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Analysis of Image Registration with Tangent Distance

Elif Vural and Pascal Frossard ∗

Abstract. The computation of the geometric transformation between a reference and a target image, known
as image registration or alignment, corresponds to the projection of the target image onto the
transformation manifold of the reference image (the set of images generated by its geometric trans-
formations). It often takes a nontrivial form such that exact computation of projections on the
manifold is difficult. The tangent distance method is an effective alignment algorithm that exploits
a linear approximation of the transformation manifold of the reference image. As theoretical studies
about the tangent distance algorithm have been largely overlooked, we present in this work a detailed
performance analysis of this useful algorithm, which can eventually help the selection of algorithm
parameters. We consider a popular image registration setting using a multiscale pyramid of lowpass
filtered versions of the (possibly noisy) reference and target images, which is particularly useful for
recovering large transformations. We first show that the alignment error has a nonmonotonic varia-
tion with the filter size, due to the opposing effects of filtering on manifold nonlinearity and image
noise. We then study the convergence of the multiscale tangent distance method to the optimal
solution. We finally examine the performance of the tangent distance method in image classification
applications. Our theoretical findings are confirmed by experiments on image transformation models
involving translations, rotations and scalings. Our study is the first detailed study of the tangent
distance algorithm that leads to a better understanding of its efficacy and to the proper selection of
design parameters.

Key words. Image registration, tangent distance, image analysis, hierarchical registration methods, perfor-
mance analysis.

1. Introduction. The estimation of the geometric transformation that gives the best
match between a target image and a reference image is known as image registration or im-
age alignment. This operation is commonly used in many problems in image processing or
computer vision, such as image analysis, biomedical imaging, video coding and stereo vision.
The set of images generated by the geometric transformations of a reference pattern is called
a transformation manifold. In several image registration problems, it is possible to represent
the geometric transformation between the reference and target images by a few parameters,
e.g., translation, rotation, and affine transformation parameters. In this case, the image reg-
istration problem can be geometrically regarded as the projection of the target image onto
the transformation manifold of the reference image. The transformation parameters that best
align the image pair are then given by the transformation parameters of the manifold point
that has the smallest distance to the target image. By extension, in image analysis problems
where different classes are represented by different transformation manifolds, classification can
be achieved by measuring the distance of the query image to the transformation manifold of
each class.

Even if the image registration problem is generally not easy to solve exactly, its geomet-
ric interpretation allows for efficient alignment solutions. A well-known alignment method
consists of constructing a first-order approximation of the transformation manifold of the
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reference image by computing the tangent space of the manifold at a reference point. The
transformation parameters are then estimated by calculating the orthogonal projection of the
target image onto the tangent space of the manifold. This method is known as the tangent
distance method. The tangent distance method has been proposed by Simard et al. and its
efficiency has been demonstrated in numerous settings, like handwritten digit recognition ap-
plications [17], [16] for example. Since then, many variations on the tangent distance method
have been presented. The work in [7], for example, proposes the joint manifold distance for
transformation-invariance in clustering, which is a similarity measure that is based on the
prior distributions of the images and the distance between the linear approximations of their
manifolds. The recent work [6] utilizes the tangent distance for motion compensation in video
compression. In fact, some early examples of image alignment using manifold linearizations
are found in the motion estimation literature, which are called gradient-based optical flow
computation methods [18], [3]. Gradient-based methods exploit a linear approximation of
the image intensity function in the estimation of the displacement between two image blocks.
Applying a first-order approximation of the intensity function of the reference image block
and then computing the displacement in a least-squares manner is actually equivalent to pro-
jecting the target image block onto the linear approximation of the manifold formed by the
translations of the reference image block.

In image alignment with the tangent distance method, the reference manifold point around
which the manifold is linearized is required to be sufficiently close to the exact projection of the
target image onto the manifold, which corresponds to the optimal transformation parameters.
In that case, the linear approximation of the manifold is valid and the optimal transformation
parameters can be estimated accurately. When the distance between the reference and optimal
transformation parameters is large, an efficient way to get around this limitation is to apply
the tangent distance method in a hierarchical manner [16], [19]. In hierarchical alignment, a
pyramid of low-pass filtered and downsampled versions of the reference and target images is
built, and the alignment is achieved in a coarse-to-fine manner, which is illustrated in Figure
1.1. The transformation parameters are first roughly estimated using the smoothest images
in the pyramid, and then progressively refined by passing to the fine scales. The low-pass
filtering applied to generate the coarse-scale images helps to reduce the nonlinearity of the
manifold, which renders the linear approximation more accurate and allows the recovery of
relatively large transformations. Once the transformation parameters are estimated roughly
from coarse scale images, the adjustment in the transformation parameters to be computed
in fine scales is relatively small and the linear approximation of the manifold is therefore
accurate. The study presented in [19] applies the multiresolution tangent distance method
in image registration and image classification problems and experimentally shows that the
dissimilarity measure obtained with the multiresolution tangent distance outperforms those
obtained with the Euclidean distance and the single-scale tangent distance. The hierarchical
estimation of transformation parameters using manifold linearizations is also very common
in motion estimation [18], [3], and stereo vision [12]. While the efficiency of the hierarchical
alignment strategy has been observed in many applications, a true characterization of the
performance of this family of algorithms for general geometric transformation models is still
missing in the literature.

In this work, we present a theoretical analysis of the properties of the tangent distance
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Figure 1.1. Image alignment with the coarse-to-fine tangent distance method. The target image is a noisy
and transformed version of the reference image. The optimal transformation parameters λo that best align the
images are estimated in a coarse-to-fine manner with a pyramid of low-pass filtered versions of the images.
The estimate λk

e of each stage is obtained by linearizing the transformation manifold of the reference image
around the reference point given by the estimate λk−1

e of the previous stage. The sizes of the low-pass filters are
decreased throughout the alignment algorithm as the estimates λ1

e, λ
2

e, . . . , λ
k
e are refined progressively. (Photos

in illustration borrowed from [1].)

method in image alignment and image classification applications. The examination of the
effect of filtering in the hierarchical alignment on the accuracy of the solution is especially
important, so that the size of the low-pass filter can be properly selected at each stage of
the multi-resolution representation. Therefore, an essential step in our study of the tangent
distance method is the characterization of the alignment error as a function of the filter size.
The second important parameter in our study is the influence of the additive noise that affects
images, on the performance of the registration algorithm. We provide a complete analysis
of the hierarchical tangent distance algorithm as a function of the manifold properties, the
smoothing filter size and the image noise level, and observe the impact of these parameters in
both image registration and image classification problems.

In particular, we consider a setting where the reference image is noiseless and the target
image is a noisy and transformed version of the reference image. We first analyze the tangent
distance method in the original image space (without filtering the images) and derive an
upper bound for the alignment error, which is defined as the parameter-domain distance
between the optimal transformation parameters that align the image pair perfectly, and their
estimate computed with the tangent distance method. The upper bound for the alignment
error is obtained in terms of the noise level of the target image, the parameter-domain distance
between the reference manifold point (around which the manifold is linearized) and the actual
projection onto the manifold, and some geometric parameters of the transformation manifold
such as the curvature and the metric tensor. The alignment error bound linearly increases with
the manifold curvature and the noise level, and monotonically increases with the parameter-
domain distance between the reference and the optimal transformation parameters.

Next, we study the relation between the alignment error and the size of the low-pass filter
in a hierarchical registration setting. We consider that both the reference and the target images
are smoothed with a low-pass filter before alignment. We introduce an analytic and parametric
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representation of the reference pattern and analyze the dependence of the alignment error on
the size of the low-pass filter kernel. We show that the alignment error decreases with the
filter size ρ for small filter kernels at a rate of O(1+ (1+ ρ2)−1/2). This is due to the fact that
filtering does smooth the manifold and decrease its nonlinearity, which improves the accuracy
of the linear approximation of the manifold. However, as one keeps increasing the filter size,
the decrease in the alignment error due to the improvement of the manifold nonlinearity
converges, and the error starts to increase with filtering at an approximate rate of O(ρ) for
relatively large values of the filter size. The increase in the error stems from the adverse effect
of filtering, which amplifies the alignment error caused by image noise. Therefore, we show
that, in a noisy setting where the target image is not exactly on the transformation manifold
of the reference image, there is an optimal size for the filter kernel where the alignment error
takes its minimum value.

We then build on our analysis of the alignment error and study the convergence of the
hierarchical tangent distance method. We show that the tangent distance is guaranteed to
converge to the optimal solution provided that (i) the product of the noise level and the
manifold curvature is below a threshold that depends on the manifold dimension, and (ii) the
amount of transformation between the reference and the target images is sufficiently small.
Furthermore, we determine the optimal value of the filter size that minimizes the alignment
error in each iteration of the hierarchical alignment algorithm. Our analysis shows that, the
optimal update of the filter size ρ between adjacent iterations k − 1 and k is approximately
given by ρk =

√
α ρk−1, where the geometric decay factor α < 1 increases linearly with the

noise level, the manifold curvature and the initialization error of the hierarchical alignment
algorithm (i.e., the amount of transformation at the beginning of the algorithm). This result
theoretically justifies the common strategy of reducing the filter size at a geometric rate, which
is used very often in coarse-to-fine image registration. Meanwhile, although it is very common
to update the filter size as ρk = 1/2 ρk−1 with a constant decay factor of 1/2 in practice [19],
[5], our result suggests that the noise level, the expected amount of transformation, and the
frequency characteristics of the images to be aligned must be taken into account in determining
the best filter size updates.

Finally, we study the accuracy of image classification based on the manifold distance es-
timates obtained with the tangent distance method. In an image classification application
where a query image is classified with respect to its distance to the transformation manifold
of each class, the accuracy of classification largely depends on the accuracy of the estimation of
the projection of the query image onto the manifolds. Therefore, one expects the classification
performance to vary similarly to the alignment performance. We consider a setting where the
query image and the reference images representing different classes are smoothed with low-pass
filters. Then, we approximate the projection of the query image onto the transformation man-
ifolds of the reference images with the tangent distance method. We determine the relation
between the accuracy of classification and the size of the low-pass filter used for smoothing
the images. Our result shows that, assuming bounded and non-intersecting distributions of
the images around the transformation manifolds of their classes, the variation of the misclassi-
fication probability with the filter size is similar to that of the alignment error. Therefore, the
filter size that minimizes the alignment error also minimizes the misclassification probability.

Our theoretical results about the alignment and classification performance of the tangent
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distance method are confirmed by experiments conducted on transformation manifolds gen-
erated with rotations, translations and scale changes, both with synthetic smooth images and
natural images. Our study provides insight into the principles behind the efficacy of the hier-
archical alignment strategy in image registration and motion estimation and may be helpful
for optimizing the performance of numerous image analysis algorithms that rely on first-order
approximations of transformation manifolds.

The rest of the text is organized as follows. In Section 2, we introduce the notation,
give an overview of the tangent distance algorithm, and formulate the problem. In Section 3,
we present a theoretical analysis of the tangent distance method. We first look at the image
registration problem, state an upper bound for the alignment error, examine its variation with
the noise level and filtering, and study the convergence of the coarse-to-fine tangent distance
method. We then extend these results to analyze the performance of image classification with
the tangent distance. In Section 4, we evaluate our theoretical findings with some experiments.
In Section 5, we give a discussion of our results in comparison with previous works. Finally,
we conclude in Section 6.

2. Image Registration with Tangent Distance. The computation of the exact projec-
tion of a target image onto a reference transformation manifold is a complicated optimization
problem, especially when the manifold is high-dimensional and generated by complex geomet-
ric transformations. The tangent distance method proposes to solve this problem by using a
first-order approximation of the transformation manifold, which is illustrated in Figure 2.1.
In the figure, M(p) is the transformation manifold of the reference pattern p defined over the
parameter domain Λ, and q is the target image to be aligned with p. The exact projection
of q on M(p) is the point pλo

, so that λo is the optimal transformation parameter vector
that best aligns p with q. In order to estimate λo with the tangent distance method, a first
order approximation Sλr

(p) of the manifold M(p) is computed at a reference point pλr
, which

is preferably not too distant from pλo
. The distance of q to Sλr

(p) can be easily computed
with a least squares solution and the point of projection on Sλr

(p) gives the transformation
parameter vector λe, which is the estimate of λo.

