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Abstract
This thesis is concerned with two classical topics in matrix computations : The QR algo-

rithm for solving nonsymmetric eigenvalue problems and the computation of matrix expo-

nentials for two types of structured matrices. We focus on the performance in the former topic

and on accuracy in the latter one.

For computing all eigenvalues of a non-Hermitian matrix, the QR algorithm which iter-

atively computes a Schur decomposition of the matrix is the method of choice. We present

a new parallel implementation of the multishift QR algorithm targeting distributed memory

architectures. Starting from recent developments of the parallel multishift QR algorithm, we

propose a number of algorithmic and implementation improvements. Guidelines concerning

several important tunable algorithmic parameters are also provided. Numerous computa-

tional experiments confirm that our new implementation significantly outperforms previous

parallel implementations of the QR algorithm.

The computation of the exponential of a square matrix is also an important task in matrix

computations. For a general dense matrix, the scaling and squaring method coupled with

Padé approximation is the most popular approach. However, for an essentially nonnegative

matrix (a real square matrix with nonnegative off-diagonal entries), truncated Taylor series

rather than Padé approximation is preferred to achieve componentwise accuracy in the matrix

exponential. We propose a method which efficiently computes all entries of the exponential of

an essentially nonnegative matrix to high relative accuracy. Truncation and rounding error

bounds, as well as numerical experiments demonstrate the efficiency and accuracy of our

method.

When the matrix is banded, the entries of its matrix exponential decay exponentially away

from the main diagonal. We analyze the decay property for the exponentials of several classes

of doubly-infinite skew-Hermitian matrices. Then finite section methods based on the decay

property are established. We also propose a repeated doubling strategy which works well

even when a priori error estimates are pessimistic or not easy to compute. Finally, numerical

experiments are presented to illustrate the effectiveness of the finite section method.

Keywords : Nonsymmetric eigenvalue problem, matrix exponential, multishift QR algorithm,

aggressive early deflation, parallel algorithm, distributed memory architecture, aggressively

truncated Taylor series method, finite section method, exponential decay
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Zusammenfassung
Das Thema dieser Doktorarbeit umfasst zwei klassische Gebiete der numerischen linearen

Algebra: Der parallele unsymmetrische QR-Algorithmus zur Eigenwertbestimmung sowie die

Berechnung von Matrixexponentialen für zwei Typen von strukturierten Matrizen. Während

im ersten Thema die effiziente, hoch-performante Berechnung im Vordergrund steht, liegt der

Schwerpunkt des zweiten Themas auf der Genauigkeit der erhaltenen Lösungen.

Die Berechnung der Eigenwerte einer nicht-hermiteschen Matrix ist ein klassisches Thema

der Matrizenrechnung. Falls alle Eigenwerte benötigt werden, ist der QR-Algorithmus—der

iterativ eine Schur-Zerlegung der Matrix bestimmt—das Mittel der Wahl. In der vorliegenden

Doktorarbeit stellen wir eine neue, parallele Implementierung des Multishift-QR-Algorithmus

für verteilte Speicherarchitekturen vor. Ausgehend von aktuellen Entwicklungen auf dem

Gebiet des parallelen Multishift-QR-Algorithmus werden dabei verschiedene algorithmis-

che und implementationstechnische Verbesserungen entwickelt. Hierbei erläutern wir die

dabei auftretenden konfigurierbaren Parameter und geben Hilfestellungen für ihre prob-

lemspezifische Wahl. Eine Vielzahl an numerischen Experimenten bestätigt dabei die sig-

nifikante Verbesserung gegenüber bereits exisitierenden parallelen Implementationen des

QR-Algorithmus.

Die Berechnung des Matrixexponentials einer quadratischen Matrix ist eine weitere

wichtige Problemstellung im Rahmen der Matrizenrechnung. Für allgemeine, dichtbeset-

zte Matrizen ist dabei die sogenannte scaling-and-squaring-Methode in Verbindung mit

Padé-Approximation das meistgenutzte Verfahren. Bei Metzler-Matrizen, d.h. reellen Matrizen

mit nicht-negativen Nebendiagonaleinträgen, ist jedoch die abgeschnittene Taylorapproxima-

tion zu bevorzugen. Die Verwendung der Taylorreihe anstatt der Padé-Approximation erlaubt

hierbei eine Verbesserung der elementweisen Genauigkeit des Matrixexponentials. Das in

dieser Doktorarbeit vorgestellte Verfahren berechnet alle Einträge des Exponentials einer

Metzler-Matrix mit hoher relativer Genauigkeit. Die Schranken für Abschneide- sowie Run-

dungsfehler zeigen zusammen mit numerischen Experimenten die Effizienz und Genauigkeit

unseres Ansatzes.

Im Fall von Bandmatrizen nehmen die Einträge des Matrixexponentials ausserhalb der

Hauptdiagonalen exponentiell schnell ab. Wir analysieren die Gesetzmäßigkeiten dieser Eigen-

schaft für Exponentiale verschiedener Klassen zweifach-unendlicher, schiefhermitescher

Matrizen und stellen finite-section-Methoden vor, die dieses Abklingverhalten ausnutzen.

Weiterhin betrachten wir eine neue Strategie basierend auf wiederholter Verdopplung, die

auch für pessimistische oder schwierig zu berechnende a-priori Fehlerschätzer gut funk-
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Zusammenfassung

tioniert. Zu guter Letzt illustrieren wir die Effektivität der Finite-section-Methode anhand

numerischer Beispiele.

Stichwörter: Unsymmetrische Eigenwertprobleme Matrixexponential, Multishift-QR-Algorith-

mus, aggressive early deflation, Parallele Algorithmen, verteilte Speicherarchitektur, Aggressively-

truncated-Taylor-series-Methode, Finite-section-Methode, Exponentieller Abfall
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1 Introduction

This thesis contains contributions in two important areas in numerical linear algebra—

nonsymmetric eigenvalue problems and matrix exponentials. In the first part of the thesis

(Chapters 2 and 3), we present a parallel implementation of the QR algorithm which solves

dense nonsymmetric eigenvalue problems; in the second part (Chapters 4–6), we discuss

the computation of matrix exponentials for two types of structured matrices. This chapter

provides a short introduction to each problem, while detailed discussions will be given in the

subsequent chapters.

The QR algorithm. Computing the eigenvalues of a given matrix is one of the most im-

portant tasks in matrix computations. The most general form of this problem is to compute

all eigenvalues of A ∈ CN×N where no special structure of A (e.g., symmetry or sparsity) is

exploited. Such a task arises in various numerical algorithms. For example, the Bartels-Stewart

algorithm [18] and the Schur-Parlett algorithm [116] both require a preprocessing stage in

which all eigenvalues of a matrix need to be computed. Even if only a subset of eigenval-

ues are of interest, many projection-based algorithms end up with solving a (smaller) dense

eigenvalue problem.

The most popular approach for solving the dense nonsymmetric eigenvalue problem is the

QR algorithm, which was proposed independently by Francis [49, 50] and Kublanovskaya [99],

based on Rutishauser’s LR algorithm [126, 127]. In the past 50 years the QR algorithm has been

the method of choice because of its robustness and effectiveness. Concerning the implementa-

tion of the QR algorithm, the ALGOL procedures QR by Ruhe [125] and hqr by Martin, Petersen,

and Wilkinson [105] were among the first publicly available computer implementations of the

QR algorithm. A Fortran translation of hqr was included in EISPACK [137] as routine HQR. The

initial version of the LAPACK [6] routine DHSEQR was based on work by Bai and Demmel [10];

the most notable difference to HQRwas the use of multishift techniques to improve data locality.

This routine had only seen a few minor modifications [3] until LAPACK version 3.1, when it was

replaced by an implementation incorporating pipelined bulges and aggressive early deflation

techniques from the works by Braman, Byers, and Mathias [30, 31]. This implementation is

1



Chapter 1. Introduction

described in more detail in [32].

There has been a lot of early work on parallelizing the QR algorithm, for example in [69,

129, 147, 148, 149, 156]. Based on some theoretical analyses on the convergence [148, 156]

and scalability [69], the first publicly available parallel implementation was developed and

released 1997 in ScaLAPACK [26] version 1.5 as routine PDLAHQR, see [70] for details. A complex

version PZLAHQR of this routine was included later [47]. However, it might be interesting to

note that all recently released high-performance linear algebra packages, such as MAGMA

and PLASMA [1], ELPA [8], FLAME [24] lack adapted implementations of the QR algorithm or

other nonsymmetric eigenvalue solvers. Recently a novel parallel QR algorithm incorporating

several modern techniques has been developed by Granat, Kågström, and Kressner [61]. In the

first part of this thesis, we describe a new parallel implementation of the QR algorithm that

aims to replace ScaLAPACK’s PDLAHQR. This implementation is largely based on the early work

in [61]. We propose a number of algorithmic and implementation improvements including

multilevel aggressive early deflation, data redistribution technique, as well as strategies of

choosing parameters. With the help of these improvements, our new implememtation of the

parallel QR algorithm outperforms the previous version in [61] and ScaLAPACK’s PDLAHQR.

Matrix exponentials. The computation of matrix functions is another fundamental topic in

matrix computations. The most important and well-studied transcendental matrix function is

the matrix exponential since it naturally appears in the solution of linear dynamical systems

and has wide applications in physics, biology, finance, and engineering. We refer to [73,

Chapter 2] and references therein for applications of the matrix exponential.

The matrix exponential can be computed in many ways, based on various properties

of the exponential function. The classical paper [108] published in 1978 and reprinted with

updates [109] in 2003 summarizes and analyzes many methods for computing the matrix

exponential. Another survey on the theory and computation of the matrix exponential is

provided in the monograph [73] (see, especially, Chapter 10 in [73]). Among many potential

candidates, the scaling and squaring method coupled with Padé approximation is the most

popular approach for a dense nonsymmetric matrix. The function expm in MATLAB is an

excellent general purpose solver which implements such a method incorporating several

advance techniques [72, 74].

Unfortunately, none of the existing methods is completely satisfactory for computing the

matrix exponential [109]. Even the excellent solver expm makes no exception. Therefore, when

a certain structure of the matrix can be exploited, it is desirable to design a specialized method

tailored to this structure so that higher performance or accuracy is achieved compared to a

general purpose solver. In the second part of this thesis, we will study the computation of ma-

trix exponentials for two types of structured matrices—essentially nonnegative matrices and

doubly-infinite skew-Hermitian matrices. Accuracy is the main consideration while efficiency

is also taken into account.

2
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The exponential of an essentially nonnegative matrix often arise in Markov chains and

requires accurate computation for each small entry even if the solution is badly-scaled. Since

MATLAB’s expm ensures no more than normwise backward stability, an alternative approach

is needed to obtain componentwise accuracy. In Chapter 5, we will develop O (N 3 log N )

algorithms which efficiently compute the exponential of an essentially nonnegative matrix to

high componentwise relative accuracy.

For doubly-infinite skew-Hermitian matrices, certainly no solver designed for finite matri-

ces can be directly applied. In some applications only a finite diagonal block of the solution

is required. This request is accomplished by the so called finite section method which only

involves computations on finite matrices. Detail analyses for the finite section method will be

presented in Chapter 6.

Organization of the thesis. This thesis is largely based on the papers [62, 88, 133, 134].

It is organized as follows. Chapter 2 briefly recalls the sequential QR algorithm. Then we

discuss the parallel multishift QR algorithm on distributed memory architectures as well

as its implementation in Chapter 3. The user’s guide of our library software is provided in

Appendix C. Chapter 4 contains a brief review on the theory and computation of matrix

exponentials. Then in Chapter 5, we present efficient algorithms which compute exponentials

of essentially nonnegative matrices to high componentwise relative accuracy. In Chapter 6, we

discuss finite section methods for exponentials of doubly-infinite skew-Hermitian matrices.

Parts of this thesis are based on material discussed in

M. Shao. Parallel variants and library software for the QR algorithm and the com-

putation of the matrix exponential of essentially nonnegative matrices. Licentiate

Thesis, Department of Computing Science, Umeå University, Sweden. April 2012.

Apart from a brief introduction, the Licentiate thesis consists of a conference paper and two

technical reports:

Paper I. B. Kågström, D. Kressner, and M. Shao. On aggressive early deflation in parallel

variants of the QR algorithm. Applied Parallel and Scientific Computing (PARA 2010),

Lecture Notes in Computer Science, Springer, LNCS 7133, pages 1–10, 2012.

Paper II. R. Granat, B. Kågström, D. Kressner, and M. Shao. Parallel library software for the

multishift QR algorithm with aggressive early deflation. Technical Report, UMINF-12.06,

April 2012.

Paper III. M. Shao, W. Gao, and J. Xue. Componentwise high relative accuracy algorithms for

the exponential of an essentially nonnegative matrix. Technical Report, UMINF-12.04,

March 2012.

In the following, we explain the relations between Papers I–III and the results presented in

this thesis in more detail.
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Chapter 3 represents a significant extension of preliminary results on the parallel QR

algorithm presented in Papers I and II. While Papers I and II focus on software aspects,

Chapter 3 presents a detailed derivation of the involved parallel bulge-chasing algorithm.

Moreover, the performance model from Paper II has been adjusted and is supported by

experimental data verifying the model. As documented in Section 3.7 and Appendix C, several

additional efforts have gone into the public release of the software. This includes the tuning

of parameters (Section C.4) and adjusting the software to novel architectures (Abisko and

Bellatrix). As part of this adjustment, new algorithmic developments to avoid redundant

computations (Section 3.3.4) have been made.

Chapter 5 and Paper III are both concerned with computing exponentials of essentially

nonnegative matrices to high relative accuracy. Paper III represents a very preliminary version

of the results obtained in Chapter 5. In fact, the analysis and all algorithms in Chapter 5 have

seen major new developments and the derivations of the results have been redeveloped from

scratch.

All the other chapters (Chapters 1, 2, 4, 6) contain new material and have no relation to

the Licentiate thesis.
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2 Nonsymmetric Eigenvalue Problems
and the QR Algorithm

The solution of matrix eigenvalue problems is a fundamental topic in numerical linear

algebra, with applications in various areas of science and engineering. Numerous methods

have been proposed for solving matrix eigenvalue problems, based on different properties of

the matrix and different demands on the knowledge of the spectrum, see, e.g., [143]. We are

interested in a general case—computing all eigenvalues of a square matrix. In this chapter we

briefly recall the sequential QR algorithm. Detailed discussions of this topic can be found in,

e.g., [95].

2.1 Nonsymmetric eigenvalue problems

For A ∈ CN×N , the standard eigenvalue problem is to solve a nonlinear equation of the

form

Ax =λx, (x 6= 0), (2.1.1)

where λ ∈ C and x ∈ CN×1. The scalar λ is called an eigenvalue of A, and the vector x is the

corresponding eigenvector. The set of all eigenvalues of A, denoted by Λ(A), is called the

spectrum of A. Evidently, λ ∈Λ(A) if and only if

det(λI − A) = 0.

The polynomial p(t ) = det(t I − A) is called the characteristic polynomial of A. An important

property of the spectrum is that it is preserved under similarity transformations, i.e., for

any nonsingular matrix P , we have Λ(P−1 AP ) = Λ(A). Theorem 2.1.1 summarizes several

important matrix decompositions related toΛ(A) involving similarity transformations.

Theorem 2.1.1. Let A be an N ×N complex matrix.

(a) ( Jordan decomposition [83]) There exists a nonsingular matrix P such that

J = P−1 AP = Diag
{

Jk1 (λ1), Jk2 (λ2), . . . , Jks (λs)
}

,
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where k1 +k2 +·· ·+ks = N and each Jk j (λ j ) is of the form

Jk j (λ j ) =


λ j 1

. . .
. . .
. . . 1

λ j


k j×k j

.

The block diagonal matrix J is called the Jordan canonical form of A. (The eigenvalues λ1, λ2,

. . . , λs are not necessarily distinct.)

(b) (Schur decomposition [130]) There exists a unitary matrix Q ∈CN×N such that T =Q∗AQ

is upper triangular. The upper triangular matrix T is called a Schur form of A.

(c) (Real Schur decomposition [113]) If all entries of A are real, then there exists a real orthogonal

matrix Q ∈RN×N such that T =QT AQ is quasi-upper triangular. 1 The quasi-upper triangular

matrix T is called a real Schur form of A.

Proof. See, e.g., [52, 77].

The choice of method for computing the eigenvalues largely depends on the properties

of A. For example, when A is Hermitian, the Jordan canonical form (as well as the Schur

form) of A is a real diagonal matrix. This property leads to various approaches to symmetric

eigenvalue problems, see, e.g., [117]. When A is sparse but only a few eigenvalues of A are

of interest, Krylov subspace methods are preferred. We refer to [128] for discussions in this

direction. In this thesis, we only study dense nonsymmetric eigenvalue problems. By dense

and nonsymmetric we mean that no potential structure such as symmetry or sparsity in A is

exploited.

Theoretically Λ(A) can be read off from the diagonal entries of the Jordan canonical

form of A. However, the Jordan canonical form can be extremely sensitive to small perturba-

tions [163] and hence is not easy to compute in practice [86, 89, 90]. The Schur form plays

a key role in the computation of Λ(A) since only unitary similarities are involved. It can be

computed in a backward stable manner by the QR algorithm, which will be presented in

the next subsection. Once a Schur form of A has been calculated, thenΛ(A) is read off from

its diagonal and the eigenvectors of A can also be computed easily, see [58, 143]. When the

matrix A is real, Λ(A) is symmetric with respect to the real axis. Thus it is desirable to avoid

complex arithmetic during the computation so that the symmetry inΛ(A) is preserved. The

real Schur form offers such a possibility. Since the (complex) Schur form is conceptionally

simpler than the real Schur form, we restrict our discussion to the real Schur form which

automatically covers the simpler case.

1. A quasi-upper triangular matrix is a block upper triangular whose diagonal blocks are of order one or two,
where any irreducible 2×2 diagonal block contains a conjugate pair of complex eigenvalues.
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2.1. Nonsymmetric eigenvalue problems

A notable remark is that the order of eigenvalues in the real Schur form can be arbitrarily

chosen, as long as conjugate pairs of complex eigenvalues do not split. It can be easily verified

that two consecutive real eigenvalues can be swapped by

G(θ)T

[
t11 t12

0 t22

]
G(θ) =

[
t22 t12

0 t11

]
,

where

G(θ) =
[

cosθ sinθ

−sinθ cosθ

]

is a Givens rotation and cotθ = t12/(t11− t22), provided that t11 6= t22, see Appendix A for details.

Swapping diagonal blocks involving complex eigenvalues is a bit more complicated. Let

T =
[

T11 T12

T22

]
,

where T11 and T22 are real square matrices of order one or two and Λ(T11)∩Λ(T22) =;. We

seek for an orthogonal matrix U such that

U T TU = T =
[

T̃11 T̃12

T̃22

]
, Λ(T̃11) =Λ(T22), Λ(T̃22) =Λ(T11).

By solving the Sylvester equation T11X −X T22 = T12 and computing the QR decomposition[
−X

I

]
=U

[
R

0

]
,

a desired orthogonal matrix U is found, 2 see [12] for details. Based on this swapping algorithm,

any order of eigenvalues can be obtained by swapping consecutive diagonal blocks. For an

advanced reordering strategy, we refer to [96].

Another remark is that a real Schur form can always be converted into a standardized form

in the sense that any of its 2×2 diagonal block can be put into either the form[
α δ

0 β

]

or [
α β

δ α

]
, (βδ< 0).

2. In practice, we solve T11 X −X T22 = ξT12, where ξ ∈ [0,1] is chosen to avoid overflow, and then compute the

QR decomposition of
[−X
ξI

]
.

9
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Let T ∈ RN×N be a block upper triangular matrix with 1×1 and 2×2 diagonal blocks. For a

2×2 diagonal block of T which contains two real eigenvalues, a Schur decomposition of this

block splits it into two 1×1 diagonal blocks; for a 2×2 diagonal block

Tk =
[

t11 t12

t21 t22

]

containing a conjugate pair of complex eigenvalues, it can be easily verified that a Givens

rotation G(θ) with tan2θ = (t11 − t22)/(t12 + t21) transforms Tk to G(θ)T TkG(θ) which is in

the standardized form. Therefore, by standardizing each diagonal block, T is converted to a

standardized form by orthogonal similarity. An advantage of the standardized Schur form is

that all 2×2 irreducible diagonal blocks correspond to conjugate pairs of complex eigenvalues.

We will see in Section 2.2.3 that this property is helpful when checking convergence of the

eigenvalues.

2.2 The QR Algorithm

The QR algorithm has been extensively studied in the past decades, see, e.g., [57, 160] and

the references therein. By now it is the de facto standard for solving dense nonsymmetric

eigenvalue problems. The software libraries LAPACK [6] and ScaLAPACK [26] both provide

implementations of modern variants of the QR algorithm as standard dense eigensolvers.

We remark that there exist other approaches such as Jacobi-like algorithms [140] and divide-

and-conquer algorithms [11, 15] for solving (2.1.1) when A is dense and non-Hermitian. The

discussion of these methods is beyond the scope of this thesis.

In the following we briefly recall some basics about the QR algorithm, as well as a modern

variant proposed by Braman et al. [30, 31] on which our parallel QR algorithm in Chapter 3

has been built.

2.2.1 Francis double-shift QR algorithm

Basic QR iteration. Setting A(0) = A, the basic QR iteration reads

A(k) =Q(k)R(k), A(k+1) = R(k)Q(k), (2.2.1)

where Q(k) is orthogonal and R(k) is upper triangular. Notice that A(k+1) = (
Q(k)

)T A(k)Q(k), all

matrices in the sequence
{

A(k)
}

are orthogonally similar to each other. Since (2.2.1) can be

interpreted as an orthogonal iteration, under mild assumption of A,
{

A(k)
}

converges to a

block upper triangular form, and each diagonal block corresponds to a set of eigenvalues with

the same magnitude [42]. Moreover, it can be shown [42, 58] that

∥∥∥(
A(k))

(p+1:N ,1:p)

∥∥∥=O

(∣∣∣λp+1

λp

∣∣∣k
)
, (p = 1, 2, . . . , N −1)

10



2.2. The QR Algorithm

where λ j is the j th largest eigenvalue in magnitude ( j = 1, 2, . . . , N ). To accelerate the conver-

gence, the shifted QR iteration

A(k) −µ(k)I =Q(k)R(k), A(k+1) = (
Q(k))T A(k)Q(k), (2.2.2)

can be applied, where µ(k) is a shift which is usually chosen to approximate an eigenvalue of A.

For example, if we choose a stationary shift µ(k) =µ which is close to a certain eigenvalue λ j ,

then (
A(k))

(N ,N ) →λ j and
∥∥∥(

A(k))
(N ,1:N−1)

∥∥∥=O (ρk ),

provided that

ρ = max
i 6= j

∣∣∣λ j −µ
λi −µ

∣∣∣< 1.

Hence, the convergence of λ j is accelerated by choosing a shift which is sufficiently close

to λ j .

Hessenberg reduction. A drawback of (2.2.1) and (2.2.2) is that in general each iterate re-

quiresΘ(N 3) arithmetic operations for the QR decomposition. To reduce the cost, a prepro-

cessing step is to reduce A to an upper Hessenberg matrix 3 H =QT
0 AQ0. This preprocessing

step can be accomplished by using N −2 Householder reflections (see Appendix A). Figure 2.1

illustrates the procedure of reducing a full matrix to an upper Hessenberg matrix. We remark

that Q0 is of the form Q0 = Diag{1,V0} and hence (Q0)(:,1) =Q0e1 = e1. In LAPACK, the routine

DGEHRD implements a blocked version of the Hessenberg reduction process, see [45, 121] for

details.

××××××

××××××

××××××

××××××

××××××

××××××

××◦◦◦◦
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××××××

××××××

××××××

×××××◦◦◦

××××××

××××××

××××××

××××××

×××××
××××◦◦

××××××

××××××

××××××

×××××
××××

×××××◦

××××××

××××××
Figure 2.1 – Reducing a full matrix to an upper Hessenberg matrix (N = 6).

Once the matrix is reduced to an upper Hessenberg matrix, the nonzero pattern is then

preserved in (2.2.2); the computational cost also becomes much cheaper compared to that for

a full matrix. As all nonzero entries in H below the diagonal are on the subdiagonal, the QR

decomposition of H can be obtained by applying N −1 Givens rotations. Consequently, (2.2.1)

and (2.2.2) can both be performed usingΘ(N 2) arithmetic operations, see Figure 2.2.

Another advantage of Hessenberg matrices is that the checking of convergence also be-

3. A square matrix H is called upper Hessenberg if hi j = 0 when i > j +1.
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Figure 2.2 – One step QR iteration applied to an N ×N upper Hessenberg matrix requires 2(N −1)
Givens rotations (N = 6).

comes cheap. A practical criterion for setting a subdiagonal entry h(k)
i+1,i to zero is that both

∣∣h(k)
i+1,i

∣∣≤ u
(∣∣h(k)

i ,i

∣∣+ ∣∣h(k)
i+1,i+1

∣∣) , if
∣∣h(k)

i ,i

∣∣+ ∣∣h(k)
i+1,i+1

∣∣> 0,∣∣h(k)
i+1,i

∣∣≤ u‖A‖2 , if
∣∣h(k)

i ,i

∣∣= ∣∣h(k)
i+1,i+1

∣∣= 0,

and ∣∣h(k)
i+1,i

∣∣∣∣h(k)
i ,i+1

∣∣≤ u
∣∣h(k)

i+1,i+1

∣∣∣∣h(k)
i+1,i+1 −h(k)

i ,i

∣∣
are satisfied (see [3, 163]). Once a subdiagonal entry is set to zero, the upper Hessenberg matrix

becomes[
H11 H12

0 H22

]
,

which is a block upper triangular matrix. Then the problem is reduced to computing Schur

forms of two smaller matrices H11 and H22.

Francis double-shift QR algorithm. Another important technique proposed by Francis [50]

is the so-called implicit QR iteration, which avoids explicit formulation of the QR decomposi-

tion in the QR iteration. It is based on the following theorem.

Theorem 2.2.1 (Implicit Q Theorem [50]). Let Q be an N ×N orthogonal matrix with H =
QT AQ upper Hessenberg. Then Q(:,2), . . . , Q(:,s) and h2,1, . . . , hs+1,s (we formally define hN+1,N =
0) are uniquely (up to signs) determined by Q(:,1), where

s = min
{
i : hi+1,i = 0

}
.

Proof. See, e.g., [58, Theorem 7.4.2].

The implicit Q theorem provides a lot of freedom in how (2.2.2) is performed. More im-
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2.2. The QR Algorithm

portantly, it allows us to merge several steps of (2.2.2) into one iterate in a cheap manner.

Consider m steps of the QR iteration on an unreduced 4 upper Hessenberg matrix H :

H (k) −µ(k)I =Q(k)R(k),

H (k+1) = (
Q(k))T H (k)Q(k),

H (k+1) −µ(k+1)I =Q(k+1)R(k+1),

H (k+2) = (
Q(k+1))T H (k+1)Q(k+1),

· · ·
H (k+m−1) −µ(k+m−1)I =Q(k+m−1)R(k+m−1),

H (k+m) = (
Q(k+m−1))T H (k+m−1)Q(k+m−1).

We define

p(k)(t ) = (
t −µ(k)) · · ·(t −µ(k+m−1))

as the shift polynomial. It can then be shown [58, Section 7.5] that

p(k)(H (k))= (
Q(k) · · ·Q(k+m−1))(R(k+m−1) · · ·R(k))=: Q̃(k)R̃(k).

Therefore, it is equivalent to evaluate

p(k)(H (k))= Q̃(k)R̃(k), H (k+m) = (
Q̃(k))T H (k)Q̃(k). (2.2.3)

Notice that when H (k) is upper Hessenberg, only the first m+1 entries of Q̃(k)e1 = p(k)(H (k))e1/r̃11

can be nonzero. Then (2.2.3) is performed in the following way:

(1) Construct a Householder reflection U (k,0) with U (k,0)e1 being parallel to p(k)(H (k))e1.

(2) Reduce
(
U (k,0)

)T H (k)U (k,0) to an upper Hessenberg matrix using N −2 Householder

reflections of the form U (k, j ) = Diag
{
1,V (k, j )

}
.

This procedure is called a bulge chasing process or a QR sweep. Figure 2.3 provides a pictorial

illustration of a QR sweep with m = 2. Let

U (k) =U (k,0)U (k,1) · · ·U (k,N−2).

As U (k)e1 =U (k,0)e1, by the implicit Q theorem, U (k) and Q(k) are essentially the same in the

sense that U (k)
(
Q(k)

)T is a diagonal orthogonal matrix (i.e., U (k) =Q(k) Diag{±1,±1, . . . ,±1}).

Therefore, a QR sweep indeed accomplishes (2.2.3). In practice p(k)(t) is often chosen as

the characteristic polynomial of the Nshift ×Nshift trailing principal submatrix of A(k), where

Nshift = m is a positive integer. The strategy with m = 2 (i.e., double-shift) was first proposed by

Francis [50] to avoid complex arithmetic when applying a conjugate pair of complex shifts to a

real matrix. Algorithm 2.1 summarizes the procedure of Francis double-shift QR algorithm.

4. An N ×N upper Hessenberg matrix H is called unreduced if hi+1,i 6= 0 for i = 1, 2, . . . , N −1.
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Figure 2.3 – A double-shift QR sweep (N = 6).

Algorithm 2.1 Francis double-shift QR algorithm

Input: A ∈RN×N .
Output: A real Schur form of A.

1: Reduce A to an upper Hessenberg matrix H .
2: while not converged do
3: Find the bottommost unreduced diagonal block H(p:q,p:q).
4: Use det

(
t I −H(q−1:q,q−1:q)

)
as the shift polynomial and perform a double-shift QR sweep

on H(p:q,p:q).
5: Set negligible subdiagonal entries to zeros.
6: Standardize deflated 2×2 diagonal blocks.
7: end while

2.2.2 Multishift QR sweeps

Concerning the memory hierarchy on modern computer architectures, Francis double-

shift QR algorithm has an obvious drawback—most operations are performed with level 1

computational intensity 5 and have relatively low performance. To overcome this drawback, an

early attempt is to introduce multiple shifts in the QR algorithm rather than double shifts, i.e.,

chase a larger bulge [10]. Unfortunately, the quality of transmitted shifts becomes poor due to

roundoff when chasing a large bulge [157, 158]. This effect degrades the convergence of the QR

algorithm. Therefore, the size of the bulge has to be small enough to avoid numerical instability

in the bulge chasing process. Prior to LAPACK version 3.1, the routine DHSEQR implements

such a multishift QR algorithm with up to six simultaneous shifts. The computational intensity

is improved a bit, but is still between level 1 and level 2.

To further increase the computational intensity, Braman et al. [30] and Lang [100] proposed

the following strategy which introduces more shifts and achieves level 3 performance. It

consists of three stages.

Bulge introduction. The first stage is to introduce a tightly-coupled chain of Nshift/2 bulges—

each bulge contains a pair of shifts, see Figure 2.4(a). These bulges are introduced and chased

to appropriate positions one by one so that no bulge is chased across another one. The valid-

ness of such a strategy is ensured by the implicit Q theorem. The Householder reflections

are only applied within the top-left diagonal block. Then the orthogonal matrix, which accu-

5. The computational intensity is defined as the ratio between the number of arithmetic operations and the
number of memory access operations.
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Figure 2.4 – Introducing a tightly-coupled chain of bulges (Nshift = 8).

mulates all involved Householder reflections, is explicitly multiplied with the corresponding

off-diagonal block, see Figure 2.4(b). Therefore, most arithmetic operations in this stage are

performed using level 3 basic linear algebra subprograms (BLAS) [101].

Bulge chasing. In the second stage, the chain of bulges are chased from the top-left corner to

the bottom-right corner in many rounds. In each round, the chain of bulges are chased M steps

down towards the bottom-right corner. Again, Householder reflections are only applied within

the diagonal block where the chain of bulges are involved; the corresponding off-diagonal

blocks are updated by explicit multiplication with the orthogonal matrix accumulated in the

diagonal chasing step, see Figure 2.5. In practice M = 3Nshift/2 is adopted so that the number of

arithmetic operations is nearly minimized [30]. Such a delay-and-accumulate technique yields

level 3 performance when updating the off-diagonal blocks. We remark that the accumulated

orthogonal matrix in each round has a special banded structure. Taking advantage of this

structure sometimes reduces the cost of matrix multiplications, see [30].

Bulge annihilating. The final stage is to annihilate the bulges one by one at the bottom-right

corner of the matrix. Similar to the other two stages, the update of the off-diagonal block is

delayed until the accumulated orthogonal matrix is explicitly formed.

The three-stage procedure discussed above is called a small-bulge multishift QR sweep.

A tightly-coupled chain of small bulges retains the numerical stability in the bulge-chasing

process. Although the number of arithmetic operations is roughly doubled [30] compared

to Nshift/2 rounds of Francis double-shift QR sweeps, the performance is significantly improved

since this multishift QR algorithm makes intensive use of level 3 BLAS operations. We make two

further remarks on the tightness of the bulge chain. First, loosely-coupled chains of bulges can

also be useful in practice, especially when parallelizing the QR algorithm. Detailed discussion
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Figure 2.5 – The delay-and-accumulate technique in the bulge chasing stage (Nshift = 8).

will be provided in Section 3.2. Second, the tightness of the bulge chain presented here is still

not optimal. For advanced developments in this direction, we refer to [92].

2.2.3 Aggressive early deflation

Aggressive early deflation (AED) has been proposed by Braman et al. [31] aiming at accel-

erating the convergence of the QR algorithm. It proceeds by partitioning the current upper

Hessenberg matrix H ∈RN×N as

H =


N−NAED−1 1 NAED

N−NAED−1 H11 H12 H13

1 H21 H22 H23

NAED 0 H32 H33

 ,

where H33 ∈RNAED×NAED is the so called AED window. By computing the (real) Schur decom-

position H33 = V T V T , and applying the corresponding similarity transformation to H , we

obtain

U T HU =

H11 H12 H13V

H21 H22 H23V

0 s T

 ,

where

U =


N−NAED−1 1 NAED

N−NAED−1 I

1 1

NAED V

.
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2.2. The QR Algorithm

The vector s ∈ RNAED is the so called spike, created from the first entry of the vector H32.

The last diagonal entry (or 2× 2 diagonal block) of T can be deflated if the magnitude of

the last component (or the last two components) of the spike is negligible. Undeflatable

eigenvalues are moved to the top left corner of T by a swapping algorithm, see Section 2.1. The

orthogonal transformations for reordering eigenvalues in the Schur form of the AED window

are accumulated in an NAED ×NAED orthogonal matrix. By repeating the same procedure to

all diagonal entries (or 2× 2 blocks) of T , the eigenvalues of T are checked subsequently

and possibly deflated. Then the entire matrix is reduced back to upper Hessenberg and the

off-diagonal blocks H13 and H23 are multiplied by Ṽ , the product of all involved orthogonal

transformations. Figure 2.6 illustrates the whole procedure of AED.
−→


−→


−→




Figure 2.6 – A pictorial illustration of aggressive early deflation.

In practice, an AED step is performed before a multishift QR sweep. Typically, the size

of the AED window (NAED) is recommended to be somewhat larger, e.g., by 50%, than the

number of shifts (Nshift) in the multishift QR sweeps [30, 32]. Then undeflatable eigenvalues

can be used as shifts in the subsequent QR sweep. We remark that in case an AED step is

efficient enough in the sense that a reasonably large fraction (e.g., 15%) of eigenvalues has

been deflated, it is advisable to skip the QR sweep and perform another AED. The multishift

QR algorithm with aggressive early deflation discussed in this subsection is summarized as

Algorithm 2.2. An implementation of Algorithm 2.2 is available in the routine DHSEQR since

LAPACK version 3.1.

Algorithm 2.2 Multishift QR algorithm with aggressive early deflation

Input: H ∈RN×N , H is upper Hessenberg.
Output: A real Schur form of H .

1: while not converged do
2: Perform AED on the NAED ×NAED trailing principle submatrix.
3: Apply the accumulated orthogonal transformation to the corresponding off-diagonal

blocks.
4: if a large fraction of eigenvalues has been deflated in Step 2 then
5: goto Step 2.
6: end if
7: Perform a small-bulge multishift QR sweep with Nshift undeflatable eigenvalues obtained

from Step 2 as shifts.
8: Set negligible subdiagonal entries to zeros.
9: Standardize deflated 2×2 diagonal blocks.

10: end while

There is a close relationship between AED and the Krylov-Schur method [142], see [95,
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97]. Such a relationship leads to an explanation of the effectiveness of AED—even if the

subdiagonal entry |hN−NAED+1,N−NAED | is not small, indicating that the last NAED columns in the

current orthogonal transformation matrix do not span a left invariant subspace of A, it is still

possible to exploit potentially converged Ritz vectors from this subspace. We refer to [97] for

detailed discussions. A simple application of AED for Hermitian matrices will be presented in

Chapter 6.

