1 116
Total 3247 27 4131

125

Chapter 6. Design case studies: MPEG-4 video decoders

Parser

Hadamard-1

merge

Bit-stream

[0 1 1 0 1 ..]

IQ
4x4
To

16x16

Picture
buffer

Parser
info Mgnt

4x4

Half-quarter
interpolation

Select
DBF

Blocks
reorder

Add
Inter

Neighbour
4x4

Intra
4x4

16x16
To

4x4

Add
4x4

4x4
To

16x16

Mgnt
16x16

Neighbour
16x16

Intra
16x16 Add

16x16

Hadamard-1 IQ
4x4
To

16x16 Picture
buffer

Parser
info

Bilinear
interpolation

Select
DBF

Blocks
reorder

Add
Inter

Mgnt
8x8

Neighbour
8x8

Intra
8x8 Add

8x8

Hadamard-1 IQ
4x4
To

16x16 Picture
buffer

Parser
info

Bilinear
interpolation

Select
DBF

Blocks
reorder

Add
Inter

Mgnt
8x8

Neighbour
8x8

Intra
8x8 Add

8x8

Y-BRANCH TEXTURE & MOTION DECODING

U-BRANCH TEXTURE & MOTION DECODING

V-BRANCH TEXTURE & MOTION DECODING

Decoded
data

Figure 6.8: Top-level overview of the MPEG-4 AVC/H.264 CBP decoder for the RVC standard. All
blocks are atomic actors, except the Parser, inverse Hadamard transform, inverse quantization
(IQ), and the merger. These represent a hierarchical networks of actors.

126

7 Multi-dimensional design space explo-
ration

In this chapter, a methodology to explore and evaluate design points in a multi-dimensional

space is presented. The design points, or sometimes referred to as design alternatives, are

obtained by appropriate combinations of the refactoring and buffer-size minimization and

optimization techniques presented in chapters 3, 4, and 5. These techniques are applied on

complex MPEG-4 decoders presented in chapter 6. For complex designs that typically results

in many design points with multiple performance criteria, the task of analyzing the points for

feasibility is not a straightforward task, especially for a multi-objective requirement. We also

provide in this chapter, a systematic methodology for design space exploration based on an

automatic analysis of the design points such that various performance criteria can be explored

graphically on multi-dimensional plots, and design point(s) can be selected based on multiple

user requirements.

This chapter is organized as follows. The first section presents background and related works

in design space exploration, both in general terms and then specifically for embedded systems

and signal processing. The following section then presents definitions and metrics used in

this work for design space exploration and evaluation. This is followed by an overview of the

data analysis tool to automatically evaluate the design points in the exploration space. The

next two sections present experimental results of applying the refactoring and buffer size

minimization techniques, and the corresponding space exploration and evaluation for two

design case studies: the MPEG-4 SP decoder, and the MPEG-4 AVC/H.264 decoder. Next,

comparison of our results to similar works in literature is provided, and finally, the last section

presents summary of the chapter.

127

Chapter 7. Multi-dimensional design space exploration

7.1 Background and related works

Design space exploration (DSE) refers to the activity of discovering and evaluating design

alternatives during system development [68]. The task of DSE is typically divided into two

parts. First is to obtain various design alternatives from a reference design, either automatically

(for analyzable part of design), and/or manually for evaluating different types of architecture.

The design alternatives for exploration typically spans multiple design objectives and criteria,

such as latency, frequency, memory requirement, power, and area. The second task involves

finding and eliminating inferior designs from various design alternatives, and collecting a set

of final candidates that can be further studied. The analysis of the design alternatives can also

be used to find design configurations that satisfy a set of constraints. The exploration and

evaluation of the design points for multiple objectives is called multi-dimensional DSE.

The work on DSE is not only limited to embedded systems and signal processing, but spans a

wide variety of applications in many different discipline from chemical to civil engineering,

and economics to mechanical engineering. The commonly used notion in finding an optimal

set from various alternatives is called the Pareto-optimal, and is in fact derived from the study

of economics (defined in the next section). The goal of performing DSE however, is common

across all disciplines, that is to find design point(s) in the exploration space that optimizes a

given set of objectives.

In the area of embedded systems and signal processing, the method to obtain the design points

are mostly performed semi- or fully-automatically so as to obtain as many different (mostly

feasible) design points as possible in a short period of time. The work in [74] explores alterna-

tive design points based on software/hardware implementation choices which include system

partitioning and processor architecture. A design is specified using an SDF network, and the

subgraphs are explored for implementation using various number of embedded processors

and hardware IP cores. In a different approach, the work in [101] utilizes C and SystemC

for exploring different software and hardware partitioning schemes. Several platforms are

compared which include DSP and embedded processors, application specific instruction

processor, FPGAs (with soft-core control), and ASICs (with ARM control). Another approach

in [18] is based on an library-based interactive user interface where designers could adjust

the architectural definition using constraints and library components. A system architec-

ture is generated that meets the constraints which include number and type of processors,

access time of memories, contribution of co-processors, DMA or CPU controlled transfers,

etc. The work that is more closely related to the work in this thesis is given in [56] where

various hardware implementation design point is explored. The design points are obtained by

exploring different pre-defined architectures with different performance parameter values.

The authors presented 16 different FIR filter structures with 8 different operating voltage values

for each structure for exploring throughput, area, and power. Since the design is a relatively

128

7.2. Metrics for design space exploration

simple FIR filter, HDL was used as design specification; in contrast to this work, a high-level

design methodology is used for the exploration and evaluation of a substantially more complex

MPEG-4 decoders.

For CAL programs, the first work that was reported for DSE is given [84]. It describes what CAL

designers need to do in order to move in the design space. The implementation target is for

software implementation, where each point in the design space represents a triplet of a CAL

program (architecture), a schedule, and a partition. The various permutations of the triplet

represent design points in the exploration space, where performance criteria such as resource

and throughput can be evaluated. This work has been extended in [88] where in addition

to the triplets, buffer dimensioning has also been used to explore the design space. The

DSE techniques from previous works is software platform dependent, and has to be adapted

differently for hardware platform target. In the next section, the properties of a design point is

formally defined for the case of hardware implementation.

Once the design points have been obtained, they can be analyzed using some data visualization

tools such as Spotfire, VisDB, and CViz [123]. Within each tool, one can arbitrarily choose which

dimensions of the data to visualize, and assign them 3D coordinate axes or other methods

of indicating value to see relationships and correlation between the criteria. One can also

dynamically constrain the data by removing points that do not satisfy some set criteria through

a process called brushing. Instead of utilizing these tools, we have developed our own tool for

this purpose, which is described in Section 7.3.

7.2 Metrics for design space exploration

Before presenting and analyzing the design points in the exploration space for our design case

studies, the terms and notations used for our methodology for DSE are defined as follows.

Definition 1. (Design Point) A design point is a point in a n-dimensional space En , where Dm =
(Pm ,Cm),m ∈ M is a single point from |M | number of points. Each point Dm = (Pm ,Cm) is

associated with parameter Pm = (Am ,Fm ,Bm) and criteria Cm = (L ATm ,F REm ,T HRm ,REGm ,

LU Tm ,BRMm ,SLIm ,DSPm) that defines the property of the design point m. The range of the

dimension of the exploration space n is from 1 to |C |, where |C | is the cardinality of design

criteria.

Definition 2. (Design parameter) A design parameter for a given point Dm , Pm = (Am ,Fm ,Bm)

consists of an architectural definition Am , pipelining sequence Fm , and buffer size configura-

tion Bm . The parameter A is obtained from refactoring for latency (chapter 3), parameter F

from refactoring for frequency (chapter 4), and parameter B from buffer size minimization

and optimization (chapter 5).

129

Chapter 7. Multi-dimensional design space exploration

Definition 3. (Design criteria) A design criteria for a given point Dm , Cm = (L ATm ,F REm ,

T HRm ,REGm ,LU Tm , BRMm ,SLIm ,DSPm) consists of a latency L ATm , measured by the

number of clock cycles per video frame (typically QCIF, unless otherwise stated); maximum op-

erating frequency F REm , measured in MHz; maximum throughput T HRm ∝ F REm
L ATm

, measured

by the frame rate (typically the number of QCIF frames per second (fps), unless otherwise

stated); the number of slice registers REGm ; the number of slice LUT LU Tm , where each slice

contains four LUTs and four flip-flops (for Xilinx Virtex-5); the number of 36Kb Block RAM

BRMm ; the number of occupied slice, SLIm = max(REGm ,LU Tm)
4 ; and the number of DSP48E

slice DSPm , where each slice contains a 25x18 multiplier, an adder, and an accumulator.

A design point in a multi-dimensional space consists of |P | parameters (that can be con-

figured/modified by a user) with |C | design performance criteria, i.e. f : R|P | → R|C |. The

evaluation of design points is based on the following definitions:

Definition 4. (Dominance relation) Let f , g ∈ D be two design points in the exploration space.

Then f is said to dominate g denoted as f Â g , iff

1. ∀m ∈ M : fm Ê gm

2. ∃k ∈ M : fk > gk

Definition 5. (Pareto set) Let F ⊆ D be a set of vectors. Then the Pareto set F∗ ⊆ F is defined

as follows : F∗ contains all vectors g ∈ F which are not dominated by any vector f ∈ F , i.e.

F∗ = {g ∈ F |Ø f ∈ F : f Â g } (7.1)

The Pareto set can then be used to construct the Pareto Frontier in the exploration space that

represents the boundary of the non-dominated design points, i.e. points that is more preferred

in all criteria. Conversely, a dominated point is one for which there exists another point that

is equal or better in all performance criteria and strictly better in at least one. The graph in

Figure 7.1 shows an example of six design points for the evaluation of resource and throughput

criteria. We can see that the points D1 and D2 are dominated by the point D3 since it could

achieve the throughput of the dominated points using less resources. Similarly, the points D5

and D6 dominate the point D4. The Pareto set is therefore {D3,D5,D6}. The two criteria Pareto

set in this example can also be extended to multiple criteria by evaluating design points in a

multi-dimensional space.

Another important evaluation when analyzing design points are the lower and upper bounds

for a given criteria. Indeed, they represent the dynamic range for each criteria. The lower

130

7.3. Methodology for automatic data analysis

Figure 7.1: Example of analyzing six design points for Pareto set. The non-dominated points
are {D3,D5,D6}.

bound is also known as the Nadir objective vector given by:

Z nad
i = max

x∈D
fi (x), i ∈ (1,2, . . . , |C |) (7.2)

Similarly, the lower bound is known as the ideal objective vector, given by:

Z i deal
i = min

x∈D
fi (x), i ∈ (1,2, . . . , |C |) (7.3)

where fi (x) is the function that maps a design point x to the value of criteria i . In the example

in Figure 7.1 with i = 0 for resource and i = 1 for throughput, Z nad
0 = 7, Z i deal

0 = 2, Z nad
1 = 9,

and Z i deal
1 = 2. The dashed line represents the Pareto frontier.

7.3 Methodology for automatic data analysis

A tool has been developed to automatically analyze the design points such that exploration

and evaluation can be done systematically and efficiently. The tool has been developed using

Java, with an overview given in Figure 7.2. It takes in the design points represented by the

design parameters and criteria. Users could specify three additional controls, where reports

131

Chapter 7. Multi-dimensional design space exploration

Figure 7.2: Overview of the data analyzer tool to systematically and efficiently evaluate the
design points in the exploration space.

are generated based on a set of specification:

1. Performance constraint. Users can set the required value(s) for at least one of the

optimization criteria. An error would be thrown if the set value is out of the upper

and/or lower bounds of the criteria. If this option is activated, a design requirement

report is generated with feasible design point(s) for the set of constraint(s).