Previous works such as [16] and [7] using the tangent distance in image classification and
clustering compute the distance in a symmetric fashion; i.e., they linearize the transformation
manifolds of both the reference and the target images and compute the subspace-to-subspace
distance. In our analysis of the tangent distance method, we consider the point-to-subspace
distance obtained by linearizing the transformation manifold of only the reference image. The
point-to-subspace distance is more suitable than the subspace-to-subspace distance in image
registration applications [19], [12], while it can also be used effectively in image analysis [19].

In the following, we first settle the notations and describe the tangent distance method
formally. We then formulate the registration analysis problem studied in this work.

2.1. Notation. Let p ∈ L2(R2) be a reference pattern that is C2-smooth with square-
integrable derivatives and q ∈ L2(R2) be a target pattern. Let Λ ⊂ R

d denote a compact, d-
dimensional transformation parameter domain and λ = [λ1 λ2 · · · λd] ∈ Λ be a transformation
parameter vector. We denote the pattern obtained by applying p the geometric transformation
specified by λ as Aλ(p) ∈ L2(R2). Defining the spatial coordinate variable X = [x y]T in R

2,
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Figure 2.1. Illustration of image alignment with the tangent distance method. Sλr
(p) is the first-order

approximation of the transformation manifold M(p) around the reference point pλr
. The estimate λe of the

optimal transformation parameters λo is obtained by computing the orthogonal projection of the target image q

onto Sλr
(p).

we can express the relation between Aλ(p) and p as

Aλ(p)(X) = p(a(λ,X)) (2.1)

where a : Λ×R
2 → R

2 is a C2-smooth function representing the change of coordinates defined
by the geometric transformation λ. We also assume that the coordinate change function
aλ : R

2 → R
2 such that aλ(X) := a(λ,X), is a bijection for a fixed λ.

Let us write pλ = Aλ(p) for convenience. Then, the transformation manifold M(p) of the
pattern p is given by

M(p) = {pλ : λ ∈ Λ} ⊂ L2(R2)

which consists of transformed versions of p over the parameter domain Λ. Since a and p are C2-
smooth, the local embedding of M(p) in L2(R2) is C2-smooth. Therefore, the first and second-
order derivatives of manifold points with respect to the transformation parameters exist. Let
us denote the derivative of the manifold point pλ with respect to the i-th transformation
parameter λi as ∂i pλ, where

∂i pλ(X) =
∂ pλ(X)

∂λi
.

The derivatives ∂i pλ are also called tangent vectors. Similarly, we denote the second-order
derivatives by

∂ij pλ(X) =
∂2pλ(X)

∂λi∂λj
.

Then, the tangent space TλM(p) of the manifold at a point pλ is the subspace generated by
the tangent vectors at pλ

TλM(p) =

{
d∑

i=1

∂i pλ ζ
i : ζ ∈ R

d

}
⊂ L2(R2) (2.2)
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where {∂i pλ}d
i=1 are the basis vectors of TλM(p), and {ζi}d

i=1 are the coefficients in the
representation of a vector in TλM(p) in terms of the basis vectors.

Now, given the reference pattern p and a target pattern q, the image registration problem
consists of the computation of an optimal transformation parameter vector λo that gives the
best approximation of q on M(p),

λo = arg min
λ∈Λ

‖q − pλ‖2 (2.3)

where ‖·‖ denotes the L2-norm for vectors in the continuous space L2(R2) and the ℓ2-norm for
vectors in the discrete space R

n. Then, the transformed pattern pλo
is called a projection of q

on M(p). However, the exact calculation of λo is difficult in general, since the nonlinear and
highly intricate geometric structure of pattern transformation manifolds renders the distance
minimization problem quite complicated. The tangent distance method simplifies this problem
to a least squares problem, which is described below.

2.2. Tangent distance algorithm. In alignment with the tangent distance, transformation
parameters are estimated by using a linear approximation of the manifold M(p) and then
computing λo by minimizing the distance of q to the linear approximation of M(p) [19]. The
first-order approximation of M(p) around a reference manifold point pλr

is given by

Sλr
(p) = {pλr

+

d∑

i=1

∂i pλr
(λi − λi

r) : λ ∈ R
d} ⊂ L2(R2). (2.4)

Then, the estimate λe of λo with the tangent distance method is given by the solution of the
least squares problem

λe = arg min
λ∈Rd

‖q − pλr
−

d∑

i=1

∂i pλr
(λi − λi

r)‖2. (2.5)

The solution of the above problem can be obtained as

λe = λr + [Gij(λr)]
−1[〈q − pλr

, ∂i pλr
〉] (2.6)

where [Gij(λ)] ∈ R
d×d is the matrix representation of the metric tensor Gij(λ) = 〈∂i pλ, ∂j pλ〉

induced from the standard inner product on L2(R2). Hence, the (i, j)-th entry of [Gij(λ)]
is Gij(λ). Similarly, [〈q − pλr

, ∂i pλr
〉] represents the d × 1 matrix whose i-th entry is 〈q −

pλr
, ∂i pλr

〉. The estimate λe of the transformation parameters obtained by solving (2.5) is
expected to be closer to the optimal solution λo than the reference parameters λr; therefore,
λe can be regarded as a refinement of λr if the reference parameters λr are considered as an
initial guess for the optimal ones λo. The estimation of transformation parameters with the
tangent distance method is illustrated in Figure 2.1.

2.3. Problem formulation. From (2.3), we can decompose the target image q as q =
pλo

+ n where pλo
is the projection onto the manifold M(p) and n ∈ L2(R2) is the noise

representing the deviation of q from M(p). We define the noise level parameter ν = ‖n‖ as
the distance of the target pattern to the translation manifold of the reference pattern.
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We can now formulate the problems that we study in this chapter. Our first purpose is
to examine the deviation between the optimal transformation parameter vector λo and its
estimate λe, which defines the alignment error of the tangent distance method. In particular,
we would like to find an upper bound for the alignment error ‖λe − λo‖ in terms of the noise
level ν of the target image, the known geometric parameters of the manifold M(p) that can
be computed from p (such as its curvature and metric tensor), and the distance ‖λo − λr‖
between the optimal and the reference transformation parameters. This states a bound on
how much the initial guess λr for λo can be improved, given the proximity of λr with respect
to λo. We thus present an upper bound for the alignment error ‖λe −λo‖ in Section 3.1. Note
that it is also possible to formulate the alignment error as the manifold distance estimation
error measured in the ambient space L2(R2). However, in this study, we characterize the
error in the parameter space Λ instead of the ambient space L2(R2) because of the following
reason. The errors in the parameter domain and the ambient space are expected to have
similar behaviors. Meanwhile, since we examine the problem in a multiscale setting, it is
easier to characterize the error in the parameter domain as the distances in the ambient space
are not invariant to smoothing.

Next, our second and main goal is to examine how the alignment error varies when the
reference and target patterns are smoothed with a low-pass filter. We formalize this problem as
follows. We consider a Gaussian kernel for the low-pass filter, since it is a popular smoothing
kernel whose distinctive properties have been well-studied in scale-space theory [11]. Let

φ(X) = e−XT X = e−(x2+y2) denote a Gaussian mother function. Then, the family of functions

1

πρ2
φρ(X) (2.7)

define variable-sized, unit L1-norm Gaussian low-pass filters, where φρ(X) = φ(Υ−1(X)) is a
scaled version of the mother function φ(X) with

Υ =

[
ρ 0
0 ρ

]
. (2.8)

Here, the scale parameter ρ corresponds to the radius of the filter kernel, which controls the
filter size. When the tangent distance method is used in a multiscale registration setting, the
transformation parameters are estimated using the filtered versions of the reference and target
patterns

p̂(X) =
1

πρ2
(φρ ∗ p)(X) q̂(X) =

1

πρ2
(φρ ∗ q)(X)

where ∗ denotes a convolution.
We write the parameters that are associated with the filtered versions of the reference

and target patterns with the notation (̂·). Now let λ̂o be the transformation parameter vector
corresponding to the projection of q̂ onto the transformation manifold M(p̂) of the filtered
reference pattern p̂

λ̂o = arg min
λ∈Λ

‖p̂λ − q̂‖2. (2.9)

Hence, λ̂o is the optimal transformation parameter vector that aligns p̂ with q̂. Let ∂i p̂λ and
Ĝij denote respectively the first derivatives and the metric tensor of the manifold M(p̂). From
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(2.6), the transformation estimate λ̂e obtained with the filtered versions of the reference and
target patterns by linearizing the manifold M(p̂) is given by

λ̂e = λr + [Ĝij(λr)]
−1[〈q̂ − p̂λr

, ∂i p̂λr
〉]

where λr is the reference parameter vector. The alignment error obtained with the smoothed
patterns is given as ‖λ̂e − λ̂o‖, which we are interested in in this study. In particular, we
would like to characterize the variation of ‖λ̂e − λ̂o‖ with the size ρ of the low-pass filter used
for smoothing the images in multiscale alignment, and the initial noise level ν of the target
image before filtering. We thus examine in Section 3.2 the variation of the alignment error
with noise and filtering.

3. Analysis of Tangent Distance Methods.

3.1. Upper bound for the alignment error. We now present an upper bound for the
error of the alignment computed with the tangent distance method. We can assume that the
parameter domain Λ is selected sufficiently large, so that pλo

is not on the boundary of M(p).
Then, the noise pattern n is orthogonal to the tangent space of M(p) at pλo

. In other words,
we have

〈n, ∂i pλo
〉 = 0, ∀i = 1, · · · , d. (3.1)

The deviation of the target image from the transformation manifold model impairs the esti-
mation of transformation parameters. In our analysis of the alignment error, this deviation
is characterized by the distance ν between q and M(p). Then, there is another source of
error that causes the deviation of the estimated parameters λe from the optimal ones λo. It is
related to the nonzero curvature of the manifold, as a result of which M(p) diverges from its
linear approximation Sλr

(p). In the derivation of the component of the alignment error asso-
ciated with manifold nonlinearity, we make use of a quadratic approximation of the manifold
around the reference point pλr

pλ ≈ pλr
+

d∑

i=1

∂i pλr
(λi − λi

r) +
1

2

d∑

i=1

d∑

j=1

∂ij pλr
(λi − λi

r)(λ
j − λj

r). (3.2)

This approximation is treated as an equality in the derivation of the alignment error bound in
Theorem 3.1. Equation (3.2) shows that the nonlinearity of the manifold can be characterized
with an upper bound K on the norm of the second derivatives of the manifold

K := max
i,j=1,··· ,d

sup
λ∈Λ

‖∂ij pλ‖. (3.3)

Since K is an upper bound for the norms of the derivatives of tangent vectors, it can be
regarded as a uniform curvature bound parameter for M(p).

We can now state our result that defines an upper bound on the alignment error.
Theorem 3.1. The parameter-domain distance between the optimal transformation λo and

its estimate λe given by the tangent distance method can be upper bounded as

‖λe − λo‖ ≤ E := K λ−1
min

(
[Gij(λr)]

) (
1

2

√
tr([Gij(λr)]) ‖λo − λr‖2

1 +
√
d ν ‖λo − λr‖1

)

(3.4)
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where λmin(·) and tr(.) denote respectively the smallest eigenvalue and the trace of a matrix,
and the notation ‖ · ‖1 stands for the ℓ1-norm in R

n.
Theorem 3.1 is proved in [21, Appendix A.1], which is a technical report where more de-

tails on our study are available. The result is obtained by examining the effects of both the
nonlinearity of the manifold and the image noise on the alignment error. The theorem shows
that the alignment error augments with the increase in the manifold curvature parameter K
and the noise level ν, as expected. Moreover, another important factor affecting the align-
ment error is the distance ‖λo − λr‖ between the reference and the optimal transformation
parameters. If the reference manifold point pλr

around which the manifold is linearized is
sufficiently close to the true projection of the target image onto the manifold, the tangent
distance method is more likely to give a good estimate of the registration parameters.

