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Abstract—In this paper, the ‘Approximate Message Passing’
(AMP) algorithm, initially developed for compressed sensing of
signals under i.i.d. Gaussian measurement matrices, has been
extended to a multi-terminal setting (MAMP algorithm). It has
been shown that similar to its single terminal counterpart, the
behavior of MAMP algorithm is fully characterized by a ‘State
Evolution’ (SE) equation for large block-lengths. This equation
has been used to obtain the rate-distortion curve of a multi-
terminal memoryless source. It is observed that by spatially
coupling the measurement matrices, the rate-distortion curve
of MAMP algorithm undergoes a phase transition, where the
measurement rate region corresponding to a low distortion
(approximately zero distortion) regime is fully characterized by
the joint and conditional Rényi information dimension (RID) of
the multi-terminal source. This measurement rate region is very
similar to the rate region of the Slepian-Wolf distributed source
coding problem where the RID plays a role similar to the discrete
entropy.

Simulations have been done to investigate the empirical behav-
ior of MAMP algorithm. It is observed that simulation results
match very well with predictions of SE equation for reasonably
large block-lengths.

Index Terms—Approximate message passing (AMP), Gaussian
measurement matrices, Spatial coupling, Multi-Terminal Approx-
imate Message Passing (MAMP), Rényi information dimension,
Multi-terminal (distributed) compressed sensing.

I. INTRODUCTION

Let (xn, yn) be a realization of a two terminal memoryless
sources (X,Y ) with a probability distribution pX,Y over R2

and assume that one is interested to recover the signal in
both terminals (xn, yn) by taking sufficiently many linear
measurements u = Axn and v = Byn, where A and B
denote the measurement matrices in TX and TY respectively.
In particular, it is implicitly assumed that the measurements are
taken separately from each terminal whereas for the recovery,
one has access to the measurements (u,v) from both terminals.

This problem in its general multi-terminal form is ubiquitous
in different distributed processing systems and specially in ad
hoc sensor networks where a collection of sensors measure
a distributed environmental signal like temperature, humidity,
etc. One can imagine a particular sensor as a terminal which
takes a collection of linear measurements and transmits the
gathered data to a data fusion center by routing them via
the other sensors. Because of limited communication and
low processing power of sensors, it is difficult to take joint
measurements from two or several different terminals even
if they are very closed to one another. Therefore, one can
reasonably assume that the measurements are taken separately
from each terminal and processed jointly in a data fusion
center to recover the distributed signal. Usually there is a
high correlation among terminals and one can exploit this

redundancy to reduce the required number of measurements. In
particular, in a very low energy scenario like a sensor network
this results in a saving in the energy consumption of devices
which in turn, increases the life time of the network.

There are two different kinds of correlation that should be
considered: temporal and spatial. In a scenario like sensor
networks, temporal correlations result because of the slow
changes of the natural phenomenon like temperature, hu-
midity, etc. Temporal correlations usually can be moderated
by suitable sampling time and preprocessing of the signal
before transmission. Spatial correlations are more important
and much more difficult to deal with. If the sensors are densely
distributed in the environment for precise data acquisition,
the resulting measurements from different terminals will be
highly redundant thus the network energy resources are wasted
without any significant gain. Therefore, it is always desirable
to reduce the number of sensors to a minimum possible and
still be able to recover the environmental distributed signal.
Compared with a densely distributed sensor network, this is
as if no sensor is assigned to some of the terminals and as a
result the measurement rate from those terminals is 0. In both
cases, one needs to characterize the required measurement rate
region of the terminals for low-distortion recovery.

In this paper, we address a two terminal scenario for a mem-
oryless distributed source (Xn, Y n). Memoryless property of
the source implies that there is no temporal correlation between
samples of the signals in each terminal. The spatial correlation
between the sources is modeled by assuming that the samples
of the signals (Xi, Yi) are generated by a probability distribu-
tion pX,Y . The extension to more than two terminals is also
straightforward.

This problem has been vastly studied under different signal
structures and recovery algorithms (in particular [1], [2]) as an
extension of the traditional single terminal compressed sensing
introduced in [3], [4]. Specially, it has been attempted to make
a connection between multi-terminal compressed sensing and
the distributed source coding (Slepian-Wolf) counterpart in
information theory (please refer to [5] for extra refrences).

A closely related work to our paper, is the ‘analog to analog’
(A2A) compression problem first studied in [6], where it was
proved that under some regularity conditions on encoder and
decoder, the required measurement rate in order to recover the
source with a negligible block error probability is given by the
upper Rényi information dimension (RID) of the source. The
results was extended to prove the noise stability of the decoder
[7]. In [8], [9], it was proved that under a much weaker entropic
distortion measure (compared with block error probability
or MSE), a measurement rate of at least Rényi information
dimension is still necessary to roughly capture the information
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of the source. Moreover, the polarization idea [10], [11] was
exploited to construct a family of deterministically truncated
Hadamard matrices that universally capture the information of
all probability distributions with a given RID.

In [12], using the spatially coupled Gaussian matrices and
the prediction of [13], [14], it was rigorously proved that the
measurement rate as large as the RID of the source is sufficient
to stably recover the source with a negligible mean square error
(MSE) by running a feasible complexity approximate message
passing algorithm (AMP) first developed in [15] and rigorously
analyzed in [16].

In [9], a characterization was given of the the measurement
rate region of a memoryless multi-terminal signal in order to
fully capture the information of the source in terms of the
joint and conditional RID which was in spirit very similar to
Slepian-Wolf (S&W) region for distributed source coding with
the discrete entropy replaced by the RID and this region was
also shown to be tight.

In this paper, we extend the results in [9], [12] by developing
a multi-terminal variant of AMP (MAMP) algorithm to study
the multi-terminal compressed sensing of a well-behaved class
of probability distributions (linearly correlated signals) for
which the joint and the conditional RID’s are well-defined. We
use random Gaussian matrices (independent across different
terminals) to take measurements and run the MAMP algorithm
to reconstruct the source. We prove that the behavior of MAMP
algorithm can be fully characterized by a two dimensional
state1 and at each iteration, this state changes according to an
explicit state evolution (SE) equation. We use this SE equation
to obtain the rate distortion curve of the source, where we use
the mean square error (MSE) as the distortion measure. We
also show that after spatially coupling of measurement matrices
in each terminal, the low distortion measurement rate region
can be fully characterized by the joint and the conditional
RID’s as predicted by [9].