2. Pareto criteria. Users can set the design criteria to find the Pareto set for a single- or

multi-objective criteria. If this option is activated, the Pareto-set report is generated.

3. Plot criteria: x,y,z axis. Users can set which criteria to assign to which axis for plotting

either 1-, 2-, or 3-dimensional scatter plot. For 3-dimensional graph, a stem plot is given

to provide a clear visualization of results. If this option is activated, MATLAB m-file(s)

are generated for the corresponding n-dimensional plot, where the file(s) can be run

directly in MATLAB to generate the graph.

7.4 Case study-1: MPEG-4 SP decoder

The specification of the original design of the MPEG-4 SP decoder in CAL is given in Section

6.3. Starting from this original design, other design points are obtained by dataflow refac-

toring and buffer size minimization and optimization such that some design criteria can

be improved. All the alternative CAL design specifications of the decoder are synthesized

132

7.4. Case study-1: MPEG-4 SP decoder

to HDL for implementation on Xilinx Virtex-5 FPGA to obtain design performance criteria

F RE ,REG ,LU T,BRM ,SLI , and DSP as defined in Section 7.2. The criteria L AT and T HR are

obtained from a hardware simulation using Modelsim. Simulation is performed only using the

Foreman QCIF (176x144 pixels) video sequence. The inter-prediction frames are stored using

local/on-chip block RAM. For higher resolution designs such as HD720p with 1280x720 pixels

per frame where block RAM is not feasible to be used, an external memory implementation is

required together with the design.

Table 7.1 presents 38 design points for the decoder case study with the corresponding design

parameters and criteria. The strategy employed to obtain the design points are as follows.

The original design point D0 is first re-factored for latency by memory optimizations and

task parallelism. This is performed for two different buffer size configurations: HEM (for

design points D1 to D3) and HEO (for design points D4 to D7) as explained in chapter 5. The

design points on the edges (D0, D3, D4, and D7) are each taken for refactoring for frequency,

which corresponds respectively to design points D8 to D14, D15 to D21, D22 to D28, and D29

to D35. The final two design points, D36 and D37 are obtained by reducing the operating

frequency of the original design point D0 for lower throughput requirement, which we call

the frequency-reduction technique. The details of the design points for latency refactoring,

frequency refactoring, and buffer size optimization respectively are given in Tables 7.2, 7.3,

and 7.4.

Table 7.1: Design points and the corresponding parameters and criteria for the MPEG-4 SP
decoder case study. The units for L AT , F RE , and T HR respectively are clock cycles per QCIF
frame, MHz, and QCIF frames per second.

Design Parameters Criteria
point A F B L AT F RE T HR LU T REG BRM SLI DSP

D0 0 0 0 183123 42 230 18917 22536 92 5634 18

D1 1 0 0 121025 43 353 19280 23525 92 5881 18

D2 2 0 0 102635 43 414 19555 24344 93 6086 18

D3 3 0 0 94341 43 455 20004 25368 98 6342 18

D4 0 0 1 140787 42 299 20070 24336 99 6084 18

D5 1 0 1 77783 43 549 21252 27166 102 6792 18

D6 2 0 1 66573 43 638 22394 29342 105 7336 18

D7 3 0 1 63248 43 678 23754 31296 109 7824 18

D8 0 1 0 183123 76 416 18917 22693 92 5673 18

D9 0 2 0 183123 80 436 19056 23733 92 5933 18

D10 0 3 0 183123 81 440 19525 23981 92 5995 18

D11 0 4 0 183123 90 490 19510 24138 92 6035 18

D12 0 5 0 183123 90 490 20066 25430 92 6358 18

D13 0 6 0 183123 95 518 20218 25560 92 6390 18

D14 0 7 0 183123 96 524 20414 26687 92 6672 18

133

Chapter 7. Multi-dimensional design space exploration

D15 3 1 0 94341 76 801 20207 25515 98 6379 18

D16 3 2 0 94341 78 825 20676 26646 98 6662 18

D17 3 3 0 94341 83 878 20813 26814 98 6704 18

D18 3 4 0 94341 90 951 20800 26995 98 6749 18

D19 3 5 0 94341 90 952 21356 28250 98 7063 18

D20 3 6 0 94341 95 1008 21510 28347 98 7087 18

D21 3 7 0 94341 96 1019 21723 29336 98 7334 18

D22 0 1 1 140787 76 537 20271 25335 99 6334 18

D23 0 2 1 140787 76 538 20410 26408 99 6602 18

D24 0 3 1 140787 80 569 20879 26614 99 6654 18

D25 0 4 1 140787 90 636 20864 26785 99 6696 18

D26 0 5 1 140787 90 639 21421 28012 99 7003 18

D27 0 6 1 140787 90 639 21573 28102 99 7026 18

D28 0 7 1 140787 96 680 21654 29109 99 7277 18

D29 3 1 1 63248 76 1195 23957 31354 109 7839 18

D30 3 2 1 63248 83 1306 24426 32470 109 8118 18

D31 3 3 1 63248 88 1393 24563 32665 109 8166 18

D32 3 4 1 63248 89 1413 24550 32730 109 8183 18

D33 3 5 1 63248 90 1421 25106 34068 109 8517 18

D34 3 6 1 63248 90 1429 25258 34183 109 8546 18

D35 3 7 1 63248 96 1519 26835 35132 109 8783 18

D36 0 8 0 183123 5 30 18917 22536 92 5634 18

D37 0 9 0 183123 22 120 18917 22536 92 5634 18

Table 7.2: Specific refactoring for latency applied on the MPEG-4 SP decoder case study. The
unit for latency is clock cycles per macroblock. The techniques are applied cumulatively from
D0/D4 to D3/D7.

Design points Technique Actor Latency (C.C./MB)
D0/D4 original - 1850/1422
D1/D5 Data-packing picture_buffer 1222/786
D2/D6 Data-parallelism inverse_scan 1037/672
D3/D7 Data-parallelism inverse_ac_pred 953/639

Each design criteria can also be evaluated for upper and lower bounds to get an overview of

the range that could be set. Table 7.5 presents the range for each criteria for the design case

study.

Figure 7.3 shows a 3-dimensional graph for three major performance criteria of occupied

slice (SLI), throughput (T HR), and frequency (F RE) for the design case study. As shown on

the graph, refactoring for latency (green/circle and blue/square points) results in throughput

134

7.4. Case study-1: MPEG-4 SP decoder

Table 7.3: Specific refactoring for frequency applied on the MPEG-4 SP decoder case study.
Design points D36 and D37 in Table 7.1 refers to the frequency-reduction technique.

Design points Actor(s) Action(s) # of pipeline stages fmax (MHz)
D0 original - - 42

D8/D15/D22/D29 inverse_dc_pred read_intra 2 76
D9/D16/D23/D30 picture_buffer read_address 2 79
D10/D17/D24/D31 inverse_dc_pred read_intra 3 85
D11/D18/D25/D32 inverse_dc_pred read_intra 4 90
D12/D19/D26/D33 inverse_quant ac 2 90
D13/D20/D27/D34 inverse_dc_pred getdc_inter 2 93
D14/D21/D28/D35 idct calc_row 2 96

Table 7.4: Specific buffer size optimization technique for each design point of the MPEG-4 SP
decoder case study.

Design points Technique
D0 −D3,D8 −D21,D36,D37 Hardware Execution Minimization (HEM)

D4 −D7,D22 −D35 Hardware Execution Optimization (HEO)

Table 7.5: Nadir and ideal objective vectors for each design criteria for the MPEG-4 SP decoder
case study. The units for L AT , F RE , and T HR respectively are clock cycles per QCIF frame,
MHz, and QCIF frames per second.

Design Criteria
L AT F RE T HR REG LU T BRM SLI DSP

znad 63248 5 30 18197 22536 92 5634 18
zi deal 183123 96 1519 26835 35132 109 8783 18

135

Chapter 7. Multi-dimensional design space exploration

Figure 7.3: 3D plot of frequency, occupied slice, and throughput for MPEG-4 SP decoder case
study.

improvement, without an increase in the operating frequency. In contrast, pipelining improves

throughput by means of a higher operating frequency (red/upward triangle points). It is also

interesting to see that the operating frequency can be reduced significantly from the original

design point D0 in order to obtain real-time 30 fps decoding of QCIF and CIF resolutions (D36

and D37), which corresponds respectively to 5MHz and 22MHz. It is also interesting to see that

by applying this combination of refactoring and buffer minimization techniques, throughput

can be improved by 6.6x compared to the original design, with occupied slice increment of

only by 49%. The design point D35 shows the highest throughput with 1519 QCIF fps at a

maximum frequency of 96 MHz.

The target implementation device for our design case study is on Xilinx Virtex-5 XC5VLX110T

that contains 69120 number of slice registers, 69120 number of slice LUTs, and 148 number of

36kb BRAM. Since the maximum number of slice and BRAM required respectively are only

33532 and 109, all design points could easily fit in the FPGA. In terms of throughput, the design

spans from 30 QCIF fps to 1519 QCIF fps. In other words, the design could perform well into

the 30 HD720p fps, which is equivalent to a throughput of 1092 QCIF fps. In order to find

the best point for various throughput requirement, the Pareto analysis is used to find the

relevant Pareto sets. Figures 7.4, 7.5, and 7.6 respectively show 2-dimensional graph plots

of throughput versus slice register, slice LUT, and block RAM with the corresponding Pareto

136

7.4. Case study-1: MPEG-4 SP decoder

Figure 7.4: 2D plot of throughput versus slice register for MPEG-4 SP decoder case study.
Dashed lines represent the Pareto frontier with the set {D0, D8, D9, D11, D15, D16, D18, D19,
D20, D21, D29, D30, D32, D33, D34, D35, D36, D37}.

set and frontier. For all resource criteria, the following design points result in the lowest cost

in terms of resource for a given throughput requirement: D36 for 30 QCIF fps, D37 for 120

QCIF/30 CIF fps, D11 for 480 QCIF/30 4CIF fps, and D29 for 1092 QCIF/30 HD720p fps.

137

Chapter 7. Multi-dimensional design space exploration

Figure 7.5: 2D plot of throughput versus slice LUT for MPEG-4 SP decoder case study. Dashed
lines represent the Pareto frontier with the set {D0, D8, D9, D10, D11, D15, D16, D17, D18, D19,
D20, D21, D22, D23, D29, D30, D31, D32, D33, D34, D35, D36, D37}.

Figure 7.6: 2D plot of throughput versus block RAM for MPEG-4 SP decoder case study. Dashed
lines represent the Pareto frontier with the set {D0, D1, D8D9, D10, D11, D12, D13, D14, D15,
D16, D17, D18, D19, D20, D21, D29, D30, D31, D32, D33, D34, D35, D36, D37}.

138

7.5. Case study-2: MPEG-4 AVC/H.264 decoder

Figure 7.7: 2D plot of throughput versus frequency for MPEG-4 SP decoder case study. Dashed
lines represent the Pareto frontier with the set {D0, D1, D2D3, D4, D5, D6, D7, D15, D29, D30,
D31, D32, D33, D34, D35, D36, D37}.