3.2. Alignment error with low-pass filtering. We now analyze the influence of the low-
pass filtering of the reference and target patterns on the accuracy of alignment with the
tangent distance method as it is the case in multiscale registration algorithms. We consider
a setting where the reference pattern p and the target pattern q are low-pass filtered and the
transformation parameters are estimated with the smoothed versions of p and q. The purpose
of this section is then to analyze the variation of the alignment error bound given in Theorem
3.1 with respect to the kernel size of the low-pass filter used in smoothing.

We first remark the following. The optimal transformation parameter vector λ̂o corre-
sponding to the smoothed patterns is in general different from the optimal transformation
parameter vector λo corresponding to the unfiltered patterns p and q. This is due to the fact
that both the image noise and the filtering cause a perturbation in the global minimum of
the function f(λ) = ‖q − pλ‖2, which represents the distance between the target pattern q
and the transformed versions of the reference pattern p. Note that the overall error in the
transformation parameter estimation is ‖λ̂e − λo‖ and it can be upper bounded as

‖λ̂e − λo‖ ≤ ‖λ̂e − λ̂o‖ + ‖λ̂o − λo‖.

Here, the first error term ‖λ̂e − λ̂o‖ results from the linearization of the manifold, whereas the
second error term ‖λ̂o −λo‖ is due to the shift in the global minimum of the distance function
f(λ). The second error term ‖λ̂o−λo‖ depends on the geometric transformation model. In our
recent work [20], this error is examined for the transformation model of 2-D translations and
its dependence on the noise level and low-pass filtering is studied. In this study, we analyze
how the linearization of the manifold affects the estimation of the transformation parameters
for generic transformation models. Therefore, we focus on the first error term ‖λ̂e − λ̂o‖
associated particularly with the registration of the images using the tangent distance, and
examine its variation with the noise level and the filtering process. The error term ‖λ̂e − λ̂o‖
caused by the manifold linearization is in general expected to be dominant over the error term
‖λ̂o − λo‖ unless the reference parameters λr are really close to the optimal parameters λo.

The filtered target pattern can be decomposed as

q̂ = p̂λ̂o
+ ñ

where the noise pattern ñ is orthogonal to the tangent space Tλ̂o
M(p̂) at p̂λ̂o

. Let ∂ij p̂λ and

K̂ denote the second order derivatives and the curvature bound parameter of the manifold
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M(p̂). Then, from Theorem 3.1, the alignment error obtained with the smoothed patterns
can be upper bounded as ‖λ̂e − λ̂o‖ ≤ Ê, where

Ê = K̂ λ−1
min

(
[Ĝij(λr)]

) (
1

2

√
tr([Ĝij(λr)]) ‖λ̂o − λr‖2

1 +
√
d ‖ñ‖ ‖λ̂o − λr‖1

)
. (3.5)

In order to analyze the variation of Ê with filtering and noise, we examine the dependence of
each term in the expression of Ê in (3.5) on the filter size ρ and the initial noise level ν of the
unfiltered target image. First, the curvature parameter K̂ of the smoothed manifold is given
by

K̂ = max
i,j=1,··· ,d

sup
λ∈Λ

‖∂ij p̂λ‖.

Hence, if a uniform estimate that is valid for all λ and (i, j) can be found for the rate of
variation of ‖∂ij p̂λ‖ with the filter size ρ, the curvature parameter K̂ then also has the same
order of variation with ρ.

Next, the metric tensor of the smoothed manifold is given by Ĝij(λr) = 〈∂i p̂λr
, ∂j p̂λr

〉,
and its trace is

tr
(
[Ĝij(λr)]

)
=

d∑

i=1

‖∂i p̂λr
‖2.

Therefore, if the variation of ‖∂i p̂λr
‖2 with the filter size ρ can be characterized uniformly (in

a way that is valid for all λr and i), the trace tr
(
[Ĝij(λr)]

)
of the metric tensor will also have

the same order of variation with ρ as ‖∂i p̂λr
‖2.

The smallest eigenvalue λmin

(
[Ĝij(λr)]

)
of the metric tensor is also expected to have the

same variation with ρ. This can be observed, for instance, by decomposing the metric tensor
into its diagonal and off-diagonal components and regarding the off-diagonal component as a
perturbation on the diagonal one. The smallest eigenvalue λmin

(
[Ĝij(λr)]

)
can then be lower

bounded as in [15] in terms of the smallest diagonal element mini ‖∂i p̂λr
‖2 and the spectral

radius of the off-diagonal component of the metric tensor consisting of the terms 〈∂i p̂λr
, ∂j p̂λr

〉.
As the variation of the off-diagonal elements is upper bounded by the variation of the diagonal
elements due to Cauchy-Schwarz inequality, the smallest eigenvalue λmin

(
[Ĝij(λr)]

)
decays

with ρ at the same rate as ‖∂i p̂λr
‖2.

Finally, the norm ‖ñ‖ of the noise component of q̂ depends on both the filter size ρ and
the initial noise level ν before filtering.

We study now Equation (3.5) in more details and derive first a relation between the norms
‖∂i p̂λ‖, ‖∂ij p̂λ‖ of the first and second-order manifold derivatives and the norms ‖N∇p̂‖,
‖Nhp̂‖ of the gradient and Hessian magnitudes of the filtered reference pattern p̂. We state
the dependences of ‖N∇p̂‖ and ‖Nhp̂‖ on the filter size ρ in Lemma 3.3, which is then used to
obtain the variation of the manifold derivatives ‖∂i p̂λ‖, ‖∂ij p̂λ‖ with ρ in Corollary 3.4. Next,
we establish the dependence of the norm ‖ñ‖ of the noise component on ρ and ν in Lemma
3.5. Finally, all of these results are put together in our main result Theorem 3.6, where we
present the rate of variation of the alignment error bound Ê with the filter size ρ and the
initial noise level ν of the target image.
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3.2.1. Analysis of ‖∂i p̂λ‖ and ‖∂ij p̂λ‖. Let us begin with the computation of the terms
‖∂i p̂λ‖ and ‖∂ij p̂λ‖. First, from the relation (2.1), we have pλ(X) = p(X ′) whereX ′ = aλ(X).
Let us denote the transformed coordinates as X ′ = [x′ y′]T and write the derivatives of the
transformed coordinates with respect to the transformation parameters as

∂i x
′ =

∂x′

∂λi
, ∂i y

′ =
∂y′

∂λi
, ∂ij x

′ =
∂2x′

∂λi ∂λj
, ∂ij y

′ =
∂2y′

∂λi ∂λj
.

Also, let

∂x p(X
′) =

∂ p(X)

∂x

∣∣∣∣
X=X′

, ∂y p(X
′) =

∂ p(X)

∂y

∣∣∣∣
X=X′

∂xx p(X
′) =

∂2 p(X)

∂x2

∣∣∣∣
X=X′

, ∂xy p(X
′) =

∂2 p(X)

∂x ∂y

∣∣∣∣
X=X′

, ∂yy p(X
′) =

∂2 p(X)

∂y2

∣∣∣∣
X=X′

denote the partial derivatives of the reference pattern p evaluated at the point X ′. Then, the
derivatives of the manifold M(p) at pλ are given by

∂i pλ(X) = ∂x p(X
′)∂i x

′ + ∂y p(X
′)∂i y

′

∂ij pλ(X) = ∂xx p(X
′) ∂i x

′∂j x
′ + ∂xy p(X

′) (∂i x
′∂j y

′ + ∂j x
′∂i y

′) + ∂yy p(X
′) ∂i y

′∂j y
′

+ ∂x p(X
′) ∂ij x

′ + ∂y p(X
′) ∂ij y

′.

One can generalize this to the smoothed versions p̂ of the reference pattern as

∂i p̂λ(X) = ∂x p̂(X
′)∂i x

′ + ∂y p̂(X
′)∂i y

′

∂ij p̂λ(X) = ∂xx p̂(X
′) ∂i x

′∂j x
′ + ∂xy p̂(X

′) (∂i x
′∂j y

′ + ∂j x
′∂i y

′) + ∂yy p̂(X
′) ∂i y

′∂j y
′

+ ∂x p̂(X
′) ∂ij x

′ + ∂y p̂(X
′) ∂ij y

′.

(3.6)

Notice that, in the above equations, the filtering applied on the reference pattern influences
only the spatial derivatives of the reference pattern (∂x p̂, ∂y p̂, ∂xx p̂, ∂xy p̂, ∂yy p̂), whereas
the derivatives of the transformed coordinates (∂i x

′, ∂i y
′, ∂ij x

′, ∂ij y
′) depend solely on the

transformation model λ and are constant with respect to the filter size ρ. Therefore, the
variation of ‖∂i p̂λ‖ and ‖∂ij p̂λ‖ with ρ is mostly determined by the variation of the spatial
derivatives of the pattern with the filter size. We denote the gradient of p̂ as ∇p̂(X) =
[∂x p̂(X) ∂y p̂(X)]T and the vectorized Hessian of p̂ as

(hp̂)(X) = [∂xx p̂(X) ∂xy p̂(X) ∂xy p̂(X) ∂yy p̂(X)]T . (3.7)

We then define the functions N∇p̂, Nhp̂ : R
2 → R such that N∇p̂ (X) = ‖∇p̂(X)‖ and

Nhp̂ (X) = ‖(hp̂)(X)‖, which give the ℓ2-norms of the gradient and the Hessian of p̂ at X.
Since we assume that the spatial derivatives of the pattern are square-integrable, the functions
N∇p̂ and Nhp̂ are in L2(R2). The equations in (3.6) show that the first derivatives of the
manifold are proportional to the first derivatives of the pattern; and the second derivatives of
the manifold depend linearly on both the first and the second derivatives of the pattern p(X).
One thus expects the L2-norms of the manifold derivatives to be related to the L2-norms of
N∇p̂ and Nhp̂ as

‖∂i p̂λ‖ = O (‖N∇p̂‖)
‖∂ij p̂λ‖ = O (‖N∇p̂‖ + ‖Nhp̂‖)

(3.8)
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from the perspective of their dependence on the filter size ρ. These relations indeed hold and
they are formally shown in [21, Appendix B.1].

Since we have established the connection between the manifold derivatives and the pattern
spatial derivatives, it suffices now to determine how the spatial derivatives ‖N∇p̂‖ and ‖Nhp̂‖
depend on the filter size ρ. In order to examine this, we adopt a parametric representation of
the reference pattern p in an analytic dictionary. Let

D = {φγ : γ = (ψ, τx, τy, σx, σy) ∈ Γ} ⊂ L2(R2) (3.9)

be a parametric dictionary manifold such that each atom φγ in D is derived from an analytic
mother function φ by a geometric transformation specified by the parameter vector γ. Here
ψ is a rotation parameter, τx and τy denote translations in x and y directions, and σx and
σy represent an anisotropic scaling in x and y directions. The dictionary is defined over the
continuous parameter domain Γ, and an atom φγ is given by

φγ(X) = φ(σ−1 Ψ−1 (X − τ)), (3.10)

where

σ =

[
σx 0
0 σy

]
, Ψ =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
, τ =

[
τx
τy

]
(3.11)

denote respectively the scale change, rotation and translation matrices defining the atom
φγ . We may consider that the parameter domain Γ is defined over the range of parameters
ψ ∈ [0, 2π), τx, τy ∈ R, and σx, σy ∈ R

+. It is shown in [2] (in the proof of Proposition 2.1.2)
that the linear span of a dictionary D generated with respect to the transformation model in
(3.9) is dense in L2(R2) if the mother function φ has nontrivial support; i.e., unless φ(X) = 0
almost everywhere.

