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We investigate the properties of antiferromagnetic spin-S ladders with the help of local Berry phases defined
by imposing a twist on one or a few local bonds. In gapped systems with time-reversal symmetry, these Berry
phases are quantized, hence able in principle to characterize different phases. In the case of a fully frustrated
ladder where the total spin on a rung is a conserved quantity that changes abruptly upon increasing the rung
coupling, we show that two Berry phases are relevant to detect such phase transitions: the rung Berry phase
defined by imposing a twist on one rung coupling, and the twist Berry phase defined by twisting the boundary
conditions along the legs. In the case of nonfrustrated ladders, we have followed the fate of both Berry phases
when interpolating between standard ladders and dimerized spin chains, with the surprising conclusion that, at
least far enough from dimerized chains, they define different domains in parameter space. A careful investigation
of the spin gap and of edge states shows that a change of twist Berry phase is associated with a quantum phase
transition at which the bulk gap closes, and at which, with appropriate boundary conditions, edge states appear
or disappear, while a change of rung Berry phase is not necessarily associated with a quantum phase transition.
The difference is particularly acute for regular ladders, in which the twist Berry phase does not change at all upon
increasing the rung coupling from zero to infinity while the rung Berry phase changes 2§ times. By analogy with
the fully frustrated ladder, these changes are interpreted as crossovers between domains in which the rungs are
in different states of total spin from 0 in the strong rung limit to 2.5 in the weak rung limit. This interpretation is
further supported by the observation that these crossovers turn into real phase transitions as a function of rung
coupling if one rung is strongly ferromagnetic, or equivalently if one rung is replaced by a spin 25 impurity.
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I. INTRODUCTION

Topological aspects of matter have become one of the
dominant themes in solid state physics. The characterization
of quantum phases by topological invariants has been an
extremely fruitful concept in the quantum Hall effect," and it
lies at the root of more recent developments such as topological
insulators.>* A number of the central concepts have already
been discovered quite some time ago in the context of quantum
magnetism. Indeed, in the modern language of topological
matter, the ground state of the spin-1 chain is in a topologically
nontrivial phase characterized by a string order parameter> and
by spin-1/2 edge states.® In recent years the investigation of the
topological properties of other models of quantum magnetism,
in particular spin-1/2 ladders, has been a very active field of
research.””!7

A few years ago, Hatsugai proposed an alternative char-
acterization of quantum magnets in terms of a Berry phase
defined by twisting the XY components of the spin-spin
interaction of one or several local bonds.'®!” He showed
that, if the system has time-reversal symmetry, this Berry
phase is quantized and can only take the values O or 7 (mod
2m), and that some phase transitions can be characterized by
a change of Berry phase. This is for instance the case of
the dimerized spin-S chains with § > 1/2. As predicted a
long time ago by Affleck and Haldane,?® they undergo upon
increasing the dimerization a series of 25 phase transitions
at which, as shown by Hatsugai and collaborators for S = 1
and 2,%! the Berry phase of a bond changes between 0 and 7.
A simple explanation of these transitions is provided by the
valence-bond singlet (VBS) picture, according to which they
correspond to increases by 1 of the number of valence-bond
singlets on the strong bonds up to 2§ in the limit of the fully
dimerized chain.
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One could naively expect that similar transitions occur
in spin ladders upon increasing the rung coupling since the
limit of very strong rungs is similar. There is ample evidence
however, at least for S = 1/2 and S = 1 ladders, that this is
not the case. Spin ladders are defined by the Hamiltonian

HLadder — JH Z Z Si,rx . Si+1,a +J ZSM -Si,2» (1)

i a=1,2 i

where i is the rung index, « is the leg one, and S;, are
spin-S operators. To describe the whole parameter range, it
is usual to introduce the parametrization Jj = J cosf and
J1 = Jsin#, and this convention will be used throughout.
Spin-1/2 ladders have been investigated in great detail over
the last two decades.?? It has been shown early on that, for
antiferromagnetic rung coupling, they are gapped if the number
of legs is even and gapless ifitis odd, and for the two-leg ladder,
a consensus has emerged, based on numerical investigations
and field theory arguments, that there is no quantum phase
transition between the weak and strong rung coupling regimes.
The only phase transition that has been detected in spin-1/2
ladders with antiferromagnetic leg coupling takes place when
the sign of the rung coupling changes from antiferromagnetic
to ferromagnetic. At this transition, the gap closes, and the two
topologically distinct singlet phases can be distinguished by
the type of string-order parameter (even or odd) that exhibits
long-range order.”> > For the spin-1 two-leg ladder,”® the
evidence has imposed itself that the spin gap remains open
all the way from weak to strong rung coupling, definitely
excluding the presence of a quantum phase transition.