II. RÉNYI INFORMATION DIMENSION AND LINEARLY
CORRELATED MULTI-TERMINAL SOURCES

Let X be a scalar random variable with a probability
distribution pX over R. The upper and lower RID of X are
defined by

d(pX) = d(X) = lim sup
q→∞

H([X]q)

log2(q)
,

d(pX) = d(X) = lim inf
q→∞

H([X]q)

log2(q)
,

where for x ∈ R and q ∈ N, [x]q = bqxc
q denotes the quantiza-

tion of x by spacing 1
q and where bxc = max{k ∈ Z : k ≤ x}.

If both limits coincide then we define d(X) = d(X) = d(X).
A parameter related to the RID is the MMSE dimension of X
defined in [17]. Let

mmse(s) = E(X − E(X|Y ))2, Y =
√
sX + Z,

where Z ∼ N(0, 1) is a Gaussian random variable independent
of X . The upper and lower MMSE dimension of X are defined

1In general the number of states is equal to the number of terminals.

by

D(pX) = D(X) = lim sup
s→∞

s mmse(s)

D(pX) = D(X) = lim inf
s→∞

s mmse(s),

and if both limits coincide then we define D(X) = D(X) =
D(X). In [17], it was proved that if H(bXc) <∞ then

D(X) ≤ d(X) ≤ d(X) ≤ D(X).

Hence, if D(X) exists so does d(X) and they are equal. By
Lebesgue decomposition theorem, any probability distribution
like pX can be decomposed as a convex combination of
continuous, discrete and singular parts, i.e.

pX = αcpc + αdpd + αsps,

where αc + αd + αs = 1 and pc, pd and ps denote the
continuous, discrete and the singular part of the distribution.
Rényi proved that if αs = 0, namely if pX has no singular part,
then d(pX) is well defined and is equal to αc, the weight of
the continuous part [18]. Moreover, it was proved in [17] that
if αs = 0 then D(pX) also exists and is equal to d(X) = αc.

For simplicity, we will restrict ourselves to the space of
linearly correlated random variables introduced in [9], where
a k dimensional random vector S is linearly correlated if there
is a sequence of independent non singular variables Zn and
a k × n matrix A such that S = AZn. This space is rich
enough for most of the applications. Furthermore, over this
space it is possible to give a full characterization of joint
and conditional RID as in [9]. Appendix A contains a brief
overview of linearly correlated signals and how to compute
their joint and conditional RID’s.

III. STATEMENT OF THE RESULTS

A. Gaussian Measurement Matrices

Let n ∈ N and let (xn, yn) = {(xi, yi)}ni=1 be a realization
of a two terminal memoryless source (X,Y ) with a probability
distribution pX,Y . Let u = Axn and v = Byn be the
measurement vectors, where A is an mx × n and B is an
my×n matrix whose components are i.i.d. zero mean Gaussian
random variables with variance 1

mx
and 1

my
respectively. We

define ρx = mx

n and ρy =
my

n as the measurement rates of the
two terminals.

In order to recover the initial signal (xn, yn), we propose
the following joint message passing algorithm which is an
extension of the single terminal message passing proposed in
[15]. We assign a variable node to each component of xn and
yn and a check node to every measurement. Figure 1 shows
the resulting graphical model, where the internal check node
between variable nodes (xi, yi) show the correlation resulted
because of the joint distribution pX,Y .

Let a, b ∈ [mx] and i, j ∈ [n] be the indices for check and
variable nodes in TX and let c, d ∈ [my] and k, l ∈ [n] denote
the corresponding indices for TY . The multi-terminal message
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Fig. 1: Graphical Model Representation for Two Terminal
Compressed Sensing. The external check nodes correspond to
measurements whereas the internal check nodes between xn

and yn represent the joint distribution pX,Y between (Xi, Yi).

passing is given by

rta→i = ua −
∑

j∈[n]\i

Aajx
t
j→a, (1)

stc→k = vc −
∑

l∈[n]\k

Bcly
t
l→c, (2)

xt+1
i→a = ηxt (

∑

b∈[mx]\a

Abir
t
b→i,

∑

d∈[my ]

Bdis
t
d→i), (3)

yt+1
k→c = ηyt (

∑

b∈[mx]

Abkr
t
b→k,

∑

d∈[my ]\c

Bkds
t
d→k), (4)

Notice that the only interaction between the messages in
TX and TY is via the threshold functions ηxt and ηyt . In
particular, if ηxt only depends on the first argument and if ηyt
only depends on the second argument, this message passing
algorithms is transformed to two independent message passing
algorithms one running on TX and the other on TY . As
the measurement matrices A and B are dense matrices with
columns with `2 norms close to 1, it is possible to approximate
the above message passing algorithm. This has been done
heuristically in Appendix B. The resulting MAMP (multi-
terminal approximate message passing) algorithm is as follows
initialized with r−1 = 0, s−1 = 0 and x0 = y0 = 0:

rt = u−Axt −
〈
∂1η

x
t (A∗rt−1 + xt−1, B∗st−1 + yt−1)

〉

ρx
rt−1,

(5)

st = v −Byt −
〈
∂2η

y
t (A∗rt−1 + xt−1, B∗st−1 + yt−1)

〉

ρx
st−1,

(6)

xt+1 = ηxt (A∗rt + xt, B∗st + yt), (7)

yt+1 = ηyt (A∗rt + xt, B∗st + yt), (8)

where rt ∈ Rmx and st ∈ Rmy are the residual terms
and xt, yt ∈ Rn are estimates of the signals at time t and
where for a function f : R2 → R, ∂1f and ∂2f denote the
partial derivative of f with respect to the first and the second
argument respectively. Moreover, with some abuse of nota-
tion, we assume that ηt(gl, hl) = (ηt(g1, h1), . . . , ηt(gl, hl))
applies component-wise. Also for an n dimensional vector un,
〈un〉 = 1

n

∑n
i=1 ui denotes the average of the elements of un.