In our analysis, we select the generating mother function as the Gaussian function φ(X) =

e−XT X . The Gaussian function has good time-localization properties, it is easy to treat in
derivations due to its well-studied properties, and it ensures that Span(D) is dense in L2(R2).
Therefore, any pattern p ∈ L2(R2) can be represented as the linear combination of a sequence
of atoms in D. In the rest of our analysis, we adopt a representation of p in D

p(X) =

∞∑

k=1

ck φγk
(X) (3.12)

where γk are the atom parameters and ck are the atom coefficients. Our derivation of the
variations of ‖N∇p̂‖ and ‖Nhp̂‖ is based on this representation and we use some properties of
Gaussian atoms in our analysis. Nevertheless, the conclusions of our analysis are general and
valid for all reference patterns in L2(R2) since any square-integrable pattern can be represented
in the Gaussian dictionary D.

Now, applying the Gaussian filter in (2.7) on the reference pattern in (3.12), we obtain
the filtered pattern as

1

πρ2
(φρ ∗ p)(X) =

1

πρ2

∞∑

k=1

ck (φρ ∗ φγk
)(X)
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from the linearity of the convolution operator. In order to evaluate the convolution of two
Gaussian atoms, we use the following proposition [22].

Proposition 3.2.Let φγ1
(X) = φ(σ−1

1 Ψ−1
1 (X − τ1)) and φγ2

(X) = φ(σ−1
2 Ψ−1

2 (X − τ2)).
Then

(φγ1
∗ φγ2

)(X) =
π|σ1σ2|
|σ3|

φγ3
(X) (3.13)

where φγ3
(X) = φ(σ−1

3 Ψ−1
3 (X − τ3)) and the parameters of φγ3

are given by

τ3 = τ1 + τ2, Ψ3 σ
2
3 Ψ−1

3 = Ψ1 σ
2
1 Ψ−1

1 + Ψ2 σ
2
2 Ψ−1

2 .

Proposition 3.2 implies that, when an atom φγk
of p is convolved with the Gaussian kernel,

it becomes
1

πρ2
(φρ ∗ φγk

)(X) =
|σk|
|σ̂k|

φγ̂k
(X) (3.14)

where φγ̂k
(X) = φ(σ̂−1

k Ψ̂−1
k (X − τ̂k)) and

τ̂k = τk, Ψ̂k = Ψk, σ̂k =
√

Υ2 + σ2
k. (3.15)

Hence, when p is smoothed with a Gaussian filter, the atom φγk
(X) with coefficient ck is

replaced by the smoothed atom φγ̂k
(X) with coefficient

ĉk =
|σk|
|σ̂k|

ck =
|σk|√

|Υ2 + σ2
k|
ck =

σx,k σy,k√
(ρ2 + σ2

x,k)(ρ
2 + σ2

y,k)
ck (3.16)

where σk = diag(σx,k, σy,k). This shows that the change in the pattern parameters due to
filtering can be captured by substituting the scale parameters σk with σ̂k and replacing the
coefficients ck with ĉk. Then, the smoothed pattern p̂ has the following representation in the
dictionary D

p̂(X) =
∞∑

k=1

ĉk φγ̂k
(X). (3.17)

One can observe from (3.16) that the atom coefficients ĉk of the filtered pattern p̂ change
with the filter size ρ at a rate

ĉk = O((1 + ρ2)−1). (3.18)

Also, from (3.15), the atom scale parameters of p̂ are given by

σ̂x,k =
√
σ2

x,k + ρ2, σ̂y,k =
√
σ2

y,k + ρ2 (3.19)

which have the rate of increase

σ̂x,k, σ̂y,k = O((1 + ρ2)1/2) (3.20)

with the filter size ρ.
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We are now equipped with the necessary tools for examining the variations of ‖N∇p̂‖ and
‖Nhp̂‖ with the filter size ρ. We state these in the following lemma.

Lemma 3.3. The norms ‖N∇p̂‖ and ‖Nhp̂‖ of the first and second-order variations of the
pattern decrease with the filter size ρ at the following rates

‖N∇p̂‖ = O((1 + ρ2)−1), ‖Nhp̂‖ = O((1 + ρ2)−3/2).

The proof of Lemma 3.3 is given in [21, Appendix B.2]. The above dependences are shown
by deriving approximations of ‖N∇p̂‖ and ‖Nhp̂‖ in terms of the atom parameters {γk} and
coefficients {ck}. Their variations with the filter size ρ are then determined by building on
the relations (3.20) and (3.18). The lemma not only confirms the intuition that the norms of
the pattern gradient and Hessian should decrease with filtering, but also provides expressions
for their rate of decay with the filter size ρ.

An immediate consequence of Lemma 3.3 is the following.
Corollary 3.4. The norms ‖∂i p̂λ‖, ‖∂ij p̂λ‖ of the first and second-order manifold derivatives

decrease with the filter size ρ at the following rates

‖∂i p̂λ‖ = O((1 + ρ2)−1), ‖∂ij p̂λ‖ = O
(
(1 + ρ2)−3/2 + (1 + ρ2)−1

)
.

Proof. The corollary follows directly from Lemma 3.3 and the relation between the mani-
fold derivatives and the pattern derivatives given in (3.8).

Note that for large values of ρ, the second additive term of O(1 + ρ2)−1 in ‖∂ij p̂λ‖ domi-
nates the first term of O(1 + ρ2)−3/2, therefore ‖∂ij p̂λ‖ = O((1 + ρ2)−1) for large ρ. However,
we keep both additive terms in ‖∂ij p̂λ‖ as we will see that the first term is important for
characterizing the behavior of the alignment error bound for small values of the filter size.
Corollary 3.4 will be helpful for determining the dependences of the curvature bound K̂ and
the parameters related to the metric tensor Ĝij on the filter size. We will use it in our main
result of Theorem 3.6.

3.2.2. Analysis of ‖ñ‖. In the following lemma, we summarize the dependence of the
noise level ‖ñ‖ in the filtered target pattern, on the noise level ν in the original target pattern
and the size ρ of the smoothing filter.

Lemma 3.5. The distance ‖ñ‖ between the filtered target pattern q̂ and the transformation
manifold M(p̂) of the filtered reference pattern p̂ has a rate of variation of

‖ñ‖ = O
(
(ν + 1)(1 + ρ2)−1/2

)

with the filter size ρ and the initial noise level ν for geometric transformation models that
allow the change of the scale of the pattern p. The variation of ‖ñ‖ is however given by

‖ñ‖ = O
(
ν(1 + ρ2)−1/2

)

if the geometric transformation model does not include a scale change.
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The proof of Lemma 3.5 is given in [21, Appendix B.3]. The presented dependences are
obtained by deriving a relation between the norm of the noise component ñ = q̂ − p̂λ̂o

and
the filtered version n̂ of the initial noise component n = q − pλo

. The lemma states that ‖ñ‖
decreases with the filter size ρ at a rate of O

(
(1 + ρ2)−1/2

)
. Meanwhile, its dependence on the

initial noise level ν differs slightly between transformation models that include a scale change
or not. The noise term ‖ñ‖ increases at a rate of O(ν) for transformations without a scale
change; however, transformations with a scale change introduce an offset to the initial noise
level to yield a variation of O(ν + 1). This is due to the following reason. The initial noise
level before filtering is given by the norm of n = q−pλo

, where pλo
∈ M(p). Meanwhile, when

the transformation model λ includes a scale change, the actions of filtering and transforming a
pattern do not commute, and the filtered version p̂λo

of pλo
does not lie on the transformation

manifold M(p̂) of the filtered reference pattern p̂ (see [21, Appendix B.3] for more details).
The “lifting” of the base point p̂λo

of q̂ (with the decomposition q̂ = p̂λo
+n̂) from the manifold

M(p̂) further increases the distance between q̂ and M(p̂), in addition to the deviation n̂. The
overall noise level in case of filtering is therefore larger than the norm of the filtered version n̂
of n. Note that, for transformations involving a scale change, even if the initial noise level ν
is zero, which means that q ∈ M(p), we have q̂ /∈ M(p̂) after filtering. This creates a source
of noise when the filtered versions of the image pair are used in the alignment.

3.2.3. Analysis of Ê. We are now ready to present our main result, which states the
dependence of the alignment error Ê on the initial noise level of the target pattern and the
filter size.

Theorem 3.6. The alignment error bound Ê obtained when the smoothed image pair is
aligned with the tangent distance method is given by

Ê = Ê1 + Ê2

where the error component Ê1 resulting from manifold nonlinearity decreases at rate

Ê1 = O
(
1 + (1 + ρ2)−1/2

)

with the size ρ of the low-pass filter kernel used for smoothing the reference and target images.
The second component Ê2 of the alignment error associated with image noise has the variation

Ê2 = O
(
(ν + 1) (1 + ρ2)1/2

)

with the filter size ρ and the noise level ν if the geometric transformation model includes a
scale change. The variation of Ê2 with ρ and ν is

Ê2 = O
(
ν (1 + ρ2)1/2

)

if the geometric transformation model does not change the scale of the pattern.

Proof. Remember from (3.5) that the alignment error bound is given by

Ê = Ê1 + Ê2
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where the error terms

Ê1 =
1

2
K̂ λ−1

min

(
[Ĝij(λr)]

)√
tr([Ĝij(λr)]) ‖λ̂o − λr‖2

1

Ê2 =
√
d K̂ λ−1

min

(
[Ĝij(λr)]

)
‖ñ‖ ‖λ̂o − λr‖1

(3.21)

are associated respectively with the nonzero manifold curvature (lifting of the manifold from
the tangent space) and the noise on the target image. Also, remember that the variation of
K̂ with ρ is the same as that of ‖∂ij p̂λ‖, and that λmin

(
[Ĝij(λr)]

)
and tr([Ĝij(λr)]) have the

same variation with ρ as ‖∂i p̂λr
‖2. Hence, using Corollary 3.4, we obtain

K̂ λ−1
min

(
[Ĝij(λr)]

)
= O

(
1 + (1 + ρ2)−1/2

)
O(1 + ρ2) (3.22)

√
tr([Ĝij(λr)]) = O

(
(1 + ρ2)−1

)
(3.23)

which gives

Ê1 = O
(
1 + (1 + ρ2)−1/2

)
.

Then, from Lemma 3.5 and Equation (3.22), we determine the variation of Ê2 as

Ê2 = O
(
(ν + 1) (1 + ρ2)1/2

)
O

(
1 + (1 + ρ2)−1/2

)
≈ O

(
(ν + 1) (1 + ρ2)1/2

)

for transformations involving a scale change, and as

Ê2 = O
(
ν (1 + ρ2)1/2

)
O

(
1 + (1 + ρ2)−1/2

)
≈ O

(
ν (1 + ρ2)1/2

)

for transformations without a scale change, which finishes the proof of the theorem.
Theorem 3.6 can be interpreted as follows. The first error component Ê1 related to man-

ifold nonlinearity is of O
(
1 + (1 + ρ2)−1/2

)
. Since filtering the patterns makes the manifold

smoother and decreases the manifold curvature, it improves the accuracy of the first-order
approximation of the manifold used in tangent distance. Therefore, the first component of
the alignment error decreases with the filter size ρ. Then, we observe that the second error
component Ê2 = O

(
(ν + 1) (1 + ρ2)1/2

)
resulting from image noise, is proportional to the

noise level, as expected, but it also increases with the filter size ρ. The increase of the error
with smoothing is due to the fact that filtering has the undesired effect of amplifying the
alignment error caused by the noise. This result is in line with the findings of our previous
study [20], and previous works such as [14], [23] that examine the Crámer-Rao lower bound
in image registration. This is discussed in more detail in Section 5.