In principle, aggressive early deflation can be incorporated into any variant of the QR

algorithm. It has been observed [31, 95] that AED dramatically accelerates the convergence of

both Francis double-shift QR algorithm and the multishift QR algorithm. We will see another

variant of the QR algorithm equipped with AED in Section 3.3.2.
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3 The Parallel QR Algorithm with
Aggressive Early Deflation

When solving large-scale dense nonsymmetric eigenvalue problems, it is naturally desir-

able to parallelize the QR algorithm to handle large-scale problems. In the parallel setting, the

QR algorithm for dense nonsymmetric eigenvalue problems also consists of two stages:

(1) Reduce a full matrix A to an upper Hessenberg matrix H , i.e., H =QT
0 AQ0.

(2) Iteratively reduce H to a (real) Schur form, i.e., T = Z T H Z .

For the first stage, we refer to [33] for the parallel Hessenberg reduction algorithm which is

implemented in the ScaLAPACK routine PDGEHRD, and to [87, 91, 146] for recent developments

in this direction. In this thesis we only focus on the second stage, i.e., how to further reduce an

upper Hessenberg matrix to a real Schur form on distributed memory architectures. Figure 3.1

shows the software hierarchy of our implementation of the parallel multishift QR algorithm,

which is built on Algorithm 2.2 presented in Chapter 2. Details regarding the parallel algo-

rithm and some implementation issues are discussed in this chapter. To avoid ambiguity, the

terminology “QR algorithm” only refers to the second stage throughout this chapter.

PDHSEQR

Entry routine for the new parallel multishift QR algorithm.

PDLAQR0

New parallel
multishift QR algorithm.

PDLAQR1

Modified version of ScaLAPACK’s
original implementation of the
parallel pipelined QR algorithm.

PDLAQR3

Aggressive early deflation
and shift computation.

PDLAQR5

Multishift QR iteration based on
chains of tightly coupled bulges.

PDTRORD

Parallel eigenvalue reordering.

PDLAQR2

Aggressive early deflation.

Figure 3.1 – Software hierarchy of the parallel multishift QR algorithm with AED.

The rest of this chapter is largely based on the manuscript [62] submitted for publica-

tion in ACM Trans. Math. Software. It is organized as follows. In Section 3.1, we first briefly

recall ScaLAPACK’s data layout convention which is adopted in our library software. Then
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in Sections 3.2–3.4, we present the parallel multishift QR algorithm with AED. More detailed,

Section 3.2 and 3.3 discuss parallel implementations of QR sweeps and AED, respectively. The

criterion of switching between QR sweeps and AED is provided in Section 3.4. In Section 3.5,

we establish a performance model which provides insights into the cost of computations

and communications. Then suggestions on the choice of the parameters are provided in

Section 3.6. Finally, we evaluate the performance of our parallel multishift QR algorithm by a

large set of numerical experiments. The user’s guide of our parallel library software is provided

in Appendix C.

3.1 Data layout convention in ScaLAPACK

In ScaLAPACK, the p = pr ·pc processors are usually arranged into a pr ×pc grid. Matrices

are distributed over the rectangular processor grid in a 2D block-cyclic layout with block size

Mb ×Nb (see an example in Figure 3.2). The information regarding the data layout is stored

in an array descriptor so that the mapping between entries of the global matrix and their

corresponding locations in the memory hierarchy can be established. We adopt ScaLAPACK’s

data layout convention and require that the N ×N input matrices H and Z have identical data

layout with square data blocks (i.e., Mb = Nb). However, the processor grid need not to be

square unless explicitly specified.

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2) (1,0) (1,1)

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2) (1,0) (1,1)

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2) (1,0) (1,1)

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2) (1,0) (1,1)

Figure 3.2 – The 2D block-cyclic data layout across a 2×3 processor grid. For example, processor (0,0)
owns all highlighted blocks.

3.2 Parallel QR sweeps

Since the concept of aggressive early deflation is relatively recent compared to earlier

developments of the parallel QR algorithm, a lot of efforts on the parallelization of the QR

algorithm in 1980s–1990s focused on how to improve the performance in the bulge chasing

stage. In the following we first briefly recall the pipelined QR algorithm implemented in the
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ScaLAPACK routine PDLAHQR, and then discuss our new parallel approach to the multishift QR

sweeps.

3.2.1 The pipelined QR algorithm

In [69], it has been shown that a scalable parallel variant of the QR algorithm must use

at least Θ(
p

p) shifts simultaneously. The pipelined QR algorithm is a scalable approach

which realizes this level of concurrency. The basic idea of the pipelined QR algorithm is

to introduce several bulges of shifts—each contains two shifts, and chase them in parallel.

These bulges are loosely-coupled so that they can be chased simultaneously using different

processors, see Figure 3.3. Such an idea has been studied by many authors, e.g., Heller and

Ipsen [68], Stewart [141], van de Geijn [147, 148], and Watkins [156]. In practice, Nshift =
Θ(

p
p) shifts are chosen as the eigenvalues of the Nshift ×Nshift trailing principal submatrix.

Local quadratic convergence of this shifting strategy has been confirmed in [148, 156, 161].

A parallel implementation of the pipelined QR algorithm is available in ScaLAPACK since

version 1.5 as routine PDLAHQR. For detailed discussion about the pipelined QR algorithm and

its implementation, we refer to [70].

Figure 3.3 – The pipelined QR algorithm chases several loosely-coupled bulges in parallel. The dashed
lines represent borders of the processor grid. Only parts of the matrix are displayed.

Although the pipelined QR algorithm clearly gives potential for parallelism, it comes with

the disadvantage that its computational intensity is concentrated at level 1 and level 2 BLAS.

In addition, frequent communication between processors is required, which causes the actual

performance of the pipelined QR algorithm to not be very satisfactory. These shortcomings

limit the practical application of the pipelined QR algorithm to only small- to medium-size

matrices. In the next subsection, we discuss how to avoid these shortcomings and present an

approach which is suitable for large-scale problems.
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Figure 3.4 – Chains of tightly-coupled bulges are chased in the new parallel multishift QR algorithm.

3.2.2 New parallel multishift QR sweeps

As we have seen in the previous subsection, the main drawback of the pipelined QR

algorithm is that it requires too frequent communication, not only between processors, but

also within the local memory hierarchy. To overcome this drawback, we combine the idea of

the pipelined QR algorithm with the small-bulge multishift QR algorithm. In our new parallel

multishift QR algorithm implemented in the routine PDLAQR5, the remedy is to use several

chains of tightly-coupled bulges, see Figure 3.4, so that local performance is improved and the

communication is reduced [61].

Local chasing. The total number of shifts (Nshift) used in a single QR sweep is shown in

Table 3.1, and is usually much larger compared to the pipelined approach. These shifts are

divided into several chains of tightly-coupled bulges with up to bNb/3c shifts per chain so that

the length of each chain does not exceed Nb/2. The chains are placed on different diagonal

blocks, such that Θ(
p

p) chains can be chased locally and simultaneously. Once the bulge

chasing within the diagonal blocks are performed, the accumulated orthogonal matrices

are broadcasted to the corresponding rows/columns of processors. The off-diagonal blocks

are then updated by explicit multiplication with these orthogonal matrices. The degree of

concurrency of off-diagonal updating isΘ(p), just like that in the pipelined QR algorithm, while

the computational intensity is improved to level 3 by the delay-and-accumulate technique.

Crossborder chasing. Once a local chasing step is performed, the chains of bulges reach

the bottom-right corners of the diagonal blocks. We then need to perform a crossborder

chasing so that each chain is moved to the next diagonal block. Compared to the pipelined QR

algorithm where only six rows/columns are involved for each bulge in the crossborder bulge

chasing stage, the situation in the new parallel multishift QR algorithm is considerably more

complicated and thus requires extra care.
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Table 3.1 – Recommended values for Nshift and NAED.

Matrix size (N ) Nshift NAED

<6K see [32]
6K–12K 256 384

12K–24K 512 768
24K–48K 1024 1536
48K–96K 2048 3072
96K–192K 4096 6144

192K–384K 8192 12288
384K–768K 16384 24576
768K–1000K 32768 49152

> 1M dN /25e 3Nshift/2

We first discuss the crossborder chasing of a single chain. Let 2m be the number of shifts

of the bulge chain. Consider the following (6m +2)× (6m +2) diagonal block

D =
[ 3m+1 3m+1

3m+1 Hkk Hk,k+1

3m+1 Hk+1,k Hk+1,k+1

]
,

where Hi j is owned by the processor Pi j (for i , j ∈ {k,k +1}). Suppose we are about to chase

the chain of bulges from Hkk to Hk+1,k+1. First, processor Pkk collects Hk,k+1, Hk+1,k , and

Hk+1,k+1 from other processors. Then processor Pkk , which now owns a copy of D , performs

the desired chasing locally. Finally, each block of the new (6m +2)× (6m +2) matrix is sent

back to its corresponding owner. The diagonal chasing is then finished. We remark that when

the chain reaches the bottom-right corner of the whole unreduced upper Hessenberg matrix,

the size of Hk+1,k+1 might be smaller than (3m+1)× (3m+1) so that there is not enough room

within Hk+1,k+1 to receive the chain from Hkk . In this case the chain is chased off directly

when performing crossborder diagonal chasing.

To update the corresponding off-diagonal blocks, the orthogonal matrix accumulated in

the diagonal chasing stage is broadcasted to the corresponding rows/columns of processors

which are involved in off-diagonal updating. Then each involved processor exchanges data

blocks with its neighbor, see Figure 3.5. Finally the off-diagonal blocks are updated by explicit

multiplication with the accumulated orthogonal matrix.

An important difference compared to local chasing is that in the crossborder chasing

stage we do not chase all bulge chains simultaneously. To avoid conflicts between different

tightly-coupled chains, the chains are chased in an odd-even manner when passing through

the processor border, see Figure 3.6. Then no processor needs to send and receive two different

chains at the same time. The degree of parallelism still remainsΘ(p).
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Figure 3.5 – Exchange data blocks with neighbors when updating off-diagonal blocks in the crossborder
bulge chasing stage.

first round second round

Figure 3.6 – Crossborder bulge chasing. Odd-numbered chains (left) and even-numbered chains (right)
are chased separately in two rounds.

Parallel eigenvalue reordering. Finally, we remark that reordering eigenvalues in a Schur

form can be implemented in a similar manner. The high level structure of the parallel algorithm

stays the same—distribute several chains of eigenvalues (which are about to be reordered)

on different diagonal blocks and reorder them in parallel. The only difference is that within

each diagonal block an eigenvalue swapping algorithm (see Section 2.1) instead of a bulge

chasing algorithm is applied. We refer to [60] for detailed descriptions. This parallel eigenvalue

reordering algorithm, implemented in the routine PDTRORD, will be used in the parallel AED

stage in our new parallel multishift QR algorithm.
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3.3 Aggressive early deflation

As pointed out in Section 2.2.3, aggressive early deflation can be incorporated into any

variant of the QR algorithm. Therefore both the new parallel multishift QR algorithm and the

pipelined QR algorithm benefit from performing AED. As the efficient implementation of AED

requires some care, we will now discuss these two settings in more detail.

3.3.1 AED within the new multishift QR algorithm

As this setting will be used for targeting large-scale problems, the AED window can be

expected to become quite large. It is therefore not reasonable to expect that executing AED

locally and sequentially yields good performance. Hence, the corresponding routine PDLAQR3
for performing AED requires a parallel approach.

The first and most costly step of AED is to calculate the Schur decomposition of the AED

window, i.e., the NAED ×NAED trailing principal submatrix of H . This eigenvalue problem can

be solved by either recursively using the new multishift QR algorithm (PDLAQR0) or using

the pipelined QR algorithm (PDLAQR1). The choice of the solver is determined by the size

of the AED window as well as the number of processors used. Since NAED is relatively small

compared to N , the number of available processors may be too large to facilitate all of them

without causing significant communication overhead. In this case, we only use a subset of

the processors to reduce the overhead and approximately minimize the execution time. See

Section 3.3.3 for a more detailed discussion.

In the deflation checking phase, the reordering algorithm is arranged in a blocked manner,

to reduce memory transfers and communication. Unlike the procedure described in [30], un-

deflatable eigenvalues are not moved immediately and individually towards the top left corner

of the AED window. Instead, they are first reordered within an Nb ×Nb computational window.

Only after all eigenvalues in this Nb × Nb window are checked, the group of undeflatable

eigenvalues is moved simultaneously to the top left corner of the AED window. This blocked

approach increases the computational intensity and avoids the frequent communication

needed when reordering each eigenvalue individually. The procedure is repeated until all

eigenvalues in the AED window are checked.

The last step is to eliminate the spike and reduce the AED window back to the upper Hes-

senberg form. This task is performed with the ScaLAPACK routine PDGEHRD. The corresponding

off-diagonal blocks are updated by explicitly multiplying the accumulated orthogonal ma-

trix using the PBLAS routine PDGEMM. The whole parallel AED algorithm is summarized in

Algorithm 3.1. The routine PDLAQR3 in our software implements this algorithm.
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Algorithm 3.1 Parallel aggressive early deflation

Input: H ∈RN×N is upper Hessenberg.
1: (optional) Redistribute the AED window to a subset of processors.
2: Compute the Schur decomposition of the AED window (using a subset of processors).
3: (optional) Redistribute Schur decomposition of the AED window back to the orginal

process grid.
4: repeat
5: Check deflation for the last Nb eigenvalues; undeflatable eigenvalues are moved to the

top-left corner of this Nb ×Nb block.
6: Move undeflatable eigenvalues in this group of Nb eigenvalues to the top-left corner of

the AED window.
7: until all eigenvalues within the AED window are tested
8: Eliminate the spike and reduce the matrix back to an upper Hessenberg matrix.

3.3.2 AED within the pipelined QR algorithm

The original ScaLAPACK (version 1.8.0) implementation PDLAHQR of the pipelined QR

algorithm is not equipped with the AED strategy. In our software, we provide a new routine

PDLAQR1, which is modified from PDLAHQR and implements Algorithm 3.2. When adding AED,

we have taken into account that we will only use this routine for small- to medium-size

(sub)matrices. In particular, we can expect the AED window to be sufficiently small such that

AED can be performed on one processor efficiently, by using the LAPACK implementation of

AED.

Algorithm 3.2 Parallel pipelined QR algorithm with AED

Input: A ∈RN×N .
Output: A real Schur form of A.

1: Reduce A to an upper Hessenberg matrix H .
2: while not converged do
3: Copy the (NAED+1)×(NAED+1) trailing submatrix to one processor and perform sequential

AED on the NAED ×NAED window.
4: Broadcast the output of AED to all involved processors and update the corresponding

off-diagonal blocks in parallel.
5: if a large fraction of eigenvalues has been deflated in Step 3 then
6: goto Step 3.
7: end if
8: Compute the eigenvalues of the (NAED +1)× (NAED +1) trailing submatrix sequentially.
9: Perform a pipelined QR sweep using Nshift shifts computed in Step 8.

10: Set negligible subdiagonal entries to zeros.
11: Standardize deflated 2×2 diagonal blocks.
12: end while

Apart from AED, our new routine PDLAQR1 incorporates further modifications to PDLAHQR,

making it both faster and more robust. In the following we summarize the most important
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aspects; additional details can be found in [88, 132].

Aggressive early deflation. AED is implemented in an auxiliary routine PDLAQR2 which

copies the trailing (NAED +1)× (NAED +1) submatrix to local memory and calls the LAPACK

routine DLAQR3 to solve the problem sequentially. To determine the algorithmic parameters of

AED, we use the settings of the LAPACK installation determined by ILAENV. However, a notable

difference is that we do not use the undeflatable eigenvalues from the AED step as shifts in

the subsequent pipelined QR sweep. Instead, we recompute the eigenvalues of the trailing

(NAED +1)× (NAED +1) submatrix and (randomly) take Nshift of them as shifts. We have observed

that this shifting strategy improves the quality of the shifts and accelerates the convergence

of the pipelined QR algorithm. The computation of shifts are also performed locally and

sequentially.

Conventional deflation. In PDLAHQR, pipelined QR sweeps are performed until the very end,

that is, the remaining diagonal blocks are all of size 1×1 or 2×2. In PDLAQR1, we use a different

strategy: Once the active block is sufficiently small (say, not larger than 385×385), we copy

this block to local memory and call the LAPACK routines DLAHQR/DLAQR4 to solve the problem

sequentially. This strategy significantly reduces communication overhead in the latter stages

and is implemented in an auxiliary routine PDLAQR4.

Avoidance of anomalies. The original ScaLAPACK routine PDLAHQR suffered from two anoma-

lies, which have been removed. First, the routine sometimes returned 2×2 diagonal blocks

containing real eigenvalues, which is not in accordance with the specification of the inter-

face. In PDLAQR1, each 2×2 diagonal block contains a conjugate pair of complex eigenvalues.

This change is also helpful when checking deflation in the AED procedure. The second issue

is concerned with a “deflation” strategy already proposed by Francis [50], which allows to

introduce bulges below the top left corner of the active submatrix if there are two consecu-

tive small subdiagonal entries. However, this turns out to be difficult to implement in a safe

manner in pipelined or multishift QR sweeps, see [132] for detailed explanations. When using

the ScaLAPACK routine PDLACONSB which implements this strategy, we have observed large

relative residuals of norm up to 10−5, indicating numerical instabilities. As the performance

improvements gained from this strategy are usually negligible, we have decided to remove it.

In return, the numerical stability is improved.

3.3.3 Avoiding communication via data redistribution

As observed in [88], the parallel QR algorithm is not efficient at solving relatively small

eigenvalue problem on many processors, due to excessive communication, to the point that

the execution time actually increases when increasing the number of processors. Such a

situation is regularly encountered when calculating the Schur decomposition of the AED
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window. Therefore, the computation of the Schur decomposition of the AED window often

became a bottleneck in the previous implementation of parallel multishift QR algorithm [61].

Recent work on communication avoiding algorithms [16, 15, 76, 81] usually focuses on the

design of algorithms that can attain the theoretical lower bounds of the communication cost.

A basic assumption in these theoretical analyses is that the data are nearly evenly distributed

over the processors. Here we propose an alternative approach, which does not rely on this

assumption and is especially useful for operations involving smaller submatrices.

We first consider a simple and extreme case. Suppose there is one processor which has a

large amount of local memory and very high clock speed. Then by gathering all data to this

processor, the problem can be solved without further communication. Once the computation

is completed, the data are scattered to their original owners. The total amount of communi-

cation does not exceed the cost of scattering and gathering regardless of the complexity of

computational work. Although this simple idea does not work for large problems that cannot

be stored on a single processor, it is still useful for smaller problems. For example, the AED

process in the pipelined QR algorithm is implemented in such a manner since we know in

advance that the AED window is always sufficiently small, such that the associated Schur

decomposition can be efficiently solved sequentially. By introducing the overhead of data

redistribution, the total amount of communication as well as the execution time are reduced.

For larger problems, it is not feasible to solve them sequentially via data redistribution.

Specifically, the AED window within the new parallel multishift QR algorithm usually becomes

quite large, although much smaller compared to the whole matrix. In this case, we choose a

subset of processors instead of a single processor to perform AED. The data redistribution is

performed using the routine PDGEMR2D in ScaLAPACK; its overhead has been observed to be

negligible relative to the AED process as a whole.

The tunable parameter pmin = PILAENVX(ISPEC=23) determines our heuristic strategy

for choosing the number of processors for the redistribution. If min(pr , pc ) > pmin +1, we

redistribute the AED window to a pmin ×pmin processor grid and perform the calculations on

this subset of processors. The same strategy is also applied if we need to compute shifts after an

AED step (see Section 3.4). The default value for this parameter is pmin = dNAED/(Nbd384/Nbe)e,

implying that each processor needs to own at least 384 columns of the AED window. The

constant 384 has been obtained via extensive numerical experiments on one of our target

architectures. It certainly needs adjustment for optimal performance on other architectures.

3.3.4 Task duplication—efficient but hazardous

Task duplication is a common technique in parallel computing to reduce communication

and potentially improve performance, see, e.g., [59]. This technique has already been employed

in previous implementations of the parallel QR algorithm, such as PDLAHQR and software

developed in [61, 88]. However, a crucial assumption is made when applying this technique:
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All involved processors need to produce identical outputs for identical tasks. Due to the

effect of rounding error, this assumption is not always satisfied, especially on heterogeneous

architectures.

This lack of numerical reproducibility is potentially harmful to the robustness of the par-

allel QR algorithm. As discussed in Section 3.3.2, all computations within the AED window

are performed sequentially for the pipelined QR algorithm. In [88], these sequential parts are

duplicated on all involved processors. The parallel update of the off-diagonal blocks can then

be performed with the local copy of the orthogonal transformation matrix resulting from AED,

without any extra communication. However, even the slightest change in finite precision arith-

metic may lead to very different outputs produced by AED since QR sweeps are not forward

stable [118, 157]. In particular, the ordering of the eigenvalues in the Schur decomposition

computed within AED is very sensitive to such changes. In turn, the off-diagonal blocks are

updated using completely different local copies of the orthogonal transformation matrices,

leading to meaningless results. We have observed similar problems in crossborder bulge chas-

ing and eigenvalue reordering. To avoid this, we use explicit communication rather than task

duplication in the new implementation. For a moderate number of processors (e.g., p ≤ 100),

the change in performance is negligible; while for a large number of processors, the perfor-

mance can drop. For example, for computing the Schur decomposition of a 100,000×100,000

matrix using 40×40 processors, up to 25% performance drop has been observed by replacing

task duplication with explicit communication.

3.4 Switching between QR sweeps and AED

As we have pointed out in Section 2.2.3, there are rules for balancing the cost between

multishift QR sweeps and AED in the QR algorithm (e.g., Step 4 in Algorithm 2.2 and Step 5

in Algorithm 3.2). The precise meaning of these rules is characterized by a threshold called

NIBBLE. Let Nundflt denote the number of undeflatable shifts in an AED step. The multishift

QR sweep is skipped if

NAED −Nundflt

NAED

≥ NIBBLE

100
.

Since AED behaves differently for different matrices, this strategy automatically adjusts the

choice between AED and QR sweeps based on the properties of the matrix.

The default value of NIBBLE in the sequential LAPACK implementation is 14, which pro-

vides a good balance between multishift QR sweeps and AED. The same default value is used

in our modified version of the pipelined QR algorithm with AED. However, in the new parallel

multishift QR algorithm, the parallel AED process becomes substantially more expensive than

the sequential AED process due to communication. As explained above, the AED process only

involves a smaller trailing submatrix, leading to decreased parallel efficiency. To account for

this, NIBBLE should be set larger to avoid performing AED too frequently. A good choice of this
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threshold depends both on the size of the matrix H and the number of processors involved. We

use the model NIBBLE= a ·N b pc for this purpose, where a, b, and c are machine-dependent

constants. An appropriate choice of these constants can be gained from repeated runs of the

program with different thresholds. It turns out that the right choice of NIBBLE becomes rather

sensitive when communication is slow. In our numerical experiments, the default values on

our computing architectures are chosen as (a,b,c) = (335,−0.44,0.5).

A complication arises when using NIBBLE > 33. Such a choice may lead to situations

where the number of undeflatable eigenvalues is less than the desired number of shifts,

that is Nundflt < Nshift, due to the fact that NAED = 3Nshift/2. The solution in the software is

that as long as Nundflt ≥ Nshift/2, we only use these Nundflt undeflatable eigenvalues as shifts

in the subsequent QR sweep. However, the condition Nundflt ≥ Nshift/2 may also fail when

NIBBLE> 66. In this case we calculate the eigenvalues of the Nshift ×Nshift trailing principal

submatrix of H and use them as shifts. The calculation can be performed by either PDLAQR0
or PDLAQR1, just like computing the Schur decomposition in the AED step.

3.5 Performance model

In this section, we analyze the cost of computation and communication of the new parallel

multishift QR algorithm for reducing a Hessenberg matrix to Schur form. For simplicity, we

consider a square processor grid, that is, pr = pc = p
p. In addition, we assume that each

processor contains reasonably many data blocks of the matrices, i.e.,
p

p Nb ¿ N , so that the

work load is balanced. The parallel execution time consists of two main components:

Tp = Ta +Tc ,

where Ta and Tc are the times for arithmetic operations and communication, respectively.

The possibility of overlapping communication with computations is not taken into account.

By neglecting the communication between memory and cache lines inside one core, the serial

runtime can be approximated by

Ta = #(flops)

f (p)
γ,

where γ is the average time for performing one floating-point operation and f (p) is the degree

of concurrency. For the communication between two processors, we defineα andβ as the start-

up time (or communication latency) and the time for transferring one word without latency (or

reciprocal of bandwidth), respectively. The time for a single point-to-point communication is

modeled asα+Lβwhere L is the message size in words. A one-to-all broadcast or an all-to-one

reduction within a scope of p processors is assumed to takeΘ(log p) steps.

Let kAED and kQR denote the number of AED steps and QR sweeps, respectively, performed

by the new parallel multishift QR algorithm. We have kQR ≤ kAED, since some QR sweeps
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are skipped when the percentage of deflated eigenvalues in the AED step is larger than the

threshold (NIBBLE). When the number of undeflatable eigenvalues from AED is not sufficient

for performing the next QR sweep, we need to calculate shifts from the trailing submatrix. The

number of extra calls to the parallel Schur decomposition solver in this case is denoted by kshift,

which of course satisfies kshift ≤ kQR. Given the constants kAED, kQR, and kshift, the execution

time of the parallel QR algorithm is modeled as the sum of the corresponding phases:

T (N , p) = kAEDTAED(N , NAED, p)+kQRTQR(N , Nshift, p)+kshiftTshift(N , Nshift, p),

where TAED, TQR, and Tshift are the runtimes for performing each phase once. For simplicity, it

is assumed that NAED and Nshift remain constant throughout the entire QR algorithm, and all

QR sweeps act on the entire matrix. We further assume that AED is always performed on ap
pAED×ppAED processor grid, so that the property

p
pAED Nb ¿ NAED is also valid inside the AED

window. The same assumption is made for the shift calculation phase. A typical relationship

among these parameters is

Nshift ≈
2

3
NAED ≈ 1

C1
N and

NAEDp
pAED

≈ Nshiftp
pshift

≥C2,

where C1 and C2 are constants (e.g., C1 = 24, C2 = 384). In practice kAED, kQR, kshift can vary a lot

for different matrices. We assume kAED =Θ(N /NAED) =Θ(C1), which appears to be reasonable.

In the following we present performance models based on the assumptions above. Tiny

terms, especially lower order terms with reasonably sized constants, are omitted.

3.5.1 Estimating TQR

The QR sweep is relatively simple because the computation and communication cost is

well-determined by N , Nshift, and p. Usually there are up to
p

p simultaneous computational

windows, one at each diagonal processor in the grid, with at most Nb/3 shifts in each window.

If Nshift >p
p Nb/3, these shifts are chased in several rounds. So we use a rough approximation

N?
shift =

p
p Nb/3 to represent the total amount of shifts which can be chased simultaneously

in the QR sweep. Based on the assumption
p

p Nb ¿ N , the overhead for the start-up and

ending phases of the bulge chasing are not important. Therefore the cost of one QR sweep is

roughly

TQR(N , Nshift, p) = NshiftN

N?
shiftNb

(Tlocal +Tcross),

where Tlocal and Tcross represent the runtime for local and crossborder bulge chasing, respec-

tively. Both parts require chasing the chain of bulges with Nb/2 steps inside the computational

window, as well as updating the corresponding off-diagonal blocks. Hence the runtime for

arithmetic operations is
(
4N 3

b +4N N 2
b

/p
p

)
γ, half of which is for accumulating the orthogonal

matrix Q. The only communication cost in the local chasing phase is broadcasting the accu-
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mulated orthogonal matrix rowwise and columnwise in the processor grid, which requires

log2 p
(
α+N 2

bβ
)

runtime. Therefore,

Tlocal =
(
4N 3

b + 4N N 2
bp

p

)
γ+ log2 p

(
α+N 2

bβ
)≈ 4N N 2

bp
p

γ+ log2 p
(
α+N 2

bβ
)

.

One round crossborder chasing requires at least the same amount of communication as in

one local chasing step, with some extra cost for explicitly forming the Nb ×Nb computational

window and exchanging data with processor neighbors for updating the off-diagonal blocks.

Notice that usually there are two rounds for a crossborder chasing step, therefore we have

Tcross = 2

[
Tlocal +3

(
α+ N 2

b

4
β

)
+3

(
α+ N Nb

2
p

p
β

)]
,

and then

TQR(N , Nshift, p) ≈ 12N 2NshiftNbp
p N?

shift

γ+ 3N Nshift

N?
shiftNb

(log2 p +4)α+ 3N 2Nshiftp
p N?

shift

β

= 36N 2Nshift

p
γ+ 9N Nshiftp

p N 2
b

(log2 p +4)α+ 9N 2Nshift

pNb
β.

From this model, we can see that the cost for updating the off-diagonal blocks dominates

in both the computation and communication parts, under the assumption that
p

p Nb ¿ N

(or equivalently N?
shift ¿ N ). As a byproduct, the performance model of a plain multishift QR

algorithm without AED can also be obtained. By assuming the convergence rate asΘ(1) shifts

per eigenvalue, i.e., kQR =Θ(N /Nshift), and neglecting the cost for generating shifts, the total

execution time of a plain multishift QR algorithm is

T (N , p) =Θ
(

N 3

p

)
γ+Θ

(
N 2 log p
p

p N 2
b

)
α+Θ

(
N 3

pNb

)
β.

Fixing the memory load per processor (i.e., N
/p

p = constant) yields

T (N , p) =Θ(N )γ+Θ(N log N )α+Θ(N )β.

3.5.2 Estimating TAED and Tshift

The execution time for one step AED is modeled as

TAED(N , NAED, p) = Tredist(NAED, p, pAED)+TSchur(NAED, pAED)

+Treorder(NAED, p)+THess(NAED, p)+Tupdate(N , NAED, p),

where the terms in the right-hand-side represent the runtime for data redistribution, Schur

decomposition of the AED window, deflation checking and reordering of eigenvalues, Hes-
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senberg reduction, and updating the off-diagonal blocks corresponding to the AED window,

respectively. We estimate these terms one by one using the hierarchical approach described

in [37].

Estimating Tredist. The general purpose data redistribution routine PDGEMR2D in ScaLAPACK

uses the algorithm described in [120]. Since the scheduling part is tiny compared to the

communication part, the complexity of data redistribution is provided [120] as

Tredist(NAED, p, pAED) =Θ(p)α+Θ
(

N 2
AEDp

p pAED

)
β.

Estimating TSchur. The complexity of the Schur decomposition performed by PDLAQR1
largely depends on the properties of the matrix, since AED affects the convergence rate

significantly. To obtain an estimate of the complexity, we assume that AED roughly reduces

the number of pipelined QR sweeps by half. According to the experimental results presented

in [88], this assumption usually provides a reasonable upper bound of the runtime, although

it can be overestimated. Using the model in [70], we obtain an approximate execution time

TSchur(N , p) = 20N 3

p
γ+ 3N 2

p
p Nb

(log2 p +2)α+
(

3N 2 log2 pp
p

+ 8N 3

pNb

)
β. (3.5.1)

If the orthogonal matrix Q is not accumulated in the calculation, the arithmetic operations

are roughly halved, i.e.,

T̃Schur(N , p) = 10N 3

p
γ+ 3N 2

p
p Nb

(log2 p +2)α+
(

3N 2 log2 pp
p

+ 8N 3

pNb

)
β.

The model provided in [26] is similar, but with slightly different coefficients.

Estimating Treorder. Obviously, the cost for eigenvalue reordering depends on the deflation

ratio. However, we can evaluate an upper bound for the cost—all eigenvalues are involved in

the reordering. Then the performance model is almost the same as that of QR sweeps, since

updating the off-diagonal blocks is the dominant operation. Notice that each eigenvalue needs

to move NAED/2 steps in average, so the overall cost for eigenvalue reordering inside the AED

window is bounded by

Treorder(NAED, p) ≈ 4N 2
AEDNbp

p
γ+ 2NAED

Nb
(log2 p +3)α+ 3N 2

AED

2
p

p
β.

As a different feature compared to QR sweeps or the performance model in [60] for parallel

eigenvalue reordering, the degree of concurrency here isΘ(
p

p) instead ofΘ(p). The reason
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for such a difference is that there is only one chain of up to Nb eigenvalues to be reordered

and hence at most two diagonal blocks are involved for the reordering phase inside the AED

window.

Estimating THess. The Hessenberg reduction routine PDGEHRD uses the parallel algorithm

described in [33]. Almost all computations and communication are performed on matrix-

vector and matrix-matrix multiplications. Therefore we need to model these PBLAS operations

first. The level 2 operations GEMV and GER require

TGEMV(M , N , p) ≈ TGER(M , N , p) ≈ 2M N

p
γ+ log2 p

(
α+ M +N

2
p

p
β

)
,

where M×N is the size of the matrix. This model directly carries over to multiplying two M×K

and K ×N matrices as long as min{M , N ,K } ≤ Nb since it is merely a “fat” level 2 operation. In

the Hessenberg reduction algorithm, all level 3 operations are “fat” level 2 operations, so the

cost for one GEMM operation can be modeled as

TGEMM(M , N , Nb , p) ≈ TGEMM(M , Nb , N , p) ≈ 2M N Nb

p
γ+ log2 p

(
α+ (M +N )Nb

2
p

p
β

)
. (3.5.2)

Using these simple models of the PBLAS operations, we are now ready to establish a model

for THess. The level 2 part consists roughly of N matrix-vector multiplications of dimension

N × (N − j ) (for j = 1, 2, . . . , N ). Therefore the cost is

Tlevel2 =
N∑

j=1

[
2N (N − j )

p
γ+ log2 p

(
α+ 2N − j

2
p

p

)]
≈ N 3

p
γ+ log2 p

(
Nα+ 3N 2

4
p

p
β

)
.

The level 3 part contains roughly N /Nb iterations with one PDGEMM and one PDLARFB per

iteration. Within the j th iteration ( j = 1, 2, . . . , N /Nb), PDGEMM involves matrices of dimension

N ×Nb and Nb × (N − j Nb −Nb); PDLARFB mainly performs two parallel GEMM operations,

with
{

Nb × (N − j Nb), (N − j Nb)× (N − j Nb)
}

and
{

(N − j Nb)×Nb , Nb × (N − j Nb)
}

matrices

involved. Another sequential TRMM operation in PDLARFB is ignored since it only contributes

lower order terms in both arithmetic and communication costs. So the cost for level 3 part is

Tlevel3 =
N /Nb∑

j=1

[
2 j Nb +6(N − j Nb)

p
Nb(N − j Nb)γ+ log2 p

(
3α+ 6N −5 j Nb

2
p

p
β

)]

≈ 7N 3

3p
γ+ 3N log2 p

Nb
α+ 7N 2 log2 p

4
p

p
β,

and hence the execution time for Hessenberg reduction (without explicitly forming the or-

thogonal matrix) is

T̃Hess(N , p) = Tlevel2 +Tlevel3 ≈
10N 3

3p
γ+N log2 pα+ 5N 2 log2 p

2
p

p
β. (3.5.3)
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Even if the proportion of level 3 operations is improved to 80% as suggested in [121] (this is

not implemented in the current PDGEHRD yet), the estimate in (3.5.3) would not change too

much since the number of messages in the level 2 part is not reduced.

Since the Householder reflections are stored in a compact form in the lower triangular

part of the upper Hessenberg matrix, formulating the orthogonal matrix after Hessenberg

reduction is another necessary step. This step is done by the ScaLAPACK routine PDORMHR,

which is mainly a series of calls to PDLARFB. Similar to the discussion above, we obtain

TORMHR ≈ 2N 3

p
γ+ 3N log2 p

Nb
α+ 7N 2

4
p

p
β.

Therefore, the total runtime for the Hessenberg reduction process including formulating the

orthogonal matrix is

THess(N , p) = T̃Hess +TORMHR ≈ 16N 3

3p
γ+N log2 pα+ 17N 2 log2 p

4
p

p
β. (3.5.4)

Estimating Tupdate. The cost for updating the off-diagonal blocks with respect to the AED

window is simple to analyze since it merely contains three GEMM operations. Since these

GEMM operations are not “fat” level 2 operations, we need to use a model different from (3.5.2).

According to [150], the execution time for a GEMM operation on a
p

p ×p
p processor grid

with M ×K and K ×N matrices involved is

TGEMM(M , N ,K , p) ≈ 2M N K

p
γ+

(
K

Nb
+2

p
p

)(
2α+ (M +N )Nbp

p
β

)
if min{M , N ,K } = K À Nb . Then we conclude that

Tupdate(N , NAED, p) ≈ 2N N 2
AED

p
γ+ NAED

Nb

(
6α+ 2N Nbp

p
β

)
.

Now we are ready to estimate the overall runtime TAED by substituting N with NAED in (3.5.1)

and (3.5.4). We can see that Tredist is always negligible compared to other components. Re-

ordering contributes with only marginal communication costs also. By merging all these

estimates together, we eventually obtain

TAED(N , NAED, p) ≈ TSchur(NAED, pAED)+Treorder(NAED, p)+THess(NAED, p)+Tupdate(N , NAED, p)

≈
(

20NAED

pAED

+ 4
p

p Nb +16NAED +2N

p

)
N 2

AEDγ

+ N 2
AED

Nb

(
3(log2 pAED +2)p

pAED

+ Nb log2 p

NAED

)
α
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+ N 2
AED

Nb

(
3Nb log2 pAEDp

pAED

+ 8NAED

pAED

+ 3Nb

2
p

p
+ 17Nb log2 p

4
p

p
+ 2N Nb

NAED

p
p

)
β

≈
[

30C 2
2 N

C1
+ 9N 2Nb

C 2
1
p

p
+ 9(C1 +6)N 3

2C 3
1 p

]
γ

+
(

9C2N

C1Nb
log2

3N

2C1C2
+ 3N

2C1
log2 p

)
α

+
[

9C2N

C1
log2

3N

2C1C2
+ 12C 2

2 N

C1Nb
+ 3N 2

(
18+C1 +51log2 p

)
16C 2

1
p

p

]
β.