In this paper, one of our goals is to clarify the difference
between spin ladders and dimerized spin chains by a sys-
tematic investigation of different Berry phases in a model
that interpolates between them. As we shall see, the phase
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transitions of the dimerized spin chains disappear before
reaching the spin ladder geometry, in agreement with previous
results,”310-12.1527 byt some traces of these phase transitions
can still be found in the rung Berry phases of the ladder,
suggesting the presence of a series of 2§ crossovers in spin-S
ladders.

The paper is organized as follows. In Sec. II we define
the Berry phase in a spin system and recall some basic facts
established in Refs. 18 and 21. In Sec. III we show that the
Berry phase can be used to establish the phase diagram of a
frustrated ladder. We then turn in Sec. IV to the investigation
of the model which interpolates between nonfrustrated spin-S
ladders and dimerized spin-S chains. Some details about the
Berry phase calculations are given in three Appendices.

II. BERRY PHASES

The Berry phase can in principle be defined for any Hamil-
tonian H(¢) which depends periodically on a parameter ¢.”®
If |GS(¢)) denotes a single-valued ground state of H(¢), the
Berry connection is defined by A(¢) = (GS(¢)|941GS(¢)),
and the Berry phase is the integration of the Berry connection
over aloopiy = gf A(¢)d¢. A few years ago, Hatsugai'® has
shown that one can detect the presence of a singlet on a given
bond of an antiferromagnet by calculating the Berry phase
associated with a twist of the transverse component of the
spin-spin interaction on this bond:

SES; + 878> 78S, +eS ST )

In a VBS state, the Berry phase is related to the number Ny of
singlets on the bond by

y = Ny  (mod 2r). 3)

This quantization is protected by time-reversal symmetry.
However, if the gap closes on the path, |GS(¢)) is not well
defined anymore and the Berry phase takes a random value.
In this case, we say that the Berry phase is undefined. This
happens in particular at quantum phase transitions since in
that case the gap closes at ¢ = 0.

This criterion has been tested on dimerized spin chains
with larger spins,”! which undergo a series of quantum phase
transitions upon increasing the dimerization,”” and indeed the
Berry phase jumps between O and m at each transition, in
agreement with the interpretation of the phases in terms of
valence-bond singlets.

III. FULLY FRUSTRATED SPIN-1 LADDER WITH
BILINEAR-BIQUADRATIC INTERACTION

To get some insight into which Berry phases might be useful
in the investigation of spin ladders, we start with a model whose
phase diagram is known exactly, namely the fully frustrated
spin-1 ladder with bilinear and biquadratic interactions on the
rungs defined by the Hamiltonian:

H =J Z(Si,l +8Si2) - (Siv1.1+Sit12)

+J0 Z [cosa(S;1 - Sin) +sina(S; | - Si2)*]. (4)
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FIG. 1. (Color online) Phase diagram of the frustrated spin-1
two-leg ladder defined by the Hamiltonian (4) with the convention
Jy = Jcosf and J, = J sinf. The bilinear coupling along the rung
is equal to J; cos« and the biquadratic one to J, sin«. Bold (red)
lines are the exact phase boundaries. In the light blue regions
Yrung = Viwist = 0, while in the light red region Yng = Viwiss = 7. In
the white region, the rung Berry phase is undefined. For the twist
Berry phase, the region where it is undefined is much smaller. Its
extent is comparable to the thickness of the line which represents the
exact boundaries (see Appendix C).