The dependence of the overall alignment error on the filter size can be interpreted as fol-
lows. For reasonably small values of the image noise level, the overall error Ê first decreases
with the filter size ρ at small filter sizes due to the decrease in the first term Ê1, since filtering
improves the manifold linearity. As one keeps increasing the filter size, the first error term
Ê1 = O

(
1 + (1 + ρ2)−1/2

)
gradually decreases and finally converges to a constant value. After

that, the second error term Ê2 takes over and the overall alignment error Ê starts to increase
with the filter size. The amplification of the registration error resulting from the image noise
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then becomes the prominent factor that determines the overall dependence of the error on the
filter size. As the alignment error first decreases and then increases with filtering, there exists
an optimal value of the filter size ρ for a given noise level ν. In the noiseless case where ν = 0,
our result shows that applying a big filter is favorable as it flattens the manifold, provided
that the transformation model does not involve a scale change. Meanwhile, for geometric
transformations involving a scale change, there exists a nontrivial optimal filter size even in
the noiseless case ν = 0, which is due to the secondary source of noise discussed in Lemma
3.5 arising in such transformation models.

The results obtained in this section provide a characterization of the alignment error of the
tangent distance method in multiscale image registration. The understanding of the behavior
of the error in case of low-pass filtering provides a means for optimizing the performance of
the tangent distance algorithm by adapting the filter size to the characteristics of the image
data. In the next section, we examine the implications of our findings in hierarchical image
registration applications.

3.3. Convergence analysis of tangent distance. We now use the results obtained in
Sections 3.1 and 3.2 to analyze the convergence behavior of the tangent distance method in a
general setting where the target image is a noisy transformed version of the reference image.
We first examine the conditions under which the tangent distance converges to the correct
solution at a single scale without filtering. We then generalize this to the convergence of the
coarse-to-fine tangent distance method and derive some practical guidelines for optimal filter
selection in each scale of the hierarchical alignment process.

3.3.1. Convergence of the single-scale registration algorithm. Consider that the tan-
gent distance method is applied in an iterative manner, starting with the reference parameter
vector λr and then refining it gradually by taking the estimate from the previous iteration
as the reference transformation parameter vector in each iteration. In this way, we obtain a
sequence of estimates λ0

e, λ
1
e, . . . , λ

k
e where the initial estimate is λ0

e = λr and each subsequent
estimate λk

e is computed by linearizing the manifold around the point given by the previous
parameter estimate λk−1

e .
First, based on the alignment error bound (3.4) in Theorem 3.1, we define the following

geometric constants on M(p):

C1 := sup
λ∈Λ

√
tr([Gij(λ)]) , C2 := K sup

λ∈Λ
λ−1

min

(
[Gij(λ)]

)
. (3.24)

The parameter C1 is a constant bounding the magnitude of the tangent vectors since it
scales with the supremum of the tangent norms. Similarly, the parameter C2 is a normalized
curvature constant, as the inverse of the metric tensor [Gij(λ)] normalizes the inner products
with tangent vectors in the least-squares estimation of transformation parameters in (2.6).
The geometric constants C1 and C2 thus bound the magnitudes of the first-order and second-
order variations of the manifold.

In the next theorem, we focus on a single-scale setting where no filtering is done throughout
the iterations. We state conditions guaranteeing that the estimates λ0

e, λ
1
e, . . . , λ

k
e converge to

the optimal transformation parameters λo.
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Theorem 3.7.Let the product of the noise level ν and the curvature constant C2 be upper
bounded as follows

ν C2 <
1

d
. (3.25)

Furthermore, let

‖λo − λr‖ <
2

C1

(
1

dC2
− ν

)
(3.26)

denote an upper bound on the distance between the reference transformation parameters λr

and the optimal transformation parameters λo. If the initialization of the tangent distance
algorithm is sufficiently accurate to satisfy the above upper bound, then the successive estimates
given by the iterative application of the tangent distance method at a single scale converge to
the optimal solution λo

lim
k→∞

λk
e = λo.

Theorem 3.7 is proved in [21, Appendix C.1] by using the error bound in Theorem 3.1.
Theorem 3.7 can be interpreted as follows. First, we observe from the condition in (3.25)
that the noise level - curvature product must be below a certain level to recover the correct
solution. It has been seen in Theorem 3.1 that the alignment error is affected by both the
manifold nonlinearity and the noise level. The condition (3.25) thus excludes the case where
both the curvature and the noise level take large values, in order to ensure that the tangent
distance method yields an accurate estimation.

Next, the inequality (3.26) implies that the accuracy of the initial solution must satisfy

‖λo − λr‖ ≤ O

(
1

K − ν

)
.

This condition requires the initial alignment error to be inversely proportional to the manifold
curvature in a noiseless setting. Meanwhile, in a noisy setting, the increase in the noise
level also brings a restriction on the accuracy of the initial solution λr in order to preserve
the convergence guarantee. In particular, the initialization error ‖λo − λr‖ must decrease
linearly with the increase in the noise level ν. The overall dependence of the initialization
error ‖λo − λr‖ on K and ν is intuitive in the sense that, as the curvature of the manifold
approaches 0, the accuracy of the linear approximation of the manifold increases, and the
tangent distance method can recover the correct solution for arbitrarily large values of the
initialization error even in the presence of noise.

3.3.2. Convergence of the coarse-to-fine registration algorithm. We now study the
convergence of the tangent distance method when it is implemented in a hierarchical coarse-
to-fine manner, with image filtering at each successive level. Let the estimation λk

e be obtained
by linearizing the manifold around the point corresponding to the parameter λk−1

e as above.
Consider however that, in iterations 1, 2, . . . , k, the reference and the target images are filtered
with low-pass Gaussian filters of size ρ1, ρ2, . . . , ρk. We would like to investigate under which
conditions the hierarchical alignment process converges to the correct solution. Additionally,
we would like to derive practical guidelines for selecting the size of the filters in hierarchical
alignment algorithms.
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First, we observe from (3.21) that the alignment error in iteration k can be upper bounded
as follows:

‖λk
e − λ̂o‖ ≤1

2
K̂ λ−1

min

(
[Ĝij(λ

k−1
e )]

)√
tr([Ĝij(λ

k−1
e )]) ‖λ̂o − λk−1

e ‖2
1

+
√
d K̂ λ−1

min

(
[Ĝij(λ

k−1
e )]

)
‖ñ‖‖λ̂o − λk−1

e ‖1.

Ignoring the small perturbation ‖λ̂o − λo‖ due to filtering in the projection of the target
pattern onto the manifold, we can approximate λ̂o ≈ λo. Also, bounding the ℓ1-norms in the
above expression in terms of ℓ2-norms, we obtain

‖λk
e − λo‖ ≤1

2
d K̂ λ−1

min

(
[Ĝij(λ

k−1
e )]

)√
tr([Ĝij(λ

k−1
e )]) ‖λo − λk−1

e ‖2

+ d K̂ λ−1
min

(
[Ĝij(λ

k−1
e )]

)
‖ñ‖‖λo − λk−1

e ‖.
(3.27)

Remember that, for any fixed λ ∈ Λ, the terms K̂ λ−1
min

(
[Ĝij(λ)]

)
and

√
tr([Ĝij(λ)]) have a

variation with the filter size ρ as given in (3.22) and (3.23). Moreover, at ρ = 0, the definitions
in (3.24) give the suprema of these terms attained over Λ. From these two relations, we deduce
that the following inequalities

√
tr([Ĝij(λ)]) ≤ β1C1 (1 + ρ2)−1

K̂ λ−1
min

(
[Ĝij(λ)]

)
≤ β2C2

(
1 + (1 + ρ2)−1/2

)
(1 + ρ2)

(3.28)

hold for some constants β1 and β2. The above expressions capture the dependence of these
two terms on the filter size ρ as well as on the tangent magnitude and curvature constants C1

and C2. In the above inequalities, we omit the constants appearing in the exact variations of
these terms with the filter size for the sake of simplicity. From the definitions of C1 and C2

in (3.24), we observe that taking β1 = 1 and β2 = 1/2 results in equalities in (3.28) for the
case ρ = 0. In the following, we adopt these values for the constants β1 and β2. Although
this choice does not guarantee the inequalities in (3.28) for all values of ρ, this approximation
simplifies our analysis and allows us to obtain an approximate expression for the variation
of the alignment error with the filter size ρ that holds up to a multiplication by a constant.
Evaluating the expressions in (3.28) at ρk and using them in (3.27), we obtain

‖λk
e − λo‖ ≤1

4
dC1C2

(
1 + (1 + ρ2

k)
−1/2

)
‖λo − λk−1

e ‖2

+
1

2
dC2

(
1 + (1 + ρ2

k)
−1/2

)
(1 + ρ2

k) ‖ñ‖ ‖λo − λk−1
e ‖.

(3.29)

We now define an effective noise level parameter νe such that

νe =

{
ν + νs if the transformation model includes a scale change
ν otherwise

where νs is a constant that represents the secondary noise term seen in Lemma 3.5; it results
from the non-commutativity of filtering and scaling. Using the result in Lemma 3.5, we can
approximate the noise term ‖ñ‖ in iteration k as

‖ñ‖ ≈ νe (1 + ρ2
k)

−1/2.
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Finally, using this relation in (3.29) gives the following upper bound Ek for the alignment
error in iteration k

‖λk
e − λo‖ ≤ Ek

where

Ek :=
1

4
dC1C2

(
1 + (1 + ρ2

k)
−1/2

)
‖λo − λk−1

e ‖2

+
1

2
dC2νe

(
1 + (1 + ρ2

k)
−1/2

)
(1 + ρ2

k)
1/2‖λo − λk−1

e ‖.
(3.30)

We proceed by determining the optimal value of the filter size ρk to be used in iteration
k. From (3.30), we obtain the value of ρ that minimizes Ek as follows.

ρk =

√
C1‖λo − λk−1

e ‖
2 νe

− 1 if ‖λo − λk−1
e ‖ ≥ 2 νe

C1
(3.31)

ρk = 0 if ‖λo − λk−1
e ‖ < 2 νe

C1
(3.32)

This indicates that the optimal filter size must be chosen large if the current estimation
error ‖λo − λk−1

e ‖ at the beginning of iteration k is large. The noise level of the target image
also influences the optimal filter size. It must be chosen inversely proportional to the square
root of the noise level, because of the increase of the alignment error with filtering. The
above relations provide a justification of the strategy of reducing the filter size gradually in
coarse-to-fine alignment, since the successive estimates {λk

e} approach the optimal solution
progressively and the estimation error ‖λo − λk

e‖ decreases throughout the iterations of the
hierarchical alignment algorithm. In particular, the result in (3.31)-(3.32) shows that, when
the estimation error decreases below a threshold that depends on the noise level, it is better
to stop filtering the images and to use their original versions in the alignment process.

Now it is easy to generalize our result in Theorem 3.7 to convergence conditions for the
coarse-to-fine tangent distance method.

Corollary 3.8. Let the product of the effective noise level νe and the curvature constant C2

be upper bounded as follows

νeC2 <
1

d
. (3.33)

Furthermore, let the initialization error of the hierarchical tangent distance algorithm be
bounded as

‖λo − λr‖ <
2

C1

(
1

dC2
− νe

)
. (3.34)

Then, if the filter size ρk in each iteration is chosen to be between 0 and the optimal filter size
given in (3.31)-(3.32), the successive estimates of the hierarchical tangent distance method
converge to the optimal solution

lim
k→∞

λk
e = λo.

The proof of Corollary 3.8 is given in [21, Appendix C.2]. The corollary builds on the
observation that the above selection of the filter size yields an error that is not larger than
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the error obtained by applying no filtering and then follows the same lines as in the proof of
Theorem 3.7.

In a practical implementation of the tangent distance method, it is not easy to exactly
compute the optimal value of the filter size in (3.31)-(3.32) since the alignment error ‖λo−λk

e‖
in an arbitrary iteration is not exactly known. However, using our results, we can deduce a
suitable rule for updating the filter sizes ρk in practice. As shown in the proof of Corollary
3.8, if the noise level and the distance between the reference and optimal transformation
parameters are sufficiently small, the alignment error upper bounds {Ek} in the iterative
registration process decay at a geometric rate such that

Ek ≤ αEk−1, (3.35)

where

α =
1

2
dC1C2E0 + d νeC2 < 1 (3.36)

and E0 = ‖λo − λr‖ denotes the initialization error. Now, from (3.35), the alignment error
bound Ek in iteration k is bounded as Ek ≤ αkE0, which gives

‖λo − λk
e‖ ≤ Ek ≤ αkE0 = αk‖λo − λ0

e‖.