Another important design objective is to reduce power for a given throughput requirement,

which can be achieved by selecting design points with the lower operating frequency. The 2D

plot of throughput versus frequency and the corresponding Pareto frontier and set is given

in Figure 7.7. The best design point for throughput requirement of 480 QCIF/30 4CIF fps is

now D5 with operating frequency of 42 MHz, as opposed to D11 with operating frequency of

90 MHz. The occupied slice however, is higher for point D5 with 6792, compared to only 6060

for point D11.

7.5 Case study-2: MPEG-4 AVC/H.264 decoder

Starting from the original description of the decoder in CAL (Section 6.4), it is synthesized to

both C and HDL respectively for implementation on Xilinx Virtex-5 FPGA and general purpose

computer with Intel i7 2.3 GHz CPU. The performance is summarized in Table 7.6 for various

components of the decoder. For hardware implementation, the full decoder is found not only

to be too large to fit in our target device, but also results in only a modest performance in

terms of throughput. The required number of slice LUT is around 800k, whereas the largest

Virtex-5 family FPGA contains only around 200k slice LUT. In terms of performance, the

maximum throughput (T HR) achieved is only 43 QCIF fps with a maximum frequency (F RE)

139

Chapter 7. Multi-dimensional design space exploration

Table 7.6: Performance summary of the original design for the following MPEG-4 AVC/H.264
decoder components: Full decoder, Decoder_Y, Decoder_U/V, and Parser. The design is
implemented on a Xilinx Virtex-5 FPGA (XC5VLX110T), and a general purpose computer with
Intel i7 2.3GHz CPU. The buffer interconnections are assigned using the HEO technique. The
units for L AT , F RE , and T HR respectively are clock cycles per QCIF frame, MHz, and QCIF
frames per second.

Platform Component L AT F RE T HR REG LU T BRM SLI
FPGA Full decoder 660124 29 43 83804 809866 189 202467

Decoder_Y 650710 56 86 24809 46288 77 11572
Decoder_U/V 95100 79 831 12389 24471 78 6118
Parser 134323 29 214 20301 50745 0 12686

CPU Full decoder - 2300 59 - - - -
Parser - 2300 2327 - - - -

of 29 MHz. This design is not feasible to be implemented on FPGA due to the very high

complexity and low performance obtained. Therefore, we propose to implement the decoder

on a heterogeneous hardware/software platform, where the parts of the decoder with high

potential for parallelism (Decoder_Y and Decoder_U/V) are implemented on hardware/FPGA.

As shown in the Table, the three decoding components (Decoder_Y, Decoder_U and Decoder_V)

together results in reasonable amount of resource with cumulative slice reg (REG) and slice

LUT (LU T) respectively of 91416 and 44391.

The serial part of the decoder has been identified as the bitstream parser, which is more suited

to be implemented on software due to the higher operating frequency offered by general

purpose CPUs compared to FPGAs. As shown in Table 7.6, the parser performs very well on a

CPU, with throughput of 2327 QCIF fps when measured for the output rate of the y-branch

residual output. The full decoder on the other hand, only achieves a maximum throughput of

59 QCIF fps. This is due to the parallel architecture of the main decoding parts (Decoder_Y

and Decoder_U/V) that could not be handled well in the current software architecture. The

top-level block diagram of the proposed hardware/software implementation of the decoder

is given in Figure 7.8. The parser will be implemented using a general purpose CPU, while

the three decoding components and the merger (with function to simply merge the decoded

bitstream) will be implemented on FPGA. The following presents results and exploration of

the decoding components for both chroma (U and V) and luma (Y) samples.

7.5.1 Decoder_U/V

As shown in Table 7.6, the original design of the Decoder_U/V component on FPGA results

in a relatively high throughput at 831 QCIF fps. If the target is to achieve real-time 30 fps

140

7.5. Case study-2: MPEG-4 AVC/H.264 decoder

Figure 7.8: Simplified top-level view of the MPEG-4 AVC/H.264 decoder. The Parser is to
be implemented on a general purpose CPU, while the main decoding components and the
merger on FPGA.

for HD720p resolution (at 1092 QCIF fps), then only around 30% improvement is required.

The list of all design points with the corresponding design parameters and criteria is given in

Table 7.7. The strategy is to first perform memory refactoring/optimization from the original

design point (D0) until the desired throughput is achieved. The data-packing and redundancy-

elimination techniques are applied on the actor picture_buffer (parameter A = 1) to obtain

design point D1, and then the redundancy-elimination technique is applied on the actor

deblocking_filter (parameter A = 2) to obtain design point D2. This point is then taken for

buffer minimization to reduce the amount of resource. For this, the TEM (design point D3)

and TEO (design points D4, D5, and D6) techniques are used. Design points with different

operating frequency are also explored for lower throughput requirements of real-time 4CIF,

CIF, and QCIF resolutions (design points D7, D8, and D9 respectively). This corresponds to

design parameters of F = 1, F = 2, and F = 3 respectively. The 3-dimensional graph plot of the

design points is given in Figure 7.9.

The lower and upper bounds of each design criteria is given in Table 7.8. With the maximum

occupied slice (SLI) of 6118, all design points could easily fit the target device Xilinx Virtex-5

device. In terms of throughput (T HR), the value spans from 32 to 1092 QCIF fps. Based on

the 3-dimensional graph in Figure 7.9, the following design points represent the best point for

a given throughput requirement: D9 for 30 QCIF fps, D8 for 120 QCIF/30 CIF fps, D7 for 480

QCIF/30 4CIF fps, and D6 for 1092 QCIF/30 HD720p fps. These points also represent the best

points in terms of frequency, as can be seen from the graph in Figure 7.10.

141

Chapter 7. Multi-dimensional design space exploration

Table 7.7: Design points and the corresponding parameters and criteria for the Decoder_U/V
component of the MPEG-4 AVC/H.264 decoder case study. The units for L AT , F RE , and T HR
respectively are clock cycles per QCIF frame, MHz, and QCIF frames per second.

Design Parameters Criteria
point A F B L AT F RE T HR REG LU T BRM SLI DSP
D0 0 0 1 95100 79 831 12491 24384 79 6096 62
D1 1 0 1 86814 79 910 12278 24248 79 6062 62
D2 2 0 1 72365 79 1092 12389 24471 80 6118 62
D3 2 0 2 93785 79 842 11404 22694 49 5674 62
D4 2 0 30 86910 79 909 11425 22767 49 5692 62
D5 2 0 31 79384 79 995 11428 22771 49 5693 62
D6 2 0 32 72410 79 1091 11431 22776 50 5694 62
D7 2 1 2 93785 45 480 11404 22694 49 5674 62
D8 2 2 2 93785 12 128 11404 22694 49 5674 62
D9 2 3 2 93785 3 32 11404 22694 49 5674 62

Figure 7.9: 3D plot of frequency, occupied slice, and throughput for the Decoder_U/V compo-
nent of the MPEG-4 AVC/H.264 decoder case study.

142

7.5. Case study-2: MPEG-4 AVC/H.264 decoder

Table 7.8: Nadir and ideal objective vectors for each design criteria for the Decoder_U/V
component of the MPEG-4 AVC/H.264 decoder case study. The units for L AT , F RE , and T HR
respectively are clock cycles per QCIF frame, MHz, and QCIF frames per second.

Design Criteria
L AT F RE T HR REG LU T BRM SLI DSP

znad 72365 3 32 11404 22694 49 5674 62
zi deal 95100 79 1092 12491 24471 80 6118 62

Figure 7.10: 2D plot of throughput versus frequency for the Decoder_U/V component of the
MPEG-4 AVC/H.264 decoder case study. Dashed lines represent the Pareto frontier with all
design points D0 to D9 in the set Pareto set.

143

Chapter 7. Multi-dimensional design space exploration

7.5.2 Decoder_Y

As shown in Table 7.6, the throughput obtained for the Decoder_Y component of the MPEG-4

AVC/H.264 decoder is 86 QCIF fps. The objective here is to apply some of the refactoring

and buffer minimization and optimization techniques such that throughput can be improved

significantly, while at the same time minimizing the resources. The approach taken is as

follows. Starting from the original design, refactoring for latency is applied for 11 iterations

(design points D1 to D11). Then, four design points are selected for frequency refactoring,

which are D1, D5, D9, and D11. This is performed for 5 iterations each, to obtain respectively

the design points D12 to D16, D17 to D21, and D22 to D26. In order to minimize resource, the

TEM buffer minimization technique is applied for design points D26 and D16 respectively

to obtain the design points D32 and D41. The TEO buffer optimization technique is also

applied on the design point D32 to obtain design points D33 to D40. For real-time CIF and

QCIF resolution requirements, the operating frequency is reduced for the design point D41 to

obtain design points D42 and D43. The corresponding parameters and criteria for each design

point is given in Table 7.9, with specific actor refactoring for latency, frequency, and buffer size

optimization respectively given in Tables 7.10, 7.11, and 7.12. The lower and upper bounds for

each criteria is given in Table 7.13.

Table 7.9: Design points and the corresponding parameters and criteria for the Decoder_Y
component of the MPEG-4 AVC/H.264 decoder case study. The units for L AT , F RE , and T HR
respectively are clock cycles per QCIF frame, MHz, and QCIF frames per second.

Design Parameters Criteria
point A F B L AT F RE T HR REG LU T BRM SLI DSP

D0 0 0 1 650710 56 86 24809 46288 77 11572 62

D1 1 0 1 592146 56 95 24512 47356 77 11839 62

D2 2 0 1 344877 56 163 29141 58924 102 14731 62

D3 3 0 1 282924 56 198 32126 69594 111 17399 62

D4 4 0 1 238302 56 235 29874 102103 119 25526 62

D5 5 0 1 177914 56 315 28451 97357 119 24339 62

D6 6 0 1 159702 56 351 28852 99065 119 24766 62

D7 7 0 1 143529 56 391 35143 99601 119 24900 62

D8 8 0 1 134496 56 417 33065 115814 120 28954 62

D9 9 0 1 124470 56 451 35348 141665 121 35416 62

D10 10 0 1 117640 56 477 36455 169033 122 42258 62

D11 11 0 1 104396 56 537 36989 220185 124 55046 62

D12 1 1 1 592146 64 108 24725 47750 77 11938 62

D13 1 2 1 592146 80 135 25100 47993 77 11998 62

D14 1 3 1 592146 96 162 25241 48153 77 12038 62

D15 1 4 1 592146 109 184 25331 48630 77 12158 62

D16 1 5 1 592146 114 193 25448 48997 77 12249 62

144

7.5. Case study-2: MPEG-4 AVC/H.264 decoder

D17 5 1 1 177914 64 361 28674 97784 119 24446 62

D18 5 2 1 177914 80 449 29987 97960 119 24490 62

D19 5 3 1 177914 96 538 30104 97158 119 24290 62

D20 5 4 1 177914 109 614 30250 97610 119 24403 62

D21 5 5 1 177914 114 641 30487 97986 119 24497 62

D22 9 1 1 124470 64 516 35484 141992 121 35498 62

D23 9 2 1 124470 80 642 35918 142275 121 35569 62

D24 9 3 1 124470 96 769 36085 142441 121 35610 62

D25 9 4 1 124470 109 877 36221 142951 121 35738 62

D26 9 5 1 124470 114 917 36324 143261 121 35815 62

D27 11 1 1 104396 64 615 37150 220512 124 55128 62

D28 11 2 1 104396 80 765 37584 220795 124 55199 62

D29 11 3 1 104396 96 917 37751 220961 124 55240 62

D30 11 4 1 104396 109 1046 37887 221471 124 55368 62

D31 11 5 1 104396 114 1093 37990 221781 124 55445 62

D32 9 5 2 219567 114 520 25984 61839 113 15460 62

D33 9 5 30 213387 114 535 25985 61872 113 15468 62

D34 9 5 31 203859 114 560 25990 61938 113 15485 62

D35 9 5 32 197250 114 578 26998 61989 113 15497 62

D36 9 5 33 183525 114 622 26110 62190 113 15548 62

D37 9 5 34 168228 114 678 26120 62173 113 15543 62

D38 9 5 35 164853 114 692 26128 62220 113 15555 62

D39 9 5 36 163047 114 700 26139 62280 113 15570 62

D40 9 5 37 143037 114 798 26228 62534 119 15634 62

D41 1 5 2 592137 114 193 24427 27604 42 6901 62

D42 1 6 2 592137 71 120 24427 27604 42 6901 62

D43 1 7 2 592137 18 30 24427 27604 42 6901 62

The 3-dimensional plot of frequency (F RE), occupied slice (SLI), and throughput (T HR)