The total spin on each rung commutes with the Hamiltonian
and is therefore a conserved quantity. The energy of this Hamil-
tonian is minimal when the total spin is the same on all rungs,
and accordingly the ground state can be effectively described
either as a product of singlets on the rung, or as a spin-1 chain,
or as a spin-2 chain. For the singlet phase, the ground state
energy per bond is given by Eg = J (—2cos« + 4sina), for
the triplet phase by Er = J,(—cosa + sina) 4+ JyEy, and
for the quintuplet phase by Eyp = J (cosa + sina) + Jj Es,
where E; ~ —1.401% and E, ~ —4.761%° are the ground state
energies per site of the S = 1 and S = 2 Heisenberg chains
in units of the coupling constant. Using these energies, we
determined the exact phase diagram as a function of € and o
(see Fig. 1). It consists of three phases with, respectively, total
spin 0, 1, or 2 on every rung. Note that the intermediate phase
with spin 1 on each rung is not stabilized in the absence of
a biquadratic interaction, so that we had to include one to be
able to discuss this phase.

To test which Berry phases are most appropriate to detect
such phase transitions, we have calculated various Berry
phases corresponding to one or several simultaneous local
twists, and two of them turned out to be relevant, namely the
twist and rung Berry phases. The twist Berry phase is obtained
by introducing the same local spin twist as described by Eq. (2)
on all couplings between a pair of rungs. The rung Berry phase
is obtained by introducing a local spin twist on one rung, both
in the bilinear and in the biquadratic coupling. A pictorial
representation of these Berry phases is given in the insets of
Fig. 1. A red arrow represents a local twist on one bond.

As shown in Fig. 1, both Berry phases are equal to 7 in
the spin-1 phase and to O in the spin-O and spin-2 phases,
up to some region shown in white where they are undefined.
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These values of the Berry phases can be easily explained by
the valence-bond singlet picture. First of all, we expect both
Berry phases to be zero in the singlet and quintuplet phase.
Indeed, the singlet phase can be effectively represented by
two spin-1/2 singlets on each rung and no singlet on the legs
or diagonal bonds, while the quintuplet phase is adiabatically
connected to a phase which contains singlets on each bond of
the leg or on each diagonal bond and no singlet on the rung.
Both lead to an even number of singlets on the rung and on the
bonds between two rungs, leading to 0 rung and twist Berry
phases. By contrast, the triplet phase contains one singlet on
the rung, leading to a w rung Berry phase, and one singlet on
one of the legs or diagonal bonds, which gives rise to a twist
Berry phase of 7.

Note however that the rung and twist Berry phases are not
equivalent a priori. In fact, while the region where the rung
Berry phase yrung is undefined is rather large, the region where
the twist Berry phase Y is undefined is very small and
cannot be seen at the scale of the graph. This means that the
finite size effects for the twist Berry phase are much smaller
than for the rung Berry phase which, as we shall see in the
context of nonfrustrated spin ladders, seems to be a general
property of the rung and twist Berry phases. So the fact that,
up to the small regions where they are undefined, the rung
and twist Berry phases lead to the same phase diagram is not
a trivial result, and as we shall see, it does not carry over to
nonfrustrated ladders.

IV. FROM DIMERIZED SPIN CHAINS TO
NONFRUSTRATED LADDERS

A. Berry phases

Next, we turn to the investigation of a model which
interpolates between a spin-S chain and a standard two-leg
ladder (see Fig. 2). This system is defined by the following
Hamiltonian:

H = JLZSI‘,] -Sin

p |
+ 32 YO+ (=D (1 = )i - Sisre

i a=I1,2
&)

In the limit § = O the system is a dimerized chain and in the
limit § = 1 a nonfrustrated ladder.

We have calculated the rung and the twist Berry phases of
this model for § = 1/2, 1, 3/2, and 2 for systems with up to
24,12, 12, and 8 sites, respectively. For the rung Berry phase

FIG. 2. (Color online) Sketch of the dimerized ladder that
interpolates between the bond-alternating chain (6 = 0) and the
two-leg ladder (6 = 1). Blue and red arrows represent the ways to
introduce the local twists corresponding to the rung and twist Berry
phases.
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and for § = 1/2, we have also performed DMRG calculations
up to 100 sites (see Appendix C). The results are summarized
in Fig. 3. In these phase diagrams, the regions where the twist
Berry phase is equal to 7 are shown in light red, while those
where the rung Berry phase is equal to & are shown in light
blue. Remarkably enough, the phases defined by rung and twist
Berry phases are no longer equivalent, except close to the limit
of dimerized chains. That the phases have to be the same in the
case § = 0, i.e., for dimerized chains, is clear. Indeed, the rung
and twist Berry phases are local phases on neighboring bonds
on a chain in that case, and, according to the valence-bond
picture, they carry complementary information and must lead
to the same transitions. Within the precision of our numerical
results, this remains true only up to some critical value beyond
which the two boundaries separate. This critical value seems to
decrease for higher spin. It is given for small spin by §. ~ 0.4
for S$ =1/2 and §, = 0.2 for § = 1. For § < §., the system
is apparently topologically equivalent to the dimerized chain.
Beyond that value, the boundaries become progressively very
different, and for the standard ladder at § = 1, the difference
becomes qualitative: The rung Berry phase still undergoes the
same number of transitions as for the dimerized chain, while
the twist Berry phase does not undergo any transition in the
range 6 € (0,7 /2].