Due to the relation ‖λo − λk
e‖ ≤ αk‖λo − λ0

e‖ for all k, one may expect the actual alignment
errors ‖λo − λk

e‖ to decay at the same rate α as well. Thus, a reasonable approximation for
the relation between the alignment errors in adjacent iterations is given by

‖λo − λk
e‖ ≈ α ‖λo − λk−1

e ‖.

Applying this approximation in the expressions of the optimal filter sizes in (3.31)-(3.32), we
then get the following for the update of the filter size

ρk ≈
√
αρk−1. (3.37)

Notice that, at the early stages of the alignment, the alignment error is large. Then, ignoring
the subtractive constant in (3.31) yields the above approximation. Meanwhile, in the late
stages of the iterative alignment, the error is small; the geometric decay of the filter sizes in
the update rule (3.37) makes ρk approach 0, which approximates well the selection ρk = 0 in
(3.32).

The filter size update rule in (3.37) is in agreement with the common practice of reducing
the filter size in a geometric manner. While it is typical to reduce the filter size by a factor of
α = 1/2 in the implementation of hierarchical image registration algorithms [19], [5], we can
now reinterpret the selection of the factor α in the light of our results. First, an immediate
consequence of the linear proportion between the decay factor α in (3.36) and the curvature
parameter C2 is that α should increase with manifold nonlinearity. This is in agreement with
the expectation that applying large filters throughout the iterations improves the accuracy
of the linear approximation of the manifold. Similarly, the decay factor α is seen to increase
linearly with the initialization error E0. This shows that adapting α to the accuracy of the
initial solution helps to mitigate the influence of the initialization error, which propagates
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and affects the estimates of the algorithm throughout the iterations. Finally, regarding the
dependence of the filter update strategy on the noise level, we observe the following. From
(3.31), we observe that the initial filter size ρ1 in iteration 1 must be chosen as

ρ1 ≈
√
C1E0

2νe
.

Therefore, at small values of the noise level νe, one can begin with a relatively large filter size
ρ1 in the first iteration. The decay factor α takes a small value in this case, which is useful
for speeding up the convergence of the algorithm. On the other hand, at high noise levels,
the above expression for ρ1 suggests that the initial filter size should be chosen small. The
factor α becomes larger in this case; therefore, the decay in the filter size between adjacent
iterations needs to be slower.

We have studied in this section the convergence of the multiscale tangent distance method
and shown that the convergence of the algorithm is guaranteed if the noise level, the curvature
and the initialization error are sufficiently small. Moreover, we have shown that, in the coarse-
to-fine tangent distance method, the optimal choice of the filter size depends on the data and
transformation model characteristics. Providing an insight into the performance of multiscale
image registration, the results of this section can be used in devising effective tools for image
registration and analysis.

3.4. Analysis of the error in classification problems. We have so far studied the registra-
tion performance of the tangent distance method. Meanwhile, the tangent distance method
is also used commonly in image analysis problems for the transformation-invariant estimation
of the similarity between a query image and a set of image manifold models representing
different classes. A typical similarity measure is the distance between the query image and
the class-representative transformation manifolds. Since the distances to the manifolds are
computed by estimating the projection of the query image onto the manifolds, the accuracy
of the distance estimation is highly influenced by the accuracy of the estimation of the trans-
formation parameters. The classification performance is thus quite related to the registration
performance.

In this section, we study the link between the image classification and registration problems
and extend our results on the registration analysis to study the performance of the tangent dis-
tance method in image classification. Consider a setting with M class-representative patterns
{pm}M

m=1 whose transformation manifolds

M(pm) = {pm
λ : λ ∈ Λ} ⊂ L2(R2)

are used for the classification of query patterns q ∈ L2(R2) in the image space. We assume
that the correct class label l(q) of a query pattern q is given by the class label of the manifold
M(pm) with smallest distance to it, i.e.,

l(q) = arg min
m∈{1,...,M}

‖q − pm
λm

o
‖ (3.38)

where λm
o = arg minλ∈Λ ‖q−pm

λ ‖ is the optimal transformation parameter vector corresponding
to the projection of q on M(pm).
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Our purpose is then to study in this context the performance penalty when the class label
of a query pattern is estimated by employing first-order approximations of the manifolds.
Obviously, if the transformation parameters are estimated with an iterative application of the
tangent distance method (at a single scale or in a coarse-to-fine manner), the convergence
guarantees to the optimal solution established in Theorem 3.7 and Corollary 3.8 ensure that
the target pattern be correctly classified. Hence, in this section, we focus on the accuracy
of classifying a query image with a one-step application of the tangent distance method,
i.e., by estimating the transformation parameters {λm

o } with a single linearization of each
manifold, possibly by filtering the target and reference images. We study the performance of
classification in this setting and its dependence on the choice of the filter size.

Let λm
e denote the estimate of λm

o computed with the tangent distance method as in (2.6)
by linearizing the manifold M(pm) around a reference point with parameter vector λm

r . The
class label of q is then estimated with the tangent distance method as follows1

l̃(q) = arg min
m∈{1,...,M}

‖q − pm
λm

e
‖. (3.39)

Comparing the estimated class label in (3.39) and the true class label in (3.38), it can
be observed that the performance of classification depends on the accuracy of the estimation
of the transformation parameters. In particular, if the estimate ‖q − pm

λm
e
‖ of the distance

between the query pattern and the manifold is sufficiently close to the true manifold distance
‖q− pm

λm
o
‖ for each one of the manifolds, the estimated class label l̃(q) in (3.39) is the same as

the true class label l(q). Based on this observation, we study the classification performance
of the tangent distance method as follows. First, given a reference pattern p and a target
pattern q, we derive a relation between the distance estimation error

∣∣‖q − pλo
‖ − ‖q − pλe

‖
∣∣

and the alignment error ‖λo − λe‖ in the parameter domain in the following lemma.
Lemma 3.9. The distance estimation error of the tangent distance method can be upper

bounded in terms of its alignment error as

∣∣‖q − pλo
‖ − ‖q − pλe

‖
∣∣ ≤ T ‖λo − λe‖1, (3.40)

where T denotes the supremum of the tangent norms on M(p)

T := max
i=1,...,d

sup
λ∈Λ

‖∂i pλ‖. (3.41)

The proof of Lemma 3.9 is given in [21, Appendix D.1]. Lemma 3.9 provides a link between
the accuracy of the alignment measured in the parameter domain Λ, and in the ambient space
L2(R2), respectively. It shows that the distance estimation error can be upper bounded with
a linear function of the alignment error.

The relation in (3.40) suggests that one may expect the classification performance of the
tangent distance method to vary linearly with the accuracy of alignment in the parameter

1Note that the class label of a query image can also be estimated by comparing its distance to the first-order
approximation Sλm

r

(pm) of each manifold defined in (2.4). While Simard et al. use this subspace distance for
classification [16], the estimate in (3.39) is also commonly used in image analysis problems (e.g., as in [19]).
We base our analysis on the definition in (3.39) since it is likely to give more accurate estimates, especially
when it is generalized to a multiscale setting as in (3.42).
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domain. In order to construct a more precise relation, we now consider a setting where the
query images of class m have a distribution that is concentrated around the manifold M(pm).
We then examine the probability of correctly classifying q based on the distance estimates
given by the tangent distance method.

Using the notation of Section 2.3, let νj = ‖q−pj

λj
o

‖ denote the deviation of a query image

q from the manifold M(pj) of class j. Furthermore, let q belong to class m. The distance of
q to M(pm) is the smallest among the distances of q to all manifolds; therefore, νm < νj for
all j 6= m. Let us assume that the distributions of the images belonging to different classes
have bounded and non-intersecting supports around the manifolds, so that the classification
rule in (3.38) always gives the true class label. We can then define the following parameters.
Let

Vm := sup
q: l(q)=m

{
‖q − pm

λm
o
‖
}

denote the maximal distance of query patterns of class m to the manifold M(pm) of their own
class and

ǫ := min
m=1,...,M ; j 6=m

inf
q: l(q)=m

{
‖q − pj

λj
o

‖ − ‖q − pm
λm

o
‖
}

define a distance margin that is a measure of the minimum separation between different
classes. Finally, let Tm and Km denote the suprema of the tangent norm and the curvature on
the manifold M(pm), as defined in (3.41) and (3.3) respectively. We then have the following
result, which provides an upper bound for the probability of misclassifying a target image of
class m.

Theorem 3.10. Let q be a query pattern of class m. Assume that the optimal transformation
parameters λm

o aligning q with pm are within a ∆-neighborhood of the reference transformation
parameters λm

r around which M(pm) is linearized, such that ‖λm
o − λm

r ‖1 ≤ ∆. Then, the
probability of misclassifying q with the tangent distance method is upper bounded as

P
(
l̃(q) 6= l(q)

)
≤ (M − 1)

ǫ
Tm

√
dKm λ−1

min

(
[Gm

ij (λm
r )]

) (
1

2

√
tr([Gm

ij (λm
r )]) ∆2 +

√
d Vm ∆

)

where d is the dimension of the manifolds and [Gm
ij (λm

r )] denotes the metric tensor of manifold
M(pm) at the point corresponding to λm

r .

The proof of Theorem 3.10 is given in [21, Appendix D.2]. The above result is obtained by
upper bounding the probability of misclassification in terms of the distance estimation error.
The distance estimation error is linked to the alignment error in the parameter domain using
Lemma 3.9, which is then upper bounded using Theorem 3.1.

Theorem 3.10 shows how the probability of misclassification when the manifold distances
are estimated with the tangent distance method, depends on the geometric properties of the
manifolds and on the deviation ∆ between the reference transformation parameters λm

r used in
the linearization of the manifold and the optimal transformation parameters λm

o corresponding
to the projection of q onto the manifold. In particular, for any non-intersecting and bounded
distribution of class samples, the misclassification probability increases at most linearly with
the increase in the manifold curvature and the maximal distance of the images to their own
representative manifold. The deviation ∆ between the parameters used in the linearization and
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the parameters corresponding to the exact projection affects the misclassification probability
due to its influence on the alignment accuracy. We also observe that better separation of
manifolds (i.e., increase in the distance margin ǫ) reduces the probability of misclassification,
as expected.

We now discuss the classification of images with the tangent distance method in a multi-
scale setting and study the selection of the filter size in order to minimize the misclassification
probability. Consider that the transformation parameters are estimated by filtering the query
image q̂ and the reference images p̂m. From (2.6), the following estimates {λ̂m

e } are obtained
for the classes m = 1, . . . ,M by registering the query image on each class manifold with the
tangent distance method

λ̂m
e = λm

r + [Ĝm
ij (λm

r )]−1[〈q̂ − p̂m
λr
, ∂i p̂

m
λr
〉].

Here Ĝm
ij and ∂i p̂

m
λr

are respectively the metric tensor and the tangent vectors on the manifold
M(p̂m). Once the transformation parameters are estimated, we assume that the unfiltered
versions of the reference images and the query image are used in the computation of the actual
distances to the manifolds for estimating the class label of the query image. It is preferable to
compare the distances in the original image space rather than the space of filtered images, as
it yields more accurate estimates. The class label estimate of the query pattern is thus given
by

l̃(q) = arg min
m∈{1,...,M}

‖q − pm
λ̂m

e

‖. (3.42)

Repeating the steps in the proof of Theorem 3.10 by replacing the estimates {λm
e } with

the ones {λ̂m
e } obtained after filtering the reference and target patterns, one can upper bound

the misclassification probability as

P
(
l̃(q) 6= l(q)

)
≤ (M − 1)

ǫ
Tm

√
d K̂m λ−1

min

(
[Ĝm

ij (λm
r )]

) (
1

2

√
tr([Ĝm

ij (λm
r )]) ∆2 +

√
d V̂m ∆

)

(3.43)
when the filtered images are used for estimating the transformation parameters. We have
neglected the perturbation ‖λo − λ̂o‖ due to filtering in the projection of patterns onto the
manifold. The above expression for the misclassification probability is in the same form as
the alignment error bound in (3.5); they only differ by a multiplicative factor (note, however,
that the value of this factor depends on the geometric properties of the manifolds through
the parameters Tm and ǫ). Therefore, the misclassification probability bound has the same
non-monotonic variation with the filter size as the alignment error. Moreover, the optimal
value of the filter size that minimizes the alignment error is a minimizer of the misclassification
probability upper bound as well. In an image classification application where a one-step linear
approximation of the manifolds is employed, one may thus choose the optimal filter size by
minimizing the alignment error. The model parameters should then be selected with respect
to the expected characteristics of the data. The maximal distance Vm is related to the internal
variation (noise level) of the data samples within the same class and depends on how well the
reference pattern pm approximates the samples of its own class, whereas the parameter ∆ can
be set according to the maximum amount of transformation that the data samples are likely
to undergo in the application at hand.
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4. Experimental Results.