When N is extremely large (i.e., C1, C2 and Nb are all tiny enough compared to N ) and

N
/p

p = constant, we have

TAED =Θ
(

N + N 2

p
p
+ N 3

p

)
γ+Θ(

N log N +N log p
)
α+Θ

(
N log N + N 2

p
p

log p

)
β

=Θ(N )γ+Θ(N log N )α+Θ(N log N )β.

Asymptotically AED only has slightly larger message sizes by aΘ(log N ) factor compared to QR

sweeps and is hence not much more expensive. However, in practice we still need to handle

AED very carefully since large leading factors in lower order terms have significant impact on

the performance when the matrix is not large enough. Similar to the analysis for TAED, the cost

for computing shifts can be estimated by

Tshift(N , Nshift, p) ≈ T̃Schur(Nshift, pshift)

≈ 10N 3
shift

pshift
γ+ 3N 2

shiftp
pshift Nb

(log2 pshift +2)α

+
(3N 2

shift log2 pshiftp
pshift

+ 8N 3
shift

pshiftNb

)
β

≈ 10C 2
2 N

C1
γ+ 6C2N

C1Nb
log2

N

C1C2
α+

(
6C2N

C1
log2

N

C1C2
+ 8C 2

2 N

C1Nb

)
β.

Asymptotically Tshift is not so important in the scalability analysis since it can never be larger

than TAED.

3.5.3 An overall model

Let us first make a comparison between the pipelined QR algorithm using loosely-coupled

shifts and the new parallel multishift QR algorithm using tightly-coupled shifts. Asymptotically,

the execution time of the pipelined QR algorithm (3.5.1) is

TSchur(N , p) =Θ
(

N 3

p

)
γ+Θ

(
N 2 log pp

p Nb

)
α+Θ

(
N 3

pNb

)
β, (3.5.5)
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provided that the average number of shifts required for deflating each eigenvalue is Θ(1).

Under the same assumption, we have shown that the execution time of the new parallel

multishift QR algorithm without AED is

T (N , p) =Θ
(

N 3

p

)
γ+Θ

(
N 2 log p
p

p N 2
b

)
α+Θ

(
N 3

pNb

)
β. (3.5.6)

Both solvers have an ideal degree of concurrency. However, tightly-coupled shifts are superior

to loosely-coupled shifts, because they require less frequent communication. Compared

to (3.5.5), the number of messages in (3.5.6) is reduced by a factor of Θ(Nb); in return the

average message length increases correspondingly. Another important observation is that

the parameter γ in (3.5.5) is much larger than that in (3.5.6), because these algorithms have

different computational intensity. This already explains why the pipelined QR algorithm is

usually much slower than the new parallel multishift QR algorithm for larger matrices, even

when neglecting the effects of AED.

Taking AED into account makes the model significantly more complicated. To be able to

provide some intuition, we assign concrete values to most parameters. For example, let us set

C1 = 24, C2 = 384, and assume kAED = 2kQR = 16kshift = 64. Then

TQR(N , Nshift, p) ≈ 3N 3

2p
γ+ 3N 2

8
p

p N 2
b

(log2 p +4)α+ 3N 3

8pNb
β,

TAED(N , NAED, p) ≈
(
184320N + N 2Nb

64
p

p
+ 5N 3

256p

)
γ

+
[

144N

Nb
(log2 N −14)+ N log2 p

8

]
α

+
[

144N

(
log2 N −14+ 512

Nb

)
+

(
51log2 p +42

)
N 2

3072
p

p

]
β,

Tshift(N , Nshift, p) ≈ 61440Nγ+ 96N

Nb
(log2 N −13)α+96N

(
log2 N −13+ 512

Nb

)
β.

(3.5.7)

This yields the following overall estimate for the new parallel QR algorithm with AED:

T (N , p) ≈
(

48N 3

p
+1.2×107N

)
γ+ 12N 2 log2 p

p
p N 2

b

α+
(

12N 3

pNb
+ 17N 2 log2 p

16
p

p

)
β, (3.5.8)

=Θ
(

N 3

p

)
γ+Θ

(
N 2 log p
p

p N 2
b

)
α+Θ

(
N 3

pNb

)
β, (3.5.9)

where most small-order terms are neglected. It turns out that both QR sweeps and AED have

significant serial runtime when N is not very large. However, QR sweeps usually dominate the

communication cost. As a consequence, the models (3.5.5), (3.5.6), and (3.5.9) nearly have the

same asymptotic behavior. AED is asymptotically not more expensive compared to QR sweeps,

and hence it does not represent a computational bottleneck for larger matrices. Combined

with the convergence acceleration often observed when using AED (and not fully attributed in
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the model above), this contributes to the superior performance of the new parallel multishift

QR algorithm.

3.6 Software and implementation issues

3.6.1 Calling sequence

The calling sequence of the newly developed routine PDHSEQR is nearly identical with the

LAPACK routine DHSEQR, see Figure 3.7. Apart from the need of a descriptor for each globally

distributed matrix and the leading dimension for each local matrix, the only difference is

that PDHSEQR requires an extra integer workspace. The calling sequence of the ScaLAPACK

routine PDLAHQR is also similar, hopefully allowing to easily switch from PDLAHQR and DHSEQR
in existing software making use of ScaLAPACK. In practice, it is advisable to call PDHSEQR
twice—one call for the workspace query (by setting LWORK=−1) and another call for actually

doing the computation. This follows the convention of many LAPACK/ScaLAPACK routines

that make use of workspace. We refer to Appendix C for details regarding the calling sequence.

SUBROUTINE PDHSEQR( JOB, COMPZ, N, ILO, IHI, H, DESCH, WR, WI, Z,
$ DESCZ, WORK, LWORK, IWORK, LIWORK, INFO )

*
* .. Scalar Arguments ..

INTEGER IHI, ILO, INFO, LWORK, LIWORK, N
CHARACTER COMPZ, JOB

* ..
* .. Array Arguments ..

INTEGER DESCH( * ) , DESCZ( * ), IWORK( * )
DOUBLE PRECISION H( * ), WI( N ), WORK( * ), WR( N ), Z( * )

SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
$ LDZ, WORK, LWORK, INFO )

SUBROUTINE PDLAHQR( WANTT, WANTZ, N, ILO, IHI, A, DESCA, WR, WI,
$ ILOZ, IHIZ, Z, DESCZ, WORK, LWORK, IWORK,
$ ILWORK, INFO )

Figure 3.7 – Calling sequences of the newly developed routine PDHSEQR, the corresponding LAPACK
routine DHSEQR, and the ScaLAPACK routine PDLAHQR.

3.6.2 Tuning parameters

In the new software for the parallel multishift QR algorithm, tunable parameters are

defined in the routine PILAENVX. They are available via the function call

PILAENVX(ICTXT, ISPEC, . . .)
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Table 3.2 – List of tunable parameters.

ISPEC Name Description Recommended value
12 Nmin Crossover point between PDLAQR0 and

PDLAQR1
220min(pr , pc )

13 NAED Size of the AED window See Table 3.1
14 NIBBLE Threshold for skipping a multishift QR sweep See Section 3.4
15 Nshift Number of simultaneous shifts See Table 3.1
16 KACC22 Specification of how to update off-diagonal

blocks in the multishift QR sweep
Use GEMM/TRMM

17 NUMWIN Maximum number of concurrent compu-
tational windows (for both QR sweep and
eigenvalue reordering)

min(pr , pc ,dN /Nbe)

18 WINEIG Number of eigenvalues in each window (for
eigenvalue reordering)

min(Nb/2,40)

19 WINSIZE Computational window size (for both bulge-
chasing and eigenvalue reordering)

min(Nb ,80)

20 MMULT Minimal percentage of flops for perform-
ing GEMM instead of pipelined Householder
reflections when updating the off-diagonal
blocks in the eigenvalue reordering routine

50

21 NCB Width of block column slabs for rowwise up-
date of Householder reflections in factorized
form

min(Nb ,32)

22 WNEICR Maximum number of eigenvalues to move
over a block border in the eigenvalue reorder-
ing routine

Identical to WINEIG

23 pmin Size of processor grid involving AED See Section 3.3.3

with 12 ≤ ISPEC≤ 23. A complete list of these parameters is provided in Table 3.2. Some of

them require fine tuning to attain nearly optimal performance across different architectures.

Although a reasonable choice of Nb , the data layout block size, is important, we have

observed the performance to be not overly sensitive to this choice. On the one hand, Nb

should be large enough so that the local computations can achieve level 3 performance. On

the other hand, it is advisable to avoid Nb being too large. A large value of Nb harms load

balance and increases the overhead in the start-up and ending stages of the bulge chasing

process, especially when computing the Schur decomposition of the AED window. In our

performance model, we always assume Nb ¿ N
/p

p to avoid such kind of overhead. For many

architectures, Nb ∈ [32,128] will offer a good choice.

We expect that most of the recommended values in Table 3.2 yield reasonable performance

on existing architectures. However, the parameters Nmin, pmin, and NIBBLE require some extra

care, as the performance of AED crucially relies on them. The values of these parameters

need to be determined by performing a bunch of test runs. To determine Nmin and pmin,
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it is advisable to use the typical sizes of the AED windows (see Table 3.1) and run tests on

different processor grids. Then the optimal values for both Nmin and pmin can be chosen

via examining the number of columns of H owned by each processor. NIBBLE should be

tuned lastly, once all other parameters are fixed. Tuning NIBBLE is time-consuming but highly

recommended, especially on older architectures with relatively slow communication. As

discussed in Section 3.4, NIBBLE= a ·N b pc is a reasonably good model that takes into account

both N and p. It is not unlikely that this model may need to be adjusted for very large-scale

computations.

3.7 Computational experiments

We have performed a large set of computational experiments on Akka 1 and Abisko 2 hosted

by the High Performance Computing Center North (HPC2N), and on Bellatrix 3 hosted by

École Polytechnique Fédérale de Lausanne. In this section, we present a subset from these

computational experiments to confirm and demonstrate the improvements we have made in

the parallel QR algorithm. The computational environments are summarized in Table 3.3.

Table 3.3 – Computational environments.

64-bit Intel Xeon (Harpertown) Linux cluster
672 dual socket nodes with L5420 quad-core 2.5GHz processors and 16GB RAM per node

Akka Cisco Infiniband and Gigabit Ethernet, 10Gbps bandwidth
PathScale compiler version 4.0.13
OpenMPI 1.4.4, LAPACK 3.4.0, GotoBLAS2 1.13
64-bit AMD Opteron (Interlagos) Linux cluster
322 nodes with four Opteron 6238 12-core 2.6GHz processors and 128GB RAM per node

Abisko Mellanox 4X QSFP Infiniband connectivity, 40Gbps bandwidth
PathScale compiler version 4.0.13
OpenMPI 1.6.4, LAPACK 3.4.0, OpenBLAS 0.1 alpha 2.4
64-bit Intel Xeon (Sandy Bridge) Linux cluster
424 dual socket nodes with E5-2660 octa-core 2.2GHz processors and 32GB RAM per node

Bellatrix Qlogic Infiniband QDR 2:1 connectivity, 40Gbps bandwidth
Intel compiler version 13.0.1
Intel MPI version 4.1.0, Intel Math Kernel Library version 11.0

We compare the following implementations:

S-v180 Pipelined QR algorithm in ScaLAPACK version 1.8.0.

SISC Previous implementation of parallel multishift QR algorithm with AED, as

described in [61].

NEW New implementation of parallel multishift QR algorithm with AED, as de-

scribed in this chapter.

1. http://www.hpc2n.umu.se/resources/akka/
2. http://www.hpc2n.umu.se/resources/abisko/
3. http://hpc.epfl.ch/clusters/bellatrix/
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Table 3.4 – Execution time (in seconds) on Akka for fullrand matrices.

p = N = 4000 N = 8000 N = 16000 N = 32000
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 834 178 115 10730 939 628
2×2 317 87 56 2780 533 292
4×4 136 50 35 764 205 170 6671 1220 710
6×6 112 50 43 576 142 116 3508 754 446 ∞ 3163 2200
8×8 100 45 37 464 127 104 2536 506 339 ∞ 2979 1470

10×10 97 50 36 417 159 119 2142 457 320 ∞ 2401 1321

Table 3.5 – Execution time (in seconds) on Akka for hessrand matrices.

p = N = 4000 N = 8000 N = 16000 N = 32000
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 685 317 14 6981 2050 78
2×2 322 200 8 2464 1904 27
4×4 163 112 36 1066 679 71 8653 2439 65
6×6 137 84 31 768 412 113 4475 1254 71 ∞ 373 252
8×8 121 68 25 634 321 107 3613 719 71 ∞ 919 228

10×10 131 83 23 559 313 111 3549 667 76 ∞ 943 267

The implementation NEW improves upon the implementation SISC in terms of robustness

and performance, in particular because of the proposed modifications to the AED step.

The data layout block size Nb = 50 is used for all experiments. No multithreaded features

(such as OpenMP or threaded BLAS) are used. Therefore the number of processors (p = pr ·pc )

means the number of cores involved in the computation.

3.7.1 Random matrices

First, we consider two types of random matrices—fullrand and hessrand [61].

Matrices of the type fullrand are dense square matrices with all entries randomly gener-

ated from a uniform distribution in [0,1]. We call the ScaLAPACK routine PDGEHRD to reduce

them to upper Hessenberg form before applying the QR algorithm. Only the time for the QR

algorithm (i.e., reducing the upper Hessenberg matrix to Schur form) is measured. These ma-

trices usually have well-conditioned eigenvalues and exhibit “regular” convergence behavior.

Matrices of the type hessrand are upper Hessenberg matrices whose nonzero entries are

randomly generated from a uniform distribution in [0,1]. The eigenvalues of these matrices

are extremely ill-conditioned for larger N , affecting the convergence behavior of the QR

sweeps [61]. On the other hand, AED often deflates a high fraction of eigenvalues in the AED

window for such matrices. These properties sometimes cause erratic convergence rates.

Tables 3.4 and 3.5 show the parallel execution times of the three solvers on Akka. Both the

real Schur form T and the orthogonal transformation matrix Z are calculated. We limit the

total execution time (including the Hessenberg reduction) by 10 hours for each individual

41



Chapter 3. The Parallel QR Algorithm with Aggressive Early Deflation

10
4

10
1

10
2

10
3

Matrix size (N)

E
x
e

c
u

ti
o

n
 t

im
e

Original model

 

 

Total
QR Sweep
AED
Measured
Predicted

10
4

10
1

10
2

10
3

Matrix size (N)

E
x
e

c
u

ti
o

n
 t

im
e

Calibrated model

 

 

Total
QR Sweep
AED
Measured
Predicted

(a) (b)

Figure 3.8 – Comparison between the measured execution times and the predicted times using (3.5.7)
(fullrand, N

/p
p = 4000). The original model (left) uses theoretical values of (α,β,γ) according to the

hardware information, while the calibrated one (right) adjusts γ according to different computational
intensities (level 1, 2, and 3).

problem, to avoid excessive use of the computational resources. An entry ∞ corresponds to

an execution time larger than 10 hours. These tables reveal that our new version of PDHSEQR
(i.e., NEW) always improves the performance compared to the SISC version. On average, the

improvement is 31% for matrices of type fullrand and 14 times for matrices of type hessrand.

Not surprisingly, the improvements compared to PDLAHQR in ScaLAPACK version 1.8.0 are

even more significant.

The convergence rates for fullrand are sufficiently regular, so that we can analyze the

scalability of the parallel multishift QR algorithm. If we fix the memory load per core to

N
/p

p = 4000, the execution times in Table 3.4 satisfy

2T (N , p) ≤ T (2N ,4p) < 4T (N , p),

indicating that the parallel multishift QR algorithm scales reasonably well but not perfectly.

To verify the performance models we have derived in Section 3.5, we use (3.5.7) together

with the measured values of kAED, kQR, and kshift to predict the execution time. Since kshift = 0

is observed for all these examples, there are only two components in the total execution

time (i.e., T = kQRTQR +kAEDTAED). Figure 3.8(a) illustrates that the predicted execution times

underestimate the measured ones (especially, for AED), mainly due to too optimistic choices

of the parameters (α,β,γ). If we assume that the program executes at 40% and 7.5% of the

peak core performance for level 3 and level 1–2 BLAS operations, respectively, the calibrated

model fits the actual execution time quite well for large matrices (see Figure 3.8(b) ). Since the

model(s) are asymptotic, the results are very satisfactory.

For hessrand, it is observed that most eigenvalues are deflated with very few (or even

no) QR sweeps. Considering that the main difference of PDHSEQR between versions NEW and
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SISC is in the AED process, it is not surprising to see the great convergence acceleration for

hessrand, where AED dominates the calculation. In Table 3.5, sometimes the execution time

for the new parallel multishift QR algorithm does not change too much when increasing the

number of processors. This is mainly because the calculation of the Schur decomposition of

the AED window, which is the most expensive part of the algorithm, is performed by a constant

number of processors (pmin ·pmin ≤ p) after data redistribution.

In Tables 3.6–3.9 we list the execution times received from Abisko and Bellatrix. The

observations are similar to those obtained from Akka. Therefore, in the rest of this section we

only present experiments on Akka for economical consideration.

Table 3.6 – Execution time (in seconds) on Abisko for fullrand matrices.

p = N = 4000 N = 8000 N = 16000 N = 32000
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 764 139 97 7373 694 471
2×2 302 77 49 2479 417 240
4×4 91 40 31 781 156 132 5507 1040 548
6×6 76 36 28 541 101 91 2799 591 374 ∞ 2641 1706
8×8 52 34 29 276 88 98 1881 383 294 ∞ 2506 1245

10×10 52 30 18 234 99 92 1455 317 257 ∞ 1909 1118

Table 3.7 – Execution time (in seconds) on Abisko for hessrand matrices.

p = N = 4000 N = 8000 N = 16000 N = 32000
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 611 307 12 5021 2064 63
2×2 302 202 7 1966 1458 29
4×4 110 77 18 881 516 48 6671 1603 53
6×6 96 61 21 578 339 70 4006 1034 52 ∞ 231 176
8×8 84 53 18 423 249 98 2822 605 53 ∞ 737 166

10×10 73 58 17 360 214 79 2456 553 56 ∞ 670 166

Table 3.8 – Execution time (in seconds) on Bellatrix for fullrand matrices.

p = N = 4000 N = 8000 N = 16000 N = 32000
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 637 73 50 5377 441 252
2×2 192 24 21 1594 137 91
4×4 68 16 13 498 79 63 4505 552 271
6×6 47 12 11 294 44 39 1886 247 165 ∞ 1267 901
8×8 36 16 12 204 42 37 1347 184 129 ∞ 1362 714

10×10 37 14 9 181 39 40 961 140 110 ∞ 726 525

3.7.2 100,000×100,000 matrices

The modifications proposed and presented result into dramatic improvements for settings

with very large matrices and many processors. To demonstrate this, we present the obtained

execution times for 100,000× 100,000 matrices in Table 3.10. Although the QR algorithm

does not scale as well as Hessenberg reduction when fixing the problem size and increasing
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Table 3.9 – Execution time (in seconds) on Bellatrix for hessrand matrices.

p = N = 4000 N = 8000 N = 16000 N = 32000
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 510 174 6 4353 1102 26
2×2 205 66 4 1590 530 11
4×4 87 42 7 657 259 19 5416 808 22
6×6 57 23 9 428 134 37 3054 380 22 ∞ 102 77
8×8 54 37 9 340 125 32 2227 365 22 ∞ 342 72

10×10 46 22 8 280 92 27 1846 214 24 ∞ 214 115

the number of processors, the execution times of these two reduction steps are still on the

same order of magnitude. With the help of the dynamic NIBBLE strategy, the fraction of the

execution time spent on AED for fullrand matrices is under control. In contrast to the earlier

implementation (the SISC version), AED is not a bottleneck of the whole QR algorithm now. As

reported in [61], it took 7 hours for the SISC version of PDHSEQR to solve the 100,000×100,000

fullrand problem with 32×32 processors; 80% execution time of the QR algorithm was spent

on AED. Our new version of PDHSEQR is able to solve the same problem in roughly 1.85 hours,

which is about four times faster. The time fraction spent on AED is reduced to 39%.

Table 3.10 – Execution time (in seconds) on Akka of the new parallel multishift QR algorithm (NEW) for
100,000×100,000 matrices.

p = 16×16 p = 24×24 p = 32×32 p = 40×40
fullrand hessrand fullrand hessrand fullrand hessrand fullrand hessrand

Balancing 876 – 881 – 886 – 912 –
Hess. reduction 10084 – 6441 – 3868 – 2751 –

QR algorithm 13797 922 8055 1268 6646 5799 8631 1091
kAED 35 19 31 19 27 18 23 18
kQR 5 0 6 0 13 0 12 0

#(shifts)/N 0.20 0 0.23 0 0.35 0 0.49 0
AED% in the QR alg. 48% 100% 43% 100% 39% 100% 54% 100%

3.7.3 Benchmark examples

Besides random matrices, we also report performance results for some commonly used

benchmark matrices. For comparison, we have tested the same matrices as in [61], see Ta-

ble 3.11. The execution times for the three solvers are listed in Tables 3.12–3.19. The conclu-

sions are similar to those we have made for random matrices: The earlier version of PDHSEQR
outperforms the ScaLAPACK 1.8.0 routine PDLAHQR by a large extent; the new PDHSEQR is

usually even faster, especially for BBMSN and GRCAR.

In [61], it was observed that the accuracy for AF23560 is not fully satisfactory; the relative

residuals Rr = ‖QT AQ −T ‖F
/‖A‖F were large for both PDLAHQR and PDHSEQR. It turns out

that these large residuals are caused by an anomaly in PDLAHQR, which has been fixed by

avoiding the use of PDLACONSB, see Section 3.3.2. As a result, the new PDHSEQR always produce

Rr ∈
[
10−15,10−13

]
for all test matrices.
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Table 3.11 – Benchmark matrices.

ID Name Dimension (N ) Type/Structure

1 BBMSN [31] N SN =



N N −1 N −2 · · · 2 1
10−3 1 0 0 0

10−3 2 0 0
10−3 0 0

. . . N −2 0
10−3 N −1


2 AF23560 [9] 23560 Computational fluid dynamics
3 CRY10000 [9] 10000 Material science
4 OLM5000 [9] 5000 Computational fluid dynamics
5 DW8192 [9] 8192 Electrical engineering
6 MATRAN [9] N Sparse random matrix
7 MATPDE [9] N Partial differential equations

8 GRCAR [9] N GN =



1 1 1 1
−1 1 1 1 1

−1 1 1 1 1
. . .

. . .
. . .

. . .
. . .

−1 1 1 1 1
−1 1 1 1

−1 1 1
−1 1


Table 3.12 – Execution time (in seconds) for BBMSN.

N p = pr ×pc S-v180 SISC NEW
5000 1×1 523 6 3

10000 2×2 1401 30 9
15000 3×3 1489 62 13

Table 3.13 – Execution time (in seconds) for AF23560.

p = pr ×pc S-v180 SISC NEW
4×4 15486 2651 1375
6×6 9088 1279 826
8×8 6808 793 563

10×10 5694 662 475
12×12 5422 578 404

3.8 Summary

In this chapter we have presented a new parallel implementation of the multishift QR

algorithm with aggressive early deflation. The new routine PDHSEQR combines a number of

techniques to improve serial performance and reduce communication. Our computational

experiments provide compelling evidence that PDHSEQR significantly outperforms not only the
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Table 3.14 – Execution time (in seconds) for CRY10000.

p = pr ×pc S-v180 SISC NEW
1×1 6394 1331 1251
2×2 2123 580 495
4×4 979 236 209
6×6 731 161 132
8×8 545 128 95

10×10 496 144 90

Table 3.15 – Execution time (in seconds) for OLM5000.

p = pr ×pc S-v180 SISC NEW
1×1 426 206 189
2×2 167 98 108
4×4 76 54 53
6×6 58 52 42
8×8 46 49 29

10×10 48 51 47

Table 3.16 – Execution time (in seconds) for DW8192.

p = pr ×pc S-v180 SISC NEW
1×1 10307 1329 1297
2×2 1187 572 524
4×4 635 225 236
6×6 357 152 138
8×8 302 129 104

10×10 275 121 93

Table 3.17 – Execution time (in seconds) for MATRAN.

p = N = 5000 N = 10000 N = 15000
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 1617 332 218 ∞ 1756 1137
2×2 579 152 122 4495 931 471
4×4 247 74 60 1555 321 268 5122 937 575
6×6 178 64 57 1035 207 170 3046 535 382
8×8 147 58 50 746 153 157 2166 390 315

10×10 149 59 43 615 169 140 1669 362 264

original ScaLAPACK routine PDLAHQR but also an earlier version of PDHSEQR presented in [61].

In particular, our new implementation removes a bottleneck in the aggressive early deflation

strategy by reducing communication and tuning algorithmic parameters. As a result, our new

version is both faster and more robust. An intermediate version of the software presented in

this chapter is available in ScaLAPACK version 2.0.
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Table 3.18 – Execution time (in seconds) for MATPDE.

p = N = 10000 N = 14400 N = 19600
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 12429 2600 1699
2×2 3531 1081 966
4×4 1565 415 361 4446 1207 1027 9915 2844 2406
6×6 1118 256 225 3069 654 573 6130 1426 1284
8×8 871 189 156 2259 449 384 4615 912 802

10×10 789 189 137 1955 431 313 4046 743 628
12×12 719 194 126 1736 367 260 3483 648 504

Table 3.19 – Execution time (in seconds) for GRCAR.

p = N = 6000 N = 12000 N = 18000
pr ×pc S-v180 SISC NEW S-v180 SISC NEW S-v180 SISC NEW

1×1 2738 1340 69
2×2 850 645 40 8199 2734 132
4×4 363 258 226 2499 1336 114 8171 4037 182
6×6 244 190 173 1471 849 112 4385 2172 187
8×8 217 150 145 1107 515 142 3342 1345 175

10×10 207 161 126 923 538 338 2675 1104 276

We believe to have come to a point, where it will be difficult to attain further dramatic

performance improvements for parallel nonsymmetric eigensolvers on distributed memory

architectures, without leaving the classical framework of QR algorithms. Considering the

fact that the execution times spent on Hessenberg reduction and on QR iterations are now

nearly on the same level, any further improvement of the iterative part will only have a limited

impact on the total execution time. The situation is quite different when shared memory

many-core processors with accelerators, such as GPUs, are considered. Although efficient

implementations of the Hessenberg reduction on such architectures have recently been

proposed [87, 91, 146], the iterative part remains to be done. Another future challenge is to

combine the message passing paradigm used in this new implementation of the multishift QR

algorithm and dynamic and static scheduling on many-core nodes using multithreading.
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4 The Matrix Exponential

From this chapter on, we discuss another topic in matrix computations—computation of

the matrix exponential. The matrix exponential is one of the most important matrix functions.

It naturally arises in many applications, especially those related to the solution of dynamical

systems. Many methods for computing the matrix exponential have been proposed, see,

e.g., [109]. In this chapter, we briefly recall some properties of the matrix exponential and

several popular algorithms. This material provides the foundations for our developments in

the subsequent two chapters. We refer to [73, 109] for more detailed discussions regarding the

matrix exponential.

4.1 Properties of the matrix exponential

In the following, we provide the definition and several basic properties of the matrix

exponential. Since the exponential is an analytic function, we can make use of the following

definition of matrix functions.

Definition 4.1.1. Let A be a complex square matrix. Let Ω ⊂ C be a domain which contains

Λ(A) and has piecewise smooth boundary. Then for a function F : Ω→C being analytic, F (A) is

defined as

F (A) = 1

2πi

∮
∂Ω

F (z)(zI − A)−1 dz. (4.1.1)

By the Cauchy integral theorem [2], it can be verified that F (A) is independent of the

concrete choice of Ω as long as Λ(A) ⊂ Ω and hence is well-defined by A and F . It is also

straightforward to show by definition the two basic properties

AF (A) = F (A)A (4.1.2)

and

F (P−1 AP ) = P−1F (A)P, (det(P ) 6= 0). (4.1.3)
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Chapter 4. The Matrix Exponential

According to (4.1.1), the matrix exponential is defined as

exp(A) = 1

2πi

∮
∂Ω

exp(z)(zI − A)−1 dz. (4.1.4)

The following theorem summarizes several properties of the matrix exponential. These prop-

erties are extensively used in this thesis.

Theorem 4.1.2. For A ∈CN×N , the matrix exponential defined by (4.1.4) satisfies the following

properties.

(a) exp(n A) = [exp(A)]n for n ∈Z.

(b) exp(A) = exp(α)exp(A−αI ) for α ∈C.

(c) exp(A) has the series expansion

exp(A) =
∞∑

k=0

Ak

k !
. (4.1.5)

(d) The unique solution of the initial value problem

dX (t )

dt
= AX (t ), X (0) = I , (4.1.6)

is given by X (t ) = exp(t A).

(e) exp(A) is the limit

exp(A) = lim
n→∞

(
I + A

n

)n
. (4.1.7)

(f) For any ∆A ∈CN×N , we have

exp[t (A+∆A)]−exp(t A) =
∫ t

0
exp[(t − s)A]∆A exp[s(A+∆A)]ds. (4.1.8)

Proof. See, e.g., [73, Chapter 1], [78, Chapter 6].

It is worth pointing out that a condition number of exp(A) can be derived from (4.1.8).

Since ∥∥exp(A+∆A)−exp(A)
∥∥

=
∥∥∥∥∫ 1

0
exp[(1− s)A]∆A exp[s(A+∆A)]ds

∥∥∥∥
=

∥∥∥∥∫ 1

0
exp[(1− s)A]∆A

[
exp(s A)+

∫ 1

0
exp[(1− t )A]∆A exp[t (A+∆A)]dt

]
ds

∥∥∥∥
=

∥∥∥∥∫ 1

0
exp[(1− s)A]∆A exp(s A)ds

∥∥∥∥+O
(‖∆A‖2)
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4.2. Algorithms for the matrix exponential

as ‖∆A‖→ 0, the condition number of exp(A) with respect to the norm ‖·‖ is thus defined as

κexp(A) = max
X 6=0

‖A‖
‖X ‖‖exp(A)‖

∥∥∥∥∫ 1

0
exp[(1− s)A]X exp(s A)ds

∥∥∥∥ . (4.1.9)

For detailed perturbation analyses, we refer to [73, 84, 151].

4.2 Algorithms for the matrix exponential

The properties listed in Theorem 4.1.2 provide many candidates for computing the matrix

exponential. Especially, properties (c), (d), (e) in Theorem 4.1.2 can be considered as alternative

definitions to exp(A). Because of these different but equivalent representations of exp(A),

many algorithms have been proposed in the past decades, see [109] for an excellent survey.

Unfortunately, none of these existing methods can always satisfactorily compute exp(A).

Hence special care needs to be taken when solving a particular problem. In the following we

summarize several algorithms which are closely related to the next two chapters.

Eigenvalue-based methods. The property (4.1.3) leads to a class of “direct” methods for

computing matrix functions. The simplest case is when A is Hermitian. In this case F (A) =
QF (Λ)Q∗ can immediately be obtained once the spectral decomposition A =QΛQ∗ is com-

puted, where Q is unitary andΛ is diagonal. For non-Hermitian matrices, we demonstrate a

simplified version the Schur-Parlett method as an example. The first step is to compute the

Schur decomposition A =QTQ∗, where Q is unitary and T is upper triangular. We assume that

all eigenvalues of A are distinct for the sake of simplicity. Then by (4.1.2), X = F (T ) is a solution

of the matrix equation T X −X T = 0. Since F (T ) is also upper triangular with diagonal entries

xi i = F (ti i ), the off-diagonal entries of F (T ) are computed via the Parlett recurrence [116]

xi j = ti j
xi i −x j j

ti i − t j j
+

j−1∑
k=i+1

xi k tk j − ti k xk j

ti i − t j j

by diagonals—from the first super-diagonal towards the top-right corner. Finally, the solution

is given by F (A) =QF (T )Q∗.

For a matrix A with a certain special structure, computing the Schur form of A may destroy

the structure and provoke unnecessary errors. There is a more serious drawback of this method

in general—close eigenvalues of A often cause numerical instability in the Parlett recurrence.

In practice, the diagonal of T is reordered into groups of clustered eigenvalues, and the method

is usually applied in a blocked manner to gain both stability and performance [73, 85, 116].

The Schur-Parlett method does not rely too much on the properties of F (z). On the one

hand, this makes it suitable for computing general analytic matrix functions. With the help of

the new parallel implementation of the multishift QR algorithm presented in Chapter 3, it is

possible to apply this method to large-scale matrices also. Studies in this direction are planned
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Chapter 4. The Matrix Exponential

as our future work. On the other hand, this generality of the Schur-Parlett method may render

it less competitive compared to some other methods stated below, which make use of special

properties of exp(z). Therefore, the Schur-Parlett method is usually not the method of choice

for computing the matrix exponential in practice.

Scaling and squaring method. The scaling and squaring method uses the property exp(A) =
exp

(
A

/
2k

)2k

to evaluate exp(A), while exp
(

A
/

2k
)

is approximated by a rational function of A.

Compared to exp(A), exp
(

A
/

2k
)

is generally much easier to approximate using polynomials

or rational functions since the spectrum of A
/

2k is closer to the origin. Hence the scaling

and squaring method is typically applied as a preprocessing step in other methods and often

significantly reduces the cost of approximating the matrix exponential. As an extreme case, a

first order approximation I + A
/

2k to exp
(

A
/

2k
)

is already sufficient when k is large enough,

according to (4.1.7).

The biggest drawback of the scaling and squaring method is that the rounding error (see

Appendix B) can sometimes grow quickly in the squaring phase [73, 109]:

∥∥fl(B 2k
)−B 2k ∥∥≤ (2k −1)N u ·∥∥B

∥∥k−1∏
j=0

∥∥B 2 j ∥∥+O (u2). (4.2.1)

Therefore, in general the scale factor 2k cannot be chosen too large to avoid numerical insta-

bility. We will discuss in Chapter 5 a special case for which the rounding error bound is less

pessimistic and hence a moderately large scale factor is admissible.

Truncated Taylor series method. Consider the mth order approximation

Tm(x) =
m∑

k=0

xk

k !

in the Maclaurin series expansion of exp(x). Based on property (c) in Theorem 4.1.2, it is

natural to expect that Tm(A) approximates exp(A) well for a sufficiently large truncation

order m. In practice, shifting and scaling on A are also applied before truncating the Taylor

series, i.e.,

exp(A) ≈ exp(α)Tm

(
A−αI

2k

)2k

.

The shift α should approximately minimize ρ(A−αI ) and the scale factor is often chosen such

that ‖B‖ < 1 (or ρ(B) < 1), where B = (A−αI )
/

2k . According to the error estimate in [103], the

truncation order is chosen so that

‖B‖m+1

(m +1)!

(
1− ‖B‖

m +2

)−1

≤ τ, (4.2.2)
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4.2. Algorithms for the matrix exponential

where τ is the desired (absolute) accuracy prescribed by the user. This method has the ad-

vantage that only matrix multiplications are involved and it is therefore easy to implement.

It is also worth pointing out that for a nonnegative matrix B , the evaluation of Tm(B) can

be performed without cancellation and hence achieves high componentwise accuracy, see

Chapter 5 for details.

Padé approximation method. Similar to the truncated Taylor series method, it is also natu-

ral to use the Padé approximant

Rpq (A) = Npq (A)Dpq (A)−1

to approximate exp(A), where

Npq (x) =
p∑

j=0

(p +q − j )! p !

(p +q)! j ! (p − j )!
x j , Dpq (x) =

q∑
j=0

(p +q − j )! q !

(p +q)! j ! (q − j )!
(−x) j .

Here Rpq (x) is the unique rational function of the form u(x)/v(x) satisfying u ∈ Cp [x], v ∈
Cq [x], and

exp(x) = u(x)

v(x)
+O (xp+q+1)

as x → 0, see, e.g., [13, Chapter 1]. Usually the diagonal Padé approximant (i.e., with p = q)

is chosen so that the denominator Dpp (A), which then equals Npp (−A), can be computed

simultaneously when evaluating Npp (A). Certainly, preprocessing steps such as shifting and

scaling should also be applied, i.e.,

exp(A) ≈ exp(α)Rpp

(
A−αI

2k

)2k

.

It can be shown [72, 109] that a moderately small pair of (p,k) is already sufficient for bounding

the backward error below the IEEE double precision machine epsilon.