Before embarking on the physical interpretation of these
results, let us make a few additional comments. First of all,
a ladder with ferromagnetic rung coupling is equivalent to
a 2§ Haldane chain. The Berry phase of such a chain is 0
if 25 is even and & if 25 is odd. This region corresponds
in our case to 6 < 0. For half-integer spins, the twist Berry
phase is equal to r along the line 6 = 0, except at (25 + 1)/2
points where it is undefined. For integer spins, it is zero on
the line 6 = 0, except at S critical points where it is again
undefined.

Besides, as already mentioned in the case of the fully
frustrated ladder, the twist Berry phase has smaller finite size
effects than the rung Berry phase. As an example, we show the
finite-size scaling for twist and rung Berry phases at § = 0.4 in
Fig. 4. For standard ladders (6 = 1), the Hamiltonian becomes
invariant under a translation of two sites, i.e., of one rung,
which is not the case for § < 1. The unit cell therefore contains
only two sites and not four, and the number of unit cells can be
both even or odd. There is a strong even-odd effect, but taking
into account only odd or only even system sizes leads to the
same critical point in the thermodynamic limit.

B. Twist Berry phase, gap closing, and edge states

For dimerized chains, the phase transitions at which
the Berry phases change are known to be quantum phase
transitions with a gap closing. As a first step towards the
interpretation of the results of the previous section, we have
calculated with DMRG the gap in the (8,6) plane for § = 1/2
and S = 1, and we have mapped out the phase boundaries at
which the gap closes. For § = 1/2 the points where the bulk
gap closes were obtained from a finite-size scaling analysis of
systems with up to 150 sites. For the S = 1 case we show the
results for ladders with up to 90 sites. We kept up to 1000 states,
and with this number of states the energy and the gap were
well converged. As seen in Fig. 5, the boundaries defined by
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FIG. 3. (Color online) Phase diagrams of the spin-S dimerized ladder for S = 1/2, 1, 3/2, and 2 as a function of 6 with the convention
Ji = Jsinf and J; = J cos§. The parameter § varies from O (dimerized chain) to 1 (two-leg ladder). The rung Berry phase is equal to 7 in
the light (blue) regions and to 0 elsewhere, while the twist Berry phase is equal to 7 in the dark (red) regions and to 0 elsewhere. The integers
0, 1,... correspond to the number of valence-bond singlets on the rungs according to the valence-bond interpretation of the dimerized chains.
The phase boundaries are indicated by dots when they were obtained by a finite-size analysis, and by colored lines when they were obtained
with a single system size. The number of sites of the largest system reached for S = 1/2 is N = 24 for twist Berry phase and N = 100 for the
rung Berry phase, while for § = 1, S = 3/2, and S = 2 the largest number of sites is N = 12, N = 12, and N = 8, respectively, for both rung

and twist Berry phases.

the gap closing are consistent with those defined by the twist
Berry phase, and not with those defined by the rung Berry
phase. This is particularly clear for spin 1/2, where DMRG

0.25 0=04 0.30 0=1
even
0.24 ’Yrung 0.28 ’Yrung
0.23
& 026
> >
0.22
0.24
02t o, st Vring
0 0.05  0.10 0.22 005  0.10
1/N 1/N

FIG. 4. (Color online) Examples of finite-size scaling of the Berry
phase transitions of the spin-1/2 ladder as a function of the inverse
number of sites. Left panel: Critical 6 for the twist and rung Berry
phases in the ladder with dimerization parameter § = 0.4. Right
panel: Critical 6 for the rung Berry phase in the standard ladder
8 = 1 with even and odd numbers of rungs. The results have been
fitted with a polynomial in 1/N.

leads to a very precise boundary for the gap closing, but this is
also quite clear for spin 1 for the left boundary, and we expect
this to be true for larger spin as well.