It is also important to mention the appearance of Onsager
terms in the Equations (5) and (6) as also mentioned in
[15], [16]. This term can be considered as a second order
correction for the mean field approximation of the message
passing algorithm whose addition removes the correlation that
exists between the fixed measurement matrices A and B and
the estimated signal (xt, yt) in the thermodynamic limit as
the system size n tends to infinity, which specially allows to
completely describe the system state with a state evolution
(SE) equation.

Theorem 1. Let (xn, yn) be a realization of a memoryless
source and assume that (xt, yt)t≥0 is the output of the MAMP
algorithm as in Equations (5)-(8) with Lipschitz continuous
threshold functions ηxt and ηyt . Let ψ : R2 → R be a pseudo-
Lipschitz function. Asymptotically as n tends to infinity

1

n

n∑

i=1

ψ(xi, x
t
i)→ Eψ(X, ηxt (X +

√
τ txZx, Y +

√
τ tyZy)),

1

n

n∑

i=1

ψ(yi, y
t
i)→ Eψ(Y, ηyt (X +

√
τ txZx, Y +

√
τ tyZy))

almost surely, where (τ tx, τ
t
y)t≥0 satisfy the equation

τ t+1
x = σ2

x +
1

ρx
E(X − ηxt (X +

√
τ txZx, Y +

√
τ tyZy))2,

τ t+1
y = σ2

y +
1

ρy
E(Y − ηyt (X +

√
τ txZx, Y +

√
τ tyZy))2,

with τ (−1)
x = τ

(−1)
y =∞, with Zx, Zy zero mean unit variance

Gaussian variables independent of each other and X and Y
and with σ2

x and σ2
y denoting the measurement noise variance

in X and Y terminals.

Proof: Proof follows from the Bolthausen’s conditioning
technique used in [16] with the only difference that one should
apply the conditioning to both terminals instead of a single
terminal.

Remark 1. Theorem 1 provides a single letter characterization
of the asymptotic behavior of the MAMP, in the sense that
to estimate a specific variable (Xk, Yk) the effect of all
other variables is equivalent to adding a Gaussian noise with
variance (τxt , τ

y
t ). Moreover, replacing ψ(a, b) = (a− b)2 one

gets the mean square error (MSE) of the estimator

‖xt+1 − x‖22
n

→ E(X − ηxt (X +
√
τ txZx, Y +

√
τ tyZy))2,

‖yt+1 − y‖22
n

→ E(Y − ηyt (X +
√
τ txZx, Y +

√
τ tyZy))2.

We will also consider a noiseless case where σx = σy = 0
which using the SE equation implies that the empirical error
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after t iteration is given by ρxτ
t
x and ρyτ

t
y . One can also

simply check that choosing (ηxt , η
y
t ) to be the MMSE estimator

minimizes the resulting error. We will always assume that the
distribution of the signal is known and we will use the MMSE
estimator for (ηxt , η

y
t ), thus the resulting SE equation is

τ t+1
x =

1

ρx
mmse(X|X +

√
τ txZx, Y +

√
τ tyZy) (9)

τ t+1
y =

1

ρy
mmse(Y |X +

√
τ txZx, Y +

√
τ tyZy). (10)

The behavior of MAMP depends on the stable set of the
SE equation. Proposition 1 states that for the special choice
of MMSE estimators for ηxt and ηyt , this stable set is a fixed
point.

Proposition 1. For a given ρx, ρy and starting from τ
(−1)
x =

τ
(−1)
y =∞, the state vector (τ tx, τ

t
y) given by SE equations in

(9), (10) converges to a well-defined fixed point.

Proof: It is sufficient to prove that the resulting sequence
is non-increasing thus converging to a well-defined fixed point.
We use induction on t. For t = 0, this obviously holds
because τ0

x ≤ E(X2)
ρx

< τ
(−1)
x = ∞ and the same holds

for τ0
y . Moreover, one can simply check that from the Data

Processing inequality (τ t+1
x , τ t+1

y ) are increasing function of
(τ tx, τ

t
y). Therefore, if from the induction hypothesis τ tx ≤ τ t−1

x

and τ ty ≤ τ t−1
y , it immediately results that τ t+1

x ≤ τ tx and
τ t+1
y ≤ τ ty .

B. Spatially Coupled Gaussian Measurement Matrices

In the single terminal case, it has been already observed
that with traditional Gaussian matrices, the the required mea-
surement rate for complete recovery of the signal is far from
the optimal rate given by the RID and spatial coupling is
necessary to reduce the required measurement rate down to
RID. The situation is very similar to coding theory where
the BP threshold resulted from message passing algorithm is
different from the optimal MAP threshold and extra spatial
coupling is necessary to approach the optimal rate [19].

We briefly describe the structure of a spatially coupled
measurement matrix as in [12]. We consider a band diagonal
weighting matrix W of dimension Lr × Lc which is roughly
row stochastic, i.e. 1

2 ≤
∑
cWr,c ≤ 2. In order to obtain

the final measurement matrix we replace every entry Wr,c

by a i.i.d. M × N Gaussian matrix with entries having
variance Wr,c

M , thus the final matrix will be m × n where
m = MLr and n = NLc and the resulting measurement
rate is ρ = m

n = MLr

NLc
. Figure 2, borrowed from [12], shows

a typical structure of a band diagonal matrix.
Each component of Wr,c corresponds to one block contain-

ing an M × N matrix. Following the notations of [12], let
C = {1, 2, . . . , Lc} and R = {1, 2, . . . , Lr} denote the row
and column indices of these blocks. Let us define the following
operators

mmsex(sx, sy) = mmse(X|√sxX + Zx,
√
syY + Zy),

mmsey(sx, sy) = mmse(Y |√sxX + Zx,
√
syY + Zy).

