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Introduction

In many design codes for roadway bridges, fatigue design involves
passing a load model over an influence line for a critical location on
the bridge and then determining the resulting nominal stress range.
For fatigue design in the finite-life domain, this stress range is then
multiplied by a damage equivalence factor to account for differences
in the fatigue damage because of the load model and the expected
real traffic. The bridge codes that employ this approach include (but
are not limited to) codes in the United States (AASHTO 2008),
Canada [Canadian Standard Association (CSA) 2011a], Europe
[European Committee for Standardization (CEN) 2002, 2005,
2006], and Switzerland [Swiss Society of Engineers and Architects
(SIA) 2003a, 2003b]. In general, effects of simultaneous vehicle
crossings (that is, because of vehicles following each other closely,
overtaking, or crossing in opposite directions) are not considered in
the calibration of the fatigue damage equivalence factor. Thismay be
appropriate for certain bridge configurations, such as short-span
multigirder bridges, where each girder is influenced by only one lane

of traffic and only one truck is likely to be on the bridge at a time.
On the other hand, for structures such as long-span, box girder
bridges, the effect of simultaneous crossings on the rate of fatigue
damage may be significant. The simultaneous crossing of trucks
on these bridges can result in bigger stress cycles, which do more
fatigue damage than if the trucks cross separately. This can be
explained by the shallow, negative slope of the stress-life (S-N) curve,
which can be shown to result in the stress range size having a much
greater influence on fatigue damage than the number of stress cycles.

With this in mind, the current paper first reviews the fatigue
design procedures in several international codes. A simulation-
based study is then conducted to investigate the effects of simulta-
neous vehicle crossings on the North American damage equivalence
factors for fatigue design in the finite-life domain. This study is
carried out using software developed by the Steel Structures Labo-
ratory (ICOM) at the École Polytechnique Fédérale de Lausanne
(EPFL) in Lausanne, Switzerland, including a traffic simulation
program (WinQSIM), which outputs load effect or stress range
histograms because of simulated real traffic, and a fatigue damage
accumulation program (FDABridge), which uses these histograms
to calculate damage equivalence factors. Based on the results of
this study, recommendations are made for amplifying the North
American damage equivalence factors in cases where the effects of
simultaneous vehicle crossings are expected to be significant.

Background

FatigueVerification according toNorthAmericanCodes

Fatigue verification in AASHTO (2008) consists of verifying that
each detail satisfies

gðDf Þ# ðDFÞn (1)

whereg5 0:75 is the fatigue damage equivalence factor;Df is a live
load stress range because of the passage of the design truck; and
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ðDFÞn is the nominal fatigue resistance. The characteristics of the
design truck are reproduced in Fig. 1(a). To these axle weights,
a dynamic load allowance (DLA) of IM5 0:15 (or 0.75 for deck
joints) is applied for fatigue verification; that is, the static vehicle
load is multiplied by (11 IM). The nominal fatigue resistance is

ðDFÞn ¼
�
A
N

�1=m
$ 0:5×ðDFÞTH (2)

where

N ¼ 365×75×n×ðADTTÞSL (3)

In Eqs. (2) and (3), A and m are constants defining the vertical
position and slope of the design S-N curve for the detail category of
interest; n is the number of stress cycles per truck passage; ðADTTÞSL
is the single-lane average daily truck traffic (ADTT); and ðDFÞTH is
the constant amplitude threshold, below which the fatigue life is
effectively infinite. The value n is given in a table for a limited
number of cases and depends on the location and bridge span.

Typically, n5 1:0 or 1:5 for spans greater than 12.2 m (40 ft) or
2.0 for spans less than 12.2 m (40 ft). In the absence of better in-
formation, ðADTTÞSL is taken as the average daily truck traffic per
direction (ADTT) times p, where p is taken as 1.0, 0.85, or 0.80, for
one lane, two lanes, and three or more lanes, respectively.

For the fatigue verification of steel structures, the constantsA and
ðDFÞTH are tabulated for detail categories from A to E9, and m is
assumed to be 3.0 for all detail categories. For the fatigue design of
aluminum structures, on the other hand, m varies from 3.42 to 6.45.