for the decoder case study is given in Figure 7.11. Overall, the throughput range is from 30

to 1092 QCIF fps (36x difference), occupied slice range from 6901 to 55445 (8x difference),

and frequency range from 18 MHz to 114 MHz (6x difference). With refactoring for latency

(green/circle points), we can see that throughput is improved independently of operating fre-

quency. This is in contrast to refactoring for frequency (red/downward triangle points) where

throughput is improved by applying a higher operating frequency. The Buffer minimization

technique is also very effective with up to 2.3x reduction in the occupied slice. The subsequent

application of buffer optimization results in a further 53% increase in throughput. It is also

interesting to see that for real-time QCIF and CIF resolution requirements, the occupied slice

is the minimum at 6901 with operating frequency of 71 MHz and 18 MHz respectively.

The design points are now analyzed for implementation on the target Xilinx Virtex-5 FPGA.

145

Chapter 7. Multi-dimensional design space exploration

Table 7.10: Specific refactoring for latency applied on the Decoder_Y component of the MPEG-
4 AVC/H.264 decoder case study. The unit for latency is clock cycles per macroblock. The
techniques are applied cumulatively from D0 to D11.

Design point Technique Actor Latency (C.C./MB)
D0 original - 6573
D1 Data-packing picture_buffer_y 5981

Redundancy-elimination
D2 Data-parallelism(2x) half_quarter_interpolation 3483
D3 Data-parallelism(3x) half_quarter_interpolation 2857
D4 Data-parallelism(4x) interp_reorder_y 2407

add_pix_sat
demux_parser_info_y

D5 Redundancy-elimination deblocking_filter_y 1797
D6 Data-parallelism(4x) picture_buffer_y 1613

deblocking_filter_y
D7 Data-packing interp_reorder_y 1449
D8 Task-parallelism(2x) half_quarter_interpolation 1358
D9 Task-parallelism(3x) half_quarter_interpolation 1257
D10 Task-parallelism(4x) half_quarter_interpolation 1195
D11 Task-parallelism(5x) half_quarter_interpolation 1054

Table 7.11: Specific refactoring for frequency applied on the Decoder_Y component of the
MPEG-4 AVC/H.264 decoder case study. The techniques are applied cumulatively from 1 to 5.
F = 6 and F = 7 in Table 7.9 refers to the frequency-reduction technique

Design Actor(s) Action(s) # of pipeline fmax

points stages (MHz)
D1/D5/D9,D11 original - - 56
D12/D17/D22/D27 half_quarter_interpolation getPixVal_done 2 64
D13/D18/D23/D28 half_quarter_interpolation getPixVal_done 3 80

picture_buffer_y writeData_done 3
idct_scaler read_coeff 4

D14/D19/D24/D29 picture_buffer_y writeData_done 4 96
intrapred_luma16x16 write_mode 2

D15/D20/D25/D30 idct_scaler read_coeff 5 109
intrapred_luma16x16 write_mode 4

D16/D21/D26/D31 idct_scaler read_coeff 8 114
intrapred_luma16x16 write_mode 7

146

7.5. Case study-2: MPEG-4 AVC/H.264 decoder

Table 7.12: Specific buffer size optimization technique for each design point of the Decoder_Y
component of the MPEG-4 AVC/H.264 decoder case study.

Design points Technique
D0 - D31 Hardware Execution Optimization (HEO)
D32, D41 - D43 Trace Execution Minimization (TEM)
D33 - D40 Trace Execution Optimization (TEO)

Table 7.13: Nadir and ideal objective vectors for each design criteria for the Decoder_Y com-
ponent of the MPEG-4 AVC/H.264 decoder case study. The units for L AT , F RE , and T HR
respectively are clock cycles per QCIF frame, MHz, and QCIF frames per second.

Design Criteria
L AT F RE T HR REG LU T BRM SLI DSP

znad 104396 18 30 24427 27604 42 6901 62
zi deal 650710 114 1093 37790 221781 124 55445 62

Figure 7.11: 3D plot of frequency, occupied slice, and throughput for the Decoder_Y compo-
nent of the MPEG-4 AVC/H.264 decoder case study.

147

Chapter 7. Multi-dimensional design space exploration

Table 7.14 presents attributes of four of the largest available devices for this FPGA family. The

original target device is on the XCV5VLX110T, but as shown on the maximum number of slice,

some design points do not fit this device. Therefore, larger (and more expensive) device is

required for these design points. In order to find the design point with the highest throughput

for each of the four devices, the Pareto analysis is performed for throughput versus slice LUT as

shown in the graph in Figure 7.12. Note that the graphs of throughput versus slice registers and

throughput versus block RAM are not analyzed for Pareto set since all design points are found

to be bounded by these criteria. For the devices XC5VLX110T, XC5VLX155T, and XC5VLX220T,

it is found that the design point D40 shows the highest throughput with 798 QCIF fps. Using

the largest available device in XC5VLX330T, it is possible to achieve throughput of up to 917

QCIF fps with the design point D26. However, it should be noted that the values for the design

criteria (Table 7.9) is obtained with synthesis to the XC5VLX110T device. When using larger

devices with higher number of block RAMs and DSP48Es, it is possible that the design point

D26 with throughput of 917 QCIF fps and D31 with throughput of 1092 QCIF fps respectively

would fit in the XC5VLX220T and XC5VLX330T devices.

Table 7.14: Attributes of four of the largest devices in the Virtex-5 FPGA family.

Device # of # of slice # of slice # of 36kb # of
slice Reg LUT BRAM DSP48E

XC5VLX110T 17280 69120 69120 148 64
XC5VLX155T 24320 97280 97280 212 128
XC5VLX220T 34560 138240 138240 212 128
XC5VLX330T 51840 207360 207360 324 192

We now aim to find a design point with two different objectives: low resource, typically an

objective for low cost systems; and low frequency, an objective for low power systems. For low

resource requirement, the graph in Figure 7.12 is analyzed, with the following results: design

point D43 for 30 QCIF fps with LU T = 27604, D42 for 120 QCIF/30 CIF fps with LU T = 27604,

D32 for 480 QCIF/30 4CIF fps with LU T = 61839, and D31 for 1092 QCIF/30 HD720p fps with

LU T = 221781. For low frequency requirement, the throughput versus frequency graph in

Figure 7.13 is analyzed. It is found that the same design points are obtained for real-time QCIF,

CIF, and HD720p resolution requirements. For real-time 4CIF resolution however, the design

point D11 results in the lowest frequency of 56 MHz, compared to the design point D32 with

114 MHz. The resource for the design point D11 is much higher at LU T = 220185.

7.5.3 Combining Decoder_Y and Decoder_U/V

Since the three main decoding components are implemented in an FPGA, the resource can be

estimated for a given design point in the combined Decoder_Y and Decoder_U/V exploration

148

7.5. Case study-2: MPEG-4 AVC/H.264 decoder

Figure 7.12: 2D plot of throughput versus slice LUT for the Decoder_Y component of the
MPEG-4 AVC/H.264 decoder case study. Dashed lines represent the Pareto frontier with the
set {D25,D26,D30D31,D32,D33,D34,D35,D37,D38,D39,D40,D41, D42,D43}.

Figure 7.13: 2D plot of throughput versus frequency for the Decoder_Y component of the
MPEG-4 AVC/H.264 decoder case study. Dashed lines represent the Pareto frontier with the
set {D0,D1,D2,D3,D4D5,D6,D7,D8,D9,D10,D11,D23,D24,D27,D28, D29,D30,D31,D43}.

149

Chapter 7. Multi-dimensional design space exploration

space by adding together the relevant criteria values from the Decoder_Y and Decoder_U/V

exploration spaces. For example, the required slice for all three of the decoding components

for a given design point p in the combined exploration space is given by

SLI yuv
p = 2×SLI uv

q +SLI y
p (7.4)

since there are two chroma and one luma components. Each design point p in the Decoder_Y

space can be mapped to a similar point p in the combined space. The point q in the De-

coder_U/V space for a given point p is selected from a Pareto set for the Decoder_U/V space at

the given criteria value of the point p.

In terms of frequency, F RE yuv
p = max(F RE uv

q ,F RE y
p), i.e. the worst case frequency require-

ment. In terms of latency, L AT yuv
p = L AT y

p since the critical path (i.e. longest path) is on the

y-branch of the decoder. Table 7.15 shows the values of several design criteria for four different

throughput requirement in the combined exploration space.

Table 7.15: Values of several design criteria for various throughput requirements in the com-
bined Decoder_Y and Decoder_U/V exploration space.

Throughput Design Criteria
(QCIF fps) SLI L AT F RE

30 18249 592137 18
120 18249 592137 71
480 66394a/26808b 104396a/219567b 56a/114b

1092 66833 104396 114
a low frequency requirement
b low resource requirement

7.6 Comparison with related works

Table 7.16 presents comparison of the MPEG-4 SP design in terms of implementation platform

and specification language(s), and criteria for frequency, throughput, and resource. Overall,

our design outperforms all other designs in all criteria. For example, compared to the IP core

from Xilinx [7], a throughput of around 1500 QCIF fps at 100 MHz is obtained in our case, while

the IP core was designed for only up to 480 QCIF fps at around the same frequency. In terms

of resource, our design also utilizes roughly 10% less slice. At low throughput requirement

(15 QCIF fps) as compared to [32] where they have used a software controller and a hardware

core, we are able to execute the decoder at 6x less clock speed at 2 MHz compared to their

implementation using classical methodology at 12 MHz. In terms of resource, our design

150

7.6. Comparison with related works

Table 7.16: Comparison of the present work with similar works in literature for MPEG-4 SP
decoder implementation. The present work is shown for two design points in the case of
minimum and maximum throughput design.