•
•
•
•

•
•
•
•

•
•
•
•

N
n

M

m

W1,1 W1,2 W1,3

W2,1 W2,2 W2,3 W2,4

W3,1 W3,2 W3,3 W3,4 W3,5

WLr�1,Lc�3WLr�1,Lc�2WLr�1,Lc�1WLr�1,Lc

WLr,Lc�2 WLr,Lc�1 WLr,Lc

Figure 2: Construction of the spatially coupled measurement matrix A as described in Section 2.1. The matrix
is divided into blocks with size M by N . (Number of blocks in each row and each column are respectively Lc

and Lr, hence m = MLr, n = NLc). The matrix elements Aij are chosen as N(0, 1
M Wg(i),g(j)). In this figure,

Wi,j depends only on |i � j| and thus blocks on each diagonal have the same variance.

Definition 2.1. A random sensing matrix A is distributed according to the ensemble M(W, M, N)
(and we write A ⇠ M(W, M, N)) if the partition of rows and columns ([m] = [r2RR(r) and [n] =
[s2CC(s)) are uniformly random, and given this partitioning, the entries {Aij , i 2 [m], j 2 [n]} are
independent Gaussian random variables with 7

Aij ⇠ N
⇣
0,

1

M
Wg(i),g(j)

⌘
. (29)

We refer to Fig. 2 for an illustration. Note that the randomness of the partitioning of row and
column indices is only used in the proof of Lemma 4.1 (cf. [JM12a]), and hence this and other
illustrations assume that the partitions are contiguous.

For proving Theorem 1.6 and Theorem 1.7 we will consider suitable sequences of ensembles
M(W, M, N) with undersampling ratio converging to �. While a complete description is given below,
let us stress that we take the limit M, N ! 1 (with M = N�) before the limit Lr, Lc ! 1 . Hence,
the resulting matrix A is essentially dense: the fraction of non-zero entries per row vanishes only
after the number of groups goes to 1.

7As in many papers on compressed sensing, the matrix here has independent zero-mean Gaussian entries; however,
unlike standard practice, here the entries are of widely di↵erent variances.
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Fig. 2: The Structure of A Band Diagonal Gaussian Matrix
with Non-homogenous Entry Variances.

In the two terminal case, for simplicity, we will use the same
weight matrix in both terminals and the final measurement rate
for each terminal can be controlled by the aspect ratio δx = Mx

Nx

and δy =
My

Ny
of the corresponding sub matrices.

Definition 1. For a roughly stochastic matrix of dimension
Lr × Lc, the state evolution sequence {φx(t), ψx(t)}t≥0 and
{φy(t), ψy(t)}t≥0, φo(t) = (φoa(t))a∈R, ψ

o(t) = (ψoi (t))i∈C
with o ∈ {x, y} is defied as follows ψoi (0) = ∞, i ∈ C and
for all t ≥ 0,

φoa(t) = σ2
o +

1

δo

∑

i∈C

Wa,iψ
o
i (t), (11)

ψoi (t+ 1) = mmseo(
∑

b∈R

Wb,iφ
x
b (t)−1,

∑

b∈R

Wb,iφ
y
b (t)−1).

(12)

where σ2
o is the variance of the measurement noise and δo =

Mo

No
is the measurement rate of the sub-matrices for terminal

o ∈ {x, y}.
Quantities ψi(t) and φa(t) correspond to the asymptotic

MSE of the MAMP. In particular, ψi(t) is the asymptotic MSE
of the variables located in block i ∈ C and φa(t) is the noise
variance in the residual terms corresponding to row a ∈ R as
we will explain later. Using {φ, ψ} sequence for each terminal
it is possible to define the following MAMP algorithm. Let Qt

be an m× n whose i, j component is given by

Qtij =
φr(t)

−1

∑Lr

k=1Wkcφk(t)−1
(13)

where r is the row index of the measurement i and c is the
column index of the variable j, thus it is a block constant
matrix. We also define the MMSE threshold functions as

ηxt,i(gi, hi) = E(X|X + sxi (t)−1Zx = gi, Y + syi (t)−1Zy = hi),

with soi (t) =
∑
u∈RWu,cφ

o
u(t)−1, where c is the column index

of variable i. MMSE estimator for TY is defined similarly.
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We also assume that both of these estimator apply component
wise, i.e. ηt(gl, hl) = (ηt,1(g1, h1), . . . , ηt,l(gl, hl)). With
these notations the MAMP can be written as follows

xt+1 = ηxt (xt + (Qtx �A)∗rtx, y
t + (Qty �B)∗rty), (14)

rtx = u−Axt + btx � rt−1
x , (15)

yt+1 = ηyt (xt + (Qtx �A)∗rtx, y
t + (Qty �B)∗rty), (16)

rty = v −Byt + bty � rt−1
y , (17)

where A and B denote the spatially coupled measurement
matrices, u = Ax,v = By are the measurements, rx and
ry are residual terms, Qx and Qy are defined according to
Equation (13) and bx and by are defined as follows. Let C(c)
denote all the variables i with column index c ∈ C and let

〈∂1η
x
t 〉c =

〈
∂1η

x
t (xti + ((Qtx �A)∗rtx)i, y

t
i + ((Qty �B)∗rty)i

〉

where the average is taken over all variables belonging to the
the column block c. We define btx as a column vector of length
m which takes the same value for all components belonging
to a row block r ∈ R and is defined as follows

btx,i =
1

δx

∑

c∈C

Wri,cQ̃
t−1
ai,c

〈
∂1η

x
t−1

〉
c
,

where ri is the row block that i belongs to and Q̃t is a Lr×Lc
matrix defined by Q̃tr,c = Qtx, ij for any i that belong to the
row block r and any column that belongs to the column block
c. Notice that Qt itself is also block constant therefore it is
not important which i or j is taken from the block. A similar
expression holds for the bty by replacing ∂1η

t
x by ∂2η

t
y , Qtx by

Qty and δx by δy .
Using a similar steps as in [12], it is possible to show that

the performance of the MAMP algorithm can be described by
the state evolution given in Equation (11) and (12) where the
number of states is equal to 2(Lr + Lc).