From these results we conclude that changes in the twist
Berry phase signal quantum phase transitions at which the
gap closes. The big advantage of the twist Berry phase in
investigating such phase transitions is that the results are
already very accurate for small systems. The twist Berry
phase method is in fact related to a level crossing analysis
with twisted boundary conditions, a method called level
spectroscopy and known to give accurate results already for
small system sizes.>!3?

Edge states are another characteristics of valence-bond
solids. In the spin-1 chain, it has indeed long been known that
edge states appear in finite chains®*3-3> with open boundary
conditions, effective spin-1/2 degrees of freedom located at
the ends of the chains building a singlet, and a triplet—the
Kennedy triplet®—whose energy become degenerate in the
thermodynamic limit.

In the present case, edge states are expected to appear if we
consider systems with open boundary conditions and vertical
edges, and again extensive numerical simulations for spin 1/2
and spin 1 have shown that the boundaries defined by changes
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FIG. 5. (Color online) Upper panel: Phase diagrams of the spin
1/2 and spin 1 dimerized ladders. The twist Berry phase is equal to
7 in the dark (red) region and to O elsewhere. The blue circles denote
points where the system is gapless. For S = 1/2 the critical values
of 6 are the result of a finite-size analysis of systems with up to 150
sites, while for § = 1 they correspond to a system with 90 sites. The
integers in each phase indicate the number of low-lying excited states
in the subspace S7, = 0 for a dimerized ladder with open boundary
conditions. Lower panel: Low-energy spectrum of the spin § = 1/2
dimerized ladder at & = 0.2 and § = 0.3 (left) and of the S =1
dimerized ladder at & = 0.2z and § = 0.1 (right) in the subspace
Sz =0.

tot

in the edge-state structure correspond to those where the twist
Berry phase changes between 0 and 7. For spin S = 1/2, the
region where there are low-lying triplet excitations coincides
with the region where the twist Berry phase is Yiwist = 7.
Edge states disappear at the line where the twist Berry phase
changes from 7 to 0. This is illustrated in the bottom left panel
of Fig. 5, where we show the gap of low lying excited states in
the sector S¢,, = 0 for different system sizes for two different
points in parameter space. Before the transition, at § = 0.3,
6 = 0.2w, we have one edge state. After the transition, at
6 =0.3,0 = 0.257, we have no edge state anymore.

In the spin-1 case, the valence-bond picture predicts that,
in the limit of small rung coupling and small §, there are
effective spins 1 at the boundaries of the chain, leading to
one low-lying quintuplet and one low-lying triplet excitation.
Increasing the coupling on the rungs leads to a different
valence-bond structure that leaves effective spins 1/2 at the
end, leading to a low-lying triplet excitation. Increasing further
the rung coupling, singlets appear on the rung, and all edge
states disappear. These results are confirmed by the case shown
in the bottom right panel of Fig. 5: We have two edge states
before the transition at § = 0.2, # = 0.1x, and only a single
edge state after the first transition at § = 0.2, 0 = 0.27.
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C. Rung Berry phase, crossovers, and impurity healing

Since the rung and twist Berry phases define different
regions in parameter space, and since the twist Berry phase
keeps track of the quantum phase transitions at which the gap
closes, the next step is to investigate the physical implications
(if any) of the change of rung Berry phase. In the standard
ladder we observe no change in the twist Berry phase when
increasing 6, except at the gapless point & = 0 for half-integer
spins (see Fig. 3). This has to be contrasted to the rung Berry
phase which changes 2§ times in the interval (0,77/2]. So
the transitions detected by the rung Berry phase cannot be
associated with real quantum phase transitions. Note that the
transition at 6 = 0.267 for spin-1/2 ladder has already been
reported in Ref. 36 in the context of an investigation of the
frustrated spin-1/2 ladder with four-spin ring exchange. Note
also that this transition does not show up in the string order
parameters that distinguish the phases with ferromagnetic and
antiferromagnetic rung couplings.>*~%