Platform Specification Frequency Throughput Resource
language (MHz) (QCIF fps) (slice/gates)

This work Virtex-5 CAL 5 30 5634
(T HRmi n)
This work Virtex-5 CAL 96 1519 8383
(T HRmax)
[7] Virtex-4 RTL 100 480 6230
[59] ASIC RTL 85 480 155000
[32] ARC/Virtex-1k C/RTL 12 15 8074
[39] ARM+FPGA C/systemC - 15 -

consumes around 43% less slice.

For the MPEG-4 AVC/H.264 decoder case study, the bit-stream parser is implemented on a

general purpose CPU (Intel i7 2.3GHz), while the main decoding components (Decoder_U/V

and Decoder_Y) and the merger on FPGA. Table 7.17 presents the comparison. As compared

to the IP core from Fastvdo [57], this work results in similar throughput at similar frequency

at 1092 QCIF fps and around 115 MHz. In terms of resource however, our design utilizes

50% more slice, although the bit-stream parser is not included in our resource utilization.

Another IP core is provided by coreEL [58] where their design have shown to perform up to 2045

QCIF fps on an ASIC platform (advertised at Full HD1080p). For low throughput requirement,

our design is found to be superior to the SystemC implementation given in [115] in terms of

frequency, where an operating frequency of only 18MHz is required compared to 110MHz

(factor of 6) at the same 30 QCIF fps requirement. Their design however, utilizes 27% less

slice. Finally, when compared to a software/hardware implementation for low throughput

requirement [120], our implementation results in a lower operating frequency at roughly 5

MHz compared to 10 MHz for their design (factor of 2) at the same 7.4 QCIF fps. The resource

utilization however, could not be compared directly since their implementation is on ASIC

with only the inverse quantization, inverse transform, and the motion compensation units on

hardware.

The final important point to note in relation to similar works in literature is design productivity.

Since CAL programs are specified at high-level, any optimizations on the program are also

being applied at this architectural level, which generally results in simpler and more effective

optimizations (and sometimes higher resource utilization). Moreover, alternative design

points could also be found relatively quickly. In contrast to this work, all the similar works

given in Table 7.16 and Table 7.17 using classical and other design methodologies present only

151

Chapter 7. Multi-dimensional design space exploration

Table 7.17: Comparison of the present work with similar works in literature for MPEG-4
AVC/H.264 decoder implementation. The present work is shown for two design points in the
case of maximum and minimum throughput design.

Platform Specification Frequency Throughput Resource
language (MHz) (QCIF fps) (slice/gates)

This work i7+Virtex-5 CAL 2300/18 30 18249
(T HRmi n)
This work i7+Virtex-5 CAL 2300/114 1092 66833
(T HRmax)
[57] Virtex-4 RTL 115 1092 44544
[58] ASIC/FPGA RTL - 2045 -
[115] Virtex-4 SystemC 110 30 23257
[120] ARM+ASIC C/RTL 140/10 7.4 28826

a single, or at most, two design points, and do not provide any effective space exploration.

7.7 Summary

In this chapter, we have presented a systematic methodology to explore and evaluate various

design alternatives that are obtained using the techniques given in previous chapters. First,

background and related works on design space exploration were provided in the general sense

and in the specific domain of embedded systems and signal processing. The design points

were first formally defined in the exploration space, together with the metrics that is used for

evaluation. These definitions and metrics became the basis to construct an automatic tool to

analyze the design points for various objectives and requirements. Following this, the design

space exploration of two MPEG-4 decoders were presented: the MPEG-4 SP and the MPEG-4

AVC/H.264. The MPEG-4 SP decoder was implemented fully on hardware, while the MPEG-

4 AVC/H.264 decoder on a heterogeneous software/hardware platforms. For each of these

design case studies, design space exploration and evaluation have been performed. The results

obtained were compared to similar works in literature, in terms of implementation platform

and languages, operating frequency, performance, and resource. The results obtained are very

promising, where it was shown that some design alternatives are comparable or superior to

other similar works in several design criteria.

152

8 Conclusion

In this final concluding chapter, an overall summary of what has been contributed is first

presented, followed by the impact of this work on the wider research community. In the last

section, some possible future work and directions are given based on the outcome of this

thesis.

8.1 Summary

This thesis presents an original research work that aims to optimize and explore complex

dataflow programs for implementation on hardware and heterogeneous platforms. To this

end, we first described the classical design methodology and its limitations for implementing

complex DSP applications. Several high-level languages and models were also introduced as

alternatives to the classical model, including C and SystemC models, synchronous languages,

pre-configured blocks and templates, and dataflow programming models. The latter have been

shown to be efficient and provides a natural abstraction for data-intensive DSP applications,

but the currently available tools and models are found to be lacking and insufficient for a

complete design process from specification to implementation. In this thesis, the following

contributions are made:

• Validation of a new systems design methodology with CAL. The complete SW/HW co-

design flow from specification to implementation were validated in this thesis for very

complex applications. However, what is lacking from the flow is the optimization tools

and techniques that can be applied on the dataflow program, especially for hardware

implementation target. This is a very important aspect in the design process, where a

design most likely has to be iterated several times in order to reach the desired perfor-

mance. Three new strategies have been identified to achieve this objective, as described

next.

153

Chapter 8. Conclusion

• A refactoring technique to achieve significant reduction in system latency. This in-

cludes data and task parallelism, and memory optimizations by packing data tokens

and eliminating redundant access. The techniques were first presented in the general

case for the DPN MoC in dataflow programs, and then applied on the critical actors of

the MPEG-4 AVC/H.264 decoder case study. The performance gain shown in the experi-

mental results (by up to 5x latency reduction) have shown to agree with the analytical

latency reduction estimation. Due to the use of the DPN MoC, the techniques were only

applied semi-automatically, but the approach is generic and can be applied on any CAL

designs that require a reduction in system latency.

• A refactoring technique to achieve a significant increase in maximum operating fre-

quency. The technique was designed to find a pipeline schedule for a given action, such

that the total pipeline register width is minimized, for a given throughput constraint.

The technique is a fully automated approach where a single actor implementation is

transformed into a multi-actor implementation. One of the limitations of the automated

program was that it only accepts an acyclic single-action actor. For this, a methodology

has been presented to reduce a complex action in any arbitrary actor into a represen-

tation that can be used by the automated tool. Experimental results have proven the

efficacy of the automatic synthesis and optimization tool with almost 2x less total reg-

ister width between the best and the worst case pipeline schedule. The efficacy of the

technique has also been proven when applied on an at-large MPEG-4 decoder case

study, where only a minor additional resource was required for several iterations of

pipelining.

• Buffer interconnection size minimization and optimization. The techniques were

designed for a generic DPN MoC using two different approaches: on the hardware

execution level, and on the dataflow program level. For each approach, two techniques

were implemented, one for finding the minimum or close to minimum buffer size,

and the other for using larger buffer size for higher throughput requirements. All the

four techniques were compared and contrasted. For the MPEG-4 AVC/H.264 decoder-Y

component case study, it is found that using the dataflow program level approach results

in the smallest total buffer size for deadlock-free execution (at low throughput), while

using the hardware execution level approach results in the highest throughput (using

larger total buffer size). Both approaches show that the total buffer size can be reduced

by multi-fold compared to a direct constant buffer size assignment.

• Methodology for design space exploration and evaluation. The final contribution is a

methodology to systematically and efficiently explore and evaluate design alternatives

in the exploration space. The design points were obtained by appropriate combina-

tions of the refactoring and optimization techniques, and then evaluated using multi-

dimensional plot and Pareto analysis for various performance criteria. For MPEG-4 SP

154

8.2. Research impact

decoder hardware implementation case study, throughput has been shown to increase

by about 6.6x compared to the original design, while consuming only 49% more resource.

When this is compared to similar works in literature, the design have been shown to

outperform all other designs in all criteria of throughput, frequency, and resource, both

for low and high throughput requirement designs. For the software/hardware hetero-

geneous implementation of the MPEG-4 AVC/H.264 decoder case study, the Parser
was partitioned to software, and the rest of the components to hardware. The hardware

components have been optimized separately for the Y-branch and the U/V-branch de-

coders. Overall for the hardware components, throughput has been improved by about

12x with an additional occupied slice of 5x. Compared to similar works in literature, the

performance is comparable to one commercial IP core, but lags behind to another with

an ASIC implementation. For low throughput requirement comparison with SystemC,

the design utilized around 30% more resource, but with an operating frequency of about

5x less.

8.2 Research impact

What do the results mean in the context of hardware and heterogeneous design and im-

plementation of DSP systems? It has been proven before in numerous work that dataflow

programming could significantly enhance designers productivity. This work takes a further

step in proving that performance can also be improved seamlessly, with results shown that

in some cases, overall performance could even rival those using other mainstream design

methodologies. Furthermore, this work also proves that design alternatives can be found

quickly and effectively by appropriate program optimizations at high-level, which is not al-

ways the case using classical low-level design methodology. The techniques that have been

presented here are generic and can be implemented on any DSP systems, and certainly

would help in quickly designing and implementing high performance future video codecs.

8.3 Future work and direction

Optimizations of large and complex systems are possibly a never-ending task. This is due to the

NP nature of such problems where a global or perfect solution can never be found. So, despite

some very promising results presented in this thesis, there are in fact many other directions that

can be taken to improve the current state of research. The following are several optimization

techniques that are not considered in the present work, but are interesting applications to

the design case studies. The first is arithmetic operator resource sharing within an action for

reducing the total resource; the second is the so-called cross-actor optimizations for resource

and/or throughput improvements, and the third is the multi-clock domain optimization for

155

Chapter 8. Conclusion

reducing the average operating frequency. All of these techniques have been described in

Section 2.5.2.

As for actual physical implementation, it should also be noted that the hardware implemen-

tation of the MPEG-4 SP decoder has been proven to work properly on a Xilinx Virtex-5

evaluation board. The heterogeneous implementation of the MPEG-4 AVC/H.264 decoder

on the other hand, has not been verified on a physical platform, but merely proven by simu-

lation. The challenge here is to provide the necessary interface for our chosen partitioning

scheme with the bit-stream parser on software and the rest on hardware. The output of the

parser contains more than 15 channels that need to be routed to the hardware platform. Since

software implementation contains a single output channel, and hardware with multiple input

channels, the signals have to first be serialized on the software side, and then de-serialized

on the hardware side. One of the proposed serializer-deserializer architectures is given in

[116]. Work is currently on-going to implement this interface architecture for heterogeneous

implementation of MPEG-4 decoders, where the result would certainly be interesting for demo

purposes.

Another issue with the current CAL specification of the MPEG-4 decoders is the use of dynamic

actors. The specifications in fact utilize several dynamic actors, which, as explained in chapter

5, cannot be scheduled at compile time and the required buffer size for deadlock-free execution

cannot be determined for all execution order. This creates the problem that correctness and

deadlock-free execution cannot be guaranteed for all possible video input stream. However,

by carefully analyzing the design of the video decoders, the dynamic actors can in fact be

converted to a static one since the various possible input patterns are finite and can actually be

controlled in the action, instead of checking the input patterns dynamically. It is certainly an

interesting direction to re-design and re-implement the video decoders using only static actor

types so that boundedness is guaranteed for all possible input data. It is also interesting to

see how various performance criteria is compared when trading-off the flexibility of dynamic

actors to the analyzability of static ones.

156

Bibliography

[1] Esterel Technologies. http://www.esterel-technologies.com/.

[2] Open RVC-CAL Compiler (Orcc). http://orcc.sourceforge.net/.