Theorem 2. Let (xn, yn) be a two terminal signal and let
u = Axn and v = Byn, where A and B are spatially coupled
matrices with the same weight matrix W . Let (xt, yt) be
the output of MAMP algorithm in Equations (14)-(17), where
{φo(t), ψo(t)}t≥0,o∈{x,y} is obtained from the SE equation
(11)-(12). Asymptotically, as Nx, Ny go to infinity

1

Nx

∑

j∈C(i)

(xj − xtj)2 → ψxi (t),
1

Ny

∑

j∈C(i)

(yj − ytj)2 → ψyi (t).

Based on the results proved in [12] for the single terminal
case and the lower bound provided in [9], it is possible to give
the following characterization for the achievable measurement
rate region in the multi-terminal case.

Theorem 3. Let (X,Y ) be a linearly correlated two terminal
source and let ρx, ρy ∈ [0, 1] be such that

ρx > d(X|Y ), ρy > d(Y |X), ρx + ρy > d(X,Y ). (18)

There is an ensemble of spatially coupled measurement matri-
ces that separately captures the signals in the two terminals
and an MAMP algorithm that jointly recovers the signals in
each terminal with a negligible distortion.

Remark 2. The optimal measurement rate region given by
Equation (18), is very similar to the Slepian-Wolf rate region
for distributed source coding where the RID in the compressed
sensing setting plays a role similar to the discrete entropy in
distributed source coding.

Proof: We prove that the corner points (d(X), d(Y |X))
and (d(Y ), d(X|Y )) are achievable under MAMP. In the single
terminal case, If ρx > d(X) asymptotically the signal in
TX can be recovered with a negligible distortion. In multi-
terminal case, if we consider only the terms related to TX ,
from Equation (11)-(12), we have

φxa(t) =
1

ρx

∑

i∈C

Wa,iψ
x
i (t),

ψxi (t+ 1) = mmsex(
∑

b∈R

Wb,iφ
x
b (t)−1,

∑

b∈R

Wb,iφ
y
b (t)−1).

As ηx, ηy are MMSE estimators, from Data Processing in-
equality, one can check that mmsex(sx, sy) and mmsey(sx, sy)
are decreasing functions of sx and sy . This implies that
mmsex(

∑
b∈RWb,iφ

x
b (t)−1,

∑
b∈RWb,iφ

y
b (t)−1) is less than

or equal to mmsex(
∑
b∈RWb,iφ

x
b (t)−1, 0), which is equal to

the variance of the MMSE estimator for X which does not
use the information of Y . One can also check that SE equation
is increasing with respect to ψxi (t), which implies that the ψx

sequence for the MAMP is dominated by the ψx sequence of a
single terminal AMP, which converges to 0 for any ρx > d(X).
If ψxi (t) converges to zero so does the φxa sequence, thus the
SE equation for TY will be as follows

φya(t) =
1

ρy

∑

i∈C

Wa,iψ
y
i (t),

ψyi (t+ 1) = mmsey(∞,
∑

b∈R

Wb,iφ
y
b (t)−1),

which using the same steps as in the single terminal case, can
be proved to converge to zero provides that

ρy > lim sup
s→∞

smmse(Y |X,√sY + Zy) = d(Y |X),

where Zy is a zero mean unit variance Gaussian noise and
where we used the fact that for the class of linearly correlated
signals that we use, d(Y |X) is well defined.

Similarly, it is possible to prove that (ρx, ρy) =
(d(X|Y ), d(Y )) is also achievable. Furthermore, any point
on the dominant face is also achievable because if we con-
sider two ensembles of measurement matrices (A1, B1) and
(A2, B2) with rate vectors ~R1 = (d(X), d(Y |X)) and ~R2 =
(d(Y ), d(X|Y )) achieving the two corner points respectively,
by diagonally concatenating r copies of the former with s
copies of the latter, one can get an ensemble with measurement
rate r

r+s
~R1 + s

r+s
~R2 and a negligible distortion.

The other points on the region are also achieved because
their measurement rate is larger than or equal to the measure-
ment rate of at least one point on the dominant face, thus their
distortion will be asymptotically negligible as well.
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IV. SIMULATION RESULTS

A. Signal Model

For simulation, we will use a linearly correlated random
vector from L2 whose independent constituents are random
variables with Bernoulli-Gaussian distribution. Let Zk be a
sequence of independent random variables with probability
distribution pi(z) = (1 − αi)δ0(z) + αiN(0, 1

αi
) where δ0

is a delta measure at point zero and N(0, σ2, z) denotes a
zero mean Gaussian distribution with variance σ2. One can
simply check that Var(Zi) = 1 and d(Zi) = αi. Let Φ be a
2× k real-valued matrix. The two terminal linearly correlated
source is given by ΦZk. As explained in Section II, the joint
and conditional RID of this source is well-defined. Notice that
depending on the values of αi and the structure of the matrix
Φ, this model can cover a wide variety of correlations between
the signals in two terminals. In Appendix D, we have obtained
a closed form expression for the MMSE estimator (ηx, ηy) of
this source in presence of the Gaussian measurement noise
which we will use as a denoising (threshold) function in
MAMP algorithm.

B. Performance without Spatial Coupling

In this section, we use the message passing algorithm given
by Equations (5)-(8) to recover a linearly correlated Bernoulli-
Gaussian signal for the noiseless case where there is no
measurement noise.

1) Comparison of the Empirical Results and SE pre-
dictions: We consider a very simple case where Z1, Z2, Z3

are three Bernoulli-Gaussian random variables with d(Z1) =
d(Z3) = 0.2 and d(Z2) = 0.3. The signal for the two terminals
is given by X = Z1 + Z2 and Y = Z2 + Z3, thus Z1 and Z3

are the private parts of the signals and Z2 is the common part
which creates correlation between X and Y . It is easy to check
that d(X) = d(Y ) = 0.44 and d(X|Y ) = d(Y |X) = 0.248.