Computing exp(A) using Padé approximation built on scaling and squaring is the most

popular method in practice and has been extensively studied. The expm function in MATLAB

(since version 7.2(R2006a) ) implements an advanced version of this method, see [72, 74] for

details. In general, the diagonal Padé approximation Rpp (A) produces far smaller truncation

error than the truncated Taylor series Tm(A) when p = m, i.e., the same degree of polynomials

are involved [109]. However, in Chapter 5 we discuss a problem where the truncated Taylor

series method is preferred.

ODE methods. Since exp(A) is the solution of the initial value problem (4.1.6) at t = 1, every

numerical method for solving ordinary differential equations can be adopted to compute

exp(A). We restrict our discussion to single-step methods with fixed step size. For example,
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Chapter 4. The Matrix Exponential

the Euler method with step size n−1 reads

X (0) = I , , X ( j ) = X ( j−1) + 1

n
AX ( j−1), ( j = 1,2, . . . ,n)

and eventually yields exp(A) ≈ X (n) = (I + A/n)n . Similarly the backward Euler method yields

exp(A) ≈ (I − A/n)−n . The convergence of both Euler methods is evident from (4.1.7). To

avoid n being too large, higher order methods such as Runge-Kutta methods can be ap-

plied [66]. In fact, it can be verified [162] that an m-stage explicit Runge-Kutta method of

order m with step size n−1 for solving (4.1.6) mathematically produces

exp(A) ≈ X (n) = Tm(A/n)n ,

due to the fact that Tm(x) is the unique polynomial up to degree m which approximates exp(x)

to order m.

The direct application of single-step ODE methods is generally inefficient [109] for eval-

uating exp(A). However, as we are only interested in exp(A) rather than X (t) = exp(t A) on

the whole interval [0,1], there is no need to evaluate all X ( j )’s. If we choose n = 2k and only

compute X (2 j ) for j = 0, 1, . . . , k, the scaling and squaring method can be regarded as a special

case of these ODE methods [106, 109, 162]. We will see in Chapter 5 that such variants of ODE

methods can actually be very efficient.
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5 Aggressively Truncated Taylor Series
Method

In this chapter, we discuss how to compute exp(A) to high componentwise relative accu-

racy when A ∈RN×N is essentially nonnegative. By essentially nonnegative, we mean that all

off-diagonal entries of A are nonnegative [22, 73]. Such matrices are also known as Metzler

matrices [64, 111]. Let

s(A) = min
i

ai i , Â = A− s(A)I . (5.0.1)

Then by Theorem 4.1.2, we have

exp(A) = exp[s(A)]exp(Â) = exp[s(A)]
∞∑

k=0

Âk

k !
≥ 0 (5.0.2)

since Â is nonnegative. The notation s(A) and Â will be used throughout this chapter. The

exponential of an essentially nonnegative matrix has important applications in continuous-

time Markov processes and positive linear dynamical systems [64, 111, 144]. Recently, the

exponential of the adjacency matrix (which is symmetric and nonnegative) is shown to be

involved in the measurement analysis of networks [46]. In addition, in some applications it is

required to compute all entries of exp(A) accurately, see [167]. Thus, it is desirable to design

algorithms which compute the matrix exponential with high componentwise relative accuracy.

Componentwise relative perturbation bounds of exp(A) have been established in [168, 166],

which offer the possibility of accurate computation.

The computation of the exponential of an essentially nonnegative matrix has been studied

in, e.g., [7, 43, 107, 167]. In [7, 107], scaling and squaring methods built on diagonal Padé

approximation are used. These approaches only produce small normwise errors while com-

ponentwise errors on small entries are not taken into account. The truncated Taylor series

method is adopted in [43, 167] to avoid cancellations in the computation and to achieve

componentwise accuracy by preserving the nonnegativity. Another polynomial approximation

method has been proposed in [167], aiming at reducing the computational cost when A is

sparse. Among these attempts to this problem, the truncated Taylor series method seems to
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Chapter 5. Aggressively Truncated Taylor Series Method

be the most promising one so far when A is dense. More specifically, let

Lm,n(A) = exp[s(A)]Tm

( Â

n

)n
. (5.0.3)

The existing Taylor series method presented in [43, 167] chooses n to satisfy ρ(Â)/n < 1, and

the desirable componentwise accuracy is achieved by making Tm(Â/n) approximate exp(Â/n)

with high componentwise relative accuracy. This approach involves a large truncation order m

and potentially requires O (N ) matrix multiplications to achieve componentwise accuracy

when A is sparse (e.g., A is narrow banded). To illustrate this, we first consider the case when A

is tridiagonal and irreducible. Notice that Âk is a (2k)-banded matrix (by b-banded, we mean

that all (i , j )-th entries with
∣∣i − j

∣∣> b/2 are zero, see also Section 6.2). Evidently exp(A) is a

full matrix since

struct
[
exp(A)

]= ∞⋃
k=0

struct
(

Âk)= N−1⋃
k=0

struct
(

Âk)
.

The second equality is a consequence of the Cayley-Hamilton theorem. By taking a truncation

order m < N −1, Tm(Â/n) is only (2m)-banded and hence does not have any relative accuracy

to exp(Â/n) in the (N ,1)-th entry. For a general sparse matrix A, we consider the directed

graph G(Â) = (V ,E) represented by Â (see, e.g., [25]). Once the distance between some pair

of nodes (i , j ) in G(Â) is Θ(N ), then to ensure struct
[
Tm(Â/n)

]= struct
[
exp(Â/n)

]
, which is a

necessary condition of achieving high componentwise relative accuracy, the order m cannot

be chosen less thanΘ(N ). Therefore, the existing Taylor series method requires at least Θ(N 4)

operations in some cases. We will show in Section 5.3 that O (N 4) is also enough.

To improve the efficiency of the truncated Taylor series method, we make an observation

that high componentwise relative accuracy of Tm(Â/n) to exp(Â/n) is not necessarily needed

to attain high componentwise relative accuracy of Lm,n(A) to exp(A). This is inspired by the

Euler method which produces exp(Â) ≈ L1,n(Â). Though T1(Â/n) = I + Â/n may have no com-

ponentwise relative accuracy to exp(Â/n) at all,
[
T1(Â/n)

]n can still have high componentwise

relative accuracy to exp(Â) with n sufficiently large. A similar observation is made for higher

order Runge-Kutta methods. This suggests to select the scale factor n a bit larger to improve

the efficiency of the algorithm. We will establish novel error estimates for Lm,n(A) so that

the componentwise accuracy can be guaranteed by a moderate truncation order m and only

O (log N ) matrix multiplications are required. In this sense, we call our method the aggressively

truncated Taylor series method.

The rest of this chapter is largely based on the manuscript [134] submitted for publication

in SIAM J. Matrix Anal. Appl.. It is organized as follows. In Section 5.1, we discuss the con-

ditioning for the computation of exponentials of essentially nonnegative matrices. Several

componentwise relative truncation error bounds are developed in Section 5.2. Section 5.3

establishes the aggressive truncated Taylor series method based on these truncation error

bounds. Rounding errors are analyzed in Section 5.4 to show that our algorithms are highly
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accurate in floating-point arithmetic. Finally in Section 5.5, numerical examples are presented

to demonstrate the efficiency and accuracy of the aggressively truncated Taylor series method.

5.1 Componentwise perturbation analysis

For a given essentially nonnegative matrix A, we would like to compute every entry of

exp(A) accurately. In this case the normwise condition number κexp(A) defined in (4.1.9)

does not reflect the sensitivity of the problem. Hence a tailored componentwise perturbation

analysis is required. Recently, it has been shown in [166] that small relative errors in the off-

diagonal entries of A cause small relative errors in the entries of exp(A). The main theorem

in [166] is listed below. We remark that the perturbations on diagonal entries and off-diagonal

entries are treated separately, since there is a natural difference between diagonal entries

and off-diagonal entries by the definition of essentially nonnegative matrices. For a unified

treatment of these perturbations, we refer to [166, Theorem 2].

Theorem 5.1.1 ([166]). Let A ∈ RN×N be essentially nonnegative. Suppose that ∆A ∈ RN×N

satisfies
∣∣∆ai j

∣∣≤ ε1ai j (for i 6= j ) and |∆ai i | ≤ ε2, where ε1 ∈ [0,1), ε2 ≥ 0. Then for any t ≥ 0 we

have ∣∣exp[t (A+∆A)]−exp(t A)
∣∣≤ δ(t ) exp[δ(t )]exp(t A),

where

δ(t ) = tε2 +
[
N −1+ρ(Â)t

] ε1

1−ε1
.

Proof. See [166, Theorem 1].

Here we are mainly interested in the case t = 1. We define

C (A) = N −1+ρ(Â), (5.1.1)

which can be regarded as an upper bound of the condition number of exp(A) in the sense of

relative componentwise perturbations. This number depends on the quantity ρ(Â), i.e., the

spectral radius of the shifted matrix Â. The following result provides a bound for ρ(Â) under

the assumption that entries of exp(A) can be represented by floating-point numbers without

overflow.

Theorem 5.1.2. Let A ∈RN×N be essentially nonnegative. If there is no overflow in fl[exp(A)],

then

ρ(Â) ≤ ln N + lnRmax − s(A), (5.1.2)

where Rmax is the largest positive finite floating-point number.
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Proof. As exp(A) does not cause overflow in its floating-point representation, we have

Rmax ≥ max
i , j

∣∣[exp(A)]i j
∣∣≥ 1

N

∥∥exp(A)
∥∥∞ = exp[s(A)]

N

∥∥exp(Â)
∥∥∞ ≥ exp[s(A)]

N
ρ
(
exp(Â)

)
.

Since Â is nonnegative, applying the Perron-Frobenius theorem, we obtain

ρ
(
exp(Â)

)= exp
(

max
λ∈Λ(Â)

ℜ(λ)
)= exp[ρ(Â)].

Therefore,

Rmax ≥ exp[s(A)]exp[ρ(Â)]

N
,

which implies (5.1.2).

Remark 5.1.3. Unless s(A) is small, Theorem 5.1.2 implies that ρ(Â) cannot be too large. For

example, if A ∈ R10000×10000+ and exp(A) can be represented by IEEE-754 double precision

floating-point numbers (Rmax ≈ 1.8×10308, see [80]), then

ρ(Â) ≤ ρ(A) ≤ ln10000+ lnRmax < 719.

Theorem 5.1.2 indicates that the matrix exponential problem is always well-conditioned for

an essentially nonnegative matrix A if s(A) is not too small, under the assumption that exp(A)

does not cause overflow. If we assume |s(A)| = O (N ), then a consequence of Theorem 5.1.2

is that C (A) = O (N ). Some difficult problems, e.g., when exp(A) overflows or |s(A)| = ω(N ),

are beyond the scope of this thesis. Consequently, for the problems we are interested, those

absolute perturbations on diagonal entries in Theorem 5.1.1 can also be regarded as relative

ones, since |ai i |’s are all moderately small. As another remark, we do not take into account

relative accuracy on really small entries which are close to or below Rmin, since this is an

infeasible requirement in practice.

5.2 Approximation using truncated Taylor series

In this section, we establish some novel error estimates for the truncated Taylor series

approximation of the matrix exponential. Both a priori and a posteriori estimates are estab-

lished. These error estimates will be used to develop componentwise accurate algorithms for

computing exp(A) for an essentially nonnegative A in the next section.

5.2.1 Lower bound for exp(A)

It is evident from the definition of Lm,n(A) in (5.0.3) that Lm,n(A) ≤ exp(A) when A is

essentially nonnegative. Several normwise a priori error bounds for Tm(A/n)n can be found in
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the existing literatures (see, e.g., [34, 48, 103]). These bounds only yield∥∥∥∥exp
( A

n

)
−Tm

( A

n

)∥∥∥∥≤ ‖A/n‖m+1

(m +1)!

(
1− ‖A/n‖

m +2

)−1

when ‖A‖ < n(m +2), but do not take advantage of the squaring procedure. In [109], a norm-

wise backward error bound which makes use of squaring is provided. But the full understand-

ing of κexp(A), which is still open [73], is required when turning it to a forward error bound.

In [139], a componentwise error bound∣∣∣∣exp(A)−Tm

( A

n

)n
∣∣∣∣≤ 1

2

[(
1+ (2 |A|/n)m+1

(m +1)!

)n −1

]
is established for an intensity matrix A. 1 Despite that this estimate only bounds absolute

errors rather than relative ones, it seems to be so far the closest to our target. To our knowledge,

there is no existing a priori componentwise error bound available for general essentially

nonnegative matrices. In the following, we provide such an a priori componentwise error

bound. We first bound the error exp(A)−Lm,n(A) in terms of Âm+1 exp(A).

Lemma 5.2.1. If A ∈RN×N is essentially nonnegative, then for any positive integers m and n

we have

lim
n→∞Lm,n(A) = lim

m→∞Lm,n(A) = exp(A). (5.2.1)

Furthermore, the truncation error is bounded by

exp[s(A)]
Âm+1

nm(m +1)!
Tm

( Â

n

)n−1 ≤ exp(A)−Lm,n(A) ≤ Âm+1

nm(m +1)!
exp(A). (5.2.2)

Proof. Since (5.2.1) is an immediate consequence of (5.2.2), it suffices to verify (5.2.2) only. Let

Rm(x) = exp(x)−Tm(x) =
∞∑

k=m+1

xk

k !
.

Then we have

Rm(X ) =
∞∑

k=m+1

X k

k !
≥ X m+1

(m +1)!
≥ 0

for any nonnegative matrix X , and thus

exp
( Â

n

)
≥ Tm

( Â

n

)
.

1. An intensity matrix is an essentially nonnegative matrix with zero row sums.
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Using the identity xn − yn = (x − y)
∑n−1

k=0 xk yn−1−k when x y = y x, we obtain

exp(A)−Lm,n(A) = exp[s(A)]

[
exp(Â)−Tm

( Â

n

)n
]

= exp[s(A)]

[
exp

( Â

n

)n −Tm

( Â

n

)n
]

= exp[s(A)]Rm

( Â

n

)n−1∑
k=0

exp
( Â

n

)k
Tm

( Â

n

)n−1−k
.

On the one hand, the inequality

exp(A)−Lm,n(A) ≥ exp[s(A)]
(Â/n)m+1

(m +1)!
·nTm

( Â

n

)n−1 = exp[s(A)]
Âm+1

nm(m +1)!
Tm

( Â

n

)n−1

obviously holds. On the other hand, notice that

Rm

( Â

n

)
=

∞∑
k=0

(Â/n)m+1+k

(m +1+k)!
≤

∞∑
k=0

(Â/n)m+1+k

(m +1)!k !
= (Â/n)m+1

(m +1)!
exp

( Â

n

)
.

Thus, we obtain

exp(Â)−Lm,n(Â) ≤ exp[s(A)]
(Â/n)m+1

(m +1)!
exp

( Â

n

)
·n exp

( Â

n

)n−1

= exp[s(A)]
Âm+1

nm(m +1)!
exp

( Â

n

)n

= Âm+1

nm(m +1)!
exp(A).

Lemma 5.2.1 illustrates the convergence speed of Lm,n(A) to exp(A) and provides a com-

ponentwise error estimate. But it is still not an a priori componentwise relative truncation

error for Lm,n(A). To this end, we have to bound Âm+1 exp(A) in terms of exp(A) and need the

following tools.

Lemma 5.2.2 ([166]). If A ∈RN×N+ , then

A exp(A) ≤C (A)exp(A).

Proof. See [166, Lemma 2].

When A is essentially nonnegative, then Lemma 5.2.2 yields that

Â exp(Â) ≤C (Â)exp(Â) =C (A)exp(Â). (5.2.3)

A more general consequence is the following corollary.
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5.2. Approximation using truncated Taylor series

Corollary 5.2.3. Let A be essentially nonnegative. Then

Âk exp(A) ≤C (A)k exp(A), (k ∈N). (5.2.4)

More generally, let F (x) =∑∞
k=0αk xk with αk ≥ 0 (k = 0, 1, 2, . . . ) be an analytic function in the

disk {z ∈C : |z| < R0}. If C (A) < R0, then

F (Â)exp(A) ≤ F [C (A)]exp(A). (5.2.5)

Proof. We first show (5.2.4) by induction. It is a trivial case for k = 0; and multiplying exp[s(A)]

to both sides of (5.2.3) yields the conclusion for k = 1. For k > 1, by induction, we have

Âk exp(A) ≤ Â
[

Âk−1 exp(A)
]≤C (A)k−1 Â exp(A) ≤C (A)k exp(A).

This completes the proof of (5.2.4). Consequently, we obtain

F (Â)exp(A) =
∞∑

k=0
αk Âk exp(A) ≤

∞∑
k=0

αkC (A)k exp(A) = F [C (A)]exp(A).

Now using these tools, we easily obtain the componentwise truncation error estimate as

follows.

Theorem 5.2.4. Let A ∈RN×N be an essentially nonnegative matrix. Then

0 ≤ exp(A)−Lm,n(A) ≤ C (A)m+1

nm(m +1)!
exp(A) (5.2.6)

holds for any positive integers m and n.

Proof. The conclusion (5.2.6) is a direct consequence from applying (5.2.4) to (5.2.2).

5.2.2 Upper bound for exp(A)

We have already seen in Theorem 5.2.4 that Lm,n(A) is a lower bound of exp(A). Sometimes

an upper bound of exp(A) is of interest. Hence we define

T̃m(x) = Tm(x)+ xm+1

m!m

(
1− x

m

)−1

= 1+x +·· ·+ xm

m!
+ xm+1

m!m
+ xm+2

m!m2 +·· · (|x| < m)

and

Um,n(A) = exp[s(A)]T̃m

( Â

n

)n
. (5.2.7)
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Notice that T̃m(x) is an mth order rational approximation of exp(x) which can be expressed in

the form

T̃m(x) =

(
1− x

m

)
Tm−2(x)+ xm−1

(m −1)!

1− x

m

.

By the uniqueness of the Padé approximant [13], T̃m(x) is in fact the (m −1,1) Padé approxi-

mant of exp(x), i.e.,

T̃m(x) = Rm−1,1(x).

The negative of the corresponding remainder is denoted as

R̃m(x) = T̃m(x)−exp(x) =
∞∑

k=1

( 1

m!mk
− 1

(m +k)!

)
xm+k ,

which has nonnegative coefficients in its Maclaurin series expansion since (m+k)! > m!mk for

any positive integer k. Consequently, for an essentially nonnegative matrix A with ρ(Â) < mn,

R̃m

( Â

n

)
=

∞∑
k=1

( 1

m!mk
− 1

(m +k)!

)( Â

n

)m+k

is always nonnegative and then

Um,n(A) ≥ exp[s(A)]exp
( Â

n

)n = exp(A).

Here we require the condition ρ(Â) < mn, which allows us to make use of the Maclaurin

series expansion of R̃m(x) when evaluating R̃m(Â/n). Similar to Theorem 5.2.4, we obtain a

componentwise a priori error bound for Um,n(A) as follows.

Theorem 5.2.5. Let A ∈ RN×N be an essentially nonnegative matrix. Then for any positive

integers m and n satisfying mn >C (A), we have

0 ≤Um,n(A)−exp(A) ≤
[(

1+ R̃m

(C (A)

n

))n

−1

]
exp(A). (5.2.8)

Proof. It is straightforward to verify by the definition of Um,n(A) that

Um,n(A)−exp(A) = exp[s(A)]
[
Um,n(Â)−exp(Â)

]
.

As we have already shown that Um,n(A) ≥ exp(A), it suffices to show

Um,n(Â)−exp(Â) = T̃m

( Â

n

)n −exp(Â) ≤
[(

1+ R̃m

(C (A)

n

))n

−1

]
exp(Â).
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5.2. Approximation using truncated Taylor series

For any nonnegative matrix X with ρ(X /m) < 1, we have R̃m(X ) ≥ 0. Using a rough estimate

that exp(X ) = I +∑∞
k=1 X k /k ! ≥ I , we obtain

T̃m(X ) = exp(X )+ R̃m(X ) ≤ exp(X )
[
I + R̃m(X )

]
.

Substituting X by Â/n into this inequality leads to

T̃m

( Â

n

)n −exp(Â) ≤
[

exp
( Â

n

)(
I +R̃m

( Â

n

))]n

−exp(Â) =
[(

I +R̃m

( Â

n

))n

− I

]
exp(Â). (5.2.9)

Notice that[
1+ R̃m

( x

n

)]n

−1 =
n∑

k=1

(n

k

)
R̃m

( x

n

)k

has nonnegative coefficients in its Maclaurin series expansion. Then by Corollary 5.2.3, we

have

T̃m

( Â

n

)n −exp(Â) ≤
[(

I + R̃m

( Â

n

))n

− I

]
exp(Â) ≤

[(
1+ R̃m

(C (Â)

n

))n

−1

]
exp(Â),

because C (Â) < mn. Thus, the conclusion is proved.

Notice that

R̃m(x) =
( 1

m!m
− 1

(m +1)!

)
xm+1 +O (xm+2) = xm+1

(m +1)!m
+O (xm+2)

as x → 0. Then once R̃m
(
C (A)/n

)
is small, we have[(

1+ R̃m

(C (A)

n

))n

−1

]
exp(A) ≈ C (A)m+1

nm(m +1)!m
exp(A),

which is similar to (5.2.6) in Theorem 5.2.4.

5.2.3 A posteriori error bounds for Lm,n(A) and Um,n(A)

The a priori error bounds provided in Theorems 5.2.4 and 5.2.5 rely on Lemma 5.2.2 and

Corollary 5.2.3. However, we remark that these bounds are not always satisfactory since the

estimates (5.2.4) and (5.2.5) can sometimes overestimate the error a lot. For example, when

A = I , the inequality (5.2.4) overestimates the bound by a factor of (N −1)k , which is certainly

not negligible when either N or k is large. Thus, it is desirable to derive some more accurate

error estimates. Here we do not attempt to improve the a priori bounds we have established

in this section. Instead we will develop some a posteriori bounds, which are also useful in

practice.

We first derive an a posteriori estimate for Lm,n(A). In some existing Taylor series meth-
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ods [43, 167], the a posteriori error is estimated via

exp
( Â

n

)
−Tm

( Â

n

)
≤ (Â/n)m+1

(m +1)!

[
I − Â

n(m +2)

]−1

and hence a stopping criterion

(Â/n)m+1

(m +1)!

[
I − Â

n(m +2)

]−1

≤ τ ·Tm

( Â

n

)
, (5.2.10)

which similar to the normwise one (4.2.2), can be applied, where τ is the desired (relative)

accuracy prescribed by the user. But a drawback of this estimate is that the corresponding

stopping criterion can be difficult to satisfy since the effectiveness of the squaring stage is

completely neglected in this estimate. Therefore we will take into account the squaring stage

and establish an estimate for Tm(Â/n)n rather than Tm(Â/n). Notice that (5.2.2) is already

quite close to our purpose, except that exp(A) is of course unknown in practice. Hence we aim

at bounding exp(A) from above in terms of Tm(Â/n). To this end, we assume that m is chosen

such that

C (A)m+1

nm(m +1)!
≤ 1

2
,

which is relatively easy to satisfy. Under this extra assumption, Theorem 5.2.4 implies

Tm

( Â

n

)n ≤ exp(Â) ≤ 2Tm

( Â

n

)n
,

indicating that Tm(Â/n)n is not very far away from exp(Â). Then using (5.2.2), we obtain

exp(A)−Lm,n(A) ≤ 2Âm+1

nm(m +1)!
Tm

( Â

n

)n
, (5.2.11)

which is a good a posteriori estimate when Tm(Â/n)n or Lm,n(A) is already available. Since

the derivation here does not heavily rely on (5.2.4), we expect (5.2.11) to be more accurate

compared to (5.2.6).

The a posteriori bound for Um,n(A) is simpler compared to that for Lm,n(A). We first show

the following lemma which is similar to Lemma 5.2.1.

Lemma 5.2.6. If A ∈RN×N is essentially nonnegative, then for positive integers m and n satis-

fying mn > ρ(Â), we have

exp[s(A)]
Âm+1

nm(m +1)!m
exp

(n −1

n
Â

)
≤Um,n(A)−exp(A)

≤ exp[s(A)]
Âm+1

nmm!m

(
I − Â

mn

)−1
T̃m

( Â

n

)n−1
. (5.2.12)
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5.3. Aggressively truncated Taylor series method

Proof. Because Um,n(A) = exp[s(A)]Um,n(Â), the conclusion is equivalent to

Âm+1

nm(m +1)!m
exp

(n −1

n
Â

)
≤Um,n(Â)−exp(Â) ≤ Âm+1

nmm!m

(
I − Â

mn

)−1
T̃m

( Â

n

)n−1
.

Using the same technique as in Lemma 5.2.1, we obtain

Um,n(Â)−exp(Â) = T̃m

( Â

n

)n −exp
( Â

n

)n = R̃m

( Â

n

)n−1∑
k=0

exp
( Â

n

)k
T̃m

( Â

n

)n−1−k
.

Since

R̃m(x) = xm+1

(m +1)!m
+O (xm+2), (x → 0)

and all coefficients in its Maclaurin series expansion are nonnegative, we have

R̃m

( Â

n

)
≥ (Â/n)m+1

(m +1)!m
.

Combining with the fact that

exp
( Â

n

)
≤ T̃m

( Â

n

)
,

we obtain

Um,n(Â)−exp(Â) ≥ (Â/n)m+1

(m +1)!m
·n exp

( Â

n

)n−1 = Âm+1

nm(m +1)!m
exp

(n −1

n
Â

)
.

For the upper bound of the error, we also make use of the series expansion

R̃m

( Â

n

)
=

∞∑
k=1

( 1

m!mk
− 1

(m +k)!

)( Â

n

)m+k ≤
∞∑

k=1

1

m!mk

( Â

n

)m+k = (Â/n)m+1

m!m

(
I − Â

mn

)−1
.

Then

Um,n(Â)−exp(Â) ≤ (Â/n)m+1

m!m

(
I − Â

mn

)−1 ·nT̃m

( Â

n

)n−1

= Âm+1

nmm!m

(
I − Â

mn

)−1
T̃m

(n −1

n
Â

)
.

The proof of the lemma is now complete.

5.3 Aggressively truncated Taylor series method

In this section, we develop several algorithms based on the error estimates presented in

Section 5.2.
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Chapter 5. Aggressively Truncated Taylor Series Method

5.3.1 Algorithms based on a priori estimates

Theorem 5.2.4 offers a useful a priori componentwise error estimate for the development

of an algorithm.Let τ denote the desired accuracy provided by the user. Then it is natural to

choose m and n satisfying

C (A)m+1

nm(m +1)!
≤ τ (5.3.1)

and then use Lm,n(A) to approximate exp(A). Figure 5.1 shows some sample values of the

coefficient in (5.2.6), where C (A) = 32, 128, 512, and 2048, respectively. The computational cost

for evaluating Lm,n(A) as defined in (5.0.3) is roughly m + log2 n matrix multiplications [109].

Loosely speaking, if we would like to minimize the computational cost, it is sensible to choose

the tangent line with slope equal to one and pick the point of tangency on the contour line. A

more sophisticated choice for the parameters will be presented below in Algorithm 5.1.
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Figure 5.1 – Sample values of C (A)m+1
/

[nm(m + 1)!]. The color scale corresponds to log10[
C (A)m+1/[nm(m + 1)!]

]
. Bright values correspond to small truncation errors, whereas dark values

correspond to large errors.

Remark 5.3.1. From the plots in Figure 5.1, the optimal value (for the worst case) of both m

and log2 n are of the magnitude 101 for a wide range of matrices. Preferable values of m and

log2 n are close to the boundary of the white area.
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5.3. Aggressively truncated Taylor series method

Table 5.1 – Number of matrix multiplications, πm , required for evaluating Tm(x).

m 2 3 4 5 6 7 8 9 10 11
πm 1 2 2 3 3 4 4 4 5 5
m 12 13 14 15 16 17 18 19 20 21
πm 5 6 6 6 6 7 7 7 7 8

Similar suggestions for m and n have been proposed in [109] based on normwise error

estimates. Here we conclude that both m and log2 n are still small even if componentwise

accuracy is desired. For example, if m = 13 is chosen, n = 4C (A) is usually sufficient for

attaining double precision accuracy which indicates that overscaling never occurs in practice.

Moreover, both Theorem 5.2.4 and the rounding error analysis for repeated squaring (see

Lemma 5.4.2 in Section 5.4) are pessimistic [109]. Thus the true error can be even smaller.

There are several methods to evaluate the matrix polynomial Tm(X ). A simple approach

Tm(X ) ← Tm−1(X )+X m/m! and Horner’s method both requireΘ(m) matrix multiplications.

Compared to existing Taylor series methods, an advantage of knowing m a priori is that there

exist cheaper alternatives for evaluating Tm(X ) (see, e.g., [119]). For example,

T6(X ) =
(

I +X + X 2

2!

)
+X 3

(
I

3!
+ X

4!
+ X 2

5!
+ X 3

6!

)
,

T7(X ) =
(

I + X 2

2!
+ X 4

4!
+ X 6

6!

)
+X

(
I + X 2

3!
+ X 4

5!
+ X 6

7!

)
.

(5.3.2)

They both require two matrix multiplications less than the naive approach. The upper bound 2

of computational cost for 1 ≤ m ≤ 21 is summarized in Table 5.1. We remark that the numbers

in Table 5.1 are smaller than these values in [74, Table 2.2], since there is no need to treat odd

powers and even powers separately when evaluating the truncated Taylor series. With the

reformulation technique in (5.3.2), it is sensible to choose m and n minimizing π(m)+ log2 n

so that the computational cost of evaluating Lm,n(A) is minimized. Certainly, by taking into

account the rounding error due to finite precision arithmetic, a smaller n is preferred once

there are multiple choices for the optimal parameter setting.

Now we are ready to derive our aggressively truncated Taylor series method (shown in

Algorithm 5.1) based on the above discussions. Some remarks on the algorithm are also

provided below.

Remark 5.3.2. An important feature of Algorithm 5.1 is that π(m)+ log2 n is of order O (log N )

when fl[exp(A)] does not overflow and |s(A)| =O (N ). To see this, we first conclude from (5.1.1)

and (5.1.2) that C (A) = O (N ). Then by Theorem 5.2.4, it is sufficient to choose m0 = 1 and

n0 =
⌈
C (A)2/(2τ)

⌉
in order to pass the a priori test (5.3.1). Hence

min
[
π(m)+ log2 n

]≤π(m0)+ log2 n0 =O (logC (A)2) =O (log N ).

2. The numbers are obtained by using the optimal settings in the Paterson-Stockmeyer method [67, 119].
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Algorithm 5.1 Aggressively truncated Taylor series method for exp(A), with A essentially
nonnegative

Input: Â ∈RN×N+ , τ> u.
1: (optional) Balancing.
2: Estimate ρ(Â) (e.g., via power method).
3: Solve the discrete optimization problem

π(m)+ log2 n = min, s.t.
C (A)m+1

nm(m +1)!
≤ τ

by enumerating over m, log2 n ∈ {1,2, . . . ,21}.
4: E ← Lm,n(A).
5: (optional) Reversed balancing.

As a consequence, the complexity of Algorithm 5.1 is O (N 3 log N ). In contrast, to achieve

componentwise high relative accuracy, the Taylor series methods presented in [43, 167] for es-

sentially nonnegative matrices require O (N 4) operations as m =O (N ) and log2 n =O (loglog N )

(e.g., choosing m = d2eC (A)e = O (N ) is already sufficient for a modest τ). This is the main

advantage of our new method. When the required accuracy is modestly low (e.g., only four

correct digits are of interest), the new method becomes even more attractive while existing

Taylor series methods still require O (N 4) operations to produce all nonzero entries in exp(A).

Remark 5.3.3. Some extra care must be taken in the shifting stage. If we compute exp(Â) and

exp[s(A)] straightforwardly, it is possible that exp(Â) causes overflow but exp[s(A)] is small

enough so that the desired result exp(A) is still representable with floating-point numbers.

Therefore shifting needs to be handled in a nontrivial way when s(A) < 0. Since

exp(A) =
[

exp
( A

n

)]n

=
[

exp
( s(A)

n

)
exp

( Â

n

)]n

,

the shift s(A)/n on A/n becomes much safer when n is large. The same observation can also

be applied to Lm,n(A), i.e.,

Lm,n(A) =
[

exp
( s(A)

n

)
Tm

( Â

n

)]n

, (5.3.3)

By applying scaling before shifting, we are most likely able to avoid unnecessary overflow even

when s(A) is small. This trick is commonly used in computations of Markov models (e.g., see

[107, 136, 167]). Moreover, we suggest that the shifting strategy (5.3.3) is always used even for

A ≥ 0 since some entries of exp(Â) might underflow. In case that |s(A)| is extremely large so

that n has to be large to avoid overflow/underflow, we conclude from Section 5.1 that C (A) is

also large. Such problems need special attention, and are not investigated in this thesis.

Remark 5.3.4. Balancing is a commonly used technique when computing the matrix exponen-

tial. Notice that balancing does not change ρ(Â) in our problem so it does not help reducing

C (A) and the computational cost. Therefore, we provide balancing as an optional step. For
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Algorithm 5.2 A priori upper bound algorithm for exp(A), with A essentially nonnegative

Input: Â ∈RN×N+ , τ> u.
1: (optional) Balancing.
2: Estimate ρ(Â) (e.g., via power method).
3: Solve the discrete optimization problem

π(m −1)+ log2 n = min, s.t. mn > 2ρ(Â) and

[
1+ R̃m

(C (A)

n

)]n

−1 ≤ τ

by enumerating over m, log2 n ∈ {1,2, . . . ,21}.
4: E ←Um,n(A).
5: (optional) Reversed balancing.

essentially nonnegative matrices, since ‖A‖∞ can be reduced by balancing, the technique

potentially reduces the chance of overflow/underflow on intermediate results during the com-

putation. Although balancing is not always safe for some eigenvalue problems [159], extensive

numerical experiments in [138] show that it is unlikely to be harmful when computing matrix

functions.

Similar to the algorithm for Lm,n(A), it is straightforward to develop an algorithm for the

upper bound Um,n(A) based on Theorem 5.2.5. Algorithm 5.2 is an upper bound version

in analogy to Algorithm 5.1. A notable difference between Um,n(A) and Lm,n(A) is that the

matrix inverse is needed for evaluating the upper bound. Since I − Â/(mn) is an M-matrix, 3

its inverse can be calculated accurately using GTH-type algorithms [5]. Actually by increasing

the scale factor to 2n,
[
I − Â/(2mn)

]−1 can be safely computed even by standard Gaussian

elimination without pivoting because it is always well-conditioned in the sense of component-

wise perturbation (see Lemma 5.4.5 in Section 5.4). Subtractions on the diagonal never cause

severe cancellation and hence only introduce small relative backward errors. Both GTH-type

algorithms and Gaussian elimination can adopt block variants so that most computations are

performed in level 3 BLAS. This feature is useful when performance is important.

5.3.2 Algorithms based on a posteriori estimates

The a priori error estimates provided in Theorems 5.2.4 and 5.2.5 lead to simple and

efficient approaches for computing exp(A). However, rounding error is not taken into ac-

count when determining the parameters. Also, we have seen in Section 5.2.3 that sometimes

Corollary 5.2.3 can overestimate the truncation error quite a lot. Therefore the choice of m

and n might be too large. As an extreme case, if the user has an unfeasibly high requirement

on the accuracy (e.g., τ = 10−12 using IEEE single precision arithmetic), the parameters m

and n which bound the truncation error well below τ may cause significant rounding error. A

sensible choice is to return a nearly optimal solution in the working precision and to report a

3. A square matrix A is called an M-matrix if −A is essentially nonnegative and A−1 is nonnegative.
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warning message to the user. From Section 5.3.1, we have already seen that both m and log2 n

are of order 101 in the aggressively truncated Taylor series method for a wide range of matrices.

Since the rounding error depends more sensitively on log2 n compared to m, we can use a

fixed truncation order m (e.g., m = 13) and seek for an appropriate scale factor n to avoid

overscaling. In the following, we derive such kind of iterative approaches based on a posteriori

error estimates we have developed in Section 5.2.3.

In existing Taylor series methods, the truncation order m is determined by an a posteriori

estimate (5.2.10). This criterion is generally too conservative to be satisfied when being applied

to the aggressively truncated method since Tm(Â/n) might not have any relative accuracy to

exp(Â/n). The estimate (5.2.11) is more useful when the truncation order m is relatively small

since the scale factor n is also taken into account. A simple a posteriori error estimate

Âm+1

nm(m +1)!
Tm

( Â

n

)n ≤ τ

2
Tm

( Â

n

)n
(5.3.4)

can be used as a criterion which ensures exp(A)−Lm,n(A) ≤ τexp(A). In fact,

Âm+1

nm(m +1)!
Tm

( Â

n

)n ≤ τ

1+2τ
Tm

( Â

n

)n
(5.3.5)

is a better one which also guarantees exp(A)−Lm,n(A) ≤ τexp(A). To see this, we conclude

from (5.3.5) and Lemma 5.2.1 that

exp(Â)−Tm

( Â

n

)n ≤ Âm+1

nm(m +1)!
exp(Â)

≤ 2Âm+1

nm(m +1)!
Tm

( Â

n

)n ≤ 2τ

1+2τ
Tm

( Â

n

)n ≤ 2τ

1+2τ
exp(Â).