The basis for g5 0:75 is provided in Moses et al. (1987), where
a fatigue design truck is proposed with a gross vehicle weight
(GVW) that is 0.75 times that of the code truck for strength design.
This factor was determined by taking the GVW histogram from
a 27,513-truck survey (Snyder et al. 1985) and calculating an
equivalent weight of the fatigue design truck—that is

Weq ¼
�P

fi ×Wm
i

�1=m
(4)

where fi 5 frequency associated with GVW Wi. This formula is a
rearrangement of the well-known Miner’s sum; m5 3:0 is assumed
in the calculation of Weq.

The fatigue verification in CSA (2011a) bears strong resem-
blance to the fatigue verification in AASHTO (2008), with the
following notable differences:
• A different design truck is employed [see Fig. 1(b)];
• ADLAof 0.25 ormore is employed, depending on the number of

axles considered;
• A fatigue damage equivalence factor of 0.52 is employed in most

cases (0.62 is used for decks) rather than 0.75 [CSA (2011b)
provides a justification for this value,which considers differences
in the U.S. and Canadian traffic, code trucks, and DLAs]; and

• The S-N curve slopes, m, for the aluminum detail categories
ranges from 3.45 to 6.85, based on ADM 2010 (Aluminum
Association 2010). Also, for aluminum structures, the fatigue
damage equivalence factor varies from 0.54 to 0.65, depending
on the S-N curve slope.
In both codes, g is independent of the bridge span and traffic

volume. The fatigue resistance is a function of the detail category and
the expected number of cycles during the 75-year service life. For the
design of a girder that is affected by loads on several lanes, little
guidance is provided. An engineer might choose to design using
ADTT ×1 (for unidirectional traffic) or ADTT ×2 (for bidirectional
traffic) instead of ðADTTÞSL in Eq. (3). This would account for the
effect of the traffic in the other lanes, but not the effect of having
multiple trucks on the bridge at the same time.

In a recent study wherein the North American fatigue damage
equivalence factors for aluminum were calibrated (Coughlin and
Walbridge 2011), the effects of simultaneous vehicle crossings were
considered using a relatively simple approach. Amodel proposed by
Nowak (1993) was employed, wherein it is assumed that every 15th
truck crosses the bridge side by side with another truck. For every
150th truck, it is assumed that there is a 50% weight correlation
between the two trucks, and for every 450th truck, it is assumed that
the two trucks are fully correlated. The remaining trucks are assumed
to cross the bridge one at a time. Using this model, simultaneous
crossing events were simulated by assuming that the two crossing
trucks have their front axles lined up and cross in the same direction.
Based on this study, it was recommended that an increase of ∼8 to
20% in g be considered, for m5 3:0 to 6:85.

Fatigue Verification according to European Codes

Fatigue assessment in CEN (2002, 2005, 2006) consists of verifying
the following:

Fig. 1. Fatigue design trucks used by various codes: (a) AASHTO
design truck (data from AASHTO 2008); (b) CAN/CSA-S6 design
truck (data from CSA 2011a); (c) CEN 1991–2 fatigue load model
(data fromCEN 2002); (d) SIA 261 fatigue load model (data from SIA
2003b)
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gFf ðF2 × l ×DsFLMÞ#Dsc

gMf
(5)

where gFf and gMf 5 partial safety factors for fatigue loading and
fatigue strength;F2 5 dynamic impact factor;DsFLM 5 stress range
because of the fatigue load model [see Fig. 1(c)]; andDsc 5 a stress
range representing the fatigue strength for the detail category. This
reference stress range corresponds with the ordinate of the design
S-N curve at N5 2×106 cycles (not at the number of cycles asso-
ciated with the service life). The effects of traffic volume and service
life are contained rather in the damage equivalence factor, l, on the
load effect side of Eq. (5). This damage equivalence factor is
a product of several partial factors, li—that is

l ¼ l1 × l2 × l3 × l4 #lmax (6)

where l1 accounts for the influence line and span effects; l2 ac-
counts for the traffic volume; l3 accounts for the design life
(l3 5 1:0 for 100 years); and l4 accounts for the effect of traffic in
lanes other than lane 1 (that is, the slow or far-right-hand lane). lmax
accounts for the constant amplitude threshold, below which infinite
fatigue life is assumed, similar to the 0:5×ðDFÞTH term in AASHTO
(2008). Thus, l1, l2, and l3 replace g and N in the North American
codes. l1 varies linearly from 1.85 to 2.55 for details within the span
or from 1.7 to 2.2 according to a two-part linear function for details
near supports [see Fig. 2(a)].l1 depends on a critical length, which is
equal to the span for simply supported structures, for example. The

l4 factor, which does not have a counterpart in the North American
codes, is calculated as

l4 ¼
"
1þ N2

N1
×
�
h2 ×Qm2

h1 ×Qm1

�5

þ N3

N1
×
�
h3 ×Qm3

h1 ×Qm1

�5

þ . . .