Figure 3, 4 show the simulation results for ρ1 = 0.5, ρ2 =
0.6. It is seen that there is a good match between the em-
pirical variance of the estimator and the predictions of the
SE. Moreover, the algorithm can not fully recover the signal
which means that the SE equation has a fixed point other
than (τx, τy) = (0, 0). The simulations has been repeated in
Figure 5, 6 by increasing the measurement rate of the TY from
ρ2 = 0.6 to 0.7. Plots show that this time MAMP algorithm
successfully recovers the signal of both terminals. It is also
important to notice that because of the correlation between the
terminals, increasing ρ2 is helpful for recovering the signal in
TY .

2) Rate-Distortion Region: In this part, we run the MAMP
algorithm for the same signal as in Section IV-B1 for different
measurement rates. As a distortion measure, we consider the
average of the mean square error of the two terminals. Figure 7,
8, 9 show a contour plot of the Rate-Distortion curve for three
sources with the same individual but different conditional RID.
The dashed lines show the boundary of the optimal pentagon.
Low distortion recovery is not possible outside of this region.

In the extreme case where the signals in two terminals are in-
dependent from each other, i.e. there is no common signal, the
pentagon region reduces to a square region. On the contrary,
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Fig. 3: Empirical and SE Result for TX for ρ1 = 0.5, ρ2 = 0.6
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Fig. 4: Empirical and SE Result for TY for ρ1 = 0.5, ρ2 = 0.6
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Fig. 5: Empirical and SE Result for TX for ρ1 = 0.5, ρ2 = 0.7
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Fig. 6: Empirical and SE Result for TY for ρ1 = 0.5, ρ2 = 0.7
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Fig. 7: Rate-Distortion region for a linearly correlated
Bernoulli-Gaussian source with d(X) = d(Y ) = 0.44 and
d(X|Y ) = d(Y |X) = 0.248. The dashed lines show the
boundaries of the optimal region.

if there is no private signal then the signals in both terminals
are the same and the problem is reduced to a simple single
terminal problem. Obviously in this case, beacause of the
independence of measurement matrices in the two terminals,
individual measurement rates are not important as far as their
sum is large enough. This can be seen from Figure 7, 8, 9
where we keep d(X) = d(Y ) = 0.44 but gradually increase
the share of the common signal where as a result d(X|Y ) and
d(Y |X) start to decrease. It is observed that the contour lines
gradually become parallel with ρx + ρy = constant.

Notice that there is a huge gap between the low-distortion
curve (distortion equal to 0.1) and the optimal region. As we
will see this gap is filled by using spatial coupling and running
MAMP.

3) Effect of Correlation between the Terminals: In
order to investigate the effect of correlation between the two
terminals, we have plotted a low distortion contour of the three
sources with the same d(X) = d(Y ) = 0.44 but three different
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Fig. 8: Rate-Distortion Region for the Linearly Correlated
Bernoulli-Gaussian Source with d(X) = d(Y ) = 0.44 and
d(X|Y ) = d(Y |X) = 0.1802.
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Fig. 9: Rate-Distortion region for a linearly correlated
Bernoulli-Gaussian source with d(X) = d(Y ) = 0.44 and
d(X|Y ) = d(Y |X) = 0.0916. The dashed lines show the
boundary of the optimal region.

conditional RID 0.248, 0.1820 and 0.0916. Decreasing the
conditional RID while fixing the individual entropy, make the
signals in two terminals more correlated. A low distortion
curve of the three sources is plotted in Figure 10. The plot
shows that the required measurement rate is decreasing by
increasing the correlation.

C. Performance with Spatial Coupling

In this section, we simulate the SE equation for MAMP
algorithm. We consider the same source as in Section IV-B1
where d(X) = d(Y ) = 0.44 and d(X|Y ) = d(Y |X) = 0.248.
In order to approach the corner point (d(X), d(Y |X)), we
consider a measurement rate with 10 percent oversampling,
i.e. ρx = 1.1d(X) and ρy = 1.1d(Y |X). The simulation
results has been shown in Figure 11. Similar to the single
terminal case, one can observe a wave-like phenomenon which
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Fig. 10: Effect of Correlation on Measurement Rate Region.
The low distortion curve of three different two terminal sources
with the same individual RID is plotted. The required measure-
ment region of the more correlated source is dominated by that
of the less correlated one.

starts from the boundary variables and proceeds towards the
center recovering the variables gradually. In particular, to create
the initial wave at the boundary one needs to oversample the
boundary variables. Figure 12 depicts the simulation results for
another experiment where ρx is kept fixed but ρy is reduced.
It is observed that, this time spatial coupling wave proceeds
to decode the variables in TX however the initially generated
wave in TY stops after a while and can not proceed to recover
the all the variables in TY .

By checking the results for non-spatially coupled case,
one can see that the resulting MSE error decreases gradually
by increasing the measurement rate. On the contrary, in the
spatially coupled case, either wave proceeds and recovers all
the variables or it stops, thus asymptotically, there is a sharp
transition in the resulting MSE in terms of measurement rate.

For the same source, we have done the simulations to
find boundary of the phase transition. Figure 13 depicts the
simulation result.
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Fig. 11: Spatial Coupling Wave for A Linearly Correlated
Source with ρx = 1.1d(X) and ρy = 1.1d(Y |X)
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APPENDIX A
LINEARLY CORRELATED RANDOM SIGNALS AND RID

Let L(Ω,F ,P) be a probability space. We define the space
L1 as the space of all nonsingular scalar random variables. For
k ∈ N, k ≥ 2, Lk is the space of all k-dimensional random

vectors that can be written as a linear combination of finitely
many independent nonsingular random variables, i.e. for Xk ∈
Lk there is a k × n matrix A and n independent nonsingular
random variables Zn such that Xk = AZn. For this set of
random variables, the RID as proved in [9], is well defined
and can be obtained by the following formula

d(Xk) = E{rank(A[CΘ])},

where {Θi}ni=1 are independent binary random variables with
P(Θi = 1) = d(Zi), CΘ = {i ∈ [n] : Θi = 1} is a
random subset of [n] denoting the position of nonzero values
in Θn and where for a subset S ∈ [n], A[S] is the matrix
consisting of only those columns of A with index in S.
For example let, d(Z1) = d(Z3) = 0.2 and d(Z2) = 0.3,

A =

(
1 1 0
0 1 1

)
and X2 = AZ3. In this case one can

simply check that rank(A[CΘ]) = Θ1 + Θ2 + Θ3 −Θ1Θ2Θ3

because adding selecting any column adds 1 unit to the rank
unless all of the columns have been selected. Taking the
expected value, one gets d(X2) = 0.7 − 0.012 = 0.688.
Similarly, one can show that d(X1) = d(X2) = 0.44. Thus,
d(X1|X2) = d(X2|X1) = d(X2)− d(X1) = 0.248.