Repeating the same procedure with the new bound, we arrive at

exp(Â)−Tm

( Â

n

)n ≤ Âm+1

nm(m +1)!
exp(Â)

≤ 1

1− 2τ
1+2τ

Âm+1

nm(m +1)!
Tm

( Â

n

)n ≤
τ

1+2τ

1− 2τ
1+2τ

exp(Â) = τexp(Â).

Condition (5.3.5) is relaxed roughly by half compared to (5.3.4). This has the potential benefit

to reduce log2 n by one.

The condition (5.3.5) has several advantages over (5.2.10). For example, (5.3.5) is inverse-

free and hence cheaper than (5.2.10). A more important feature is that even if (5.3.5) is not

satisfied for a given choice of (m,n), say

εm,n = min

{
ε :

Âm+1

nm(m +1)!
Tm

( Â

n

)n ≤ εTm

( Â

n

)n
}
> τ

1+2τ
,
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5.3. Aggressively truncated Taylor series method

Algorithm 5.3 Lower bound iteration for exp(A), with A essentially nonnegative

Input: Â ∈RN×N+ , m ∈N, τ> u, MAXITER ∈N.
1: (optional) Balancing.
2: k ← ⌈

log2

(
N +max{Â(i , i )}

)⌉+1
3: ε← τ+1, ε0 ← ε

4: while ε0 ≥ ε≥ τ
1+2τ and k ≤ MAXITER do

5: n ← 2k , ε0 ← ε

6: L ← Lm,n(A)

7: W ← n(Â/n)m+1

(m +1)!
L

8: ε← max

{
W (i , j )

L(i , j )
: W (i , j ) > 0

}
9: k ← k + 1

m
log2

ε

τ
10: end while
11: E ← L
12: if ε≥ τ then
13: Report failure.
14: end if
15: (optional) Reversed balancing.

it still suggests an appropriate choice of the parameters. For example, it is expected that

εm,2n ∼ 2−mεm,n when εm,n is small because the convergence rate provided in Lemma 5.2.1

is reasonably accurate. This kind of heuristics often rapidly leads to a suitable choice of

(m,n). The typical situation in practice is that an appropriate parameter setting can be found

immediately after an initial guess. As a consequence of the above discussion, an iterative

method based on the a posteriori error estimate is presented in Algorithm 5.3. As pointed out

in Section 4.2, this algorithm can also be regarded as an mth order Runge-Kutta method. In

practice we recommend that m = 13 is used so that n < 4C (A) is sufficient for N ≤ 2048. Usually,

no more than two iterations are required in Algorithm 5.3. Therefore the computational cost,

which is also O (N 3 log N ), is not much more expensive than Algorithm 5.1. Therefore the

computational cost is also O (N 3 log N ), and Algorithm 5.3 is not much more expensive than

Algorithm 5.1.

Remark 5.3.5. If exp(A)v (for some vector v ≥ 0) instead of exp(A) is of interest, the stopping

criterion can be adjusted to

Âm+1

nm(m +1)!
Tm

( Â

n

)n
v ≤ τ

1+2τ
Tm

( Â

n

)n
v,

which might be easier to satisfy than (5.3.5).

Similarly, we can establish an iterative approach for Um,n(A), based on Lemma 5.2.6. We
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Chapter 5. Aggressively Truncated Taylor Series Method

can simply use

Âm+1

nmm!m

(
I − Â

mn

)−1
T̃m

( Â

n

)n−1 ≤ τ

1+τ T̃m

( Â

n

)n
(5.3.6)

or

Âm+1

nmm!m

(
I − Â

mn

)−1
T̃m

( Â

n

)n ≤ τ

1+τ T̃m

( Â

n

)n
, (5.3.7)

which both imply

T̃m

( Â

n

)n −exp(Â) ≤ τexp(Â)

and hence

Um,n(A)−exp(A) ≤ τexp(A).

Notice that
[
I − Â/(mn)

]−1 has already been calculated when evaluating T̃m(Â/n), so that

these stopping criteria only require matrix multiplications. We remark that if (5.3.6) is used, it

is advisable to choose n in the form n = 2k +1 so that T̃m(Â/n)n−1 can be cheaply computed.

The iterative algorithm for Um,n(A) is listed in Algorithm 5.4.

5.3.3 Interval algorithms with improved accuracy

When both Lm,n(A) and Um,n(A) are computed, it is possible to make use of these bounds

to gain a more accurate approximation of exp(A). In the following, we demonstrate such a

technique which potentially improves the accuracy of the solution using these bounds. In

addition, we present a novel high accuracy interval-type algorithm based on these bounds.

Sometimes both an upper bound and a lower bound of exp(A) are of interest. Certainly we

can calculate them separately using the algorithms we have presented. But we expect more

useful outputs by merging them. Notice that

Um,n(A)−Lm,n(A) = [
Um,n(A)−exp(A)

]+ [
exp(A)−Lm,n(A)

]
.

The difference between the upper bound and the lower bound is also componentwise small

compared to exp(A). Thus, once both Lm,n(A) and Um,n(A) have already been calculated, a sim-

pler a posteriori error estimate is automatically available. In principle, any matrix X satisfying

Lm,n(A) ≤ X ≤Um,n(A) is a good approximation of exp(A) when both bounds are sufficiently

accurate. We seek for a higher order approximation of the form ηLm,n(A)+ (1−η)Um,n(A)

where η ∈ [0,1], i.e., a convex combination of Lm,n(A) and Um,n(A). It is straightforward to

verify that

lim
x→0

exp(x)−Tm(x/n)n

xm+1 = m lim
x→0

T̃m(x/n)n −exp(x)

xm+1 = 1

nm(m +1)!
.
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5.3. Aggressively truncated Taylor series method

Algorithm 5.4 Upper bound iteration for exp(A), with A essentially nonnegative

Input: Â ∈RN×N+ , m ∈N, τ> u, MAXITER ∈N.
1: (optional) Balancing.
2: k ← ⌈

log2

(
N +max{Â(i , i )}

)⌉+1
3: ε← τ+1, ε0 ← ε

4: while ε0 ≥ ε≥ τ
1+τ and k ≤ MAXITER do

5: n ← 2k , ε0 ← ε

6: Try U ←Um,n(A)
7: if ρ(Â) ≥ mn then

8: W ← n(Â/n)m+1

(m +1)!m

(
I − Â

mn

)−1
U

9: ε← max

{
W (i , j )

U (i , j )
: U (i , j ) > 0

}
10: k ← k + 1

m
log2

ε

τ
11: else
12: k ← k +1
13: end if
14: end while
15: E ←U
16: if ε≥ τ then
17: Report failure.
18: end if
19: (optional) Reversed balancing.

Therefore,

Em,n(A) = 1

m +1
Lm,n(A)+ m

m +1
Um,n(A)

is an (m +1)-th order approximation of exp(A). The idea here is closely related to Richardson

extrapolation [124]. A method based on Richardson extrapolation on L1,n(A) has been pro-

posed in [154]. In contrast to that method, which is numerically unstable [115], our approach

based on interpolation is stable since it preserves nonnegativity in floating-point arithmetic.

Using the same techniques for deriving Theorems 5.2.4 and 5.2.5, we establish the following

error estimate.

Theorem 5.3.6. Let A ∈RN×N be essentially nonnegative. Then

0 ≤ Em,n(A)−exp(A)

≤ m

m +1

[(
1+ R̃m

(C (A)

n

))n

−1+ C (A)m+2 −C (A)m+1

nm(m +1)!m

]
exp(A) (5.3.8)

holds for any positive integers m and n satisfying mn >C (A).
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Proof. Multiplying exp[−s(A)] to (5.3.8) leads to an equivalent inequality

0 ≤ Em,n(Â)−exp(Â) ≤ m

m +1

[(
1+ R̃m

(C (A)

n

))n

−1+ C (A)m+2 −C (A)m+1

nm(m +1)!m

]
exp(Â).

In the following we prove this version which involves Â only. On the one hand, from the proofs

of Lemmas 5.2.1 and 5.2.6, we have

Lm,n(Â)−exp(Â) ≥−nRm

( Â

n

)
exp

( Â

n

)n−1
,

Um,n(Â)−exp(Â) ≥ nR̃m

( Â

n

)
exp

( Â

n

)n−1
.

Then

Em,n(Â)−exp(Â) = m

m +1

[
Um,n(Â)−exp(Â)

]+ 1

m +1

[
Lm,n(Â)−exp(Â)

]
≥ 1

m +1

[
mR̃m

( Â

n

)
−Rm

( Â

n

)]
exp

(n −1

n
Â

)
.

Notice that the function

f (k) = 1

m!mk−1

/ m +1

(m +k)!

satisfies that f (1) = 1 and f (k + 1)/ f (k) = (m + k + 1)/m > 1 for k > 1. Therefore, we have

f (k) ≥ 1 for any positive integer k and then

mR̃m(x)−Rm(x) =
∞∑

k=1

[
1

m!mk−1
− m +1

(m +k)!

]
xm+k

has nonnegative coefficients in the Maclaurin series expansion. Hence we obtain

mR̃m

( Â

n

)
−Rm

( Â

n

)
≥ 0,

and then

Em,n(Â)−exp(Â) ≥ 0.

On the other hand, Lemma 5.2.1 implies that

Lm,n(Â)−exp(Â) ≤− Âm+1

nm(m +1)!

= Âm+1

nm(m +1)!

[
exp(Â)−L1,0(Â)

]− Âm+1

nm(m +1)!
exp(Â)

≤ Âm+1

nm(m +1)!

[
Â exp(Â)

]− Âm+1

nm(m +1)!
exp(Â)
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5.3. Aggressively truncated Taylor series method

= Âm+2 − Âm+1

nm(m +1)!
exp(Â).

Therefore, combining with (5.2.9), we have

Em,n(Â)−exp(Â) = m

m +1

[(
Um,n(Â)−exp(Â)

)+ 1

m

(
Lm,n(Â)−exp(Â)

)]
≤ m

m +1

[(
1+ R̃m

( Â

n

))n

−1+ Âm+2 − Âm+1

nm(m +1)!m

]
exp(Â).

To prove the desired inequality

Em,n(Â)−exp(Â) ≤ m

m +1

[(
1+ R̃m

(C (A)

n

))n

−1+ C (A)m+2 −C (A)m+1

nm(m +1)!m

]
exp(Â),

it remains to verify that

g (x) =
[

1+ R̃m

( x

n

)]n
−1+ xm+2 −xm+1

nm(m +1)!m
=:

∞∑
k=0

αk xk

has nonnegative coefficients in its Maclaurin series expansion. Actually, all αk ’s except αm+1

are obviously nonnegative as

g (x) =
n∑

k=1

(n

k

)
R̃m

( x

n

)k + xm+2

nm(m +1)!m
− xm+1

nm(m +1)!m
.

For αm+1, we use the fact that

R̃m(x) = xm+1

(m +1)!m
+O (xm+2), (x → 0)

to conclude that g (x) =O (xm+2) as x → 0, and thus αm+1 = 0. This completes the proof of the

theorem.

Remark 5.3.7. From the definition of T̃m(x), we can see that terms up to mth order are shared

when evaluating Tm(Â/n) and T̃m(Â/n) simultaneously. This observation is also valid for some

alternative approaches such as (5.3.2).

In applications [14] where accurate bounds are extremely important, it is desirable that

fl[Lm,n(A)] ≤ Lm,n(A) ≤ exp(A) ≤Um,n(A) ≤ fl[Um,n(A)] (5.3.9)

is guaranteed regardless of rounding errors. In this case Lm,n(A) and Um,n(A) need to be

calculated separately using different rounding modes and no computational cost can be

saved. The technique of convex combination can still be applied although fl
[
Em,n(A)

]
is not

guaranteed to be another upper bound of exp(A). A complete algorithm is summarized as

Algorithm 5.5 which provides both lower and upper bounds and a higher order approximation
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Algorithm 5.5 Interval algorithm for exp(A), with A essentially nonnegative

Input: Â ∈RN×N+ , m ∈N, τ> u, MAXITER ∈N.
1: (optional) Balancing.
2: k ← ⌈

log2

(
N +max{Â(i , i )}

)⌉+1
3: ε← τ+1, ε0 ← ε

4: L ← A, U ←+∞
5: while ε0 ≥ ε≥ τ and k ≤ MAXITER do
6: n ← 2k , ε0 ← ε

7: Evaluate L0 ← fl[Lm,n(A)] under the rounding mode round towards −∞
8: L ← max{L,L0}
9: (Try) Evaluate U0 ← fl[Um,n(A)] under the rounding mode round towards +∞

10: U ← min{U ,U0}

11: ε← max

{
U (i , j )−L(i , j )

L(i , j )
: U (i , j ) > 0

}
12: k ← k + 1

m
log2

ε

τ
13: end while

14: E ← 1

m +1
L+ m

m +1
U

15: if ε≥ τ then
16: Report failure.
17: end if
18: (optional) Reversed balancing.

in between. We will verify in Section 5.4.3 that the property (5.3.9) can indeed be achieved.

Because of this property, Algorithm 5.5 can be regarded as an interval algorithm [110] but

without any explicit use of interval arithmetic. As a remark, some different interval algorithms

for computing exp(A) (A is not necessarily essentially nonnegative) can be found in [27, 56].

These methods bound the remainders of truncated Taylor series [56] or Padé approximant [27],

and both involve interval arithmetic. The rounding error analysis in Section 5.4 demonstrates

that this interval algorithm does not severely overestimate the error. Generally the a posteriori

error Um,n(A)− Lm,n(A) is also much smaller than the a priori error based on truncation

and rounding error analysis. In practice, Algorithm 5.5 is more robust than other algorithms

presented in this section, while it is also more costly.

5.4 Rounding error analysis

In this section we provide error bounds taking into account effects of finite precision

arithmetic. Although these bounds usually overestimate the errors in practice, we do not

attempt to refine them as tightly as possible since the main purpose is to provide evidence

for the forward stability of our algorithms. We assume that there is no overflow or (gradual)

underflow in the calculation so that the rounding model

fl(α◦β) = (α◦β)(1+ε), |ε| ≤ u (5.4.1)
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5.4. Rounding error analysis

is applicable, where “◦” is +, −, ×, or ÷, and u is the unit roundoff, see Appendix B for details.

In addition,

fl
[
exp(α)

]= exp(α)(1+ε), |ε| ≤ u

is assumed. We further assume that N 2u ¿ 1, which is a reasonable requirement in practice,

so that all O (u2) terms are negligible.

5.4.1 Rounding error in fl
[
Lm,n(A)

]
Firstly, we show that the matrix polynomial Tm(A/n) can be computed stably when A is

nonnegative. We assume that Tm(A/n) is evaluated via

fl

[
Tm

( A

n

)]
← fl

[
Tm−1

( A

n

)]
+ A

mn
· fl

[
1

(m −1)!

( A

n

)m−1
]

. (5.4.2)

Those cheaper alternatives for evaluating Tm(A/n) such as (5.3.2) require fewer matrix multi-

plications than the simple scheme (5.4.2) and hence very likely have smaller rounding error

bounds (see, e.g., [73, Theorem 4.5]). It is not difficult to prove the following conclusion.

Lemma 5.4.1. If A ∈RN×N+ , then for any positive integers m and n, we have∣∣∣∣fl[Tm

( A

n

)]
−Tm

( A

n

)∣∣∣∣≤ [
(m +1)(N +2)u+O (u2)

]
Tm

( A

n

)
.

Proof. The proof can be found in [48, Theorem 1.1.1]. We remark that our bound is slightly dif-

ferent compared to the one in [48] because we require two more operations here—the division

by n in fl(A/n) ← A/n and the division by m in fl
[
(A/n)m/m!

] ← fl
[
(A/n) · [(A/n)m−1/(m −

1)!]
]
/m.

For the scaling procedure, Lemma 5.4.2 below is in a slightly different form compared

to Theorem 4.9 in [7]. We also provide a different proof for this lemma. Compared to (4.2.1),

the error bound here is much tighter. Therefore, the squaring stage for nonnegative matrices

is already much safer than that for general matrices. Although the error bound for repeated

squaring is nearly attainable in the worst case, it is often too pessimistic in practice. We have

already seen in Section 5.3 that sometimes perturbations on a nonnegative matrix B can even

decay during the repeated squaring process. The full understanding of the squaring phase is

still an open problem [109]. It is good to keep in mind that repeated squaring can be dangerous,

but that this is not always the case.

Lemma 5.4.2. Let ∆B ∈RN×N be the perturbation of a nonnegative matrix B satisfying |∆B | ≤
εB for some ε ∈ [0,1). Then for n = 2k , we have∣∣fl[(B +∆B)n]−B n

∣∣≤ [
n(N u+ε)+O (ε2 +εu+u2)

]
B n .
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Proof. First, the condition |∆B | ≤ εB is equivalent to

(1−ε)B ≤ B +∆B ≤ (1+ε)B.

Then by induction, we obtain

(1−ε)n(1−N u)n−1B n ≤ fl
[
(B +∆B)n] ≤ (1+ε)n(1+N u)n−1B n .

Therefore∣∣fl[(B +∆B)n]−B n
∣∣≤ [

n(N u+ε)+O (ε2 +εu+u2)
]
B n .

Making use of Lemmas 5.4.1 and 5.4.2, we obtain Theorem 5.4.3 which provides the

rounding error bound for Algorithms 5.1 and 5.3. We remark that a similar theorem can be

found in [48]. Our estimate, which is tailored to nonnegative matrices, is more concise and

has a simpler proof compared to [48, Theorem 1.1.9]. The error estimate in Theorem 5.4.3 is

satisfactory, since the scale factor n used by Algorithms 5.1, which appears in the error bound,

is proportional to C (A).

Theorem 5.4.3. Let A be an N ×N essentially nonnegative matrix and m, n be positive integers

satisfying exp(A)−Lm,n(A) ≤ τexp(A). Then∣∣fl[Lm,n(A)
]−exp(A)

∣∣≤ [
τ+n(m +2)(N +3)u+O (u2)

]
exp(A).

Proof. Let B = exp[s(A)/n]Tm(Â/n), ∆B = fl
[
exp[s(A)/n]Tm(Â/n)

]−B , and ε = (m +1)(N +
3)u+O(u2). Then by Lemma 5.4.2, we have∣∣fl[Lm,n(A)

]−Lm,n(A)
∣∣≤ [

n(m +2)(N +3)u+O (u2)
]

exp(A).

Taking into account the truncation error bound τ yields the conclusion.

5.4.2 Rounding error in fl
[
Um,n(A)

]
To analyze the rounding error for fl

[
Um,n(A)

]
, the inverse of an M-matrix is the only differ-

ent part compared to fl
[
Lm,n(A)

]
. Let M be an N ×N nonsingular M-matrix with the Jacobi

splitting M = D −K where D is diagonal and K has zero diagonal entries. Then Lemma 5.4.4

characterizes the sensitivity of M−1 in terms of γ= ρ(
D−1K

)
.

Lemma 5.4.4 ([165]). Assume that M is an N ×N nonsingular M-matrix. Let ∆M be a pertur-

bation to M satisfying |∆M | ≤ ε |M | where 0 ≤ ε< (1−γ)/(1+γ). Then

∣∣(M +∆M)−1 −M−1
∣∣≤ [

2−γ
1−γNε+O (ε2)

]
M−1.

Proof. See [165, Theorem 2.4].
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When mn > 2ρ(Â), the M-matrix M = I − Â/(mn) is well-conditioned in the component-

wise sense with γ< 1/2. This can be verified through

ρ
(
D−1K

)≤ 1

2
ρ

[(
D − 1

2
I
)−1

K

]
< 1

2
,

due to the fact that I /2− Â/(mn) = (D − I /2)−K is also an M-matrix. Moreover, the LU factor-

ization of M satisfies s(U ) ≥ 1/2, indicating that M−1 can likely be calculated componentwise

accurately via standard Gaussian elimination. Lemma 5.4.5 below confirms this and provides

a rounding error bound for the following algorithm.

(1) Perform one step Gaussian elimination without pivoting for calculating the LU factor-

ization:

M =
[

M11 M12

M21 M22

]
=

[
1

L21 I

][
M11 M12

S22

]
, (5.4.3)

where S22 is the Schur complement.

(2) Compute fl
(
S−1

22

)← fl
[
fl(S22)−1

]
recursively.

(3) Compute fl
(
M−1

)
through

fl
(
M−1)= fl

([
M−1

11 +M−1
11 M12 fl

(
S−1

22

)
L21 M−1

11 M12 fl
(
S−1

22

)
− fl

(
S−1

22

)
L21 fl

(
S−1

22

) ])
.

Lemma 5.4.5. Let B ∈RN×N+ satisfying ρ(B) < 1/2. Then the inverse of M = I −B calculated by

the algorithm above satisfies∣∣fl(M−1)−M−1
∣∣≤ [

10N (N +1)u+O (u2)
]
M−1. (5.4.4)

Proof. The conclusion holds trivially for N = 1. For N > 1, we analyze the rounding error by

induction.

In Step (1), the computed vector fl(L21) satisfies

fl(L21) = M21

M11
+x,

where

|x| ≤ u
∣∣∣ M21

M11

∣∣∣= u |L21| .

Similarly, fl(S22) satisfies

fl(S22) = M22 − fl(L21)M12 +Y ,
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where

|Y | ≤ [
2u+O (u2)

](|M22|+ fl(L21)M12
)= [

2u+O (u2)
](|M22|+L21M12

)
.

Notice that all diagonal entries of S22 lie in the interval [1/2,1] as ρ(B) < 1/2. It can be easily

verified that |M22|+L21M12 ≤ 3 |S22| and hence

|fl(S22)−S22| ≤
[
6u+O (u2)

] |S22| .

In Step (2), we use the induction hypothesis∣∣fl[fl(S22)−1]− fl(S22)−1
∣∣≤ [

10N (N −1)u+O (u2)
]

fl(S22)−1.

Therefore, applying Lemma 5.4.4 yields∣∣fl[fl(S22)−1]−S−1
22

∣∣≤ ∣∣fl[fl(S22)−1]− fl(S22)−1
∣∣+ ∣∣fl(S22)−1 −S−1

22

∣∣
≤ [

10N (N −1)u+18(N −1)u+O (u2)
]
S−1

22

≤ [
(10N 2 +8N )u+O (u2)

]
S−1

22 .

Finally, in Step (3), the relative error propagated is bounded by 2N u+O (u2). Therefore,

combining this error with the error in fl
(
S−1

22

)
yields the conclusion.

Based on the lemmas we have developed, it is now ready to estimate the rounding error

for Um,n(A) similar to Theorem 5.4.3.

Theorem 5.4.6. Let A be an N ×N essentially nonnegative matrix and m, n be positive integers

satisfying mn > 2ρ(Â) and Um,n(A)−exp(A) ≤ τexp(A). Then∣∣fl[Um,n(A)]−exp(A)
∣∣≤ [

τ+n(m +10N )(N +3)u+O (u2)
]

exp(A).

Proof. Using the same technique for Lemma 5.4.1, it can be verified that∣∣∣∣fl[exp
[ s(A)

n

]
T̃m

( Â

n

)]
−exp

[ s(A)

n

]
T̃m

( Â

n

)∣∣∣∣≤ [
(m +10N )(N +3)u+O (u2)

]
T̃m

( Â

n

)
.

Then let B = exp[s(A)/n]T̃m(Â/n), ∆B = fl
[
exp[s(A)/n]T̃m(Â/n)

]−B , and ε= (m +10N )(N +
3)u+O(u2). The conclusion is obtained by applying Lemma 5.4.2.

5.4.3 Rounding error under biased rounding modes

We have confirmed in the previous subsections that Algorithms 5.1–5.4 have high com-

ponentwise accuracy. Algorithm 5.5 requires calculations under biased rounding modes to

achieve the property (5.3.9). In this case the rounding errors can still be modeled by (5.4.1),
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while the unit roundoff here is twice as large as the one under the standard rounding mode

(i.e., round towards nearest) [112]. Therefore, Theorems 5.4.3 and 5.4.6 are valid for the interval

algorithm.

The task left is to verify that the property (5.3.9) can indeed be achieved by carefully

switching the rounding modes. Obviously, fl
[
Lm,n(A)

]≤ Lm,n(A) is satisfied by simply switch-

ing the rounding mode to round towards −∞. For the upper bound, the tricky part is to

achieve fl
(
M−1

) ≥ M−1, where M = I − A/(mn) is an M-matrix. 4 Firstly, fl(M) is formed by

fl(M) =− fl
[
fl[A/(mn)− I ]

]≤ M . Consider one step of Gaussian elimination (5.4.3). The factor-

ization can be computed through

fl(L21) =− fl(|L21|) =− fl

[
fl(|M21|)
fl(M11)

]
≤ L21,

fl(S22) =− fl
[
fl(|L21|) fl(|M12|)− fl(M22)

]≤ S22.

By applying the same procedure recursively to S22, we conclude that the LU factorization

M = LU satisfies

fl(L) = fl(L) ≤ L, fl(U ) = fl(U ) ≤U .

Suppose M−1 is computed by solving two triangular linear systems under the rounding mode

round towards +∞, the solution satisfies

fl
(
M−1)≥ fl(U )−1 fl(L)−1 ≥U−1L−1 = M−1.

The conclusion can be generalized to block LU factorization and some algorithmic variants

for computing M−1 as long as fl(L) and fl(U ) are true lower bounds of L and U , respectively.

However, the analysis does not carry over to GTH-type algorithms since the diagonal entries

of S22 are computed in a different way. Therefore, if the actual upper bound is important,

we prefer standard Gaussian elimination rather than GTH-type algorithms. In practice all

calculations can be done without switching the rounding mode (under the rounding mode

round towards +∞), using the trick fl(x) =− fl(−x).

5.5 Numerical experiments

In this section, we present and discuss some experimental results. All experiments are

performed on a Linux machine with an Intel Xeon quadcore 3.10GHz CPU and 8GB memory.

We make use of only a single core for the experiments. Both Algorithm 5.1 and Algorithm 5.5

are implemented in C99 and compiled by the GNU C complier. Matrix multiplications are

performed by the optimized (single-threaded) GEMM routine from the OpenBLAS library;

while other operations, such as block LU factorization and solving triangular systems, are

4. Unfortunately, GTH-type algorithms [5] usually do not have this property.
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carefully implemented, see Section 5.4.3. For the parameter setting, we choose m = 8 as the

truncation order in Algorithm 5.5. It is relatively small compared to the recommended value

(m = 13) and allows us to observe some features of this algorithm which rarely occur under

the recommended setting. The relative tolerances is set to τ= 1024N u ≈ 2.3×10−13N . The

maximum iteration number is set to MAXITER= 52 which is more than needed. Balancing is

not used in the experiments to demonstrate that our algorithm is not sensitive to bad scaling

in the original matrix. The switching of rounding modes is accomplished by the standard

library function fesetround(). As a comparison, we also run the same set of tests on the

same machine for MATLAB’s expm function (version R2012a) which is a general purpose solver.

We choose nine commonly used test matrices. All entries in the solutions can be represented

by normalized floating-point numbers (i.e., no overflow or (gradual) underflow).

Example 5.1 ([43]).

A =
[
−0.01 1015

0 −0.01+10−6

]
.

Example 5.2. A matrix modified from an example in C. Moler’s blog 5:

A =

 0 e 0

a +b −d a

c 0 −c

 ,

where a = 2×1010, b = 2
3 ×108, c = 200

3 , d = 3, e = 10−8.

Example 5.3 ([38]).

A =


−16 260 260 260

0 −16 260 260

0 0 −1 260

0 0 0 −1

 .

Example 5.4 ([155]). The 10×10 Forsythe matrix

A =


0 1

. . .
. . .
. . . 1

10−10 0


10×10

.

5. C. Moler, A Balancing Act for the Matrix Exponential,
http://blogs.mathworks.com/cleve/2012/07/23/a-balancing-act-for-the-matrix-exponential/.
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Example 5.5 ([167]).

A =−T50 =


−2 1

1
. . .

. . .
. . .

. . . 1

1 −2


50×50

.

Example 5.6. The 128×128 Jordan block with zero eigenvalues

A = J128(0) =


0 1

. . .
. . .
. . . 1

0


128×128

.

Example 5.7 ([167]). The adjacency matrix of a 2-nearest ring network of 200 nodes with four

extra shortcuts 16–30, 74–85, 90–128, 138–147, modeling a small-world network. It is generated

by smallw(200,2,0.03), where smallw.m is from the MATLAB toolbox CONTEST 6 [145].

Example 5.8 ([167]). A =−T40,40 =−(T40 ⊗ I40 + I40 ⊗T40).

Example 5.9.

A = 1400× J2048(−1/2) =


−700 1400

. . .
. . .
. . . 1400

−700


2048×2048

.

Table 5.2 lists the componentwise errors

min
{
ε≥ 0:

∣∣fl[exp(A)
]−exp(A)

∣∣≤ εexp(A)
}

for these testing examples. For Algorithm 5.5, we present the a posteriori error estimate

computed from Um,n(A)−Lm,n(A), as well as the measured error from the “accurate” solution

computed by the MATLAB Symbolic Computation toolbox. (We use sym when exp(A) is known

exactly or N is small, and use vpa with 250 digits for large matrices.) Algorithm 5.1 successfully

solves all these problems to desired accuracy. Algorithm 5.5 also solves all problems except

for Example 5.2. Despite that the measured error in Example 5.2 is already smaller than τ,

we regard it as a failure since the algorithm cannot identify the true error by itself. However,

the algorithm still provides a useful error estimate for the unsatisfactory solution which

informs the user about the quality of the solution. The difference between the a posteriori

error estimate and the measured error also confirms that the weighted sum Em,n(A) can be

more accurate than the upper/lower bounds. As a general purpose solver, MATLAB’s expm

6. CONTEST: http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest .
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function only produces componentwise accuracy for two of these examples. In fact, for the first

three examples which have large normwise condition numbers (see (4.1.9) for the definition

of κexp(A), here the F -norm is used), the normwise errors of expm are also large (1.0×10−2,

1.0×100, and 1.0×100, respectively).

Table 5.2 – Componentwise relative errors of the test examples.

Matrix ID C (A) κexp(A) τ Algorithm 5.1 Algorithm 5.5 expm
estimated measured

5.1 1.0×100 1.7×1029 4.5×10−13 8.9×10−16 1.2×10−14 6.3×10−15 1.0×10−2

5.2 8.6×101 2.4×1019 6.8×10−13 4.7×10−14 2.5×10−12 6.0×10−13 1.0×100

5.3 1.8×101 5.2×1069 9.1×10−13 5.7×10−15 3.8×10−13 1.5×10−13 1.0×100

5.4 9.1×100 1.7×100 2.3×10−12 3.6×10−16 1.1×10−12 6.8×10−14 1.8×10−14

5.5 5.1×101 5.4×100 1.1×10−11 2.0×10−14 2.9×10−12 2.2×10−12 2.6×106

5.6 1.3×102 1.8×100 2.9×10−11 9.8×10−13 1.5×10−11 6.9×10−14 9.7×1077

5.7 2.0×102 7.3×100 4.5×10−11 2.8×10−14 2.2×10−11 1.9×10−11 3.3×107

5.8 1.6×103 6.1×101 3.6×10−10 6.3×10−13 1.2×10−10 1.0×10−10 4.2×106

5.9 2.0×103 2.4×104 4.6×10−10 6.1×10−11 3.5×10−10 8.4×10−12 1.1×10−12

Table 5.3 – Parameter settings for Algorithm 5.1 and Algorithm 5.5.

Matrix ID Algorithm 5.1 Algorithm 5.5
m log2 n m log2 n #(iter)

5.1 12 1 8 3 1
5.2 18 6 8 10 3
5.3 21 3 8 8 2
5.4 21 2 8 5 2
5.5 18 5 8 9 2
5.6 19 6 8 10 2
5.7 18 7 8 9 1
5.8 18 10 8 12 1
5.9 19 10 8 14 2

Table 5.4 – Execution time (in seconds) of the test examples.

Matrix ID Algorithm 5.1 Algorithm 5.5 expm
5.1 8.4×10−5 1.5×10−5 5.4×10−4

5.2 8.9×10−5 4.7×10−5 3.7×10−4

5.3 9.4×10−5 2.9×10−5 6.0×10−4

5.4 8.3×10−5 3.2×10−5 2.5×10−3

5.5 4.2×10−4 1.2×10−3 5.5×10−4

5.6 3.7×10−3 2.0×10−2 3.6×10−3

5.7 1.3×10−2 2.4×10−2 7.2×10−3

5.8 8.6×100 3.5×101 3.1×100

5.9 1.4×101 1.1×102 2.4×101
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Example 5.6 is of particular interest. The exact solution is known to be

[
exp(A)

]
i j =

0, i > j ,
1

( j−i )! , i ≤ j ,

whose nonzero entries are the coefficients in the Maclaurin series of exp(x). Algorithm 5.5

terminates successfully with n = 1024. Therefore the first 128 terms in the Maclaurin series of

T8
(
x/1024

)1024 and T̃8
(
x/1024

)1024 both agree with those terms in exp(x) within a relative error

of 2×10−11. Since 1/128! < 2.6×10−216, the remaining terms are very tiny. This is an intuitive

way to understand why our methods can always produce high relative accuracy. Example 5.9

is a very challenging problem because the magnitude of the nonzero entries in the solution

vary from 10−304 to 10302. Our algorithms still provide componentwise accurate solutions

for this extreme case. Interestingly, expm also does a good job for this difficult example but

fails for Example 5.6 which should be easier. A brief explanation is that expm tries to avoid

“unnecessary” scaling in Example 5.6 and thus loses the opportunity to recover small entries

in the solution.

Table 5.3 lists the parameters used in Algorithm 5.1 and Algorithm 5.5, respectively. For

Examples 5.3, 5.7, and 5.8, the parameter settings used in Algorithm 5.5 would be treated as

infeasible in Algorithm 5.1, since they cannot pass the a priori test (5.3.1). Therefore, Theo-

rem 5.2.4 indeed overestimates the truncation errors. Interestingly, because of the overestima-

tion, the parameter setting used in Algorithm 5.5 requires less computational work compared

to the “optimal” settings in Algorithm 5.1 for Examples 5.7 and 5.8. Although Algorithm 5.5

is still more expensive since the upper bound Um,n(A) is also calculated, Algorithm 5.3 with

the same setting might be potentially cheaper than Algorithm 5.1. These phenomena confirm

our motivation for developing iterative methods based on a posteriori error estimates. Algo-

rithm 5.5 uses at most two iterations in almost all examples since the estimated scale factor n

based on the convergence rate is quite accurate. Example 5.2 requires three iterations because

it is terminated in the third step where the error stops decreasing.

The computational times are provided in Table 5.4 for reference also. Algorithm 5.1 and

MATLAB’s expm have similar performance since they both use a priori estimates to determine

the approximation order and the scale factor. As an iterative algorithm, with both upper and

lower bounds computed, Algorithm 5.5 is in general slower. This is the cost we need to pay in

order to obtain extra robustness.

Remark 5.5.1. In practice, m = 13 is recommended as the truncation order for double preci-

sion floating-point numbers. Algorithm 5.5 can solve all our examples with this recommended

setting. Most of them are solved in one iteration and hence the performance is also largely im-

proved compared to m = 8. But the convergence rate can be better understood with a smaller

truncation order since we need to predict the scale factor from an improper initial guess. A

failure in the testing examples with m = 8 also demonstrates the robustness of Algorithm 5.5.

Finally, we provide an example which illustrates the limitation of our methods.
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Example 5.10. The discretization of a 1-D Laplacian operator

A =−(N +1)2TN = (N +1)2


−2 1

1
. . .

. . .
. . .

. . . 1

1 −2


N×N

,

where N = 50, 100, 200, and 400.

These matrices satisfy |s(A)| = 2(N +1)2 and C (A) ≈ N −1+2(N +1)2. They are considered

too difficult for our methods since C (A) is much larger compared to our assumption C (A) =
O (N ), see Section 5.1. Consequently, the relative errors of our algorithms are often larger

than τ, especially when N is large, see Table 5.5. Only slight improvements in the accuracy have

been observed by switching to the recommended truncation order m = 13. Not surprisingly,

when increasing N , the accuracy of our methods decrease as C (A) grows quickly. However,

MATLAB’s expm works well for this matrix although κexp(A) is also large. As the entries of

exp(A) do not vary too much for these matrices (from 10−11 to 10−6), expm also provides small

componentwise errors.

Table 5.5 – Componentwise relative errors in Example 5.10.