[3] SPW User’s Manual. Cadence Design Systems, Foster City, California, USA.

[4] COSSAP stream driven simulator user guide. Synopsys, Mountain View, California, USA,

6.7 edition, 1994.

[5] Catapult C Synthesis. Mentor Graphics, Wilsonville, Oregon, USA, 2005.

[6] AccelDSP Synthesis Tool User Guide Release 10.1. Altera, San Jose, California, USA, 10.1

edition, March 2008.

[7] MPEG-4 Simple Profile Decoder v1.3. Xilinx, April 2008.

[8] DSP Builder User Guide Software Version 9.1. Altera, San Jose, California, USA, 9.1

edition, November 2009.

[9] Nios II C2H Compiler User Guide, November 2009.

[10] Simulink 7 User Guide. Mathworks, Natick, Massachusetts, USA, 7 edition, September

2010.

[11] Vivado design suite user guide: Programming and debugging, 2012.

[12] ISO/IEC 14496-10. Information Technology – Coding of Audio-Visual Objects – Part 10:

Advanced Video Coding. International Standard, 2004.

[13] ISO/IEC 14496-2. Information Technology – Coding of Audio-Visual Objects – Part 2:

Visual. International Standard, 2001.

[14] Yongjin Ahn, Keesung Han, Ganghee Lee, Hyunjik Song, Junhee Yoo, Kiyoung Choi, and

Xingguang Feng. Socdal: System-on-chip design accelerator. ACM Trans. Design Autom.

Electr. Syst., 13(1), 2008.

157

http://orcc.sourceforge.net/

Bibliography

[15] A. Aiken and A. Nicolau. Optimal loop parallelization. In Proceedings of the 1988 ACM

SIGPLAN Conference on Programming Language Design and Implementation, 1988.

[16] Cedell Alexander, Donna Reese, and James Harden. Near-critical path analysis of pro-

gram activity graphs. In Proceedings of the IEEE International Workshop on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems, pages 308–317,

1994.

[17] H. Aman-Allah, K. Maarouf, E. Hanna, I. Amer, and M. Mattavelli. CAL dataflow com-

ponents for an MPEG RVC AVC baseline encoder. Journal of Signal Processing Systems,

63(2):227–239, 2011.

[18] M. Auguin, L. Capella, F. Cuesta, and E. Gresset. CODEF: a system level design space

exploration tool. In Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP

’01). 2001 IEEE International Conference on, volume 2, pages 1145–1148 vol.2, 2001.

[19] Denis Aulagnier, Ali Koudri, Stéphane Lecomte, Philippe Soulard, Joël Champeau, Jor-

giano Vidal, Gilles Perrouin, and Pierre Leray. SoC/SoPC development using MDD

and MARTE profile. In Model Driven Engineering for Distributed Real-time Embedded

Systems. ISTE, 2009.

[20] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino. SystemC cosimula-

tion and emulation of multiprocessor SOC designs. Computer, 36:53–59, 2003.

[21] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the Signal

language. IEEE Transactions on Automatic Control, 35(5):535 –546, May 1990.

[22] E. Bezati, S. Casale-Brunet, M. Mattavelli, and J.W. Janneck. Synthesis and optimization

of high-level stream programs. In The 2013 Electronic System Level Synthesis Conference,

pages 1–6, 2013.

[23] E. Bezati, R. Thavot, G. Roquier, and M. Mattavelli. High-level dataflow design of signal

processing systems for reconfigurable and multicore heterogeneous platforms. Journal

of Real-Time Image Processing, pages 1–12, 2013.

[24] E. Bezati, H. Yviquel, M. Raulet, and M. Mattavelli. A unified hardware/software co-

synthesis solution for signal processing systems. In Design and Architectures for Signal

and Image Processing (DASIP), 2011 Conference on, pages 1–6, 2011.

[25] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded software from

synchronous dataflow specifications. Journal of VLSI Signal Processing Systems for

Signal, Image, and Video Technology, 21(2):151–166, 1999.

158

Bibliography

[26] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static data flow. In

Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference

on, volume 5, pages 3255–3258 vol.5, 1995.

[27] S. Casale-Brunet, E. Bezati, C. Alberti, M. Mattavelli, E. Amaldi, and J. W. Janneck.

Multi-clock domain optimization for reconfigurable architectures in high-level dataflow

applications. In 2013 Asilomar Conference on Signals, Systems and Computers, pages

1870 –1874, November 2013.

[28] Rong Chen, Marco Sgroi, Grant Martin, Luciano Lavagno, Alberto S. Vincentelli, and Jan

Rabaey. Embedded System Design Using UML and Platforms. In Proceedings of Forum

on Specification and Design Languages 2002 (FDL’02), September 2002.

[29] E. Cheong. Actor-Oriented Programming for Wireless Sensor Networks. PhD Thesis-

University of California, Berkeley, September 2007.

[30] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco

Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An

opensource tool for symbolic model checking. In Computer Aided Verification, volume

2404 of Lecture Notes in Computer Science, pages 359–364. Springer Berlin Heidelberg,

2002.

[31] J. Dennis. First version of a data-flow procedure language. Proceedings of the colloque

sure la programmation, (19):362–376, April 1974.

[32] J. Dunlop, A. Simpson, S. Masud, M. Wylie, J. Cochrane, and R. Kinkead. Semiconductor

IP core for ultra low power MPEG-4 video decode in system-on-silicon. In Acoustics,

Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03). 2003 IEEE International

Conference on, volume 2, pages II–681–4 vol.2, 2003.

[33] J. Eker and J. Janneck. CAL Language Report: Specification of the CAL Actor Language.

University of California-Berkeley, December 2003.

[34] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Sonia

Sachs, Yuhong Xiong, and Stephen Neuendorffer. Taming heterogeneity - the ptolemy

approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[35] W. Elhamzi, R. Thavot, J. Dubois, J. Gorin, M. Atri, J. Miteran, and R. Tourki. An efficient

hardware implementation of diamond search motion estimation using CAL dataflow

language. In Proceedings of the International Conference on Microelectronics, ICM, 2011.

[36] Rolf Ernst, Jörg Henkel, and Thomas Benner. Hardware-software cosynthesis for micro-

controllers. IEEE Design & Test of Computers, 10(4):64–75, 1993.

159

Bibliography

[37] J. Ersfolk, G. Roquier, J. Lilius, and M. Mattavelli. Scheduling of dynamic dataflow

programs based on state space analysis. In Acoustics, Speech and Signal Processing

(ICASSP), 2012 IEEE International Conference on, pages 1661–1664, 2012.

[38] D. B. MacQueen G. Kahn. Coroutines and networks of parallel processes. In Information

Processing, pages 993–998, 1977.

[39] L. Garcia, G.M. Callico, D. Barreto, V. Reyes, T. Bautista, and A. Nunez. Towards a config-

urable SoC MPEG-4 advanced simple profile decoder. Computers Digital Techniques,

IET, 1(5):451–460, 2007.

[40] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer requirements of synchronous

dataflow graphs with model checking. In Proceedings - Design Automation Conference,

pages 819–824, 2005.

[41] Frank Ghenassia. Transaction-Level Modeling with SystemC: Tlm Concepts and Ap-

plications for Embedded Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006.

[42] E. M. Girczyc. Loop winding-a data flow approach to functional pipelining. In Proceed-

ings of the IEEE ISCAS, pages 382–385, May 1987.

[43] G. Goossens, J. Rabaey, J. Vandewalle, and H. De Man. An efficient micro-code compiler

for applications specific DSP processors. IEEE Trans. Computer-Aided Design, 9:925–937,

June 1990.

[44] J. Gorin, M. Raulet, Y-L Cheng, H. Y Lin, N. Siret, K. Sugimoto, and G.G. Lee. An RVC

dataflow description of the AVC Constrained Baseline Profile decoder. In Image Process-

ing (ICIP), 2009 16th IEEE International Conference on, pages 753–756, 2009.

[45] Ruirui Gu, Jörn W. Janneck, Mickaël Raulet, and Shuvra S. Bhattacharyya. Exploiting

statically schedulable regions in dataflow programs. J. Signal Process. Syst., 63(1):129–

142, April 2011.

[46] Ruirui Gu, J.W. Janneck, S.S. Bhattacharyya, M. Raulet, M. Wipliez, and W. Plishker.

Exploring the Concurrency of an MPEG RVC Decoder Based on Dataflow Program

Analysis. Circuits and Systems for Video Technology, IEEE Transactions on, 19(11):1646–

1657, 2009.

[47] Z. Gu, M. Yuan, N. Guan, M. Lv, X. He, Q. Deng, and G. Yu. Static scheduling and software

synthesis for dataflow graphs with symbolic model-checking. In Proceedings - Real-Time

Systems Symposium, pages 353–364, 2007.

[48] Rajesh K. Gupta and Giovanni De Micheli. Hardware-software cosynthesis for digital

systems. IEEE Des. Test, 10(3):29–41, July 1993.

160

Bibliography

[49] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: a high-level synthesis framework for

applying parallelizing compiler transformations. In International Conference on VLSI

Design, pages 461–466, 2003.

[50] Soonhoi Ha, Choonseung Lee, Youngmin Yi, Seongnam Kwon, and Young-Pyo Joo.

Hardware-software codesign of multimedia embedded systems: the peace. In Embed-

ded and Real-Time Computing Systems and Applications, 2006. Proceedings. 12th IEEE

International Conference on, pages 207–214, 2006.

[51] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow pro-

gramming language LUSTRE. Proceedings of the IEEE, 79(9):1305 –1320, September

1991.

[52] B. S. Haroun and M. I. Elmasry. Architectural synthesis for DSP silicon compiler. IEEE

Trans. Computer-Aided Design, 8:431–447, April 1989.

[53] C. Hewitt. Viewing control structures as patterns of passing messages. Journal of

Artificial Intelligence, 8(3):323–363, June 1977.

[54] J.K. Hollingsworth and B.P. Miller. Parallel program performance metrics: a comparison

and validation. In Supercomputing ’92., Proceedings, pages 4–13, 1992.

[55] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison Wesley,

2004.

[56] Ramsey Hourani, Ravi Jenkal, W.Rhett Davis, and Winser Alexander. Automated Design

Space Exploration for DSP Applications. Journal of Signal Processing Systems, 56(2-

3):199–216, 2009.

[57] FastVdo http://fastvdo.com/FV264. FV264-H.264/AVC ASIC IP CORE.

[58] CoreEL Technologies http://www.coreel.com/pages/productsDigitalVideoH264CBPDecode.aspx.

H.264 CBP Decoder.

[59] Faraday Technology Corporation http://www.faraday tech.com. MPEG-4 ASP ASIC IP

Core.

[60] http://www.tik.ee.ethz.ch/ moses/. Portable interpreter infrastructure for simulating a

hierarchical networks of actors.

[61] Cheng-Tsung Hwang, Yu-Chin Hsu, and Youn-Long Lin. Pls: A scheduler for pipeline

synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 12:1279–1286, September 1993.

161

Bibliography

[62] Ki Soo Hwang, A. E. Casavant, Ching-Tand Chang, and M. A. d’Abreu. Scheduling and

hardware sharing in pipelined data paths. In Proc. ICCAD-89, pages 24–27, November

1989.