The space of linearly correlated random variables is defined
as L = ∪∞i=1Li. If (Xk, Y l) is a k + l dimensional vector
in Lk+l, the conditional RID of Xk given Y l is defined as
follows

d(Xk|Y l) = d(Xk, Y l)− d(Y l).

In this paper, for simplicity, we deal only with two terminals
and thus two dimensional random vectors in L2. In this case,
for the two terminal source (X,Y ) ∈ L2 there are independent
nonsingular random variables Zn and an, bn ∈ Rn such that
X =

∑
i∈[n] aiZi and Y =

∑
i∈[n] biZi and the joint and the

conditional RID’s are also well defined.

APPENDIX B
HEURISTIC DERIVATION OF THE MULTI-TERMINAL AMP

In this section, we try to heuristically obtain an approxima-
tion to the message passing algorithm given by equations (1)-
(4). Our derivation is similar to the heuristic derivation of the
single terminal AMP in [16]. Intuitively as the measurement
matrices A and B are dense, any two messages emanating
from the same check node are only slightly different from
each other. The same is true for the messages emanating from
a variable node. For example, if one considers messages from
check nodes to variable nodes

rta→i = ua −
∑

j∈[n]\i

Aajx
t
j→a

= ua −
∑

j∈[n]

Aajx
t
j→a +Aaix

t
i→a,

it is seen that for a fixed a ∈ [mx], rta→i for different values
of i ∈ [n] are different because of the appearance of the last
term Aaix

t
i→a which is of the order O( 1√

mx
) ≈ O( 1√

n
) as mx

and n are assumed to be proportional. Similarly, considering
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the messages from variable nodes to check nodes,

xt+1
i→a = ηxt (

∑

b∈[mx]\a

Abir
t
b→i,

∑

c∈[my ]

Acis
t
c→i)

= ηxt (
∑

b∈[mx]

Abir
t
b→i −Aairta→i,

∑

c∈[my ]

Acis
t
c→i),

it is observed that for a fixed i ∈ [n], the difference of messages
xt+1
i→a for different values of a ∈ [mx] is again of the order
O( 1√

n
). Therefore, one gets

rta→i = rta + δrta→i , s
t
c→k = stc + δstc→k,

xti→a = xti + δxti→a , y
t
i→a = yti + δyti→a,

where the δ terms are of the order O( 1√
n

). Replacing in
Equation (1) and (2), one obtains

rta + δrta→i = ua −
∑

j∈[n]

Aaj(x
t
j + δxtj→a) +Aai(x

t
i + δxti→a),

stc + δstc→k = vc −
∑

l∈[n]

Bcl(y
t
l + δytl→c) +Bck(ytk + δtk→c).

The terms Aaiδxti→a and Bckδy
t
k→c are of the order O( 1

n )
and negligible asymptotically. Thus, one obtains that

rta = ua −
∑

j∈[n]

Aaj(x
t
j + δxtj→a) , δrti→a = Aai x

t
i, (19)

stc = vc −
∑

l∈[n]

Bcl(y
t
l + δytl→c) , δs

t
k→c = Bck y

t
k. (20)

Replacing in Equations (3) and (4), it results that

xt+1
i + δxt+1

i→a

= ηxt (
∑

b∈[mx]\a

Abi(r
t
b +Abix

t
i),

∑

d∈[my ]

Bdi(s
t
d +Bdiy

t
i))

= ηxt (
∑

b∈[mx]

Abi(r
t
b +Abix

t
i),

∑

d∈[my ]

Bdi(s
t
d +Bdiy

t
i))

+ ∂1η
x
t (., .)Aai(r

t
a +Aaix

t
i).

This implies that

xt+1
i = ηxt (xti +

∑

b∈[mx]

Abir
t
b , y

t
i +

∑

d∈[my ]

Bdis
t
d), (21)

δxt+1
i→a = ∂1η

x
t (xti +

∑

b∈[mx]

Abir
t
b , y

t
i +

∑

d∈[my ]

Bdis
t
d)Aair

t
a,

(22)

where one uses the fact that for any i ∈ [n],
∑
a∈[mx]A

2
ai ≈ 1,

and Aaiδr
t
a→i = O( 1

n ) thus negligible as n tends to infinity.
A similar argument holds for the TY giving

yt+1
k = ηyt (xtk +

∑

b∈[mx]

Abkr
t
b , y

t
k +

∑

d∈[my ]

Bdks
t
d), (23)

δyt+1
k→c = ∂2η

y
t (xtk +

∑

b∈[mx]

Abkr
t
b , y

t
k +

∑

d∈[my ]

Bdks
t
d)Bckr

t
c.

(24)

Replacing (22) in (19) and (24) in (20), and using the approx-
imation A2

ai ≈ 1
mx

and B2
ck ≈ 1

my
, one obtains that

rta = ua −Aaxt +

∑
j∈[n] ∂1η

x
t (xt−1

j + . . . , yt−1
j + . . . )

mx
rt−1
a

= ua −Aaxt +

〈
∂1η

x
t (xt−1 +A∗rt−1, yt−1 +B∗st−1)

〉

ρx
rt−1
a ,

(25)

where Aa denotes the a-th row of the matrix A. Similarly,

stc = vc −Bcyt +

∑
l∈[n] ∂2η

y
t (xt−1

l + . . . , yt−1
l + . . . )

my
st−1
c

= vc −Bcyt +

〈
∂2η

y
t (xt−1 +A∗rt−1, yt−1 +B∗st−1)

〉

ρy
st−1
c .