N C (A) κexp(A) τ Algorithm 5.1 Algorithm 5.5 expm
estimated measured

50 5.2×103 4.5×104 1.1×10−11 2.8×10−12 9.5×10−11 6.5×10−11 8.4×10−13

100 2.1×104 2.5×105 2.3×10−11 1.1×10−11 2.0×10−10 1.3×10−10 2.5×10−12

200 8.1×104 1.4×106 4.5×10−11 4.2×10−10 1.3×10−9 9.5×10−10 1.3×10−11

400 3.2×105 7.9×106 9.1×10−11 1.3×10−10 4.0×10−9 3.0×10−9 2.1×10−11

5.6 Summary

In this chapter we have presented the aggressively truncated Taylor series method for

calculating the exponential of an essentially nonnegative matrix. Truncated Taylor series

methods are usually not the first choice for general matrices. However, by carefully choosing

the order of truncation and the scale factor, they are preferred for essentially nonnegative

matrices. We make use of the nonnegativity and establish componentwise a priori and a

posteriori error estimates for both Lm,n(A) and Um,n(A). We also show that the weighted

average Em,n(A) offers a higher order approximation. These novel theoretical results lead to

different variants of the aggressively truncated Taylor series method. Rounding error analysis

ensures the stability of our algorithms. The interval algorithm also provides componentwise

error estimates regardless of roundoff. Finally we test these algorithms with some commonly

used matrices to confirm the efficiency and accuracy.
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In this chapter, we consider another matrix exponential problem. In a number of sci-

entific applications, especially in quantum mechanics, it is desirable to compute exp(iA)

where A is a self-adjoint operator. For example, exp(iA) naturally appears in the solution of

the time-dependent Schrödinger equation [35]. We refer to, e.g., [39] for applications from

other domains. In practice, the operator A is often given in discretized form, i.e., a doubly-

infinite Hermitian matrix under a certain basis, and a finite diagonal block of exp(iA) is of

interest. Throughout the chapter, we assume that A is self-adjoint and narrow banded. Sup-

pose the (−m : m,−m : m) block of exp(iA) is desired. A simple way to solve this problem

is illustrated in Figure 6.1. We first compute the exponential of the (−w : w,−w : w) block

of A, where w is chosen somewhat larger than m, and then use its central (2m +1)× (2m +1)

diagonal block to approximate the desired solution. In reference to similar methods for solving

linear systems [65, 102], we call this approach finite section method. The diagonal blocks

(−m : m,−m : m) and (−w : w,−w : w) are called the desired window and the computational

window, respectively.

Despite the simplicity of the finite section method, it is crucial to understand how large

the computational window needs to be, and whether this truncation produces a sufficiently

accurate approximation to the true solution. These questions are relatively easy to answer

for bounded matrices, where standard polynomial approximation technique can be applied.

But it turns out that the finite section method can also be applied to certain unbounded

matrices, and still produces reliable solutions. For example, Figure 6.1 illustrates this for an

unbounded Wilkinson-type matrix W −(1), see Section 6.3.1, for which the error decays quickly

when the size of the computational window increases. In this chapter, we will explain this

phenomenon and establish the finite section method with error estimates for several classes

of doubly-infinite Hermitian matrices. Unlike the setting in Chapter 5, we are only interested

in normwise accuracy in this chapter. Tiny entries in exp(iA) are still taken into account—we

make use of these tiny entries to derive the finite section method.

To our knowledge, much of the existing literature on infinite matrices is concerned with

solving infinite dimensional linear systems, see e.g., [23, 28, 135] and the references therein.
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Figure 6.1 – A pictorial illustration of the finite section method. In this case A is the Wilkinson-type
matrix W −(1).

The matrix exponential problem for infinite matrices has also been studied in the literature

of exponential integrators, see e.g., [75]. Recently [63] discussed more general functions on

operators. As the conjugate transpose operation A 7→ A∗ is naturally an involution, the set of

bounded matrices on a Hilbert space form a unital C∗-algebra [44]. Therefore, some existing

literature [19, 23, 98] makes use of properties of C∗-algebras to discuss the decay property of

matrix inversions, matrix functions, and matrix factorizations. Since we need to handle some

unbounded matrices, which do not necessarily form a set closed under multiplication, we will

use some techniques in approximation theory and linear algebra to discuss the finite section

method for doubly-infinite matrices.

This chapter is largely based on the manuscript [133] submitted for publication in Linear

Algebra Appl.. The rest of this chapter is organized as follows. In Section 6.2, we discuss the

decay property of exp(iA) for a bounded Hermitian matrix A and illustrate how this can be

used to analyze the finite section method. In Section 6.3, we first analyze decay of entries for

Wilkinson-type matrices and derive the corresponding finite section method, and then discuss

some extensions to more general unbounded matrices. Finally, numerical experiments are

presented in Section 6.4 to demonstrate the reliability of finite section methods.

6.1 Exponentials of doubly-infinite matrices

To set up the stage, let us first provide a formal mathematical formulation of the problem.

In the following, we recall some preliminaries in functional analysis. These results can be

found in, e.g., [4, 36, 122, 123].

A doubly-infinite matrix is a two dimensional array A = [ai j ] of complex numbers with

i , j ∈Z. It is called Hermitian (or skew-Hermitian) if ai j = a∗
j i (or ai j =−a∗

j i ) for all i , j ∈Z. If

there exists an even number b such that ai j = 0 when |i − j | > b/2, then A is called b-banded,

or banded in short. Matrix-matrix and matrix-vector multiplications are defined akin to those
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operations for finite matrices. That is,

(AB)i j =
∑

k∈Z
ai k bk j ,

(Ax)i =
∑

k∈Z
ai k xk ,

(6.1.1)

where A, B are doubly-infinite matrices and x = [xi ] is a doubly-infinite vector, provided that

these summations converge absolutely. Evidently, multiplications involving banded matrices

are always well-defined since all summations are finite. A doubly-infinite matrix A is called

bounded if

‖A‖2 := sup
x∈l2(Z)
‖x‖2≤1

‖Ax‖2 <+∞;

in this case A can be interpreted as a continuous linear operator over l 2(Z) [4]. By Gelfand’s

formula [53], we have

ρ(A) = lim
k→∞

‖Ak‖
1
k
2 ≤ ‖A‖2,

indicating that the spectrum Λ(A) is also bounded. In analogy to (4.1.1) for finite matrices, for

an analytic function F (z) defined on a domainΩ enclosingΛ(A), the matrix function F (A) is

defined as

F (A) = 1

2πi

∮
∂Ω

F (z)(zI − A)−1 dz.

In this chapter we are interested in the exponential function F (z) = exp(iz).

For unbounded Hermitian matrices, the self-adjointness is important even for defining

the matrix exponential. Since unbounded Hermitian matrices do not necessarily represent

self-adjoint operators on l 2(Z), careful treatment is required. In this chapter we only consider

the class of doubly-infinite banded Hermitian matrices A that can be expressed as the sum of

three Hermitian matrices

A = D +G +R,

where D is diagonal and invertible, R is bounded, and ‖GD−1‖2 < 1. We will show that A is

self-adjoint, in the sense that it can be represented as a self-adjoint operator by choosing a

suitable domain of definition in l 2(Z). Let

DA =
{

x ∈ l 2(Z) :
∑

k∈Z
|dkk xk |2 <+∞

}
,

which is a dense subspace of l 2(Z). Then A defines a symmetric operator φ[A] : DA → l 2(Z),
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x 7→ Ax, by the matrix-vector multiplication (6.1.1). Notice that

‖(A−D)x‖2 ≤ ‖(GD)−1(Dx)‖2 +‖Rx‖2 ≤ ‖(GD)−1‖2‖Dx‖2 +‖Rx‖2 < ‖Dx‖2 +‖R‖2‖x‖2

for all x ∈ DA Then by the Kato-Rellich theorem [93, Theorem 4.4 in Chapter 5], φ[A] is

essentially self-adjoint due to the fact that φ[D], which is defined on DA , is essentially self-

adjoint [4]. By the spectral decomposition of the closure of φ[A],

φ[A] =
∫ +∞

−∞
λdPλ,

we define exp
(
itφ[A]

)
as [122, Theorem VIII.6]

exp
(
itφ[A]

)= ∫ +∞

−∞
exp(itλ)dPλ, t ∈R,

where P is a projection-valued measure on l 2(Z). Since exp
(
itφ[A]

)
is unitary in l 2(Z) and

hence bounded, it has a unique matrix representation [4] with respect to the standard basis

{en}n∈Z. This matrix representation is denoted by exp(it A).

The finite section method can be interpreted as extracting a diagonal block from a certain

block diagonal approximation of the matrix. Hence a perturbation analysis of the matrix expo-

nential as in [84, 151] is helpful for studying the truncation error in this method. Fortunately,

the perturbation results mentioned in Section 4.1 carry over to doubly-infinite matrices. The

solution of the linear differential equation

dx(t )

dt
= iAx(t ), x(t ) ∈ l 2(Z)

is given by [36, Theorem 2.1.10]

x(t ) = exp(it A)x(0).

Similar to (4.1.8), using this connection between the linear differential equation and the

exponential function, it can be shown [36, Theorem 3.2.1] that

exp[it (A+∆A)]v−exp(it A)v = i
∫ t

0
exp[i(t−s)A]∆A exp[is(A+∆A)]v ds, ∀v ∈ l 2(Z), (6.1.2)

when both A and ∆A are self-adjoint, and in addition, ∆A is bounded. A simple consequence

of (6.1.2) is that∥∥exp[it (A+∆A)]v −exp(it A)v
∥∥

2 ≤ ‖∆A‖2‖v‖2,

indicating that the exponential of a skew-Hermitian matrix is always well-conditioned in

terms of absolute error. Since
∥∥exp(iA)

∥∥
2 = 1, absolute accuracy is sufficient in our problem.

We will see in Sections 6.2 and 6.3 that the perturbation result (6.1.2) plays an important role
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when analyzing the error of the finite section method.

6.2 The finite section method for bounded matrices

To analyze the accuracy of the finite section method, we start by discussing a relatively

simple case—A is a bounded Hermitian matrix. Throughout this section, we assume that

the doubly-infinite matrix A is Hermitian and b-banded. In the following, we first recall the

exponential decay property of exp(iA) and then establish finite section methods based on this

property.

6.2.1 The exponential decay property

It is well-known that when B is a finite banded matrix, the entries of F (B) decay exponen-

tially from the diagonal where F is an analytic function defined on a domainΩ⊃Λ(B). This

property has been observed for the inverse of a certain banded matrix in [40, 41]. Then the

decay property for general matrix functions has been developed [20], and even extends to

general sparse matrices [21] and infinite matrices [23, 98]. In the following we briefly recall

the results in [20, Section 2], on which our analyses are built on. We remark that the decay

properties easily carry over to functions of bounded doubly-infinite matrices.

Definition 6.2.1. We say that a matrix A = [ai j ] has the (K ,ρ)-exponential decay property, or

exponential decay property in short, if there exist K > 0 and ρ ∈ (0,1) such that∣∣ai j
∣∣≤ Kρ−|i− j |, ∀i , j . (6.2.1)

The constant ρ is called the decay rate. If for any ρ ∈ (0,1) there exists a positive number K such

that (6.2.1) holds for all i , j , we say that A decays super-exponentially.

Evidently, all finite matrices trivially have the exponential decay property by choosing

sufficiently large K . Hence this property is meaningful only when K can be chosen moderately

small and ρ is not too close to one. However, for a doubly-infinite matrix A, the exponential

decay property is nontrivial since it implies the boundedness of A in l 2(Z). In fact, both ‖A‖1 :=
sup j

∑
i∈Z |ai j | and ‖A‖∞ := supi

∑
j∈Z |ai j | are bounded by K (1+ρ)(1−ρ)−1 and hence the

Schur test [131] implies

‖A‖2 ≤
√

‖A‖1‖A‖∞ ≤ K (1+ρ)(1−ρ)−1.

Another closely related concept is localization [153]. Loosely speaking, a matrix is localized

if it becomes sparse after dropping all small entries whose magnitudes are below a certain

threshold. In this sense, the exponential decay property naturally indicates localization.

Proofs of the exponential decay properties of certain matrix functions are usually built

on polynomial approximation (see, e.g., [20, 21, 41]), i.e., approximating F (B) by a matrix
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polynomial p(B) where p ∈Ck [x] is a polynomial of degree at most k. The propositions below

will be used in our analyses.

Lemma 6.2.2 (Bernstein [20, 104]). Let Eχ (χ> 1) be the Bernstein ellipse in the complex plane

defined by

ℜ(z)2(
χ+χ−1

)2 + ℑ(z)2(
χ−χ−1

)2 = 1

4
.

Then for any function F being analytic in the domain enclosed by Eχ and continuous on Eχ, we

have

inf
p∈Ck [x]

‖F −p‖∞ ≤ 2M(χ)

χk (χ−1)
, (k ∈N)

where

M(χ) = max
z∈Eχ

|F (z)|.

Proof. See [104, Theorem 7 in Chapter 5].

Theorem 6.2.3 (Benzi-Golub [20]). Let B be a b-banded Hermitian matrix whose spectrum is

contained in the interval [−1,1]. Then for any function F being analytic 1 inside the Bernstein

ellipse Eχ and continuous on Eχ, there exist constants K > 0 and ρ ∈ (0,1) such that∣∣[F (B)]i j
∣∣≤ Kρ|i− j |.

More precisely, these constants can be chosen as

K = max

{
2χM(χ)

χ−1
,‖F (B)‖2

}
and ρ =χ− 2

b .

Proof. See [20, Theorem 2.2].

Although Theorem 6.2.3 is derived only for finite matrices in [20], the same proof is valid

for analytic functions of a doubly-infinite Hermitian b-banded matrix B as long as Λ(B) ⊂
[−1,1] holds. Now we consider a doubly-infinite b-banded Hermitian matrix A with spectrum

Λ(A) ⊂ [λ0−δ,λ0+δ]. 2 In the following we show that exp(iA) has the super-exponential decay

property.

1. In [20], F is additionally required to be real analytic. But this extra assumption turns out to be unnecessary,
see, e.g., [104, page 76].

2. Without loss of generality, we always assume that δ> 0.
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Corollary 6.2.4. Suppose A is a doubly-infinite b-banded Hermitian matrix with Λ(A) ⊂
[λ0 −δ,λ0 +δ]. For any χ> 1, let

K = 2χ

χ−1
exp

[δ(χ2 −1)

2χ

]
and ρ =χ− 2

b . (6.2.2)

Then ∣∣∣[exp(iA)
]

i j

∣∣∣≤ Kρ|i− j |, ∀i , j ∈Z. (6.2.3)

Moreover, exp(iA) has the super-exponential decay property.

Proof. For χ> 1, we set

M(χ) = max
z∈Eχ

∣∣exp(iδz)
∣∣= max

x+iy∈Eχ
x,y∈R

∣∣exp[iδ(x + iy)]
∣∣= max

x+iy∈Eχ
x,y∈R

∣∣exp[−δy]
∣∣

= max
y∈

[
− χ−χ−1

2 , χ−χ
−1

2

]∣∣exp(−δy)
∣∣ = exp

[δ(χ2 −1)

2χ

]
.

Applying Theorem 6.2.3 to F (z) = exp(iδz) with B = (A−λ0I )/δ, which has spectrum contained

in [−1,1], yields∣∣∣(exp
[
i(A−λ0I )

])
i j

∣∣∣= ∣∣[F (B)]i j
∣∣≤ Kρ|i− j |, (6.2.4)

where ρ =χ− 2
b and

K = max

{
2χM(χ)

χ−1
,1

}
= 2χM(χ)

χ−1
= 2χ

χ−1
exp

[δ(χ2 −1)

2χ

]
> 1.

The bound (6.2.3) now follows from (6.2.4) using the fact that∣∣exp(iA)
∣∣= ∣∣exp(iλ0)

∣∣ · ∣∣exp
[
i(A−λ0I )

]∣∣= ∣∣exp
[
i(A−λ0I )

]∣∣ .

For any ρ ∈ (0,1) we choose χ= ρ− b
2 and K = 2χexp

[
δ(χ2−1)/(2χ)

]/
(χ−1) according to (6.2.2)

so that (6.2.3) holds for all i , j ∈Z. Therefore, by definition exp(iA) has the super-exponential

decay property.

Since F (z) = exp(iδz) is an entire function, in Corollary 6.2.4 we can choose any χ from

the interval (1,+∞) to bound
∣∣[exp(iA)]i j

∣∣. Sometimes an upper bound of
∣∣[exp(iA)]i j

∣∣ for a

given entry (i , j ) is of interest. Thus it is desirable to find a χ that minimizes Kρ|i− j |. Such a

choice is made by taking θ = 1 and d = |i − j | in the following theorem.

Theorem 6.2.5. Let b, d, δ, and θ be positive numbers. Then the function

g (χ) =
( 2χ

χ−1

)θ
exp

[δ(χ2 −1)

2χ

]
χ−

2d
b , (χ> 1)
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has a unique minimum at χ=χ∗, where χ∗ is the unique root of the cubic equation

χ3 −
(
1+ 4d

bδ

)
χ2 +

(
1+ 4d −2bθ

bδ

)
χ−1 = 0

in the interval (1,+∞). Moreover, we have

lim
d→+∞

χ∗
d

= 4

bδ
.

Proof. We first notice that

lim
χ→1+g (χ) = lim

χ→+∞g (χ) =+∞.

Therefore g (χ) has at least one minimum in the interval (1,+∞) as g (χ) is continuously

differentiable. Any minimizer χ∗ satisfies the condition

0 = dg (χ)

dχ

∣∣∣∣
χ=χ∗

= g (χ∗)
[
− θ

χ∗(χ∗−1)
+ δ(χ2∗+1)

2χ2∗
− 2d

bχ∗

]
.

Multiplying by 2χ2∗(χ∗−1)
/

[g (χ∗)δ] yields h(χ∗) = 0, where

h(χ) =χ3 −
(
1+ 4d

bδ

)
χ2 +

(
1+ 4d −2bθ

bδ

)
χ−1.

Since h(1) < 0, h(χ) has either one root or three roots in the interval (1,+∞) according to the

monotonicity of a real cubic function. If there are three roots in (1,+∞), the product of all

these roots is greater than one. This contradicts Vieta’s formulas which imply that the product

of the roots of h(χ) is one. Therefore, h(χ) has only one root in (1,+∞). This root is also the

unique minimizer of g (χ).

To obtain the asymptotic behavior of χ∗, we consider the function

h̃(χ̃) = h(χ)

d 3 = χ̃3 −
( 1

d
+ 4

bδ

)
χ̃2 +

( 1

d 2 + 4

bdδ
− 2θ

d 2δ

)
χ̃− 1

d 3 ,

where χ̃=χ/d . Since χ∗ is the largest real root of h(χ), χ̃∗ =χ∗/d is also the largest real root

of h̃(χ̃). When d =+∞, we have χ̃∗ = 4/(bδ). Notice that χ̃∗ is a continuous function of the

coefficients of h̃(χ̃) (see, e.g., [42, 163]). Therefore, we obtain

lim
d→+∞

χ∗
d

= lim
d→+∞

χ̃∗ = 4

bδ
.

6.2.2 The finite section method

We have seen that exp(it A) has the (super-)exponential decay property when a doubly-

infinite matrix A is banded Hermitian and bounded. We now make use of this property to

establish the finite section method with guaranteed accuracy.
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6.2. The finite section method for bounded matrices

Suppose A is partitioned into the form

A =

A11 A12

A21 A22 A23

A32 A33

 ,

where A22 corresponds to the computational window. The finite section method extracts

the desired window from exp(iA22). The matrix exp(iA22) is the central diagonal block in

exp
(
iDiag{A11, A22, A33}

)
, and the latter can be viewed as the exact exponential of a perturbed

matrix. Hence the perturbation analysis (6.1.2) is helpful for studying the truncation error in

the finite section method. The following theorem is based on this perturbation analysis.

Theorem 6.2.6. Suppose that

A =

A11 A12

A21 A22 A23

A32 A33


is a doubly-infinite b-banded Hermitian matrix with Λ(A) ⊂ [λ0 − δ,λ0 + δ], where A22 is

the (−w : w,−w : w) diagonal block of A. Let Ã = Diag{A11, A22, A33} be a block diagonal

approximation of A. Then for any χ> 1, we have∣∣∣[exp(iA)−exp(iÃ)
]

i j

∣∣∣≤ K
(
ρ|w−i |+|w− j |− b

2 +ρ|w+i |+|w+ j |− b
2
)
, ∀i , j

where

K = b(b +2)

4
max

{‖A12‖2,‖A23‖2
}( 2χ

χ−1

)2
exp

[δ(χ2 −1)

2χ

]
and ρ =χ− 2

b . (6.2.5)

Proof. Let

A0 =

A11 A12

A21 A22 0

0 A33

 , B = A0 − A.

ThenΛ(A0) ⊂ [λ0 −δ,λ0 +δ] because

ρ(A0−λ0I ) = ‖A0 −λ0I‖2 = max

{∥∥∥∥∥
[

A11 A12

A21 A22

]
−λ0I

∥∥∥∥∥
2

,‖A33 −λ0I‖2

}
≤ ‖A−λ0I‖2 = ρ(A−λ0I ).

Similarly, it can be shown thatΛ(Ã) ⊂ [λ0 −δ,λ0 +δ]. Using (6.1.2), we obtain

exp(iA0)e j −exp(iA)e j = i
∫ 1

0
exp[i(1− s)A]B exp(is A0)e j ds, ∀ j ∈Z.

For each s ∈ [0,1], we denote by U (s) = exp[i(1− s)A] and V (s) = exp(is A0). Then for i , j ∈Z,
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we conclude from the nonzero structure of B that∣∣∣[U (s)BV (s)
]

i j

∣∣∣
=

∣∣∣∣∣b/2∑
k=1

0∑
`=−b/2+k

bw+k,w+`Ui ,w+kVw+`, j +
0∑

k=−b/2+1

b/2+k∑
`=1

bw+k,w+`Ui ,w+kVw+`, j

∣∣∣∣∣
≤‖A23‖2

(b/2∑
k=1

0∑
`=−b/2+k

∣∣Ui ,w+kVw+`, j
∣∣+ 0∑

k=−b/2+1

b/2+k∑
`=1

∣∣Ui ,w+kVw+`, j
∣∣).

Using (6.2.2) and (6.2.3), we have

∣∣Ui ,w+k
∣∣≤ 2χ

χ−1
exp

[ (1− s)δ(χ2 −1)

2χ

]
ρ|w+k−i |,

∣∣Vw+`, j
∣∣≤ 2χ

χ−1
exp

[ sδ(χ2 −1)

2χ

]
ρ|w+`− j |,

and thus∣∣Ui ,w+kVw+`, j
∣∣≤ K0ρ

|w+k−i |+|w+`− j | ≤ K0ρ
|w−i |+|w− j |−|k|−|`| ≤ K0ρ

|w−i |+|w− j |− b
2 ,

where

K0 =
( 2χ

χ−1

)2
exp

[δ(χ2 −1)

2χ

]
.

Hence, we obtain∣∣∣[U (s)BV (s)
]

i j

∣∣∣= b(b +2)

4
‖A23‖2K0ρ

|w−i |+|w− j |− b
2 .

Integrating over the interval [0,1] eventually yields∣∣∣[exp(iA0)−exp(iA)
]

i j

∣∣∣≤ b(b +2)

4
‖A23‖2K0ρ

|w−i |+|w− j |− b
2 ≤ Kρ|w−i |+|w− j |− b

2 .

Following the same analysis above, we obtain another estimate∣∣∣[exp(iÃ)−exp(iA0)
]

i j

∣∣∣≤ b(b +2)

4
‖A12‖2K0ρ

|w+i |+|w+ j |− b
2 ≤ Kρ|w+i |+|w+ j |− b

2 .

Then the theorem is proved from∣∣exp(iÃ)−exp(iA)
∣∣≤ ∣∣exp(iA0)−exp(iA)

∣∣+ ∣∣exp(iÃ)−exp(iA0)
∣∣.

Now we are ready to derive the finite section method for computing the diagonal block[
exp(iA)

]
(−m:m,−m:m). Based on Theorem 6.2.6, we can choose w > m such that the perturba-

tions introduced at the ±wth rows have only negligible impact on the desired window. For a
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given entry (i , j ) in the desired window, we set k = (i + j )/2. Then∣∣∣[exp(iA)−exp(iÃ)
]

i j

∣∣∣≤ K
(
ρ|w−i |+|w− j |− b

2 +ρ|w+i |+|w+ j |− b
2
)

= K
(
ρ2(w−k)− b

2 +ρ2(w+k)− b
2
)
.

Since the function ρx is convex, we have

ρx2 +ρx3 ≤ ρx1 +ρx4

when x1 ≤ x2 ≤ x3 ≤ x4 and x1 + x4 = x2 + x3. Therefore, taking x1 = 2(w −m), x2 = 2(w −k),

x3 = 2(w +k), and x4 = 2(w +m) yields∣∣∣[exp(iA)−exp(iÃ)
]

i j

∣∣∣≤ K
(
ρ2(w−k)− b

2 +ρ2(w+k)− b
2
)

≤ K
(
ρ2(w−m)− b

2 +ρ2(w+m)− b
2
)
.

It is then desirable to minimize the right-hand-side in the above inequality. Substituting

d = 2(w − m) − b/2 and θ = 2 into Theorem 6.2.5, we obtain that the parameter χ∗ that

minimizes Kρ2(w−m)− b
2 is the unique root in the interval (1,+∞) of the cubic equation

χ3
∗−

(
1+ 4d

bδ

)
χ2
∗+

(
1+ 4(d −b)

bδ

)
χ∗−1 = 0. (6.2.6)

Such a choice is already sufficient for practical purpose since

Kρ2(w−m)− b
2 +Kρ2(w+m)− b

2 ≤ 2Kρ2(w−m)− b
2

and usually ρ2(w+m)− b
2 ¿ ρ2(w−m)− b

2 . Finally, we remark that the knowledge of the width

of Λ(A) is required in order to compute the constant K in (6.2.5). In practice a moderate

overestimate of the width is sufficient since in Theorem 6.2.6 the closed interval [λ0−δ,λ0+δ]

is only required to containΛ(A). We demonstrate the finite section method in Algorithm 6.1. 3

Evidently, the effectiveness of Algorithm 6.1 depends on the quality of the a priori estimate.

We remark that sometimes the estimate based on Theorem 6.2.6 can severely overestimate the

truncation error, mainly because the bound in Theorem 6.2.3 is pessimistic. An extreme case

occurs when A is diagonal and has a wide spectrum. Theorem 6.2.3 still provides a very large

constant K which grows exponentially with δ while the actual decay is arbitrarily fast. We will

show another example in Section 6.3.1. Once the a priori estimate is too pessimistic, it might

not be a good idea to identify the size of the computational window based on such a bound. A

remedy for this issue will be proposed in the next section.

3. In Step 4 of Algorithm 6.1, we label the indices of E with −m : m instead of 1 : (2m +1). We use this labeling
convention for submatrices extracted from a doubly-infinite matrix, when there is no ambiguity.
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Algorithm 6.1 (A priori) Finite section method for exp(iA)

Input: A is b-banded Hermitian and bounded, m ∈N, τ> 0.
1: Estimate the extreme points ofΛ(A) and set

δ← supΛ(A)− infΛ(A)

2
.

2: Find the smallest integer w such that

K
(
ρ2(w−m)−1 +ρ2(w+m)−1)≤ τ and w ≥ m,

where K and ρ are chosen optimally from (6.2.5) and (6.2.6) with d = 2(w −m)−b/2.
3: Compute E ← exp

[
iA(−w :w,−w :w)

]
.

4: Output E(−m:m,−m:m).

6.3 The finite section method for unbounded matrices

In this section, we discuss how to derive the finite section method for unbounded self-

adjoint matrices. The decay property of two classes of Wilkinson-type matrices are analyzed.

This analysis is used to derive the finite section method for these matrices. Then we investigate

some extensions to a certain class of diagonally dominant banded matrices.

6.3.1 Case study for Wilkinson-type W − matrices

Our first example is the class of Wilkinson-type W − matrices

W −(α) = Tridiag


· · · α · · · α α · · · α · · ·

· · · n · · · 1 0 −1 · · · −n · · ·
· · · α∗ · · · α∗ α∗ · · · α∗ · · ·

 .

Such matrices have applications in quantum mechanics. Instead of handling the doubly-

infinite matrix W −(α), we start with its central (2n +1)× (2n +1) diagonal block

W −
n (α) = Tridiag


α · · · α α · · · α

n · · · 1 0 −1 · · · −n

α∗ · · · α∗ α∗ · · · α∗

 .

Whenα 6= 0, W −
n (α) is an irreducible tridiagonal matrix. Consequently all eigenvalues of W −

n (α)

are distinct; the corresponding eigenvectors are unique (up to scaling) [163]. The conclusion

also holds when α = 0 since W −
n (0) is diagonal and has distinct eigenvalues. We will show

that the eigenvectors are highly localized once |α|¿ n. The following lemma is a simplified

version of [114, Lemma 4.1] tailored to W −
n (α). The estimate provided here is slightly better

than directly applying the conclusion of [114, Lemma 4.1], since the special structure of W −
n (α)

is taken into account.
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Lemma 6.3.1. Let λ−n ≥ λ−n+1 ≥ ·· · ≥ λn−1 ≥ λn be eigenvalues of W −
n (α), with normalized

eigenvectors x−n , x−n+1, . . . , xn−1, xn (i.e., ‖x j‖2 = 1). Then the entries of these eigenvectors

satisfy

|x j (i )| ≤
|i− j |−d0∏

k=0

|α|
k +d0 −3|α| (6.3.1)

for any integer d0 ≥ 4|α|. 4

Proof. The conclusion obviously holds when α = 0 since W −
n (0) is diagonal. Thus we only

consider the case α 6= 0. We split W −
n (α) into W −

n (α) =W −
n (0)+Nn(α), where Nn(α) has zeros

on its diagonal. Then by Weyl’s theorem, we know that λ j ∈
(− j −2|α|,− j +2|α|) for all j . We

rewrite
(
W −

n (α)−λ j I
)
x j = 0 as a set of equations:

(n −λ j )x j (−n)+αx j (−n +1) = 0,

(n −1−λ j )x j (−n +1)+α∗x j (−n)+αx j (−n +2) = 0,

· · ·
(−k −λ j )x j (k)+α∗x j (k −1)+αx j (k +1) = 0,

· · ·
(−n +1−λ j )x j (n −1)+α∗x j (n −2)+αx j (n) = 0,

(−n −λ j )x j (n)+α∗x j (n −1) = 0.

(6.3.2)

Since the eigenvectors are normalized, the conclusion trivially holds when |i− j | < d0. Hereafter

we assume that |i − j | ≥ d0.

We first consider the case i ≤ j −d0. In the following we show by induction that for any

integer k satisfying −n ≤ k ≤ j −d0 we have

|x j (k)| ≤ |α|
−k + j −3|α| |x j (k +1)|. (6.3.3)

The first equation in (6.3.2) yields

|x j (−n)| = |α|
n −λ j

|x j (−n +1)| ≤ |α|
n + j −2|α| |x j (−n +1)| ≤ |α|

n + j −3|α| |x j (−n +1)|

because n + j −3|α| ≥ d0 −3|α| ≥ |α| > 0. Then for −n < k ≤ j −d0, we consider the equation

(−k −λ j )x j (k) =−α∗x j (k −1)−αx j (k +1).

The induction hypothesis implies that |x j (k −1)| ≤ |x j (k)|. Thus we obtain

|αx j (k +1)| ≥ |(−k −λ j )x j (k)|− |αx j (k −1)| ≥ (−k −λ j −|α|)|x j (k)|.

4. To avoid using double subscripts in the notation, here we use x j (i ) to represent the i th entry of x j .
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The corresponding coefficient −k −λ j −|α| is positive because

−k −λ j −|α| ≥ −k + j −3|α| ≥ d0 −3|α| ≥ |α| > 0.

Hence we obtain

|x j (k)| ≤ |α|
−k + j −3|α| |x j (k +1)|.

This finishes the proof of (6.3.3). Applying (6.3.3) repeatedly, we obtain

|x j (i )| ≤ |α|
−i + j −3|α| |x j (i +1)|

≤ |α|
−i + j −3|α| ·

|α|
−(i +1)+ j −3|α| |x j (i +2)|

≤ · · ·

≤ |x j ( j −d0 +1)|
j−d0∏
k=i

|α|
−k + j −3|α| .

Taking into account that |x j ( j −d0 +1)| ≤ 1, we eventually arrive at

|x j (i )| ≤
j−d0∏
k=i

|α|
−k + j −3|α| =

j−i−d0∏
k=0

|α|
k +d0 −3|α| =

|i− j |−d0∏
k=0

|α|
k +d0 −3|α| ,

where the first equality follows from a relabelling of the indices (k ← j −d0 −k).

The case i ≥ j +d0 can be proved in the same way by starting from the last equation

in (6.3.2). In the following we provide an alternative prove by reducing the case i ≥ j +d0 to the

case i ≤ j −d0 which has already been proved. Let Xn = [x−n , . . . , xn] andΛ= Diag{λ−n , . . . ,λn}.

By introducing

Π=


1

. . .

1


we derive from W −

n (α)Xn = XnΛ that[−ΠW −
n (α)Π

](
ΠXnΠ

)= (
ΠXnΠ

)(−ΠΛΠ)
,

or simply
[−ΠW −

n (α)Π
]
Yn = YnΛ̃, where Yn =ΠXnΠ, Λ̃=Π(−Λ)Π. That is, we transform the

spectral decomposition of W −
n (α) to the spectral decomposition of W −

n (−α∗) since−ΠW −
n (α)Π=

W −
n (−α∗). Notice that the diagonal entries of Λ̃ are in decreasing order. Then from the part of

the conclusion that we have already proved, we conclude that

|x j (i )| = |(Xn)i j | = |(Yn)−i ,− j | ≤
|i− j |−d0∏

k=0

|α|
k +d0 −3|α| .
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when −i ≤− j −d0, or equivalently, i ≥ j +d0.

Lemma 6.3.1 demonstrates that the entries x j (i ) decay super-exponentially with respect to

|i − j |. A more general conclusion for block tridiagonal matrices has been developed in [114],

which aims at deriving eigenvalue perturbation bounds, see also [54] and [153]. By choosing

d0 =
⌈

5|α|⌉, we obtain a simpler (but much looser) exponential decay bound

|x j (i )| ≤ min
{
1,2d0−|i− j |}. (6.3.4)

A notable observation is that neither (6.3.1) nor (6.3.4) depends on the size of W −
n (α), apart

from the fact that these bounds are not useful when n < 2|α|. Now from the spectral decompo-

sition

W −
n (α) =

n∑
k=−n

λk xk x∗
k ,

we immediately obtain that

exp
[
iβW −

n (α)
]= n∑

k=−n
exp(iβλk )xk x∗

k

and hence
∣∣exp

[
iβW −

n (α)
]∣∣≤ |Xn ||Xn |T where Xn = [x−n , . . . , xn] and β ∈R. Because the prod-

uct of two (doubly-infinite) matrices with exponentially decaying off-diagonals also has the

exponential decay property (see, e.g., [98]), we conclude that exp
[
iβW −

n (α)
]

has the exponen-

tial decay property. Lemmas 6.3.2 and 6.3.3 below give quantitative estimates of the decay. We

remark that although the exponential decay in eigenvectors implies the exponential decay in

the matrix exponential, the opposite is not true. For example, the exponential of the tridiagonal

matrix

i ·Tridiag


−1 · · · −1

2 · · · · · · 2

−1 · · · −1


has the exponential decay property according to Theorem 6.2.3, while the eigenvectors are

not localized.

Lemma 6.3.2. Suppose two doubly-infinite matrices X and Y both have the exponential decay

property, i.e.,

|xi j | ≤ KXρ
|i− j |
X , |yi j | ≤ KY ρ

|i− j |
Y , ∀i , j .

Then their product X Y satisfies

∣∣(X Y )i j
∣∣≤ KX KY

( 2

1−ρ2
0

+|i − j |−1
)
ρ
|i− j |
0 , (6.3.5)
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where ρ0 = max
{
ρX ,ρY

}
.

Proof. The entries in the product X Y can be bounded by∣∣(X Y )i j
∣∣≤ ∑

k∈Z
|xi k yk j | ≤ KX KY

∑
k∈Z

ρ
|i−k|+|k− j |
0 .

Without loss of generality, we consider the case i ≤ j . Notice that

|i −k|+ |k − j | =
|i − j |, if i ≤ k ≤ j ,

|i − j |+2min
{|i −k|, | j −k|} , if k < i or k > j .

Therefore, we obtain

∑
k∈Z

ρ
|i−k|+|k− j |
0 =

i−1∑
k=−∞

ρ
|i− j |+2|i−k|
0 +

j∑
k=i

ρ
|i− j |
0 +

+∞∑
k= j+1

ρ
|i− j |+2| j−k|
0

=
(
2
+∞∑
k=1

ρ2k
0 +|i − j |+1

)
ρ
|i− j |
0

=
( 2ρ2

0

1−ρ2
0

+|i − j |+1
)
ρ
|i− j |
0

=
( 2

1−ρ2
0

+|i − j |−1
)
ρ
|i− j |
0 .

Lemma 6.3.3. Suppose two doubly-infinite matrices X and Y both have the exponential decay

property of the form

|xi j | ≤ min
{

1,ρ|i− j |−d0

}
, |yi j | ≤ min

{
1,ρ|i− j |−d0

}
.

Then the product X Y can be bounded by

∣∣(X Y )i j
∣∣≤


(
|i − j |−2d0 −1+ 2

1−ρ
)
ρ|i− j |−2d0 , if |i − j | ≥ 2d0,

2d0 −|i − j |−1+ 2

1−ρ , if |i − j | < 2d0.
(6.3.6)

Proof. Without loss of generality, we only need to prove the conclusion for i ≤ j . Then for

i > j , the conclusion is obtained using the fact that (X Y )i j = (Y T X T ) j i .