4.1. Image alignment. We now present experimental results that illustrate our alignment
error bounds. In all settings, we experiment on three different geometric transformation
models, namely a two-dimensional translation manifold

M(p) = {Aλ(p) : λ = (tx, ty) ∈ Λ}, (4.1)

a three-dimensional manifold given by the translations and rotations of a reference pattern

M(p) = {Aλ(p) : λ = (θ, tx, ty) ∈ Λ}, (4.2)

and a four-dimensional manifold generated by the translations, rotations and isotropic scalings
of a reference pattern

M(p) = {Aλ(p) : λ = (θ, tx, ty, s) ∈ Λ}. (4.3)

In the above models, tx and ty represent translations in x and y directions, θ denotes a rotation
parameter, and s is a scale change parameter. The parameters θ and s are normalized versions
of the actual rotation angle θ and scale change factor s, so that the magnitudes of the manifold
derivatives with respect to tx, ty, θ, and s are proportional.

In all experiments, several target patterns are generated from a reference pattern by
applying a random geometric transformation according to the above models. The target
patterns are then corrupted with additive noise patterns at different noise levels ν. For
each reference and target pattern pair (p, q), a sequence of image pairs (p̂, q̂) are obtained
by smoothing p and q with low-pass filters with different kernel sizes ρ. Then, the target
pattern q̂ in each image pair is aligned with the reference pattern p̂ using the tangent distance
method, where the reference parameter vector λr is taken as identity such that p̂λr

= p̂. The
experimental alignment error is measured as the parameter domain distance ‖λ̂e−λ̂o‖ between
the optimal transformation parameter vector λ̂o and its estimate λ̂e. Then, the experimental
alignment error is compared to its theoretical upper bound Ê given in Theorem 3.1. The
curvature parameter K is computed numerically in the implementation of Theorem 3.1.

In the first set of experiments, we experiment on 50 different reference patterns that
consist of 20 atoms randomly selected from the Gaussian dictionary D. The atom parameters
are randomly drawn from the intervals ψ ∈ [−π, π); τx, τy ∈ [−4, 4]; σx, σy ∈ [0.3, 2.3]; and
the atom coefficients are randomly selected within the range [−1, 1]. Then, for each one
of the models (4.1)-(4.3), 10 target patterns are generated for each reference pattern. The
transformation parameters of target patterns are selected randomly within the ranges θ ∈
[−0.4, 0.4]; tx, ty ∈ [−0.4, 0.4]; and s ∈ [0.4, 1.6]. The above ranges for the normalized rotation
and scale parameters θ and s correspond to the actual rotation angles θ ∈ [−0.04π, 0.04π]
and scale change factors s ∈ [0.87, 1.13]. Each target pattern is corrupted with a different
realization of a noise pattern that consists of 100 small-scale Gaussian atoms with random
coefficients drawn from a normal distribution, which represents a random noise pattern in the
continuous domain. The noise patterns are normalized to match a range of noise levels ν.

The results obtained for the transformation models (4.1), (4.2), and (4.3) are presented
respectively in Figures 4.1, 4.2 and 4.3, where the performance is averaged over all reference
and target patterns. In all figures, the experimental alignment errors and their theoretical
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Figure 4.1. Alignment errors of random patterns for 2-D manifolds generated by translations.

upper bounds are plotted with respect to the noise level ν in panels (a) and (b), where the
noise level ν is normalized with the norm ‖p‖ of the reference pattern. The same experimental
errors and theoretical bounds are plotted as functions of the filter size ρ in panels (c) and (d)
of all figures.

The results of this experiment can be interpreted as follows. First, the plots in panels
(a) and (b) of Figures 4.1-4.3 show that the variation of the alignment error with the noise
level ν approaches an approximately linear rate for large values of ν both in the empirical
and the theoretical plots. This confirms the estimations Ê = O(ν), Ê = O(ν+ 1) of Theorem
3.6. Next, the plots in (c) and (d) of the figures show that the actual alignment error and its
theoretical upper bound decrease with filtering at small filter sizes ρ, as smoothing decreases
the nonlinearity of the manifold. The error then begins to increase with the filter size ρ at
larger values of ρ in the presence of noise. This confirms that the filter size has an optimal
value when the target image is noisy, as predicted by Theorem 3.6. The shift in the optimal
value of the filter size with the increase in the noise level is observable especially in Figures
4.1 and 4.2, which is in agreement with the approximate relation between the optimal filter
size and the noise level given in (3.31). Moreover, in most plots, the optimal value of the
filter size that minimizes the theoretical upper bound in (d) is seen to be in the vicinity of
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Figure 4.2. Alignment errors of random patterns for 3-D manifolds generated by translations and rotations.

the optimal filter size minimizing the actual alignment error in (c), which shows that the
theoretical bound provides a good prediction of suitable filter sizes in alignment. The results
also show that the variation of the alignment error with the filter size approximately matches
the rate Ê = O

(
(1 + ρ2)1/2

)
≈ O(ρ) at large filter sizes in most plots.

It is also interesting to compare the behavior of the alignment error between different
transformation models. To begin with, one can observe in Figures 4.1(c) and 4.1(d) that, for
two-dimensional translation manifolds, the alignment error and its theoretical bound asymp-
totically approach 0 when the filter size ρ increases in the noiseless setting ν = 0. The
monotonic decay of the error with filtering is expected since Theorem 3.6 predicts a variation
of Ê = O

(
1 + (1 + ρ2)−1/2

)
for the noiseless case. Meanwhile, the convergence of the error

to 0 for the specific transformation model of translations can be explained as follows. In this
special case, the variation of the second derivatives of the manifold with the filter size is given
by ‖∂ij p̂λ‖ = O

(
(1 + ρ2)−3/2

)
, which follows from the fact that the second derivatives of the

transformed coordinates in (3.6) vanish, i.e., ∂ij x
′, ∂ij y

′ = 0. This gives the rate of decrease of
the alignment error with ρ as Ê = O

(
(1 + ρ2)−1/2

)
for translation manifolds in the noiseless

case. Therefore, the alignment error approaches 0 as ρ increases. Meanwhile, Figures 4.2(c)
and 4.2(d) obtained with three-dimensional manifolds generated by translations and rotations
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Figure 4.3. Alignment errors of random patterns for 4-D manifolds generated by translations, rotations,
and scale changes.

show that the experimental and theoretical alignment errors approach a nonzero value in the
noiseless case ν = 0 as suggested by the prediction Ê = O(1 +

(
1 + ρ2)−1/2

)
.

Lastly, we comment on the plots in Figure 4.3 obtained for four-dimensional transfor-
mation manifolds generated by translations, rotations, and isotropic scale changes. One can
observe in Figures 4.3(c) and 4.3(d) that both the experimental alignment error and its the-
oretical upper bound increase significantly with the filter size ρ in the noiseless case ν = 0
when transformations include scale changes. This is due to the secondary source of noise
demonstrated in Lemma 3.5. Theorem 3.6 suggests that the error increases with filtering
at a rate Ê = O

(
(ν + 1)(1 + ρ2)1/2

)
at large values of ρ, which corresponds to a variation

Ê = O
(
(1 + ρ2)1/2

)
in the noiseless case.

We perform a second set of experiments on five real images, which are shown in Figure 4.4.
The images are resized to the resolution of 60 × 60 pixels, and for each image an analytical
approximation in the Gaussian dictionary D is computed with 100 atoms. The dictionary
is defined over the parameter domain ψ ∈ [−π, π); τx, τy ∈ [−6, 6]; σx, σy ∈ [0.05, 3.5]. Two
reference patterns are considered for each image; namely, the digital image itself, and its an-
alytical approximation in D. For each one of the transformation models (4.1)-(4.3), 40 test
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Figure 4.4. Images used in the second set of experiments
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Figure 4.5. Alignment errors of real images for 2-D manifolds generated by translations.

patterns are generated for each reference pattern by applying a geometric transformation and
adding a digital Gaussian noise image that is i.i.d. for each pixel. The geometric transfor-
mations are randomly selected from the transformation parameter domain θ ∈ [−0.6, 0.6];
tx, ty ∈ [−0.6, 0.6]; s ∈ [0.1, 2.1]. The normalized rotation and scale parameters θ and s
correspond to the actual rotation angle and scale change factors θ ∈ [−0.07π, 0.07π] and
s ∈ [0.89, 1.13]. The experimental alignment errors ‖λ̂e − λ̂o‖ are computed by aligning the
target patterns with the reference patterns, for both the original digital images and their ap-
proximations in the analytical dictionary D. The theoretical upper bounds Ê are computed
based on the analytical representations of the reference patterns. The alignment errors are
plotted in Figures 4.5-4.7, which are averaged over all reference and target patterns. Figures
4.5, 4.6, and 4.7 show the errors obtained with the 2-D, 3-D and 4-D manifold models given
respectively in (4.1), (4.2), and (4.3). In all figures, the alignment errors of the digital images,
the alignment errors of the analytical approximations of images, and the theoretical upper
bounds for the alignment error are plotted with respect to the noise level ν in panels (a)-(c),
and with respect to the filter size ρ in panels (d)-(f).
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Figure 4.6. Alignment errors of real images for 3-D manifolds generated by translations and rotations.

The results of the experiment show that the behavior of the alignment error for digital
image representations is similar to the behavior of the error obtained with the analytical
approximations of the images in D. They mostly agree with the theoretical curves as well.
The plots confirm that the increase in the alignment error with the noise level approaches
an approximately linear rate at large values of the noise level as predicted by the theoretical
results. The variation of the error with filtering is also in agreement with Theorem 3.6,
and different transformation models lead to different behaviors for the alignment error as
in the previous set of experiments. Meanwhile, it is observable that the dependence of the
alignment error Ê on the filter size ρ in these experiments is mostly determined by its first
component Ê1 related to manifold nonlinearity, even at large filter sizes. This is in contrast
to the results obtained in the first setup with synthetically generated random patterns. The
difference between the two setups can be explained as follows. Real images generally contain
more high-frequency components than synthetical images generated in the smooth dictionary
D. These are captured with fine, small-scale atoms in the analytical approximations (the
smallest atom scale used in this setup is 0.05, while it is 0.3 in the previous setup). The
high-frequency components increase the manifold nonlinearity, which causes the error Ê1 to
be the determining factor in the overall error. In return, the positive effect of filtering that
reduces the alignment error is more prominent in these experiments, while the non-monotonic
variation of the error with the filter size is still observable at large noise levels or for the
transformation model (4.3) involving a scale change. The comparison of the two experimental
setups shows that the exact variation of the error with filtering is influenced by the frequency
characteristics of the reference patterns.
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Figure 4.7. Alignment errors of real images for 4-D manifolds generated by translations, rotations, and
scale changes.