To further confirm the absence of phase transition, we have
investigated the appearance of edge states in the ladder with
open boundary conditions. We have considered two different
types of open boundary conditions: vertical and diagonal
edges (see Fig. 6). In the strong rungs limit, we expect to
see low-lying excitations in the ladder with diagonal edges,
since spins at the boundaries are isolated, while the boundary
spins in the ladder with vertical edges are coupled and do
not form a Kennedy triplet.’’” What we observe by going to
sufficiently large system sizes is that these edge states remain
present down to 6 = 0. As shown in Fig. 6 for both weak
and strong rung coupling, the system has excitations which
decay exponentially fast with the system size. These results
are in agreement with the absence of a real phase transition.
Fitting the low-lying excitation spectra with an exponentially
decaying function, we extracted the correlation length as a
function of the rung coupling. Usually, at a gapless phase
transition, the length scale diverges, however in our case there
is no divergence except at the critical gapless point 6 = 0.
This means that the Berry phase change at 8 = 0.267 signals
at best a crossover, but not a real quantum phase transition, as
already noted in another context.?®

Coming back to the general spin-S case, the fact that the
rung Berry phase undergoes 25 changes at values that evolve
very smoothly from the dimerized chain limit suggest that
these changes correspond to crossovers between regions with
different values of the total spin of the rungs, as in the case
of the spin-1 fully frustrated ladders, or equivalently with
different numbers of valence-bond singlets on the rungs. To
confirm this picture, it would be nice to find a way to turn these
crossovers into real phase transitions.

To achieve this we first note that the change of rung Berry
phase corresponds to a level crossing, hence to a real phase
transition, for a system with a twist ¢ = w imposed on one
rung (see Appendix A for a discussion of the location of the
singularities that give rise to changes of the rung and twist
Berry phases). This is not fully satisfactory because imposing a
twist ¢ = 7 on a bond is equivalent to changing the sign of the
coupling of the x and y components of the spin-spin interaction
JE . and J . while leaving that of the z component JZ,
unchanged, and this is not physically relevant, at least for
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FIG. 6. (Color online) (a) Low energy spectrum of the spin-1/2 ladder with vertical edges (diamond symbols) and diagonal edges (star
symbols) for two values of the rung coupling: & = 0.1z (green) and & = 0.3 (blue). (b) Correlation length as a function of 6 deduced from
the exponential scaling of the edge state gap for a ladder with diagonal edges. Inset: Sketch of clusters with vertical and diagonal edges.

quantum magnets where the spin-spin interaction is, to first
approximation, isotropic in spin space. It would be physically
more relevant to change the sign of JZ , as well.

We were therefore led to study the ladder with one
ferromagnetic bond Jpong < 0. The energy gap between the

ground state and the first excited states for S = 1/2and S = 1

are presented in Fig. 7. Quite remarkably, we have found that
for any Jyong < O there exist 25 gapless lines, which indicate
transitions between states with different total spin, ranging
from 0 for weak rung coupling to 2S for strong rung coupling.
So, a spin-S ladder indeed undergoes a series of 25 phase
transitions as a function of the rung coupling provided one rung
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FIG. 7. (Color online) Upper panels: Energy gap between the ground state and the first excited state for regular antiferromagnetic spin-1/2
and spin-1 ladders with one ferromagnetic rung Jyonq With the convention J;, = Jsin6 and J; = J cos 6. The white circles show the critical
lines along which the system is gapless. The limit Jyona/(Jbonda — J1) = 1 corresponds to replacing one rung by a spin-2S impurity. The color
bar on the right shows the values of the energy gap in units of J. Lower panels: Interpolation between a conventional twist of the transverse
component of the spin-spin interaction on one rung (J¢,,/J1 = 1) and a ferromagnetic rung (J¢,/J1. = —1). The blue lines are the critical
lines where the systems are gapless. The boundary conditions are periodic. The results were obtained with 20 sites for § = 1/2 and 8 sites for

S=1
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TABLE I. Critical values of 8 = arctan(J, /J}) for § = 1/2 and
S =1 deduced from the rung Berry phase, or associated with the
introduction of a ferromagnetic rung or of a spin-2S impurity.

Berry phase FM rung 2§ impurity
Joomy = —J1 Joond = —J 1 Jbond = —00
Jlj()nd = Jl
S=1/2 0.2647 0.3247 0.2357
S=1 0.2427 0.3107 0.227
0.3707 0.3857 0.327

is kept fixed and ferromagnetic. The critical values obtained
for _Jb)cor)lli = Jlfond =Ji, Jvond = —J 1, and Jponqg = —00 are
summarized in Table I.