When i ≤ j −2d0, we have

∣∣(X Y )i j
∣∣≤ i+d0∑

k=−∞
|yk j |+

j−d0−1∑
k=i+d0+1

|xi k yk j |+
+∞∑

k= j−d0

|xi k |

≤
(
|i − j |−2d0 −1+ 2

1−ρ
)
ρ|i− j |−2d0 .
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6.3. The finite section method for unbounded matrices

When j −2d0 < i ≤ j , we use

∣∣(X Y )i j
∣∣≤ j−d0−1∑

k=−∞
|yk j |+

i+d0∑
k= j−d0

|xi k yk j |+
+∞∑

k=i+d0+1
|xi k |

≤ 2d0 −|i − j |+1+ 2ρ

1−ρ
≤ 2d0 −|i − j |−1+ 2

1−ρ

to obtain the conclusion.

The estimates (6.3.5) and (6.3.6) can certainly be applied to finite matrices and yield decay

bounds for exp
[
iβW −

n (α)
]
. To obtain an easily computable decay bound, we set

d0 =
⌈

6|α|⌉, ρ = |α|
d0 −3|α| ,

and conclude from Lemma 6.3.3 that∣∣∣(exp[iβW −
n (α)]

)
i j

∣∣∣≤ (
|i − j |−2d0 −1+ 2

1−ρ
)
ρ|i− j |−2d0

≤ (|i − j |−2d0 +2
)
ρ|i− j |−2d0

when |i − j | ≥ 2d0, based on the fact that ρ ≤ 1/3. Then we consider the function

f (x) = (x +2)
(e

3

)x
, (x ∈R).

The maximum of f (x) is obtained by solving the equation f ′(x) = 0 and yields

max
x≥0

f (x) = f
(3−2ln3

ln3−1

)
= 9

e3(ln3−1)
< 5.

Then applying the inequality

(|i − j |−2d0 +2
)(1

3

)|i− j |−2d0 ≤ 5exp
(−|i − j |+2d0

)
, (6.3.7)

the decay bound (6.3.6) on exp
[
iβW −

n (α)
]

simplifies to∣∣∣(exp[iβW −
n (α)]

)
i j

∣∣∣≤ 5exp
(
2
⌈

6|α|⌉−|i − j |)≤ 5exp
(
12

⌈|α|⌉−|i − j |)
for |i − j | ≥ 2d0. Notice that exp

(
12

⌈|α|⌉−|i − j |)> 1 when |i − j | < 2d0 < 12
⌈|α|⌉. Taking into

account that
∥∥exp[iβW −

n (α)]
∥∥

2 = 1, we combine the two cases into∣∣∣(exp[iβW −
n (α)]

)
i j

∣∣∣≤ min
{
1,5exp

(
12

⌈|α|⌉−|i − j |)} . (6.3.8)

An important observation is that both (6.3.6) and (6.3.8) provide estimates independent of n.

105



Chapter 6. Finite Section Method

Finally, we remark that Theorem 6.2.3 can also be applied to W −
n (α) for any given n. However,

since δ=Θ(n), the estimate deteriorates as n increases, see Figure 6.2.
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n

−
).
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e

 

 

Estimate (6.3.6)
Estimate (6.3.8)
Benzi−Golub bound (n=100)
Benzi−Golub bound (n=200)
Benzi−Golub bound (n=300)

Figure 6.2 – The Benzi-Golub bound (6.2.3) with optimally chosen χ deteriorates as n increases. Our
estimates (6.3.6) and (6.3.8) are also provided for reference.

6.3.2 Case study for Wilkinson-type W + matrices

Let us consider another Wilkinson-type matrix

W +(α) = Tridiag


· · · α · · · α α · · · α · · ·

· · · n · · · 1 0 1 · · · n · · ·
· · · α∗ · · · α∗ α∗ · · · α∗ · · ·


and its finite diagonal block

W +
n (α) = Tridiag


α · · · α α · · · α

n · · · 1 0 1 · · · n

α∗ · · · α∗ α∗ · · · α∗

 .

Such a matrix has also been considered in [114, 153]. The spectral decomposition of W +
n (α)

can be constructed from the spectral decomposition of two smaller matrices

Un(α) = Tridiag


|α| · · · |α| |α|

n · · · · · · 1 0

|α| · · · |α| 2|α|
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and

Vn(α) = Tridiag


|α| · · · |α|

n · · · · · · 1

|α| · · · |α|

 ,

see [163] for details. Unlike the matrix W −
n (α), the eigenvectors of W +

n (α) do not have the

exponential decay property (6.2.1) when α 6= 0, no matter how we order the eigenvectors.

However, it is still possible to exploit some localization, see the following lemma.

Lemma 6.3.4. Let the eigenvalues of W +
n (α) be in the order λ−n , . . . , λn , where

λn ≥λ−n ≥λn−1 ≥λ−n+1 ≥ ·· · ≥λ1 ≥λ−1 ≥λ0.

The corresponding normalized eigenvectors are x−n , x−n+1, . . . , xn−1, xn . Then the entries of

these eigenvectors satisfy

|x j (i )| ≤
||i |−| j ||−d0∏

k=0

|α|
k +d0 −3|α| , (|i | ≥ | j |),

|x j (i )| ≤ 2
||i |−| j ||−d0∏

k=0

|α|
k +d0 −3|α| , (|i | < | j |),

(6.3.9)

for any integer d0 ≥ 4|α|.

Proof. In the following we assume that α 6= 0 since α= 0 is a trivial case. By Weyl’s theorem,

we conclude that
∣∣λ j −| j |∣∣ ≤ ∥∥W +

n (α)−W +
n (0)

∥∥
2 ≤ 2|α|, i.e., λ j ∈ (| j | − 2|α|, | j | + 2|α|). The

corresponding eigenvector satisfies the following set of equations.

(n −λ j )x j (−n)+αx j (−n +1) = 0

(n −1−λ j )x j (−n +1)+α∗x j (−n)+αx j (−n +2) = 0

· · ·
(|k|−λ j )x j (k)+α∗x j (k −1)+αx j (k +1) = 0

· · ·
(n −1−λ j )x j (n −1)+α∗x j (n −2)+αx j (n) = 0

(n −λ j )x j (n)+α∗x j (n −1) = 0

(6.3.10)

In the following, we discuss three cases—i ≥ | j |, i ≥−| j |, and |i | < | j |.

We first analyze the case i ≥ | j |, or more precisely, the nontrivial case i ≥ | j |+d0. Just like

the proof of Lemma 6.3.1, we show by induction that

|x j (k)| ≤ |α|
k −| j |−3|α| |x j (k −1)| (6.3.11)

107



Chapter 6. Finite Section Method

holds for any integer k satisfying | j |+d0 ≤ k ≤ n. The last equation in (6.3.10) implies that

|x j (n)| = |α|
n −λ j

|x j (n −1)| ≤ |α|
n −| j |−2|α| |x j (n −1)| ≤ |α|

n −| j |−3|α| |x j (n −1)|

since n −| j |−3|α| ≥ d0 −3|α| ≥ |α| > 0. For | j |+d0 ≤ k < n, we consider

(k −λ j )x j (k)+α∗x j (k −1)+αx j (k +1) = 0.

A consequence of the induction hypothesis is that |x j (k +1)| ≤ |x j (k)|. Then we obtain

|αx j (k −1)| ≥ |(k −λ j )x j (k)|− |αx j (k +1)| ≥ (k −λ j −|α|)|x j (k)|

and hence

|x j (k)| ≤ |α|
k −λ j −|α| |x j (k −1)| ≤ |α|

k −| j |−3|α| |x j (k −1)|.

The completes the proof of (6.3.11). Then applying (6.3.11) repeatedly and taking into account

that |x j (| j |+d0 −1)| ≤ 1 yields

|x j (i )| ≤
i∏

k=| j |+d0

|α|
k −| j |−3|α| =

i−| j |−d0∏
k=0

|α|
k +d0 −3|α| =

||i |−| j ||−d0∏
k=0

|α|
k +d0 −3|α| .

Then the case i ≤−| j | (more precisely, i ≤−| j |−d0) is similar. We first prove by induction

that

|x j (k)| ≤ |α|
−k −| j |−3|α| |x j (k +1)| (6.3.12)

holds for any integer k satisfying −n ≤ k ≤ −| j | −d0. We conclude from the first equation

in (6.3.10) that

|x j (−n)| = |α|
n −λ j

|x j (−n +1)| ≤ |α|
n −| j |−2|α| |x j (−n +1)| ≤ |α|

n −| j |−3|α| |x j (−n +1)|.

Then for −n < k ≤−| j |−d0, we consider

(−k −λ j )x j (k)+α∗x j (k −1)+αx j (k +1) = 0.

Using |x j (k −1)| ≤ |x j (k)|, a weaker form of the induction hypothesis, we obtain

|αx j (k +1)| ≥ |(−k −λ j )x j (k)|− |αx j (k −1)| ≥ (−k −λ j −|α|)|x j (k)|

and hence

|x j (k)| ≤ |α|
−k −λ j −|α| |x j (k +1)| ≤ |α|

k −| j |−3|α| |x j (k +1)|.
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The inequality (6.3.12) is then proved. Applying (6.3.12) repeatedly, we obtain

|x j (i )| ≤
−| j |−d0∏

k=i

|α|
−k −| j |−3|α| =

−i−| j |−d0∏
k=0

|α|
k +d0 −3|α| =

||i |−| j ||−d0∏
k=0

|α|
k +d0 −3|α| .

Finally, we consider the case |i | < | j |, or more precisely, the nontrivial case |i | ≤ | j |−d0.

Suppose that

i0 = argmini |x j (i )|, s.t. −| j |+d0 ≤ i ≤ | j |−d0.

In the following we show by induction that

|x j (k)| ≤ |α|
| j |− |k|−3|α| |x j (k +1)|, (i0 < k ≤ | j |−d0), (6.3.13)

|x j (k)| ≤ |α|
| j |− |k|−3|α| |x j (k −1)|, (−| j |+d0 ≤ k < i0). (6.3.14)

From the equation

(|i0 +1|−λ j )x j (i0 +1)+α∗x j (i0)+αx j (i0 +2) = 0

we obtain

|αx j (i0 +2)| ≥ ∣∣(|i0 +1|−λ j )x j (i0 +1)
∣∣−|αx j (i0)| ≥ (∣∣|i0 +1|−λ j

∣∣−|α|) |x j (i0 +1)|

and then

|x j (i0 +1)| ≤ |α|∣∣|i0 +1|−λ j
∣∣−|α| |x j (i0 +2)| ≤ |α|

| j |− |i0 +1|−3|α| |x j (i0 +2)|.

For i0 +1 < k ≤ | j |−d0, we use |x j (k −1)| ≤ |x j (k)|, which is a consequence of the induction

hypothesis, to obtain

|αx j (k +1)| ≥ ∣∣(|k|−λ j )x j (k)
∣∣−|αx j (k −1)| ≥ (∣∣|k|−λ j

∣∣−|α|) |x j (k)|

and thus

|x j (k)| ≤ |α|∣∣|k|−λ j
∣∣−|α| |x j (k +1)| ≤ |α|

| j |− |k|−3|α| |x j (k +1)|.

This completes the proof of the inequality (6.3.13). The proof of (6.3.14) starts from analyzing

the equation

(|i0 −1|−λ j )x j (i0 −1)+α∗x j (i0 −2)+αx j (i0) = 0
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and follows the same procedure. Then repeatedly applying (6.3.13) and (6.3.14) yields

|x j (i )| ≤
| j |−d0∏

k=i

|α|
| j |− |k|−3|α| =

| j |−|i |−d0∏
k=0

|α|
k +d0 −3|α| =

|| j |−|i ||−d0∏
k=0

|α|
k +d0 −3|α|

when i0 < i ≤ | j |−d0, and

|x j (i )| ≤
i∏

k=−| j |+d0

|α|
| j |− |k|−3|α| =

| j |−|i |−d0∏
k=0

|α|
k +d0 −3|α| =

|| j |−|i ||−d0∏
k=0

|α|
k +d0 −3|α| ,

when −| j | +d0 ≤ i < i0, respectively. Therefore, we have proved that (6.3.9) holds for all i

satisfying −| j | < i < | j | except for i = i0. It remains to show the case i = i0. If i0 6= 0, we have

|x j (i0)| ≤ |x j (−i0)| ≤
| j |−|−i0|−d0∏

k=0

|α|
k +d0 −3|α| =

||i0|−| j ||−d0∏
k=0

|α|
k +d0 −3|α| .

If i0 = 0, we conclude from

−λ j x j (0)+α∗x j (−1)+αx j (1) = 0

that

|x j (0)| ≤ |α|
|λ j |

(|x j (1)|+ |x j (−1)|)
≤ |α|

| j |−2|α| ·2
| j |−1−d0∏

k=0

|α|
k +d0 −3|α|

≤ 2
| j |−d0∏

k=0

|α|
k +d0 −3|α| .

The proof of Lemma 6.3.4 is completed.

Let Xn = [x−n , . . . , xn]. Then Lemma 6.3.4 implies that the decay rate in Xn is independent

of n. We can simplify the decay bound to an exponential decay bound of the form

|x j (i )| ≤ K ·max
{
ρ|i− j |,ρ|i+ j |}≤ K

(
ρ|i− j |+ρ|i+ j |),

e.g., K = 2d0+1 and ρ = 1/2 when choosing d0 =
⌈

5|α|⌉. See Figure 6.3 for an illustration of the

decay property of Xn . We now show that the same type of decay bound for exp
[
iβW +

n (α)
]

can

also be derived. Notice that Xn can be split as Xn = Y +ΠZ , where both Y and Z have the

exponential decay property max
{|yi j |, |zi j |

}≤ K ·ρ|i− j | and

Π=


1

. . .

1

 .
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Then ∣∣exp
[
iβW +

n (α)
]∣∣≤ |Xn ||Xn |T ≤ (|Y ||Y |T +Π|Z ||Z |TΠ)+ (

Π|Z ||Y |T +|Y ||Z |Π)
,

where |Y ||Y |T , |Z ||Z |T , |Z ||Y |T , and |Y ||Z |T all have the exponential decay property. By choos-

ing

d0 =
⌈

6|α|⌉, ρ = |α|
d0 −3|α| ,

and applying Lemma 6.3.3 to X ← Y /2 and Y ← Y T /2, we obtain∣∣(|Y ||Y |T )
i j

∣∣≤ 4(|i − j |−2d0 +2)ρ|i− j |−2d0

when |i − j | ≥ 2d0. Applying (6.3.7) yields,∣∣(|Y ||Y |T )i j
∣∣≤ 20exp(−|i − j |+2d0),

for |i − j | ≥ 2d0. The entries of |Z ||Z |T , |Z ||Y |T , and |Y ||Z |T are bounded in the same manner,

i.e., ∣∣(|Z ||Z |T )i j
∣∣≤ 20exp(−|i − j |+2d0),∣∣(|Z ||Y |T )i j
∣∣≤ 20exp(−|i − j |+2d0),∣∣(|Y ||Z |T )i j
∣∣≤ 20exp(−|i − j |+2d0).

Comining these bounds and taking into account the fact that
∥∥exp[iβW +

n (α)]
∥∥

2 = 1, we obtain∣∣∣(exp[iβW +
n (α)]

)
i j

∣∣∣≤ min
{

1,40
[
exp

(
12

⌈|α|⌉−|i − j |)+exp
(
12

⌈|α|⌉−|i + j |)]}, (6.3.15)

i.e., the entries of exp
[
iβW +

n (α)
]

decay away from its diagonal as well as away from its anti-

diagonal. We call this kind of decay property bimodal exponential decay. In contrast, we call

the decay property (6.2.1) unimodal exponential decay. We will see in Section 6.3.3 that finite

section methods based on bimodal decay can also be established, which naturally covers the

unimodal diagonal decay property (6.2.1).
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Figure 6.3 – Localized eigenvectors of W −
n (α) and W +

n (α) (for n = 500, α= 1).
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6.3.3 The finite section method

In Sections 6.3.1 and 6.3.2, we derived decay properties of two classes of finite Wilkinson-

type matrices. Now we show that this kind of decay property is sufficient to guarantee the

accuracy of the finite section method. Since the decay bounds are only available for finite

matrices, we require a slightly different approach compared to the one of Section 6.2.2.

Consider two dynamical systems

d

dt

E11 E12 E13

E21 E22 E23

E31 E32 E33

= i

A11 A12

A21 A22 A23

A32 A33


E11 E12 E13

E21 E22 E23

E31 E32 E33


and

d

dt

Ẽ11 0 0

0 Ẽ22 0

0 0 Ẽ33

= i

A11 0 0

0 A22 0

0 0 A33


Ẽ11 0 0

0 Ẽ22 0

0 0 Ẽ33


where E22 and Ẽ22 are the central (−w : w,−w : w) diagonal blocks. Now we assume that the

tridiagonal Hermitian matrix A has the bimodal exponential decay property in the truncated

exponentials:∣∣[Ẽ22(s)]i j
∣∣≤ K

(
ρ|i− j |+ρ|i+ j |),

where the constants K and ρ are independent of w and s ∈ [0,1]. We have already seen from

the previous two subsections that this assumption holds for A = βW ±(α). From (6.1.2), we

obtain [
E22 − Ẽ22

]
(1)

= i

∫ 1

0

[
0 I 0

]
exp[i(1− s)A]

 0 A12 0

A21 0 A23

0 A32 0


Ẽ11(s) 0 0

0 Ẽ22(s) 0

0 0 Ẽ33(s)


0

I

0

ds

= i
∫ 1

0

[
E21(1− s)A12 +E23(1− s)A32

]
Ẽ22(s)ds. (6.3.16)

Notice that E21(1− s)A12 has nonzero entries only in its first column and there exists an upper

bound ‖E21(1− s)A12‖2 ≤ ‖A12‖2. Using the bimodal exponential decay property of Ẽ22(s), we

obtain that∥∥[E21(1− s)A12Ẽ22(s)](:, j )
∥∥

2 ≤ ‖A12‖2 ·K
(
ρ| j+w |+ρ| j−w |), j =−w , . . . , w ,

i.e., only the first and last several columns of this matrix can have nonnegligible entries. A

similar inequality holds for E23(1− s)A32Ẽ22(s). Therefore the (−m : m)-th columns in E22(1)

and Ẽ22(1) agree with each other with accuracy at least (‖A12‖2 +‖A32‖2) ·K
(
ρw−m +ρw+m

)
.
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Algorithm 6.2 (A posteriori) Finite section method for exp(iA)

Input: A is tridiagonal and Hermitian, m ∈N, τ> 0.
Additionally, exp

[
iA(−n:n,−n:n)

]
is known to have the bimodal exponential decay property

for all n.
1: Let k ← 0, w (0) ← 2m.
2: Compute E ← exp

[
iA(−w (k):w (k),−w (k):w (k))

]
.

3: Let T ← ∣∣A(−w (k)−1,−w (k))

∣∣ ·∥∥E(−w (k),−m:m)

∥∥
1 +

∣∣A(w (k)+1,w (k))

∣∣ ·∥∥E(w (k),−m:m)

∥∥
1.

4: if T < τ then
5: Output E(−m:m,−m:m).
6: else
7: Let w (k+1) ← 2w (k), k ← k +1.
8: goto Step 2.
9: end if

Certainly the (2m +1)× (2m +1) desired window is contained in this region. Therefore, by

choosing a (2w +1)× (2w +1) computational window satisfying(‖A12‖2 +‖A32‖2
) ·K

(
ρw−m +ρw+m)≤ τ, (6.3.17)

we ensure that
[
Ẽ22(1)

]
(−m:m,−m:m) approximates the desired block in E22(1) with accuracy τ.

Therefore, we can use (6.3.17) to find a suitable w a priori and obtain a finite section method

similar to Algorithm 6.1.

Sometimes a priori estimates on the decay can be too pessimistic (e.g., if we apply the

Benzi-Golub bound to exp
[
iW −

n (α)
]
). In some case we might even not have any concrete

estimate for a moderate computational window despite the fact that we have the knowledge of

asymptotic decay. Then algorithms such as Algorithm 6.1 become inappropriate. As a remedy

for this issue, we propose a repeated doubling approach based on the a posteriori error

estimate using (6.3.16), as shown in Algorithm 6.2. In this algorithm no a priori knowledge

about the detailed decay rate is required. The computational window at most doubles the

smallest one that fulfills the accuracy requirement. Similar techniques on stopping criteria

can be found in [51, 94].

Finally, we return to the problem left in the previous subsections—the decay property of

doubly-infinite matrices exp
[
iβW ±(α)

]
. Theorem 6.3.5 states such a decay property. Interest-

ingly, this property is derived as a consequence of the finite section method.

Theorem 6.3.5. For any real number β, the doubly-infinite matrices exp[iβW ±(α)] have the

bimodal exponential decay property. Moreover, we have estimates∣∣∣(exp[iβW +(α)]
)

i j

∣∣∣≤ min
{

1,40
[
exp

(
12

⌈|α|⌉−|i − j |)+exp
(
12

⌈|α|⌉−|i + j |)]},∣∣∣(exp[iβW −(α)]
)

i j

∣∣∣≤ min
{

1,5exp
(
12

⌈|α|⌉−|i − j |)},

for all i , j ∈Z.
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Proof. Let us consider exp
[
iβW +(α)

]
first. We have already shown the decay property∣∣∣(exp[iβW +

w (α)]
)

i j

∣∣∣≤ min
{

1,K
(
ρ|i− j |+ρ|i+ j |)}

for any positive integer w , where K = 40exp
(
12

⌈|α|⌉) and ρ = e−1, see (6.3.15). To estimate

the magnitude of the (i , j )-entry of exp
[
iβW +(α)

]
, we set τ = εK

(
ρ|i− j | +ρ|i+ j |) and m =

max
{|i |, | j |}, where ε can be any positive number. Using the finite section method above, we

can find a suitable (2w +1)× (2w +1) window such that∣∣∣(exp[iβW +(α)]
)

i j

∣∣∣≤ τ+ ∣∣∣(exp[iβW +
w (α)]

)
i j

∣∣∣
≤ τ+K

(
ρ|i− j |+ρ|i+ j |)

= (1+ε)K
(
ρ|i− j |+ρ|i+ j |).

Since K and ρ are independent of w , letting ε→ 0+, we conclude that∣∣∣(exp[iβW +(α)]
)

i j

∣∣∣≤ K
(
ρ|i− j |+ρ|i+ j |).

Taking into account the fact that
∥∥exp

[
iβW +(α)

]∥∥
2 = 1, we obtain∣∣∣(exp[iβW +(α)]

)
i j

∣∣∣≤ min
{

1,K
(
ρ|i− j |+ρ|i+ j |)} .

The proof for exp
[
iβW −(α)

]
follows exactly the same procedure. We have shown that∣∣∣(exp[iβW −

w (α)]
)

i j

∣∣∣≤ min
{

1, K̃ρ|i− j |
}

for any positive integer w , where K̃ = 5exp
(
12

⌈|α|⌉) and ρ = e−1. Setting m = max
{|i |, | j |},

τ= εK̃ρ|i− j |, and applying the finite section method above, we find a suitable (2w+1)×(2w+1)

window such that∣∣∣(exp[iβW −(α)]
)

i j

∣∣∣≤ τ+ ∣∣∣(exp[iβW −
w (α)]

)
i j

∣∣∣≤ (1+ε)K̃ρ|i− j |.

Letting ε→ 0+ and taking into account the fact that
∥∥exp

[
iβW −(α)

]∥∥
2 = 1, we obtain∣∣∣(exp[iβW −(α)]

)
i j

∣∣∣≤ min
{

1, K̃ρ|i− j |
}

.

6.3.4 Relation to aggressive early deflation

We have seen in Chapters 2 and 3 that aggressive early deflation is an advanced deflation

strategy which helps accelerate the convergence of the QR algorithm. In this subsection, we

use the idea of AED to obtain another derivation of the finite section method. The technique

below combines the idea of middle deflation [29] and the explanation of AED in terms of

localization [114].
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6.3. The finite section method for unbounded matrices

We still consider the partitioning

A =

A11 A12

A21 A22 A23

A32 A33

 ,

where A22 is the (−w : w,−w : w) block of A. We further assume that A22 has localized eigen-

vectors in the sense that A22 has a spectral decomposition A22 = XΛ22X ∗ whereΛ22 is diagonal

and the unitary matrix X has bimodal exponential decay property

|xi j | ≤ K
(
ρ|i− j |+ρ|i+ j |),

with K and ρ independent of the size of A22. For example, we have shown that Wilkinson-type

matrices W ±(α) have such a property.

Consider a block diagonal unitary transformation

Q = Diag{I , X , I } .

Let

A0 =

A11

A22

A33

=


 ,

B0 =Q∗A0Q =

A11

Λ22

A33

=


 ,

and

B =Q∗AQ =

A11 S12

S21 Λ22 S23

S32 A33

=


 ,

where each Si j block contains one spike. By our assumption, the entries of X decay expo-

nentially and hence the middle part of these spikes have negligible entries. Suppose w is

sufficiently large so that more than half of the entries in these spikes are negligible. Then

truncating tiny tails of these spikes yields another matrix

B1 =

A11 S̃12 0

S̃21 Λ22 S̃23

0 S̃32 A33

=


 .

We denote A1 = QB1Q∗. Let d1 be the maximum length of the remaining spikes and m1 =
w −d1. We further notice that the difference between the central (2w +1)× (2w +1) diagonal
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blocks in exp(iB0) and exp(iB1) has the following structure:

[
exp(iB0)−exp(iB1)

]
(−w :w,−w :w) =


d1 2m1+1 d1

d1 ∗ 0 ∗
2m1+1 0 0 0

d1 ∗ 0 ∗

.

Let

∆E = [
exp(iA0)−exp(iA1)

]
(−w :w,−w :w) = X

[
exp(iB0)−exp(iB1)

]
(−w :w,−w :w)X ∗.

Then the columns of ∆E is a linear combination of
{

X e−w , . . . , X e−m1−1, X em1+1, . . . , X ew
}
.

Because of the decay property of X , there exist a positive integer m ≤ m1 such that the

(−m : m)-th rows of∆E are negligible, provided that m1 is not too small. The same observation

is made on the columns of ∆E . According to (6.1.2), we have∥∥exp(iA)−exp(iA1)
∥∥

2 =
∥∥exp(iB)−exp(iB1)

∥∥
2 ≤ ‖∆S21‖2 +‖∆S23‖2 ,

where ∆Si j := Si j − S̃i j is the perturbation introduced by AED. Therefore, for −m ≤ i , j ≤ m,

we have∣∣[exp(iA)−exp(iA0)]i j
∣∣≤ ∥∥[exp(iA)−exp(iA1)]

∥∥
2 +‖∆E‖2

≤ ‖∆S21‖2 +‖∆S23‖2 +‖∆E‖2 ,

which is also negligible.

In practice, the desired window size 2m +1 is provided by the user, and the finite section

method needs to search for a computational window size 2w +1 using the analysis above

to ensure the accuracy of the solution in the desired window. Although we do not provide

a quantitative estimate for d , in practice such an inconvenience does not emerge when

Algorithm 6.2 is applied. Because the decay rate in X is independent of w , the distance

d = w −m depends on K , ρ, and d1, but not on m or w .

6.3.5 More general unbounded matrices

We have seen that the eigenvector decay bounds, as established in Lemmas 6.3.1, 6.3.2,

and 6.3.4 play important roles in the derivation of the exponential decay property as well as

finite section methods for Wilkinson-type matrices. In the following we extend our analyses to

a more general class of unbounded matrices and establish finite section methods. We only

consider the setting explained in Section 6.1. Additional requirements on the matrices will be

discussed below.

To extend the technique in Lemma 6.3.1, estimates on the eigenvalues in terms of diagonal

entries are required. For any matrix A, finite or infinite, we define the dominance factors at its
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kth row as

µk =


1

|akk |
∑
j 6=k

|ak j |, if akk 6= 0,

+∞, if akk = 0.

The Gershgorin circle theorem [152] on a finite Hermitian matrix A states that

Λ(A) ⊂⋃
k

[
akk −µk |akk |, akk +µk |akk |

]
.

But even if A is diagonally dominant, in general we cannot further ensure that there exists an

ordering of the eigenvalues λk of A satisfying

1−µk ≤ λk

akk
≤ 1+µk , ∀k, (6.3.18)

when the Gershgorin disks are not separated. For instance,

A =

25 1 16

1 24 8

16 8 26


is such a counterexample to (6.3.18). To resolve this issue and establish a valid rowwise estimate

similar to (6.3.18), we introduce the following concept.

Definition 6.3.6. Let A be a strictly diagonally dominant matrix with dominance factors {µk }.

Then A is called strong diagonally dominant if there exists a set of numbers {µ̂k } satisfying

µk ≤ µ̂k < 1 (∀k) and(ai i −a j j )
[
(ai i −|µ̂i ai i |)− (a j j −|µ̂ j a j j |)

]≥ 0,

(ai i −a j j )
[
(ai i +|µ̂i ai i |)− (a j j +|µ̂ j a j j |)

]≥ 0,
∀i , j . (6.3.19)

The numbers µ̂k ’s are called strong dominance factors of A. The set{
z ∈C : |z −akk | ≤ |µ̂k akk |

}
is called an extended Gershgorin disk with respect to µ̂k .

The condition (6.3.19) has a geometrical interpretation—the leftmost/rightmost points of

these extended Gershgorin disks follow the same order as their centers. This condition is used

to limit the growth of off-diagonals compared to the diagonals A. With this new concept, we

derive the following lemma, which provides a rowwise estimate. A similar rowwise estimate

but with a different dominance assumption can be found in [17, Proposition 2].

Lemma 6.3.7. Let A be an N ×N diagonally dominant Hermitian matrix with µ̂k (k = 1, . . . , N )

being its strong dominance factors. Then the i th smallest diagonal entry di and the i th smallest
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eigenvalue λi are related by

1− µ̂i ≤ λi

di
≤ 1+ µ̂i . (6.3.20)

Proof. Without loss of generality, we assume that the diagonal entries of A are in increasing

order, i.e., di = ai i for all i . By the Cauchy interlacing theorem, λi never exceeds the largest

eigenvalue of A(1:i ,1:i ). Let µi be the dominance factor at i th row of A. If di < 0, then by the

Gershgorin circle theorem we have

λi ≤ max
1≤ j≤i

(1−µ j )d j ≤ max
1≤ j≤i

(1− µ̂ j )d j = (1− µ̂i )di .

If di > 0, we notice that Gershgorin disks centered in the left half plane do not produce positive

eigenvalues. Hence we have

λi ≤ max
j≤i

d j >0

(1+µ j )d j ≤ max
j≤i

d j >0

(1+ µ̂ j )d j = (1+ µ̂i )di .

The two complementary estimates can be obtained by applying the same analysis to −A.

Lemma 6.3.7 provides nice rowwise estimates for eigenvalues of strong diagonally dom-

inant Hermitian matrices even when the Gershgorin disks overlap. Evidently, all finite di-

agonally dominant matrices are trivially strong diagonally dominant since we can choose

µ̂k = (1+maxk µk )/2, which is an upper bound independent of k. However, in many cases at

least some µ̂k (e.g., which corresponds to an isolated Gershgorin disk) can be chosen not far

larger than µk . In this case (6.3.20) becomes nearly as powerful as (6.3.18). With the help of this

rowwise estimate, we now extend our analysis for Wilkinson-type matrices to more general

cases. The following theorem, akin to Lemma 6.3.1, illustrates the decay in eigenvectors for

nearly diagonally dominant matrices.

Theorem 6.3.8. Suppose A = Ã +R is an N ×N Hermitian matrix where Ã and R are both

tridiagonal, and in addition, Ã is diagonally dominant. µk and µ̂k (k = 1, . . . , N ) are Ã’s

dominance factors and strong dominance factors, respectively. Let λ1 ≤ λ2 ≤ ·· · ≤ λN be the

eigenvalues of A, with normalized eigenvectors x1, x2, . . . , xN . If the diagonal of Ã is in increasing

order, then the entries of x j satisfy

|x j (i )| ≤


k0∏

k=i

µk |ãkk |+‖R‖2

|ãkk − ã j j |−µk |ãkk |− µ̂ j |ã j j |−3‖R‖2
, ( j ≥ i ),

i∏
k=k0

µk |ãkk |+‖R‖2

|ãkk − ã j j |−µk |ãkk |− µ̂ j |ã j j |−3‖R‖2
, ( j < i ),

(6.3.21)

where k0 is chosen between i and j such that it maximizes |i −k0| and ensures

|ãkk − ã j j | > 4‖R‖2 +2µk |ãkk |+ µ̂ j |ã j j |
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for all k between i and k0.

Proof. By Lemma 6.3.7, the eigenvalues of Ã satisfy |λ̃k − ãkk | ≤ µ̂k |ãkk |. Then Weyl’s theorem

implies that

|λk − ãkk | ≤ |λk − λ̃k |+ |λ̃k − ãkk | ≤ ‖R‖2 + µ̂k |ãkk |.

The rest of proof mimics Lemma 6.3.1. By defining x j (0) = x j (N +1) = 0, the equation (A −
λ j I )x j = 0 is rewritten as

ak,k−1x j (k −1)+ (akk −λ j )x j (k)+ak,k+1x j (k +1) = 0, (k = 1, . . . , N ).

We first consider the case i ≤ j . Let k0 be the largest integer ensuring

|ãkk − ã j j | > 4‖R‖2 +2µk |ãkk |+ µ̂ j |ã j j |

for all k ∈ [1,k0]. We assume the existence of such a k0 because otherwise (6.3.21) becomes a

trivial bound |x j (i )| ≤ 1. We then show by induction that

|x j (k)| ≤ µk |ãkk |+‖R‖2

|ãkk − ã j j |−µk |ãkk |− µ̂ j |ã j j |−3‖R‖2
|x j (k +1)| (6.3.22)

holds when 1 ≤ k ≤ k0. For k = 1, we have

|x j (1)| = |a12|
|a11 −λ j |

|x j (2)|

≤ |a12 − ã12|+ |ã12|
|ã11 − ã j j |− |a11 − ã11|− |λ j − ã j j |

|x j (2)|

≤ µ1|ã11|+‖R‖2

|ã11 − ã j j |− µ̂1|ã11|−2‖R‖2
|x j (2)|

≤ µ1|ã11|+‖R‖2

|ã11 − ã j j |− µ̂1|ã11|− µ̂ j |ã j j −3‖R‖2
|x j (2)|.

Then for 1 < k ≤ k0, the induction hypothesis implies |x j (k −1)| ≤ |x j (k)| and then

|ak,k+1x j (k +1)|
≥ (|akk −λ j |− |ak,k−1|

)|x j (k)|
≥ (|ãkk − ã j j |− |ãkk −akk |− |λ j − ã j j |− |ãk,k−1 −ak,k−1|− |ãk,k−1|

)|x j (k)|
≥ (|ãkk − ã j j |−µk |ãkk |− µ̂ j |ã j j |−3‖R‖2

)|x j (k)|

Therefore,

|x j (k)| ≤ µk |ãkk |+‖R‖2

|ãkk − ã j j |−µk |ãkk |− µ̂ j |ã j j |−3‖R‖2
|x j (k +1)|.
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Repeatedly applying (6.3.22) yields

|x j (i )| ≤
k0∏

k=i

µk |ãkk |+‖R‖2

|ãkk − ã j j |−µk |ãkk |− µ̂ j |ã j j |−3‖R‖2
.

When i > j , let k0 be the smallest integer ensuring

|ãkk − ã j j | > 4‖R‖2 +2µk |ãkk |+ µ̂ j |ã j j |

for all k ∈ [k0, N ]. We introduce X = [x1, . . . , xN ],Λ= Diag{λ1, . . . ,λN }, and

Π=


1

. . .

1


Then (−ΠAΠ)(ΠXΠ) = (ΠXΠ)(−ΠΛΠ) is the spectral decomposition of −ΠAΠ and the diago-

nal entries of −ΠΛΠ are in increasing order. Therefore, we use the first inequality in (6.3.21) to

conclude that

|x j (i )| = |(ΠXΠ)N+1−i ,N+1− j | ≤
i∏

k=k0

µk |ãkk |+‖R‖2

|ãkk − ã j j |−µk |ãkk |− µ̂ j |ã j j |−3‖R‖2
.

This completes the proof of Theorem 6.3.8.

Remark 6.3.9. The bound in (6.3.21) cannot provide straightaway estimate without detailed

knowledge of the matrix, mainly because we do not know how small the distance |i−k0| can be.

There exist matrices (e.g., Laplacian matrices) such that (6.3.21) only provides trivial bounds

|x j (i )| ≤ 1. However, there are also matrices for which the decay property of eigenvectors

can be well identified using (6.3.21). For example, for the Wilkinson-type matrix W −
n (α) with

n > 2|α| > 0, we can introduce a perturbation 5

R =W −
n (α)−W −

n (0)+ε ·e0eT
0 , (ε> 0)

for a sufficiently small ε so that W −
n (α)−R is diagonally dominant. By setting µk = 0 and

µ̂k = 2|α|/|k +ε| for (−n ≤ k ≤ n), the estimate (6.3.21) is then simplified to

|x j (i )| ≤
|i− j |−d0∏

k=0

2|α|
k +d0 −8|α| .

for d0 > 10|α|. This bound is worse than (6.3.1) since detailed information regarding the

componentwise distribution in R is lost by crudely using ‖R‖2 ≤ 2|α|. Nevertheless, this

estimate is still asymptotically as good as (6.3.1).