[63] J. Janneck, I.D. Miller, and D.B. Parlour. Profiling dataflow programs. In Proceedings of

the IEEE International Conference on Multimedia and Expo, pages 1065–1068, 2008.

[64] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and M. Raulet. Synthesiz-

ing hardware from dataflow program: an MPEG-4 simple profile decoder case study. In

Proceeding of the 2008 IEEE Workshop on Signal Processing Systems (SiPS), October 2008,

2008.

[65] Young-Pyo Joo, Sungchan Kim, and Soonhoi Ha. Efficient hierarchical bus-matrix

architecture exploration of processor pool-based MPSoC. Journal of Design Automation

for Embedded Systems, 2013, May.

[66] Hong-Shin Jun and Sun-Young Hwang. Design of a pipelined datapath synthesis system

for digital signal processing. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 12(3):292–303, September 1994.

[67] G. Kahn. The semantics of a simple language for parallel programming. Information

Processing, pages 471–475, 1974.

[68] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effective design

space exploration. In Radu Calinescu and Ethan Jackson, editors, Foundations of Com-

puter Software. Modeling, Development, and Verification of Adaptive Systems, volume

6662 of Lecture Notes in Computer Science, pages 33–54. Springer Berlin Heidelberg,

2011.

[69] Joachim Keinert, Martin Streubühr, Thomas Schlichter, Joachim Falk, Jens Gladigau,

Christian Haubelt, Jürgen Teich, and Michael Meredith. SystemCoDesigner: an auto-

matic ESL synthesis approach by design space exploration and behavioral synthesis for

streaming applications. ACM Trans. Des. Autom. Electron. Syst., 14(1):1:1–1:23, January

2009.

[70] P. Kidwell. The universal turing machine: a half-century survey. Annals of the History of

Computing, IEEE, 18(4):73–, 1996.

[71] B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan: deriving process networks from

matlab for embedded signal processing architectures. In Hardware/Software Codesign,

2000. CODES 2000. Proceedings of the Eighth International Workshop on, pages 13–17,

2000.

162

Bibliography

[72] M. Kthiri, P. Kadionik, H. Levi, H. Loukil, A. Ben Atitallah, and N. Masmoudi. A parallel

hardware architecture of deblocking filter in h264/avc. In Electronics and Telecommuni-

cations (ISETC), 2010 9th International Symposium on, pages 341–344, 2010.

[73] K. Lahiri, A. Raghunathan, and S. Dey. System-level performance analysis for designing

on-chip communication ar-chitectures. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 20:768–783, 2001.

[74] Choonseung Lee, Sungchan Kim, and Soonhoi Ha. A Systematic Design Space Explo-

ration of MPSoC Based on Synchronous Data Flow Specification. Journal of Signal

Processing Systems, 58(2):193–213, February 2010.

[75] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real-time DSP. In GLOBE-

COM ’89: IEEE Global Telecommunications Conference and Exhibition. Communications

Technology for the 1990s and Beyond, volume 2, pages 1279–1283, Los Alamitos, CA,

USA, November 1989.

[76] E.A. Lee and D.G. Messerschmitt. Synchronous Data flow. Proceedings of the IEEE,

75(9):1235 – 1245, 1987.

[77] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773

–801, May 1995.

[78] C. E. Leiserson and J. B. Saxe. Optimizing synchronous systems. Journal of VLSI Com-

puter Systems, 1(1):41–67, 1983.

[79] S. Li, X. Wei, T. Ikenaga, and S. Goto. A VLSI architecture design of an edge based fast

intra prediction mode decision algorithm for H.264/AVC. In Proceedings of the ACM

Great Lakes Symposium on VLSI, GLSVLSI, pages 20–24, 2007.

[80] Y. Li and Y. He. Bandwidth optimized and high performance interpolation architecture

in motion compensation for H.264/AVC HDTV decoder. Journal of Signal Processing

Systems, 52(2):111–126, 2008. Cited By (since 1996):4.

[81] Yu Li, Yanmei Qu, and Yun He. Memory Cache Based Motion Compensation Architec-

ture for HDTV H.264/AVC Decoder. In Circuits and Systems, 2007. ISCAS 2007. IEEE

International Symposium on, pages 2906–2909, 2007.

[82] Weichen Liu, Zonghua Gu, Jiang Xu, Yu Wang, and Mingxuan Yuan. An efficient tech-

nique for analysis of minimal buffer requirements of synchronous dataflow graphs

with model checking. In Proceedings of the 7th IEEE/ACM international conference on

Hardware/software codesign and system synthesis, pages 61–70, New York, NY, USA, 2009.

[83] C. Lucarz. Dataflow programming for systems design space exploration for multicore

platforms. PhD Thesis-EPFL, June 2011.

163

Bibliography

[84] C. Lucarz, M. Mattavelli, M. Wipliez, G. Roquier, M. Raulet, J. Janneck, I. Miller, and

D. Parlour. Dataflow/actor-oriented language for the design of complex signal process-

ing systems. In Proceedings of the 2008 Conference on Design and Architectures for Signal

and Image processing (DASIP), November 2008.

[85] Sharad Malik, Kanwar Jit Singh, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli.

Performance optimization of pipelined logic circuits using peripheral retiming and

resynthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 12(5):568–578, May 1993.

[86] E. Martin, O. Sentieys, H. Dubois, and J. L. Philippe. Gaut: An architectural synthesis

tool for dedicated signal processors. In European Design Automation Conference -

Proceedings, pages 14–19, 1993.

[87] M. Mattavelli, I. Amer, and M. Raulet. The reconfigurable video coding standard. IEEE

Signal Processing Magazine, 27(3):159–164+167, 2010.

[88] M. Mattavelli, S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot, G. Roquier, and J. Jan-

neck. Methods to explore design space for MPEG RVC codec specifications. Signal

processing Image Communication, Elsevier, 2013.

[89] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New Jersey,

USA, 3rd edition, 1994.

[90] G. De Micheli. Hardware synthesis from c/c++ models. In Design, Automation and Test

in Europe Conference and Exhibition 1999, pages 382–383, 1999.

[91] G. De Micheli and R. K. Gupta. Hardware/software co-design. IEEE MICRO, 85:349–365,

1997.

[92] M. Nadeem, S. Wong, G. Kuzmanov, and A. Shabbir. A high-throughput, area-efficient

hardware accelerator for adaptive deblocking filter in H.264/AVC. In Embedded Systems

for Real-Time Multimedia, 2009. ESTIMedia 2009. IEEE/ACM/IFIP 7th Workshop on,

pages 18–27, 2009.

[93] Jens-Rainer Ohm, Gary J. Sullivan, Heiko Schwarz, Thiow Keng Tan, and Thomas Wie-

gand.

[94] P.R. Panda. Systemc - a modeling platform supporting multiple design abstractions. In

System Synthesis, 2001. Proceedings. The 14th International Symposium on, pages 75–80,

2001.

[95] N. Park and A. C. Parker. Sehwa: A software package for synthesis of pipelines from

behavioral specifications. IEEE Trans. Computer-Aided Design, 7:358–370, March 1988.

164

Bibliography

[96] T. M. Parks. Bounded Scheduling of Process Networks. PhD Thesis-University of

California-Berkeley, December 1995.

[97] D. Parlour. CAL Coding Practices Guide: Hardware programming in the CAL Actor

language. Xilinx Inc, jun 2003.

[98] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral synthesis of

asic’s. IEEE Trans. Computer-Aided Design, 8:661–679, June 1989.

[99] K. Pingali and A. Arvind. Efficient demand-driven evaluation. part 1. ACM Transactions

in Programming Language Systems, 7(2):311–333, 1985.

[100] K. Pingali and A. Arvind. Efficient demand-driven evaluation. part 2. ACM Transactions

in Programming Language Systems, 8(1):109–139, 1986.

[101] Antoni Portero, G. Talavera, Marc Moreno, J. Carrabina, and F. Catthoor. Methodology for

energy-flexibility space exploration and mapping of multimedia applications to single-

processor platform styles. Circuits and Systems for Video Technology, IEEE Transactions

on, 21(8):1027–1039, 2011.

[102] R. Potasman, J. Lis, A. Aiken, and A. Nicolau. Loop winding-a data flow approach to

functional pipelining. In Proceedings of the 27th Design Automation Conference, pages

444–449, 1990.

[103] H. Prabhu, S. Thomas, J. Rodrigues, T. Olsson, and A. Carlsson. A GALS ASIC implemen-

tation from a CAL dataflow description. In NORCHIP, 2011, pages 1–4, 2011.

[104] E. Ashcroft R. Jagannathan. Eazyflow: A hybrid for parallel processing. In International

Conference in Parallel Processing, pages 161–165, 1984.

[105] I.E. Richardson. H.264 and MPEG-4 Video Compression: Video Coding for Next-

generation Multimedia. Wiley, 2003.

[106] G. Roquier, M. Wipliez, M. Raulet, J.W. Janneck, I.D. Miller, and D.B. Parlour. Automatic

software synthesis of dataflow program: An MPEG-4 simple profile decoder case study.

In Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, pages 281–286, 2008.

[107] Ghislain Roquier, Endri Bezati, and Marco Mattavelli. Hardware and software syn-

thesis of heterogeneous systems from dataflow programs. J. Electrical and Computer

Engineering, 2012.

[108] J.W. Janneck S.C. Brunet, M. Mattaveli. Buffer optimization based on critical path

analysis of a dataflow program design. In IEEE International Symposium on Circuits and

Systems 2013 (ISCAS 2013), pages 1–4, 2013.

165

Bibliography

[109] M. Mattaveli J.W. Janneck S.C. Brunet, C. Alberti. Design space exploration of high level

stream programs on parallel architectures: a focus on the buffer size minimization and

optimization problem. In 8th International Symposium on Image and Signal Processing

and Analysis (ISPA 2013), pages 1–4, 2013.

[110] M. Sen and S.S. Bhattacharyya. Systematic exploitation of data parallelism in hardware

synthesis of dsp applications. In Acoustics, Speech, and Signal Processing, 2004. Proceed-

ings. (ICASSP ’04). IEEE International Conference on, volume 5, pages V–229–32 vol.5,

2004.

[111] M. Shafique, L. Bauer, and J. Henkel. A parallel approach for high performance hardware

design of intra prediction in h.264/avc video codec. In Proceedings -Design, Automation

and Test in Europe, DATE, pages 1434–1439, 2009.

[112] T. Sihvo and J. Niittylahti. H.264/AVC interpolation optimization. In Signal Processing

Systems Design and Implementation, 2005. IEEE Workshop on, pages 307–312, 2005.

[113] Robert Soulé, Michael I. Gordon, Saman Amarasinghe, Robert Grimm, and Martin Hirzel.

Dynamic expressivity with static optimization for streaming languages. In Proceedings

of the 7th ACM international conference on Distributed event-based systems, DEBS ’13,

pages 159–170. ACM, 2013.

[114] Gary J. Sullivan, Jens-Rainer Ohm, Woojin Han, and Thomas Wiegand. Overview of the

High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Techn.,

22(12):1649–1668, 2012.

[115] M. Thadani, P. P. Carballo, P. Hernández, G. Marrero, and A. Núñez. ESL flow for a

hardware H.264/AVC decoder using TLM-2.0 and high level synthesis: a quantitative

study. In Proceedings of SPIE - The International Society for Optical Engineering, volume

7363, 2009.