To check whether these phase transitions are related to the
change of Berry phase, we have followed the level crossing
observed with a twist ¢ = m when changing the z component
of the spin-spin interaction from 1 to —1 (see Fig. 7), and
indeed there is a smooth evolution between them.

In the limit of a very strongly ferromagnetic bond, the
system becomes equivalent to a 2. impurity in a spin-S ladder.
This kind of problem has been studied in the context of spin
chains, and the ability for a system to screen an impurity
and behave as a system without an impurity has been named
healing.® In the present case, the interpretation is that the
healing ability of a spin ladder changes from very weak in
the strong rung limit, with a ground state with total spin 2.5, to
very strong in the weak rung limit, where the impurity is totally
screened and the total spin is equal to 0. This ability is in turn
a consequence of the effective total spin of the rungs. If rungs
are strong singlets, they are unable to couple to a magnetic
impurity, but as they become more and more magnetic, they
can couple to the impurity and finally completely screen it.

So, it appears that the changes of rung Berry phase are
not associated with quantum phase transitions of the bulk
system, but that they signal changes in the nature of the local
wave function of the rungs. These changes are progressive
and are crossovers rather than phase transitions, but they
alter significantly enough the healing ability of the system
to turn these crossovers into phase transitions in the presence
of magnetic impurities.

V. CONCLUSION

In the light of the present results, the Berry phase introduced
by Hatusgai appears as a versatile and subtle tool to investigate
quantum magnets. As we have seen, and as already noticed in
another context,?® a change of Berry phase does not necessarily
imply the presence of a phase transition despite the fact that
it is quantized. When it does signal a phase transition, as for
instance the twist Berry phase for spin ladders, then it is a very
efficient tool: Finite-size effects are small so that accurate
results can already be obtained for small systems, and the
physical interpretation provided by the valence-bond singlet
picture is quite transparent. When it does not signal a phase
transition, then it can reflect subtle aspects of the local physics
of the system, still in connection with the effective number of
singlets on some bonds.
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In the case of spin-S ladders generalized to make a
connection with dimerized spin chains, previously known
results for the spin-1/2 and spin-1 cases have been recovered
by investigating the Berry phase associated with a twist of all
bonds between two rungs, and the simplicity of the method as
compared to other characterizations of these phase transitions
has allowed us to generalize these results to S =3/2 and
S=2.

A rather different, and to a certain extent complementary,
information has been extracted from the Berry phase associ-
ated with the twist of one rung of the ladder. In that case,
the changes of Berry phase are not associated with phase
transitions of the bulk system, but they reflect the effective
local nature of the rungs, with implications for the response of
the system to a local magnetic impurity.

Whether or not a change of Berry phase signals a true
phase transition is of course a very important issue. In view
of the differences between the twist and rung Berry phases
regarding the nature and location of the singularities that lead
to a change of Berry phase (see Appendix A), it is tempting to
speculate that it may be possible in general to relate the nature
of the singularities with the occurrence of a quantum phase
transition. This is left for further investigation however.
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APPENDIX A: BERRY PHASE AND SINGULARITIES

To discuss the origin of the changes of the various
Berry phases, it is convenient to introduce a generalized
modification of the x and y couplings on a bond according
to S;“Sj_ + Sl-_Sj.' — KS;'SJ-_ + K*Si_S;L, where K is an
arbitrary complex number and not just a phase factor. With
this definition, the Berry phase is related to the integral of the
Berry connection along the unit circle in the complex plane
of K, but one can calculate the Berry phase associated with
any contour in that plane. Then, according to a general result
for planar contours,”® the Berry phase will be equal to 0 if the
gap does not close inside or on the contour, it will be equal to
7 if the gap closes at one point inside the contour, and more
generally it will be equal to nw (mod 2) if the gap closes at
n points inside the contour. Since the Berry connection cannot
be defined at a point where the energy gap closes, we call
such a point a singularity. Then the Berry phases studied in the
present paper are completely defined by the number of such
singularities inside the unit circle.