5. We set R(0,0) = ε> 0 to guarantee the strict diagonal dominance of W −
n (α)−R. But this is not crucial since

the analysis in Lemma 6.3.7 will not be completely ruined by a zero row.
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Remark 6.3.10. If the diagonal of |Ã| first decreases and then increases, just like the diagonal

of W +
n (α), the estimate (6.3.21) needs to be slightly adjusted accordingly. Roughly speaking,

|x j (i )| is small if A(p, p) and A(q, q) are well-separated for all p close to i and q close to j . The

theorem also naturally extends to banded matrices, based on block versions of Lemmas 6.3.1

and 6.3.7 [152, Chapter 6].

Despite that Theorem 6.3.8 is a more qualitative analysis rather than a sharp quantitative

one, it is evident that certain types of (finite) diagonally dominant banded Hermitian matrices,

possibly with small perturbations, have localized eigenvectors. More importantly, when A is

extracted from an infinite matrix, the decay bound depends only on the location (i , j ), but not

on the size of A. Unfortunately, without detailed information of the decay, it would be difficult

to derive a decay bound for |exp(iA)| ≤ |X ||X |T as we have done in Lemmas 6.3.2 and 6.3.3.

Here we only provide an intuitive explanation about the decay in exp(iA). Let A = XΛX ∗ be

the spectral decomposition of A, and Y be a b-banded approximation of X with accuracy

‖X −Y ‖2 ≤ τ. Then

‖exp(iA)−Y exp(iΛ)Y ∗‖2 = ‖X exp(iΛ)X ∗−Y exp(iΛ)Y ∗‖2

≤ ‖X −Y ‖2‖exp(iΛ)‖2‖X ∗‖2 +‖Y ‖2‖exp(iΛ)‖2‖X ∗−Y ∗‖2

≤ 2τ(1+τ).

Therefore exp(iA) can be well approximated by a (2b)-banded matrix.

As seen in Sections 6.3.3 and 6.3.4, to derive the finite section method for a doubly-infinite

matrix, we only need the knowledge of decay properties in finite diagonal blocks. Hence

when Theorem 6.3.8 produces nontrivial bounds for all sufficiently large diagonal blocks of a

doubly-infinite matrix A, finite section methods can be applied to A. We classify such a kind

of unbounded doubly-infinite matrices as follows.

1. A is Hermitian and banded.

2. A is the sum of three Hermitian matrices A = D +G + R, where D is diagonal and

invertible, R is bounded, and ‖GD−1‖2 < 1.

3. D +G is strong diagonally dominant; in addition, the diagonal of D +G changes mono-

tonicity at most once.

4. For each extended Gershgorin disk, its (2‖R‖2)-neighborhood intersects only finitely

many other extended Gershgorin disks.

Loosely speaking, the third condition indicates that the diagonal of A is nearly sorted so that

we can apply a banded version of Theorem 6.3.8 to obtain the decay property for sufficiently

large finite diagonal blocks of exp(iA); the last condition ensures that finite sections of A

have reasonably well-separated eigenvalues so that the eigenvector matrix has a certain

decay property. For example, any Wilkinson-type matrix, or more generally, any banded

Hermitian matrix A whose off-diagonal part (i.e., by setting all diagonal entries of A to zero) is

bounded and |ai i −a j j | =Θ
(∣∣|i |− | j |∣∣t ) for some t > 0, belongs to this class. In principle, both
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|exp(iβT)| in logarithm scale
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|exp(iβT)−exp(iβS)| in logarithm scale
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Figure 6.4 – (a) Decay property of exp(10iT500). The 101×101 desired window is marked. (b) Error of the
finite section method (w = 74). Both the desired window and the computational window are marked.

Algorithm 6.1 and Algorithm 6.2 can be applied to unbounded self-adjoint matrices with slight

modifications in the stopping criterion. We suggest that in general Algorithm 6.2 is preferred

unless a reasonably accurate estimate of the decay is known in advance.

Finally, we make a remark on the decay rate. If (6.3.16) can be bounded by a bimodal

exponential decay (e.g., it is the case when A has bounded off-diagonal entries and the

bimodal decay in Ẽ22 is exponential and independent of w), then the distance d = w −m stays

constant when the user requires a larger m. However, if the decay of (6.3.16) is slower than

exponential, to keep the same accuracy requirement w −m will grow as m increases. This is

the major reason why exponential decay is of great interest in finite section methods.

6.4 Numerical experiments

In the following, we present numerical experiments for three examples to demonstrate

the accuracy of finite section methods. We use reasonably large matrices to mimic infinite

matrices. All experiments have been performed in MATLAB R2012a. The exponential function

is computed via spectral decomposition (i.e., exp(iA) = exp(iXΛX ∗) = X exp(iΛ)X ∗). It has

been observed that sometimes even the componentwise accuracy of exp(iA) is retained when

the computed unitary matrix fl(X ) has the exponential decay property.

Example 6.1. We first consider

Tn = Tridiag


−1 · · · −1

2 · · · · · · 2

−1 · · · −1

 ∈C(2n+1)×(2n+1)

which are bounded with spectrum Λ(Tn) ⊂ [0,4] for all n ∈ N. By Theorem 6.2.3, for any

constant β, exp(iβTn) has the exponential decay property. Suppose n = 500, m = 50, and

β= 10, i.e., the diagonal block
[
exp(iβTn)

]
(−50:50,−50:50) is of interest. The desired (absolute)

accuracy is τ= 10−8. The magnitude of exp(iβTn) is shown in Figure 6.4(a).
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6.4. Numerical experiments

Algorithm 6.1 requires w ≥ 74 to fulfill the condition K
(
ρ2(w−m)−1 +ρ2(w+m)−1

)≤ τ, with

ρ =χ−1∗ chosen optimally from (6.2.6). As a comparison, the smallest possible computational

window size to achieve accuracy 10−8 is w∗ = 69. Algorithm 6.2 applied to this problem

terminates after the first iterate, i.e., w = 2m = 100, which confirms the fact that w < 2w∗.

To visualize the error caused by truncation, let Sn,w be a block diagonal approximation

of Tn defined by
Sn,w

(±w,±(w +1)
)= 0,

Sn,w
(±(w +1),±w

)= 0,

Sn,w (i , j ) = Tn(i , j ), otherwise.

It is comforting to see from Figure 6.4(b) that the error is localized around the corners of the

computational window.

Example 6.2. Now we consider Wilkinson-type matrices W −(α). In Figure 6.5, the exponen-

tial decay property of a 1001× 1001 matrix (with α = 8) is illustrated. It can be seen from

Figure 6.5(g) that although the simplified bound (6.3.8) is asymptotically worse than the best

bound on |X ||X |T based on (6.3.1), the difference is insignificant for entries above 10−16, since

the choice d = 6d|α|e produces a modest leading factor K . Another important fact is that the

decay rate is independent of the matrix size, see Figure 6.6 for an illustration.

Table 6.1 contains the distance between the computational window and the desired win-

dow. The experiments were performed with different matrix sizes (n = 100, 200, . . . , 500) and

different central block size (m = 10, 20, 30). But we only present those values for different α

and β, because d is independent of m and n. Our estimates are quite conservative, but still

produce reasonably affordable computational window sizes. Another fact not shown in the

table is that for fixed α and β, the desired (2m +1)× (2m +1) diagonal block extracted from

matrices with different sizes agree quite well as expected.

Table 6.1 – The distance between the computational window and the desired section (with accuracy
τ= 10−8). The number d = w−m is derived from the a priori estimate, while d∗ = w∗−m is the smallest
distance obtained by enumeration.

α= 1 α= 2 α= 4 α= 8
β d∗ d d∗ d d∗ d d∗ d
1 7 33 9 45 12 70 18 119
2 9 33 12 46 18 71 27 119
4 11 34 16 47 25 71 41 120
8 12 35 17 47 26 72 43 121

Example 6.3. Our last example is another doubly-infinite matrix

A = Tridiag


· · · n

3
4 · · · 1 1 · · · n

3
4 · · ·

· · · n · · · 1 0 1 · · · n · · ·
· · · n

3
4 · · · 1 1 · · · n

3
4 · · ·

 .

123



Chapter 6. Finite Section Method

|exp(iW
n

−
)|

 

 

−500 0 500

−500

0

500 −150

−100

−50

0

|X
n
|

 

 

−500 0 500

−500

0

500 −150

−100

−50

0

|X
n
||X

n
|’

 

 

−500 0 500

−500

0

500 −150

−100

−50

0

(a) (b) (c)
Upper bound on |exp(iW

n

−
)|

 

 

−500 0 500

−500

0

500 −150

−100

−50

0

Upper bound on |X
n
|

 

 

−500 0 500

−500

0

500 −150

−100

−50

0

Upper bound on |X
n
||X

n
|’

 

 

−500 0 500

−500

0

500 −150

−100

−50

0

(d) (e) (f)

0 100 200 300 400 500 600
10

−150

10
−100

10
−50

10
0

|i−j|

m
a

g
n

it
u

d
e

Decay along the diagonal

 

 

|exp(iW
n

−
)|

|X
n
|

|X
n
||X

n
|’

Upper bound on |exp(iW
n

−
)|

Upper bound on |X
n
|

Upper bound on |X
n
||X

n
|’

(g)

Figure 6.5 – The exponential decay property of exp
[
iW −

n (α)
]
, Xn , and |Xn ||Xn |T with n = 500 and α= 8.

The upper bounds of exp
[
iW −

n (α)
]

and |Xn | are given by the estimates (6.3.8) and (6.3.1), respectively,
with d0 = 6dαe = 48. The upper bound on |Xn ||Xn |T is obtained from the upper bound on |Xn | by
explicit multiplication.

A variant of Theorem 6.3.8 indicates that exp(iA) has a bimodal decay property, while the

decay is slower than the exponential decay. Suppose we would like to extract the central

101×101 diagonal block (i.e., m = 50) with absolute accuracy τ= 10−8. Algorithm 6.2 applied

to this problem terminates at w = 4m = 200. Plots of X , |X ||X |T , exp(iA) as well as the error
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Figure 6.6 – The decay rate is independent of the matrix size (W −
n (α) for α= 8).

are shown in Figure 6.7. Although the a priori estimate based on decay in eigenvectors is too

pessimistic, Algorithm 6.2 still handles this difficult example quite well.
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Figure 6.7 – (a)–(c) The decay in X , |X ||X |T , and exp(iA), respectively, in Example 6.3. The desired
window in exp(iA) is marked. (d) Error of the finite section method. Both the desired window and
the computational window are marked. Here S is the block diagonal matrix by dropping the ±wth
sub-diagonal entries (w = 200) of A.

But we remark that Algorithm 6.2 does not work if there is no decay at all in a reasonably
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Chapter 6. Finite Section Method

computable range. For example, for

B = Tridiag


· · · n1.9 · · · 1 1 · · · n1.9 · · ·

· · · n2 · · · 1 0 1 · · · n2 · · ·
· · · n1.9 · · · 1 1 · · · n1.9 · · ·

 ,

which is also self-adjoint. There is no obvious decay in a modest finite section of exp(iB), see

Figure 6.8. Hence Algorithm 6.2 cannot compute the finite section with m = 50 for this matrix

unless a computational window with w = 1600 is affordable.

|X|

 

 

−500 0 500

−500

−400

−300

−200

−100

0

100

200

300

400

500 −16

−14

−12

−10

−8

−6

−4

−2

0
|X||X|’

 

 

−500 0 500

−500

−400

−300

−200

−100

0

100

200

300

400

500 −16

−14

−12

−10

−8

−6

−4

−2

0
|exp(iB)|

 

 

−500 0 500

−500

−400

−300

−200

−100

0

100

200

300

400

500 −16

−14

−12

−10

−8

−6

−4

−2

0

|exp(iB)−exp(iS)|

 

 

−500 0 500

−500

−400

−300

−200

−100

0

100

200

300

400

500 −16

−14

−12

−10

−8

−6

−4

−2

0

Figure 6.8 – There is no decay in modest finite sections of X , |X ||X |T , and exp(iB) in Example 6.3. The
computational window is required to be very large in order to find a good approximation. The desired
window and the computational window are marked.

6.5 Summary

In this chapter, we have shown that certain decay properties can be used to establish finite

section methods for extracting a finite diagonal block of exp(iA). For bounded and banded

Hermitian matrices, the exponential decay property of exp(iA) can be derived by polynomial

approximation; for unbounded matrices, we identify localized eigenvectors in its finite diag-

onal blocks to obtain the decay property. We also show that to attain a certain accuracy, the

required distance between the desired window and the computational window stays constant

when the decay is exponential. Numerical experiments demonstrate the robustness of the

proposed finite section methods.
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7 Conclusions

Two topics in dense and structured matrix computations are discussed in this thesis. In

the following, we summarize the contributions of this thesis.

In Chapter 3, we have presented a new parallel implementation of the QR algorithm

equipped with some modern techniques such as small-bulge multishift and aggressive early

deflation (AED). An intermediate version of our library software PDHSEQR has been released

in ScaLAPACK version 2.0. This work is largely based on the early work by Granat et al. [61].

We have made four major contributions to improve the efficiency of the algorithm. First, AED

has been incorporated into the pipelined QR algorithm which is suitable for solving small-

to medium-size problems. This leads to a multilevel AED approach which significantly ac-

celerates the computation of the Schur decomposition in all levels of AED. Second, we have

proposed a technique which largely reduces communication overhead by redistributing the

matrix, and performing computations on a subset of processors. Third, we have proposed a

refined strategy for balancing between the multishift QR sweeps and AED. Finally, a perfor-

mance model has been established for the new parallel multishift QR algorithm. Although

the performance model is only asymptotic, it provides estimates of the execution time and

also suggests the choice of several tunable algorithmic parameters. Guidelines and autotuning

tools concerning these tunable parameters are provided. With the help of these improve-

ments, a computational bottleneck in the earlier version of PDHSEQR in [61] has been removed.

Consequently, the new version of PDHSEQR is more efficient than the previous version. The

improvements compared to PDLAHQR in ScaLAPACK version 1.8.0 is even more significant.

Concerning the accuracy, we have also identified and fixed several anomalies in ScaLAPACK’s

PDLAHQR and the early version of PDHSEQR in [61] so that our new PDHSEQR is numerically

more stable.

In Chapter 5, we have substantially extended the existing theory on the computation of

exp(A) when A is essentially nonnegative. First, we have provided a novel a priori componen-

twise relative truncation error estimate for the truncated Taylor series coupled with scaling

and squaring. This error estimate is used to derive the aggressively truncated Taylor series

method which requires O (N 3 log N ) arithmetic operations. Compared to existing Taylor series
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Chapter 7. Conclusions

methods [167] which suffer from slow convergence and potentially require O (N 4) arithmetic

operations, our aggressively truncated Taylor series method reduces the computational cost

without sacrificing the accuracy. We have also established new a posteriori error estimates

and used them to develop several variants of the aggressively truncated Taylor series method,

including an interval algorithm without using interval arithmetic. Rounding error analyses

have also been provided to illustrate the numerical stability of our proposed methods.

In Chapter 6, we have provided theoretical evidence for the validity of the finite section

method for computing a finite diagonal block of exp(iA) where A is a doubly-infinite banded

Hermitian matrix. For the case A bounded, we have established an error estimate of the fi-

nite section method using the exponential decay property of exp(iA). Such an error estimate

naturally leads to a criterion for determining the computational window size in practical com-

putation. The case when A is unbounded is much more difficult since existing techniques in

approximation theory do not carry over. Therefore only several special classes of unbounded

matrices, such as two classes of Wilkinson-type matrices, are studied. We have identified local-

ized eigenvectors of finite diagonal blocks. Then an important technique used in estimating

the error of the finite section method is to relate the error within the finite desired window to

the decay property of a larger finite computational window, so that the difficulty of analyzing

infinite matrices is avoided. We have also proposed an adaptive strategy for estimating the

size of the computational window. This strategy works well even when a priori error estimates

are too pessimistic or not easy to compute.
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A Elementary Orthogonal Transforma-
tions

In the following we briefly recall two classes of orthogonal transformations—Householder

reflections [79] and Givens rotations [55], which are extensively used in the QR algorithm

discussed in Chapters 2 and 3. The results listed here can also be found in any standard

textbook about numerical linear algebra (e.g., [58]).

A.1 Householder reflections

Let w ∈ RN be a unit vector, i.e. ‖w‖2 = 1. Then the matrix Hw = I − 2w w T is called a

Householder reflection. It can be easily verified that Hw is symmetric and orthogonal. In

practice, applying a Householder reflection to a matrix A is accomplished through Hw A ←
A−2w(wT A) (or AHw ← A−2(Aw)wT ), which is much cheaper than explicitly performing a

naive matrix-matrix multiplication. Therefore, applying a Householder reflection is a level 2

operation.

The main utility of Householder reflections in numerical linear algebra is to zero out

all but the first entry in a given vector x ∈ RN , i.e., Hw x = αe1 for some α ∈ R. Notice that

2w(wT x) = x −αe1. The vector w is thus chosen as

w = x −αe1

‖x −αe1‖2
. (A.1.1)

Since |α| = ‖αe1‖2 = ‖Hw x‖2 = ‖x‖2, the only possible choices of α are α = ‖x‖2 and α =
−‖x‖2. To avoid numerical cancellation when computing x −αe1, we adopt

α=
−‖x‖2 , if x1 ≥ 0,

‖x‖2 , if x1 < 0,

and then use (A.1.1) to construct w .

Householder reflections are also used to construct an orthogonal matrix U such that U e1

is parallel to a prescribed nonzero vector x. We assume that U can be chosen as a Householder
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Appendix A. Elementary Orthogonal Transformations

reflection Hw with Hw e1 =βx. Notice that Hw x =β−1e1. Thus this problem is reduced to the

previous one—eliminate all but the first element in x.

The complex analogy is very similar—given a unit vector wCN , the matrix Hw = I−2w w∗ is

a unitary Hermitian matrix. To seek forα and w such that Hw x =αe1 for a given vector x ∈CN ,

we choose

α=
− x1

|x1|
‖x‖2 , if x1 6= 0,

‖x‖2 , if x1 = 0,

and still use (A.1.1) to construct w .

A.2 Givens rotations

A Givens rotation is an orthogonal matrix of the form

G(i , j ,θ) =



i th j th

I

i th cosθ sinθ

I

j th −sinθ cosθ

I

, (θ ∈R).

It is also known as a Jacobi rotation because it was used by Jacobi to solve symmetric eigenvalue

problems [82]. A Givens rotation performs a linear combination of two rows (or columns) of a

matrix. Therefore, applying a Givens rotation is a level 1 operation. To study the properties of

Given rotations, it is sufficient to discuss the following 2×2 orthogonal matrix

G(θ) =
[

c s

−s c

]
,

where c = cosθ, s = sinθ.

Givens rotations provide another tool to perform orthogonal elimination. For example, for

a given vector [a,b]T ∈R2, we seek for a Givens rotation G(θ) such that

G(θ)T

[
a

b

]
=

[
α

0

]
.

This is achieved by choosing cotθ = −a/b when b 6= 0. In practice, the Givens rotation is
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A.2. Givens rotations

formed through
τ=−a/b, s = τp

1+τ2
, c = sτ, if |b| > |a|,

τ=−b/a, c = τp
1+τ2

, s = cτ, if |b| ≤ |a|,

to avoid potential cancellations and overflow/underflow.

As mentioned in Chapter 2, swapping two eigenvalues in a real 2×2 upper triangular

matrix can be performed by choosing suitable a Givens rotation. To solve the problem

G(θ)T

[
t11 t12

0 t22

]
G(θ) =

[
t22 t12

0 t11

]
,

we notice that [t12, t22−t11]T and [1,0]T are the eigenvectors of
[ t11 t12

0 t22

]
and

[ t22 t12
0 t11

]
, respectively,

corresponding to the eigenvalue t22. The Givens rotation satisfies

G(θ)T

[
t12

t22 − t11

]
=

[
α

0

]
.

Thus, the problem of swapping eigenvalues is reduced to the problem of orthogonal elimina-

tion and is solved by choosing cotθ = t12/(t11 − t22).

A complex Givens rotation is a unitary matrix of the form

G =



i th j th

I

i th c s

I

j th −s∗ c

I

, c ∈R, c2 +|s|2 = 1.

Complex Givens rotations are also used to eliminate elements in a given complex vector. For a

nonzero vector [a,b]T ∈C2, the task[
c s

−s∗ c

]∗[
a

b

]
=

[
α

0

]
,

is achieved by choosing

c = |a|√
|a|2 +|b|2

, s = a

|a| ·
b∗√

|a|2 +|b|2
.

Consequently, the problem of swapping two consecutive eigenvalues in a (complex) Schur

form is also solved.
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B Basics in Rounding Error Analysis

This section recalls some basics in rounding error analysis for floating-point arithmetic.

These basic results are used in Chapter 5. We refer to [71, 112, 164] for detailed discussions

regarding floating-point arithmetic.

If there is no overflow or (gradual) underflow in the calculation, the rounding error is

modeled by

fl(α◦β) = (α◦β)(1+ε), |ε| ≤ u,

where “◦” is +, −, ×, or ÷, and u is the unit roundoff. In practice, the unit roundoff is u = 2−23 ≈
1.2× 10−7 in single precision arithmetic, and is u = 2−52 ≈ 2.2× 10−16 in double precision

arithmetic, on architectures following the IEEE-754 standard [80].

When rounding modes are switched to round round towards −∞, the rounding error can

be modeled as

fl(α◦β) = (α◦β)(1−ε), 0 ≤ ε≤ ũ.

Here the unit roundoff ũ is twice as large as the one under the standard rounding mode (i.e.,

round towards nearest) [112]. For example, ũ is 2−51 in double precision arithmetic under this

biased rounding mode. Similarly, for the rounding mode round towards +∞, we have

fl(α◦β) = (α◦β)(1+ε), 0 ≤ ε≤ ũ.

Both cases fit the rounding model

fl(α◦β) = (α◦β)(1+ε), |ε| ≤ ũ.

As a remark, the notation fl(·) and fl(·) used in this thesis does not have correspondence with

any particular rounding mode. This notation merely implies that the computed quantity

satisfies fl(x) ≤ x and fl(x) ≥ x. As an example, fl(1−x) can be obtained via − fl(fl(x)−1) under
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the rounding mode round towards +∞.

Let X , Y ∈RN×N . The following results are used in the rounding error analysis in Section 5.4.

A direct consequence of the rounding model is that

|fl(X +Y )− (X +Y )| ≤ u |X +Y | .

It can be proved by induction that∣∣∣∣fl( N∑
k=1

αiβi

)
−

N∑
k=1

αiβi

∣∣∣∣≤ [
N u+O (u2)

] N∑
k=1

|αiβi |.

Applying this result to individual entries of fl(X Y ) yields

|fl(X Y )−X Y | ≤ [
N u+O (u2)

] |X | |Y | .
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C PDHSEQR User’s Guide

C.1 Introduction

PDHSEQR is a parallel ScaLAPACK-style library for solving nonsymmetric eigenvalue

problems. The library is written in Fortran 90 and targets distributed memory HPC systems.

Using the small-bulge multishift QR algorithm with aggressive early deflation, it computes

the real Schur decomposition H = Z T Z T of an upper Hessenberg matrix H ∈ RN×N , such

that Z is orthogonal and T is quasi-upper triangular. This document concerns the usage of

PDHSEQR and is a supplement to the article [62]. For the description of the algorithm and

implementation, we refer to [62] and the references therein (especially, [30, 31, 60, 61, 88]).

C.2 Installation

In the following, an installation guide is provided. It is assumed that the user is working in

a Unix-like system.

C.2.1 Prerequisites

To build the library, the following software is required.

• A Fortran 90/95 compiler.

• The MPI library, e.g., OpenMPI or MPICH.

• An optimized BLAS library, e.g., ATLAS or OpenBLAS.

• The LAPACK library.

• The ScaLAPACK library (including BLACS and PBLAS).
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C.2.2 How to compile the library

Download location.

The software version published by ACM TOMS can be downloaded from CALGO. 1 The lat-

est version of the source code (with bug fixes) as well as the corresponding documents are

available on the PDHSEQR homepage. 2

Files in the tar-ball.

The following command unpacks the tar-ball and creates a directory pdhseqr/, which is the

root directory of the library.

tar xzfv pdhseqr.tar.gz

Inside the root directory, there are several files and directories:

EXAMPLES/ MAKE_INC/ Makefile make.inc README SRC/ TESTING/ TOOLS/ TUNING/ ug.pdf

Below is an overview of these items.

• EXAMPLES/ This directory contains two simple drivers.

• MAKE_INC/ This directory contains several templates of make.inc for GNU, Intel, and

PathScale compilers.

• Makefile The Makefile for building the library. This file does not need to be modified.

• make.inc This is the only file which requires modifications when building the library. It

contains compiler settings and external libraries for the Makefile. The user is required

to modify this file according to the target computational environment before compiling

the library. Several templates of this file are provided in the directory MAKE_INC.

• README A shorter version of this document containing a quick installation guide.

• SRC/ This directory contains source code for all computational routines of the library.

• TESTING/ This directory contains testing examples.

• TOOLS/ This directory contains several auxiliary routines (e.g., random number/matrix

generators, input/output routines).

• TUNING/ This directory contains auto-tuning scripts.

• ug.pdf The User’s Guide of PDHSEQR.

Build the library.

Once make.inc is properly modified according to the computational environment, the library

can be built by

make all

1. Collected algorithms of the ACM. See http://calgo.acm.org/.
2. PDHSEQR homepage: http://www8.cs.umu.se/~myshao/software/pdhseqr/.
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C.3. Using the package
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Figure C.1 – The 2D block-cyclic data layout across a 2×3 processor grid. For example, processor (0,0)
owns all highlighted blocks. Picture from [62].

in the root directory of PDHSEQR. This generates the library archive libpdhseqr.a in the root

directory, two examples in EXAMPLES/, and test programs in TESTING/. Twelve quick tests in

TESTING/ are performed and (hopefully) the following result will be displayed on the screen:

% 7 out of 7 tests passed!
% 5 out of 5 tests passed!

This means that the Schur decomposition has been successfully computed for seven random

matrices and five benchmark matrices, indicating that the compilation has been successful.

We recommend that the script runquick.sh in TESTING is also run once to make sure that

the parallel code works properly. You may need to modify the MPI execution command in

this script according to your system (e.g., mpirun, mpiexec, etc.). If everything works out,

18 lines of information summarizing the 108 tests will be displayed and written to the file

summary.txt. We also provide runall.sh with many large test cases in the same directory.

(Running this set of tests may take very long !)

C.3 Using the package

C.3.1 ScaLAPACK data layout convention

In ScaLAPACK, the p = pr ·pc processors are usually arranged into a pr ×pc grid. Matrices

are distributed over the rectangular processor grid in a 2D block-cyclic layout with block size

Mb ×Nb (see Figure C.1 for an example). The information regarding the data layout is stored

in an array descriptor so that the mapping between the entries of the global matrix and their

corresponding locations in the memory hierarchy can be established. We adopt ScaLAPACK’s

data layout convention and require that the N ×N input matrices H and Z have identical data

layout with square data blocks (i.e., Mb = Nb). The processor grid, however, does not need

to be square. A distributed matrix H is referenced by two arrays H (local matrix entries) and
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DESCH (array descriptor). A typical setting of DESCH is listed below.

• DESCH(1): Type of the matrix. In our case, DESCH(1) = 1 since H is stored as a dense

matrix.

• DESCH(2): The handle of the BLACS context.

• DESCH(3), DESCH(4): The size of H , i.e., DESCH(5) = DESCH(6) = N .

• DESCH(5), DESCH(6): Blocking factors Mb and Nb . We require that DESCH(5) = DESCH(6).

• DESCH(7), DESCH(8): The process row and column that contain h11. Usually, DESCH(7) =
DESCH(8) = 0.

• DESCH(9): Leading dimension of the local part of H on the current processor. This value

needs to be at least one, even if the local part is empty.

C.3.2 Calling sequence

The main functionality of this package is to compute the real Schur decomposition of an

upper Hessenberg matrix using the routine PDHSEQR. The ScaLAPACK routine PDGEHRD can

be used to transform a general square matrix to Hessenberg form, see the test programs in

TESTING/ for examples. The interface of PDHSEQR displayed below follows the convention of

LAPACK/ScaLAPACK routines [6, 26].

SUBROUTINE PDHSEQR( JOB, COMPZ, N, ILO, IHI, H, DESCH, WR, WI, Z,
$ DESCZ, WORK, LWORK, IWORK, LIWORK, INFO )

*
* .. Scalar Arguments ..

INTEGER IHI, ILO, INFO, LWORK, LIWORK, N
CHARACTER COMPZ, JOB

* ..
* .. Array Arguments ..

INTEGER DESCH( * ) , DESCZ( * ), IWORK( * )
DOUBLE PRECISION H( * ), WI( N ), WORK( * ), WR( N ), Z( * )

For comparison, the (nearly identical) interface of the LAPACK routine DHSEQR.

SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
$ LDZ, WORK, LWORK, INFO )

Also, the interface of the ScaLAPACK auxiliary routine PDLAHQR is similar.

SUBROUTINE PDLAHQR( WANTT, WANTZ, N, ILO, IHI, A, DESCA, WR, WI,
$ ILOZ, IHIZ, Z, DESCZ, WORK, LWORK, IWORK,
$ ILWORK, INFO )

Therefore, it may not require much effort to switch existing code calling PDLAHQR to PDHSEQR.

An example for calling PDHSEQR is provided in the test program (TESTING/driver.f). We

advice that PDHSEQR is called twice—the first call for performing a workspace query (by setting

LWORK=−1 and the second call for actually performing the computation.
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Below is a detailed list of the arguments.

• JOB: (global input) CHARACTER*1.

JOB= ′E′: Compute eigenvalues only;

JOB= ′S′: Compute eigenvalues and the Schur form T.

• COMPZ (global input) CHARACTER*1.

COMPZ= ′N′: Schur vectors (i.e., Z ) are not computed;

COMPZ= ′I′: Z is initialized to the identity matrix and both H and Z are returned;

COMPZ= ′V′: Z must contain an orthogonal matrix Q on entry, and the product Q Z is

returned.

• N: (global input) INTEGER.

The order of the Hessenberg matrix H (and Z ).

• ILO, IHI: (global input) INTEGER.

It is assumed that H is already upper triangular in rows and columns (1:ILO-1) and

(IHI+1:N). They are normally set by a previous call to PDGEBAL, and then passed to

PDGEHRD when the matrix output by PDGEBAL is reduced to Hessenberg form. Otherwise

ILO= 1 and IHI= N should be used.

• H: (global input/output) DOUBLE PRECISION array of dimension (DESCH(9),*).

DESCH: (global and local input) INTEGER array of dimension 9.

H and DESCH define the distributed matrix H .

On entry, H contains the upper Hessenberg matrix H .

On exit, if JOB= ′S′, H is quasi-upper triangular in rows and columns (ILO:IHI), with

1×1 and 2×2 blocks on the main diagonal. The 2×2 diagonal blocks (corresponding

to complex conjugate pairs of eigenvalues) are returned in standard form, with hi i =
hi+1,i+1 and hi+1,i hi ,i+1 < 0. If INFO= 0 and JOB= ′E′, the contents of H are unspecified

on exit.

• WR, WI: (global output) DOUBLE PRECISION array of dimension N.

The eigenvalues of H(ILO:IHI,IHO:IHI) are stored in WR(ILO:IHI) and WI(ILO:IHI)—

WR contains the real parts while WI contains the imaginary parts.

If two eigenvalues are computed as a complex conjugate pair, they are stored in consec-

utive elements of WR and WI, say the i-th and (i+1)-th, with WI(i) > 0 and WI(i+1) < 0.

If JOB= ′S′, the eigenvalues are stored in the same order as on the diagonal of the Schur

form returned in H .

• Z: (global input/output) DOUBLE PRECISION array of dimension (DESCZ(9),*).

DESCZ: (global and local input) INTEGER array of dimension 9.

Z and DESCZ define the distributed matrix Z .

If COMPZ= ′V′, on entry Z must contain the current matrix Z of accumulated transforma-

tions from, e.g., PDGEHRD, and on exit Z has been updated.

If COMPZ= ′N′, Z is not referenced.

If COMPZ= ′I′, on entry Z does not need be set and on exit, if INFO= 0, Z contains the

orthogonal matrix Z of the Schur vectors of H .
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• WORK: (local workspace) DOUBLE PRECISION array of dimension LWORK.

LWORK: (local input) INTEGER.

In case LWORK=−1, a workspace query will be performed and on exit, WORK(1) is set to

the required length of the double precision workspace. No computation is performed in

this case.

• IWORK: (local workspace) INTEGER array of dimension LIWORK.

LIWORK: (local input) INTEGER.

In case LIWORK=−1, a workspace query will be performed and on exit, IWORK(1) is set

to the required length of the integer workspace. No computation is performed in this

case.

• INFO: (global output) INTEGER.

If INFO= 0, PDHSEQR returns successfully.

If INFO< 0, let i =−INFO, then the i -th argument had an illegal value.

(See below for exceptions with i = 7777 or i = 8888.)

If INFO> 0, then PDHSEQR failed to compute all of the eigenvalues. (This is a rare case.)

Elements (1:ILO-1) and (INFO+1:N) of WR and WI contain the eigenvalues which have

been successfully computed. Let U be the orthogonal matrix logically produced in the

computation (regardless of COMPZ, i.e., no matter whether it is explicitly formulated or

not). Then on exit,Hi nU =U T Hout , Z =U , if INFO> 0, COMPZ= ′I ′,

Hi nU =U T Hout , Zout = Zi nU , if INFO> 0, COMPZ= ′V′.

If INFO= 7777 or INFO= 8888, please send a bug report to the authors.

C.3.3 Example programs

We provide two simple examples in the directory EXAMPLES/. The program example1.f
generates a 500×500 random matrix and computes its Schur decomposition, while example2.f
reads the benchmark matrix OLM500 3 in the Matrix Market format [9].

To compute eigenvalues of other matrices, the following lines of the example program

need to be adjusted:

• Line 40: Matrix size and the block factor.

• Line 50–51: Make sure to provide sufficient memory.

• Line 222: Replace the matrix generator PDMATGEN2/PQRRMMM by your own matrix.

3. Downloaded from ftp://math.nist.gov/pub/MatrixMarket2/NEP/olmstead/olm500.mtx.gz.
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C.4 Tuning the parameters?

The instructions below are intended for experienced users. Other users may want to skip

reading this section.

In SRC/pilaenvx.f and SRC/piparmq.f, there are several machine-dependent parame-

ters, see [62] for details. On contemporary architectures, we expect that most of the default val-

ues provided in the source code yield reasonable performance. However, for PILAENVX(ISPEC
= 12, 14, 23) some fine tuning might be helpful. The package offers two scripts in the

directory TUNING/ that aim at tuning these three parameters.

Before starting the tuning procedure, you first need to choose a frequently used block

factor (Nb) and modify the corresponding value in tune1.in, tune2_1.in, tune2_2.in, and

tune2_3.in. You also need to adjust the MPI execution command according to your system

in the scripts tune1.sh and tune2.sh.

The first script tune1.sh searches suitable settings for PILAENVX(ISPEC = 12, 23). It

performs the tests described in tune1.in on 1× 1, 2× 2, 4× 4, 8× 8 processor grids, and

analyzes the collected data by the code tune1.f. This procedure usually takes 1–4 hours.

When completed, it reports suggestions on the parameters in the file suggestion1.txt. You

should then modify the constants NMIN (Line 193 in SRC/piparmq.f) and NTHRESH (Line 648

in SRC/pilaenvx.f) in accordance with these suggestions.

The second script tune2.sh searches suitable settings for PILAENVX(ISPEC = 14). This

set of tests should only be done after running tune1.sh and modifying the parameters

in SRC/pilaenvx.f, SRC/piparmq.f, and TUNING/piparmq.f correspondingly. Then the

library should be compiled again with the new settings:

make clean; make all; make tuning

Finally, the script tune2.sh is executed. This set of tests takes a long time (up to 1–2 days). If

all tests are completed successfully, tune2.f computes and reports the suggested settings for

the parameters in suggestions2.txt. You should then update SRC/piparmq.f (Line 197)

and rebuild the library. This completes the tuning procedure.

If some of the tests are interrupted, due to an error, it may not be necessary to rerun

the whole set of tests. You can also manually collect the execution times for each test into

summary2.txt and apply tune2.f to determine the parameter suggestions.

It is possible to run both tuning scripts on other processor grids (besides the default

2×2, 4×4, 8×8). This, however, requires to not only adjust the scripts tune*.sh but also the

programs tune*.f correspondingly.
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C.5 Terms of usage

Use of the ACM Algorithm is subject to the ACM Software Copyright and License Agree-

ment. 4 Furthermore, any use of the PDHSEQR library should be acknowledged by citing the

corresponding paper [62]. Depending on the context, the citation of the papers [60, 61, 88] is

also encouraged.

4. See http://www.acm.org/publications/policies/softwarecrnotice.
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