The plots in panels (d)-(f) of the figures also show that, at small filter sizes, experimental
errors are relatively high and very similar for different noise levels, while this is not the case
in the theoretical plots. This suggests that numerical errors in the estimation of the tangent
vectors with finite differences must have some influence on the overall error in practice, which
is not taken into account in the theoretical bound. This error is higher for images with
stronger high-frequency components and diminishes with smoothing (see the study in [4] for
example). Lastly, one can observe that the alignment errors obtained with digital images are
slightly larger than the alignment errors given by the analytic approximations of the images.
This can be explained by the difference in the numerical computation of the tangent vectors
in these two experimental settings. The analytic representation of the images in terms of
parametric Gaussian atoms permits a more accurate computation of the tangent vectors,
while the numerical interpolations employed in the computation of the tangents in the digital
setting create an additional error source.

The overall conclusions of the experiments can be summarized as follows. The theoretical
alignment error upper bound given in Theorem 3.1 gives a numerically pessimistic estimate
of the alignment error as it is obtained with a worst-case analysis. However, it reflects well
the actual dependence of the true alignment error both on the noise level and the filter size,
and the results confirm the approximate variation rates given in Theorem 3.6. The theoretical
upper bounds can be used in the determination of appropriate filter sizes in hierarchical image
registration with tangent distance.
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4.2. Image classification. We now study experimentally the image classification perfor-
mance when manifold distances are computed with registration based on the tangent distance
method.

In the first experiment, we classify a data set of synthetic images. We experiment on
two classes of images. The reference pattern of each class consists of 20 randomly chosen
Gaussian atoms such that 16 of the atoms are common between the two classes and 4 atoms
are specific to each class. This configuration has the purpose of simulating a setting where the
distinction between different classes stems from class-specific features, meanwhile different
classes have some common features as well, which poses a challenge for classification. We
then generate a set of test patterns that lie between the transformation manifolds of the two
reference patterns. The test patterns are generated such that their true class labels are given
by the class label of the closer manifold as in (3.38). We then classify the test patterns with
the tangent distance method by estimating the transformation parameters in one step using
the low-pass filtered versions of the reference and test patterns. The class labels of the test
patterns are then estimated as in (3.42). We conduct the experiment on the transformation
models in (4.1)-(4.3) and test the classification accuracy at different filter sizes. In Figures
4.8(a), 4.9(a) and 4.10(a), the percentage of misclassified test patterns is plotted with respect
to the filter size, for these three transformation models respectively. Each plot is obtained by
averaging the results of 400 repetitions of the experiment with randomly generated reference
and test patterns. In order to interpret the variation of the experimental misclassification rate
with the filter size in light of the results in Section 3.4, we define a function

Tm K̂m λ−1
min

(
[Ĝm

ij (λm
r )]

) (
1

2

√
tr([Ĝm

ij (λm
r )]) ‖λ̂o − λr‖2

1 +
√
d ‖ñm‖ ‖λ̂o − λr‖1

)
(4.4)

for the test patterns, where ‖ñm‖ is the distance between the filtered test pattern q̂ and the
transformation manifold M(p̂m) of the filtered reference pattern representing class m. Com-
paring the function in (4.4) with the misclassification probability bound in (3.43), one can
observe that they have the same variation with the filter size ρ, while it is easier to compute
(4.4) experimentally. As it provides a measure for the misclassification probability, we call
the expression in (4.4) the “misclassification likeliness” function. The average value of the
misclassification likeliness (4.4) is plotted in Figures 4.8(b), 4.9(b) and 4.10(b), respectively
for the transformation models in (4.1)-(4.3). Comparing panels (a) and (b) of Figures 4.8
- 4.10, we observe that the variation of the experimental misclassification probability with
filtering agrees with that of the analytical misclassification likeliness (4.4). This shows that
the misclassification probability upper bound in (3.43) captures well the behavior of the ac-
tual misclassification probability. Furthermore, as the misclassification likeliness is linearly
proportional to the alignment error bound, we observe that the classification performance
of the tangent distance method is indeed closely related to its alignment performance. The
experimental results confirm that the misclassification probability has a non-monotonic vari-
ation with the filter size as predicted by the theoretical results of Section 3.4, and the optimal
filter size minimizing the misclassification probability is in the vicinity of the filter size that
minimizes the misclassification likeliness.

Next, we study the classification performance of the tangent distance method on a data
set of handwritten digit images taken from the MNIST database [9]. We experiment on the
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Figure 4.8. Classification results for random patterns and 2-D manifolds generated by translations.
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Figure 4.9. Classification results for random patterns and 3-D manifolds generated by translations and
rotations.

images of the 2, 3, 5, 8, and 9 digits, each of which represents a different class. We randomly
choose a reference image among the training samples of each class. The test images are
formed by applying a random geometric transformation on randomly selected test samples in
the database. We classify the test images by estimating their distance to the transformation
manifolds of the reference images with the tangent distance method for different filter sizes
as in (3.42). The results obtained for the geometric transformation models in (4.1)-(4.3)
are presented respectively in Figures 4.11-4.13. Panels (a) and (b) of the figures show the
experimental misclassification probability and the misclassification likeliness function (4.4),
which are the average of 1000 repetitions of the experiment with different reference and test
images. The behavior of the experimental misclassification probability as a function of the
filter size is seen to be similar to that of the misclassification likeliness. Meanwhile, in contrast
to the results obtained on synthetic smooth patterns (Figures 4.8-4.10), the best classification
performances are obtained at large filter sizes for the digit images. This is in line with the
results of the image alignment experiments with real images in Section 4.1, where the error
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Figure 4.10. Classification results for random patterns and 4-D manifolds generated by translations, rota-
tions, and scale changes.
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Figure 4.11. Classification results for digit images and 2-D manifolds generated by translations.

resulting from manifold nonlinearity has been seen to be the determining factor in the overall
behavior of the alignment error. Indeed, the high-frequency components may be prominent
in real images. Since the digit images used in the experiments of Figures 4.11-4.13 also have
quite nonlinear manifolds as a result of their frequency characteristics, their misclassification
rate, as well as their alignment error, reaches its minimum value at large values of the filter
size.

5. Discussion of Related Work. Although the tangent distance method is frequently
used in image registration and image analysis applications, to the best of our knowledge, its
performance has not been theoretically studied for general transformation models before. A
brief overview of the related literature is as follows.

We begin with the works that analyze the dependence of the alignment error on noise.
First, the study in [14] derives the Crámer-Rao lower bound (CRLB) for the registration of
two images that differ by a 2-D translation. The CRLB gives a general lower bound for the
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Figure 4.12. Classification results for digit images and 3-D manifolds generated by translations and rotations.
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Figure 4.13. Classification results for digit images and 4-D manifolds generated by translations, rotations,
and scale changes.

MSE of any estimator; therefore, the lower bounds derived in [14] are valid for all registration
algorithms that aim to recover the translation between two images. A Gaussian noise model
is assumed in [14], and the CRLB of a translation estimator is shown to be proportional to
the noise variance. One can consider the noise standard deviation in the analysis in [14] to
be proportional to our noise level parameter ν, which implies that the alignment error has a
lower bound of O(ν). Then, the study in [23] explores the CRLB of registration for a variety
of geometric transformation models and shows that the linear variation of the CRLB with the
noise level derived in [14] for translations can be generalized to several other models such as
rigid, shear and affine transformations. Being a generic bound valid for any estimator, the
Crámer-Rao lower bound is also valid for the tangent distance method. In our main result
Theorem 3.6, the second component Ê2 of the alignment error, which is related to image
noise, increases at a rate of O(ν) with the noise level ν for any geometric transformation
model. Therefore, the results in [14] and [23] are consistent with ours. Finally, let us remark
the following about the variation of Ê2 with the filter size. The studies [14] and [23] show
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that the CRLB of transformation estimators increases when the magnitudes of the spatial
derivatives of patterns decrease. Since low-pass filtering reduces the magnitudes of spatial
derivatives, it increases the MSE of estimators that compute the transformation parameters
between an image pair. Similar results can be found in our previous work [20], where we show
that the error due to noise in the estimation of 2-D translations with descent-type algorithms
is amplified with filtering. Our main result, which indicates that the error component Ê2

associated with image noise increases with filtering, is in line with these previous works.
Next, the scope of the previous studies that examine the effect of manifold linearizations

(e.g., [14], [4], [13]) is confined to the context of gradient-based optical flow estimation. Indeed,
block-based optical flow estimation methods can be regarded as the restriction of the tangent
distance method to estimate 2-D translations between image patches. Our study differs from
these analyses in that it considers arbitrary transformation models while characterizing the
influence of the image noise on the alignment performance in a multiscale setting (by including
the effect of filtering in the analysis). We now briefly discuss some of these results in relation
with our work.

The work [14] studies the bias on gradient-based estimators, which employ a first-order
approximation of the image intensity function. The bias is the difference between the expecta-
tion of the translation parameter estimates and the true translation parameters, and it results
from the first-order approximation of the image intensity function. It is therefore associated
with the first error term Ê1 in Theorem 3.6 in our analysis. Note that the second error term
Ê2 results from image noise and is related to the variance of the estimator when a zero-mean
random noise model is assumed. It is shown in [14] that the bias is more severe if the image
has larger bandwidth, i.e., if it has stronger high-frequency components. Hence, as smoothing
the images with a low-pass filter reduces the image bandwidth, it decreases the bias. The
studies in [8] and [4] furthermore report that smoothing diminishes the systematic error in
the estimation of the image gradients from finite differences in optical flow computation, as it
reduces the second and higher-order derivatives of the image intensity function. The results
in [14] are consistent with our analysis, which shows that the component of the alignment
error associated with manifold nonlinearity decreases with the filter size ρ. Our result is how-
ever valid not only for translations, but for other transformation models as well. Moreover,
it provides an exact rate of decrease for the error, which is given by O

(
(1 + ρ2)−1/2

)
for

translations, and O
(
1 + (1 + ρ2)−1/2

)
for other transformation models. The analysis in [14]

reports that the bias due to series truncation has a polynomial dependence on the amount
of translation. In the bound given in Theorem 3.1, the alignment error term E1 associated
with manifold nonlinearity is seen to be proportional to the square ‖λo − λr‖2

1 of the distance
between the transformation parameters. This quadratic dependence is due to the fact that
we have used a second-order approximation of the transformation manifold; a higher-order
approximation clearly yields a polynomial dependence of higher-degree as obtained in [14].

Finally, the analysis in [10] studies the convergence of multiscale gradient-based registra-
tion methods where the image pair is related with a 2-D translation. It is shown that, for
sufficiently small translations, coarse-to fine gradient-based registration algorithms converge
to the globally optimal solution if the images are smoothed with ideal low-pass filters such
that the filter bandwidth is doubled in each stage of the pyramid. However, this convergence
guarantee is limited to an ideal noiseless setting where the target image is exactly a translated
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version of the reference image, whereas the convergence guarantee derived in our study is valid
for also noisy settings and arbitrary geometric transformation models.

6. Conclusion. We have presented a first complete performance analysis of the tangent
distance method, which uses a first-order approximation of the transformation manifold in the
estimation of the geometric transformation between a pair of images. We have first derived
an upper bound for the alignment error and analyzed its variation with the noise level and the
size of the low-pass filter used for smoothing the images in hierarchical registration algorithms.
We have shown that the alignment error generally has a non-monotonic variation with the
filter size due to the effects of smoothing on the image noise and the transformation manifold
curvature. We have then used these results in order to establish some convergence guaran-
tees for the hierarchical tangent distance algorithm. We have also derived some guidelines to
choose the filter sizes optimally throughout the algorithm. Our results show that, in order to
optimize the performance of the hierarchical alignment method, the initial filter size in the be-
ginning of the algorithm should increase with the amount of transformation and decrease with
the noise level. The optimal geometric decay factor of the filter size (which is usually taken
as 1/2 in practice) then increases with the manifold curvature, the amount of transformation
and the noise level. Finally, we have studied the classification performance of the tangent
distance method and shown that the classification accuracy is expected to vary similarly to
the alignment error. Our treatment is generic and valid for arbitrary geometric transforma-
tion models, and the theoretical results are confirmed by experiments. The presented study
provides important insights for the understanding of multiscale registration methods that
are based on manifold linearizations, and is helpful for optimizing the performance of such
methods in image registration and image analysis applications.
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