For unfrustrated ladders, and more generally for the model
that interpolates between the dimerized chain and the ladder,
we found that the singularities are always located on the real
axis, i.e., for K real. However, there is a significant difference
between the twist and the rung Berry phases, as shown in
Fig. 8. For the twist Berry phase, there is no singularity for
6 > 0, a singularity appears at K = —1 for § = 0, and it then
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FIG. 8. (Color online) Positions of the level crossings for a § =
1/2 ladder as a function of 6 with the convention J, = J sinf and
Jy = J cos 6. A purely real modification K of the coupling constant
of the x and y components is applied on the two bonds corresponding
to the twist Berry phase (left panel) and on a rung (right panel). The
dashed (red) line corresponds to the ¢ = 7 point on the integration
contour used for the calculation of the Berry phase. The positions of
the singularities on the real axis are represented as gray circles. The
red stars on the left panel corresponds to the inverse of the positions
of the singularity outside the unit circle K,, and coincide within
numerical accuracy with the critical points inside it Kj,.

splits into two singularities, one at Ko, < —1, and one at
—1 < Kj, < 0 such that K, & 1/Ky. By contrast, there is
always a singularity for the rung Berry phase in the parameter
range 0 > 0, and, coming from very negative values at small
0, it simply crosses the point K = —1 at 8 = 0.267. There is
thus a qualitative difference in that case in the way a singularity
appears inside the unit circle between the twist Berry phase,
whose change signals a true phase transition, and the rung
Berry phase, whose change can only be associated with a
crossover. It would be interesting to see if this observation can
be generalized to other situations.
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FIG. 9. (Color online) Energy gap between the ground state and
the first excited state for the fully frustrated spin-1 ladder described
by Eq. (4) for @ = 0.05 7 and 6 = 0.447 with generalized parameter
K applied on the rung. The white circle indicates the integration path
used to compute the Berry phase.
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FIG. 10. (Color online) Phase diagram of the frustrated spin-1
two-leg ladder defined by the Hamiltonian (4) with the convention
Jy = Jcosf and J, = J sin6. The bilinear coupling along the rung
is equal to J, cosa and the biquadratic one to J, sin«. Bold (red)
lines are the exact phase boundaries. In the light blue regions y = 0,
while in the light red regions y = . In the white region, the Berry
phase is undefined. Top panel: twist Berry phase; bottom panel: rung
Berry phase.

APPENDIX B: FINITE-SIZE EFFECTS FOR THE FULLY
FRUSTRATED SPIN-1 LADDER

In the case of the frustrated spin ladder, both Berry phases
turn out to be undefined over a finite portion of the phase
diagram and not at a single line. This is related to the fact that,
instead of isolated singularities, there are gapless lines in the
complex parameter space (see Fig. 9). As long as such a line is
inside or crosses the unit circle, the Berry phase is undefined.

In Fig. 10 we show enlarged versions of the phase diagrams
obtained with the two Berry phases. Both are undefined in
regions close to the boundaries of the true phase transition.
Note however that the twist Berry phase is undefined in a
much smaller region than the rung Berry phase. Moreover,
the true boundaries is always included in the region where the
twist Berry phase is undefined, while for the rung Berry phase
the exact boundaries are sometimes outside this region. This
is very probably a finite size effect.

APPENDIX C: SOME TECHNICAL DETAILS ABOUT THE
NUMERICAL DETERMINATION OF THE BERRY PHASE

The numerical calculation of the Berry phase has been done
following the prescription of Ref. 21. To get well converged
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results, it turned out to be sufficient to discretize the integral
as a sum of 16 terms. However, since one needs the Berry
phase for several parameters, this becomes quite expensive
numerically for large system sizes because, altogether, one
has to diagonalize the Hamiltonian a significant number of
times. Now, as we saw, a change of Berry phase is always
associated with a level crossing along the integration path, and
this level crossing usually appears for simple values of the
twist parameter*” ¢ = 0 or ¢ = x. It is therefore sufficient
to compute the energy of the ground state and of the first
excited state of the system for a single value of ¢, either

PHYSICAL REVIEW B 88, 184418 (2013)

¢ = 0 or ¢ = 7 depending on the system, and to determine
the parameter at which a level crossing occurs, thus saving a
lot of unnecessary calculations. Moreover, this method allows
us to compute the transition point for larger systems with
DMRG. Computing the Berry phase with DMRG would be
difficult because there is no direct representation of the ground
state. However, the level crossing for ¢ = 7 can be computed
for much larger system sizes than the one accessible with
exact diagonalizations. This method was used for example to
establish precisely the boundary of the e = 7 phase for
spin § = 1/2 in Fig. 3.
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