(26)

Equations (21), (23), (25) and (26) give the the MAMP
algorithm.

APPENDIX C
HEURISTIC DERIVATION OF THE STATE EVOLUTION

To give an intuitive justification (as in [16]) for the validity
of SE for the two terminal AMP in Equations (9) and (10),
consider the following version of the AMP where at each
iteration t, the measurement matrices A and B are replaced
with independent copies and where we drop the Onsager term
in Equations (5) and (6). In other words, let ut = A(t)x0 +wx
and vt = B(t)y0+wy be the noisy measurements at iteration t,
where wx and wy are additive noises consisting of i.i.d. zero
mean with variance σ2

x and σ2
y respectively. The new AMP

algorithm can be written as follows

rt = ut −A(t)xt , xt+1 = ηxt (A(t)∗rt + xt, B(t)∗st + yt),

st = vt −B(t)yt , yt+1 = ηyt (A(t)∗rt + xt, B(t)∗st + yt).

The first equation can be simplified to the following form

xt+1 = ηxt (x0 +A(t)∗wx + (I −A(t)∗A(t))(xt − x0),

y0 +B(t)∗wy + (I −B(t)∗B(t))(yt − y0)).

Conditioned on wx, A(t)∗wx is an n dimensional vector
with i.i.d. Gaussian components with zero mean and variance
‖wx‖22
n ≈ σ2

x. Moreover, in the asymptotic limit as n gets large,
by central limit theorem, each row of I − A(t)∗A(t) consists
of approximately Gaussian random variables with variance
n
mx

= 1
ρx

. Similarly, the components of B(t)∗wy are i.i.d.
Gaussian with zero mean and approximate variance σ2

y and
each row of I − B(t)∗B(t) converges to independent zero
mean Gaussian variables with variance n

my
= 1

ρy
. Hence,

the components of A(t)∗wx + (I − A(t)∗A(t))(xt − x0) are
approximately Gaussian with variance

τ tx = σ2
x +

1

ρx

‖xt − x0‖22
n

. (27)

At t = 0, with the initialization x0 = 0, one obtains that

τ0
x = σ2

x +
1

ρx

‖x0‖22
n
→ σ2

x +
1

ρx
E(X2),
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which is compatible with the SE initialization. A similar
derivation gives τ0

y = σ2
y + 1

ρy
E(Y 2). Moreover, by induction

on t, one can simply check that at iteration t+ 1,

xt+1 = ηxt (X +
√
τ txZx, Y +

√
τ tyZy).

Thus, replacing in Equation (27) and using a similar argument,
one obtains that for the iteration t+ 1,

‖xt+1 − x0‖22
n

→ E(X − ηxt (X +
√
τ txZx, Y +

√
τ tyZy))2,

which implies that at iteration t+ 1:

τ t+1
x = σ2

x +
1

ρx
E(X − ηxt (X +

√
τ txZx, Y +

√
τ tyZy))2.

A similar argument gives the corresponding equation for τ ty:

τ t+1
y = σ2

y +
1

ρy
E(Y − ηyt (X +

√
τ txZx, Y +

√
τ tyZy))2.

APPENDIX D
MMSE ESTIMATOR FOR A LINEARLY CORRELATED

BERNOULLI-GAUSSIAN SIGNAL

Suppose Zk are independent Bernoulli-Gaussian random
variables with probability distribution pi(z) = (1−αi)δ0(z)+
αiN(0, 1

αi
, z). Let A be a t×k matrix and let S = AZk be a t

dimensional linearly correlated signal. Suppose O = S+ Ñ is
the observation vector, where Ñ is a t×1 zero mean Gaussian
measurement noise with a covariance matrix Σ̃. We denote
by ηi(x) = E(Si|O = x) the MMSE estimator of Si, the i-
th component of the signal, given a t × 1 observation vector
O = x. We will compute η1(x). The other estimators can be
computed similarly.

It is easy to check that one can represent Zi, i ∈ [k] by
ΘiNi, where Θk are independent binary random variables with
P(Θi = 1) = αi and Nk are independent zero mean Gaussian
variables with variance 1

αi
. Assume that Σ is the covariance

matrix of Nk with diagonal elements Σii = 1
αi

and zero
elsewhere. Let a1 denote the first row of A and assume that for
a given binary sequence θk and for an arbitrary n× k matrix
B, B(θk) denotes an n × k matrix whose i-th column is the
i-th column of B provided θi = 1 and zero otherwise.

Using the conditioning on Θk, we have

η1(x) =
∑

θk∈{0,1}k
E(S1|O = x,Θk = θk)P(θk|O = x).

Conditioned on θk, S1 = a1(θk)N is a zero mean Gaussian
with variance a1(θk)Σ a1(θk)∗. The observation vector is
also Gaussian with a zero mean and a covariance matrix
A(θk)ΣA(θk)∗ + Σ̃, thus the estimation of S1 is reduced
to a Gaussian estimation problem where the estimator is
known to be a linear function of observation. Let Ŝ1(θk, x) =
a(θk)ΣA(θk)(A(θk)ΣA(θk)∗+Σ̃)−1x. It is easy to check that

E(S1|O = x,Θk = θk) = Ŝ1(θk, x). Therefore, one obtains

η1(x) =
∑

θk

Ŝ1(θk, x)P(θk|O = x)

=
1

po(x)

∑

θk

Ŝ1(θk, x)P(θk)po(x|θk)

=

∑
θk Ŝ1(θk, x)P(θk)N(0, A(θk)ΣA(θk)∗ + Σ̃, x)∑

θk P(θk)N(0, A(θk)ΣA(θk)∗ + Σ̃, x)
,

where N(µ,C, x) = 1√
(2π)n det(C)

exp(− 1
2 (x − µ)∗C−1(x −

µ)) denotes the Gaussian distribution with mean µ and covari-
ance matrix C.