[116] R. Thavot, A.A.-H. Ab Rahman, R. Mosqueron, and M. Mattavelli. Automatic mutli-

connectivity interface generation for system designs based on a dataflow description.

In Proceedings of the 6th Conference on Ph.D. Research in Microelectronics & Electronics,

2010.

[117] L. Thiele, S. Chakraborty, M. Gries, and S. Kunzli. A framework for evaluating design

tradeoffs in packet processing architectures. ACM, pages 880–885, 2002.

[118] William Thies, Michal Karczmarek, Michael I. Gordon, David Z. Maze, Jeremy Wong,

Henry Hoffman, Matthew Brown, and Saman Amarasinghe. Streamit: A compiler

for streaming applications. Technical Report MIT/LCS Technical Memo LCS-TM-622,

Massachusetts Institute of Technology, Cambridge, MA, Dec 2001.

166

Bibliography

[119] Carl Von Platen. D2C: CAL ARM Compiler. ACTORS Project (http://www.actors-

project.eu), 2008-2011.

[120] S. Wang, W. Peng, Y. He, G. Lin, C. Lin, S. Chang, C. Wang, and T. Chiang. A software-

hardware co-implementation of MPEG-4 Advanced Video Coding (AVC) decoder with

block level pipelining. Journal of VLSI Signal Processing Systems for Signal, Image, and

Video Technology, 41(1):93–110, 2005.

[121] J.R. Woodward. Computable and incomputable functions and search algorithms. In

Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Con-

ference on, volume 1, pages 871–875, 2009.

[122] Cui-Qing Yang and Barton P. Miller. Critical path analysis for the execution of parallel

and distributed programs. In Proceedings - International Conference on Distributed

Computing Systems, volume 8, pages 366–373, 1988.

[123] M. A. Yukish. Algorithms to identify pareto points in multi-dimensional data sets. PhD

Thesis, Pennsylvania State University, August 2004.

[124] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet. Efficient multicore scheduling of

dataflow process networks. In Signal Processing Systems (SiPS), 2011 IEEE Workshop on,

pages 198–203, 2011.

[125] B. Zatt, L. M. de L. Silva, A. Azevedo, L. Agostini, A. Susin, and S. Bampi. A reduced

memory bandwidth and high throughput HDTV motion compensation decoder for

H.264/AVC High 4:2:2 profile. Journal of Real-Time Image Processing, 8(1):127–140, 2013.

[126] Claudiu Zissulescu, Todor Stefanov, Bart Kienhuis, and Ed Deprettere. Laura: Leiden ar-

chitecture research and exploration tool. In Peter Cheung and GeorgeA. Constantinides,

editors, Field Programmable Logic and Application, volume 2778 of Lecture Notes in

Computer Science, pages 911–920. Springer Berlin Heidelberg, 2003.

167

Related Personal Publications

[1] A.A.-H. Ab Rahman, H. Amer, A. Prihozhy, C. Lucarz, and M. Mattavelli. Optimization

methodologies for complex FPGA-based signal processing systems with CAL. In Design

and Architectures for Signal and Image Processing (DASIP), 2011 Conference on, pages 1–8,

nov. 2011.

[2] A.A.-H. Ab Rahman, S. Casale-Brunet, C. Alberti, and M. Mattavelli. Design Space Explo-

ration and Refactoring Techniques for Dataflow Programs: MPEG-4 AVC/H.264 Decoder

Implementation Case Study. In Design and Architectures for Signal and Image Processing

(DASIP), 2013 Conference on, pages 1–8, oct. 2013.

[3] A.A.-H. Ab Rahman, S. Casale-Brunet, A. Prihozhy, M. Moghadas, and M. Mattavelli. Opti-

mizing Dataflow Specifications of Signal Processing Systems for Hardware and Heteroge-

neous Implementations. IEEE Transactions on Circuits and Systems for Video Technology,

0(0):1–2, 2013. (In progress).

[4] A.A.-H Ab Rahman, A. Prihozhy, and M. Mattavelli. Pipeline synthesis and optimization

of FPGA-based video processing applications with CAL. EURASIP Journal on Image and

Video Processing, 2011:1–28, 2011.

[5] A.A.-H. Ab Rahman, Casale-Brunet S., and M. Mattavelli. Minimization and Optimization

of Buffer Interconnection Sizes for Dynamic Dataflow Programs. In Acoustics, Speech,

and Signal Processing (ICASSP), 39th International Conference on, page 0, May 2013. (In

Progress).

[6] A.A.-H. Ab Rahman, R. Thavot, Casale-Brunet S., E. Bezati, and M. Mattavelli. Design

Space Exploration Strategies for FPGA Implementation of Signal Processing Systems

using CAL Dataflow Program. In Design and Architectures for Signal and Image Processing

(DASIP), 2012 Conference on, pages 1 –8, oct. 2012.

[7] A.A.H Ab-Rahman, R. Thavot, M. Mattavelli, and P. Faure. Hardware and software synthe-

sis of image filters from CAL dataflow specification. In 2010 Conference on Ph.D. Research

in Microelectronics and Electronics (PRIME), pages 1–4, 2010.

169

Related Personal Publications

[8] H. Amer, A.A.-H. Ab Rahman, I. Amer, C. Lucarz, and M. Mattavelli. Methodology and

technique to improve throughput of FPGA-based CAL dataflow programs: Case study

of the RVC MPEG-4 SP Intra decoder. In Signal Processing Systems (SiPS), 2011 IEEE

Workshop on, pages 186–191, oct. 2011.

[9] S. Casale-Brunet, E. Bezati, A.A.H. Ab Rahman, J. Janneck, and M. Mattavelli. Analysis

and Optimization of Streaming Application: The TURNUS Approach. ACM Transactions

on Embedded Computing Systems: Special Issue on Application of Concurrency to System

Design, 0(0):1–2, 2013. (In progress).

[10] A. Prihozhy, E. Bezati, A.A.H Ab Rahman, and M. Mattavelli. Synthesis and Optimization

of Pipelines for Hardware Implementation of Dataflow Programs. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 0(0):1–2, 2013. (In progress).

[11] R. Thavot, A.A.-H. Ab Rahman, R. Mosqueron, and M. Mattavelli. Automatic multi-

connectivity interface generation for system designs based on a dataflow description.

In Proceedings of the 6th Conference on Ph.D. Research in Microelectronics & Electronics,

2010.

170

Ab Al-Hadi Bin Ab Rahman
Curriculum Vitae

PERSONAL DETAILS

Birthdate October 15, 1981
Birthplace Selangor, Malaysia

Address Route Cantonale 39, 1025 St Sulpice VD, CH

Phone (078) 9422163

Email alhadi.abrahman@epfl.ch/alhadi.abrahman@gmail.com
Nationality Malaysian
Languages Malay (mother tongue), English (fluent), French (intermediate)

EDUCATION

Ph.D. Signal Processing 2009-2013

École Polytechnique Fédérale de Lausanne, Switzerland
Thesis: Optimizing Dataflow Programs for Hardware Synthesis.

M.Eng. Electronics and Telecommunications Engineering 2004-2006
Universiti Teknologi Malaysia

Thesis: VLSI Design and Implementation of Adaptive Equalizers.

B.S. Computer Engineering 2000-2004
University of Wisconsin-Madison, USA

WORK EXPERIENCE

Doctoral Assistant 2009-present

École Polytechnique Fédérale de Lausanne, Switzerland - SCI-STI-MM
Responsible for study and research on all aspects of hardware design and implementation

using dataflow programming. Also contributed to the study of heterogeneous system imple-

mentation with CAL.

Research Assistant 2007-2009
Universiti Teknologi Malaysia - Image processing/VLSI research lab

Responsible for research in image processing algorithms for stereoscopic vision, and research

in full-custom and semi-custom digital IC design. Also taught courses and labs in digital

electronics.

AWARDS

• UTM/MOHE scholarship for Ph.D. studies at a top foreign university (2009).

• UTM/MOHE scholarship for Master studies in Malaysia (2004).

• MARA scholarship for undergraduate studies at an American top university (2000).

PROFESSIONAL MEMBERSHIP

1. Graduate engineer - Board of engineering Malaysia (2006-present)

2. Student member - Institute of Electrical and Electronic Engineers, IEEE (2002-
present)

3. Member of signal processing society - IEEE (2009-present)

4. Member of circuits and systems society - IEEE (2009-present)

INTEREST/HOBBY

Travelling, cooking, sports.

	Cover page
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Digital systems design and implementation: state-of-the-art
	Design methodology with imperative languages
	Design methodology with high-level languages and models
	SystemC and C
	Synchronous languages
	Pre-configured blocks and templates
	Dataflow programming models

	Conclusion

	Design methodology with CAL dataflow programming
	CAL dataflow language
	CAL actor example: inverse quantization

	Mapping and partitioning CAL programs
	SW and HW partitioning
	SW partitioning and scheduling

	Synthesizing CAL programs
	CAL to C synthesis
	CAL to HDL synthesis

	Analyzing CAL programs
	Causation trace
	Critical path analysis and evaluation
	CP evaluation technique
	Computational load reduction

	Optimizing CAL programs
	Optimizing for software implementation
	Optimizing for hardware implementation

	Conclusion

	Minimizing system latency with refactoring
	Background and related works
	Minimizing system latency in CAL programs
	Task and data parallelism
	Reducing number of memory access
	Automating the refactoring techniques

	Analyzing the MPEG-4 AVC/H.264 decoder using TURNUS
	Exploiting data and task parallelism on MPEG-4 AVC/H.264 decoder
	The half_quarter_interpolation actor
	The blocks_reorder actor

	Reducing number of memory access on MPEG-4 AVC/H.264 decoder
	The picture_buffer actor
	The half_quarter_interpolation actor

	Experimental results
	Summary

	Maximizing system frequency with refactoring
	Background and related works
	Pipeline synthesis and optimization for CAL programs
	Dataflow graph relations
	Optimization tasks
	Synthesis and optimization algorithm

	Pipeline methodology for complex dataflow network
	Experimental results
	ISO/IEC 23002-2 1D-IDCT
	MPEG-4 SP decoder

	Summary

	Minimizing resource with buffer size optimization
	Background and related works
	Single appearance scheduling in SDF
	Finding minimum buffer sizes using model-checker for SDF
	Buffer size minimization for DPN

	Buffer size assignment and reduction for CAL programs
	Hardware program execution approach
	Dataflow program analysis (TURNUS) approach

	Experimental results
	Summary

	Design case studies: MPEG-4 video decoders
	Fundamentals of video codecs
	MPEG Reconfigurable Video Coding (RVC) Standard
	MPEG-4 Simple Profile (SP) decoder
	Fundamentals
	CAL design and implementation

	MPEG-4 Advanced Video Coding (AVC)/H.264 decoder
	Fundamentals
	CAL design and implementation

	Conclusion

	Multi-dimensional design space exploration
	Background and related works
	Metrics for design space exploration
	Methodology for automatic data analysis
	Case study-1: MPEG-4 SP decoder
	Case study-2: MPEG-4 AVC/H.264 decoder
	Decoder_U/V
	Decoder_Y
	Combining Decoder_Y and Decoder_U/V

	Comparison with related works
	Summary

	Conclusion
	Summary
	Research impact
	Future work and direction

	Bibliography
	Bibliography
	Related Personal Publications
	Curriculum Vitae