#1=5
(7)

where Ni is the annual number of trucks in lane i; Qmi is the
equivalent gross weight of the trucks in lane i [which is calculated
using Eq. (3) with m5 5 assumed]; and hi is the transverse load
distribution factor for lane i (always positive).

In CEN (2005), the S-N curves for most steel details have two
slopes, rather than one. Below N5 5×106 cycles, m5 3:0. Beyond
N5 5×106 cycles, m5 5:0. The constant amplitude fatigue limit
coincides with the ordinate of the S-N curve at N5 5×106 cycles.
Cycles with stress ranges below the ordinate at 1×108 cycles (that is,
the cutoff limit) are ignored.

Fatigue verification in the Swiss codes (SIA 2003a, b) bears
strong resemblance to the Eurocode fatigue verification, with the
following notable differences:
• A different fatigue load model is employed [see Fig. 1(d)]; and
• The damage equivalence factors, l1 and l2, have been combined

into a single factor, l1, which accounts both for bridge geometry
and traffic volume effects. This factor is determined by refer-
encing a set of curves, which vary smoothly as a function of the
critical length and roadway category [see Fig. 2(b)].
In a recent study by Maddah and Nussbaumer (2012), WinQSIM

and FDABridge were used to evaluate the effects of simultaneous

Fig. 2. Damage equivalence factors, l1, in (a) EN (2002) and (b) SIA (2003b), and single-crossing simulation results for (c) U.S. traffic and
(d) Swiss traffic
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vehicle crossings using Swiss traffic data. As a result of this study,
a new single-axle fatigue load model is proposed, in conjunction
with a new method for calculating the critical length, based on the
area under the influence line. In addition, it is proposed that Eq. (7) be
replaced with the following equation:

l4 ¼
"
ð12 cÞ þ

�
N2

N1
2 c

�
×
�
h2 ×Qm2

h1 ×Qm1

�5

þ c ×
�
1þ h2 ×Qm2

h1 ×Qm1

�5#1=5
(8)

where c 5 simultaneous crossing rate, calculated as the number of
simultaneous crossings divided by the traffic volume in lane 1.
Eq. (8) is derived based onMiner’s sum, and assuming that the stress
ranges in the two lanes can be added during simultaneous crossings.

Based on the analysis of the Swiss traffic, a maximum crossing
rate of c5 20% is proposed for bidirectional highway traffic. For
unidirectional two-lane highway traffic, a maximum crossing rate
of c5 2:5% is proposed when 20% of the trucks are in lane 2. It
should be noted that c is an effective crossing rate, which accounts
for the effects of interlane simultaneous crossings because of ve-
hicles overtaking (either side by side or staggered) or crossing in
opposite directions.

Effects of Influence Line and Bridge Span on Fatigue
Damage Equivalence Factors

In calibrating the damage equivalence factors in SIA (2003a, b) and
Coughlin and Walbridge (2011), influence line and bridge span
effects were seen to introduce a high degree of scatter. This is shown
in Figs. 2(c and d) for two illustrative cases where the simulation
results are compared with code values for several influence lines
(plotted in Fig. 3). Although the design provisions in the various
codes differ inmany respects, it is worth noting that no code has been
entirely successful in eliminating this important source of scatter.

Parametric Study of Simultaneous Vehicle
Crossing Effects

Given this knowledge of the North American and European code
provisions, the main goal of the current study was to assess the

effects of simultaneous vehicle crossings on the North American
damage equivalence factors for fatigue design in the finite-life do-
main. In the following paragraphs, a parametric simulation-based
study carried out to achieve this goal is described.

WinQSIM and FDABridge Software Overview

TheWinQSIM software, written in the programming language C#,
is based on the probabilistic traffic model developed by Bailey
(1996). Its development is further discussed in Meystre and Hirt
(2006). The required inputs include a probabilistic traffic model, the
number of traffic lanes and the travel direction for each lane, in-
fluence lines for each lane, percentages of the total traffic and trucks
in each lane, and the traffic volume (V) and speed (s).

The probabilistic traffic model consists of a (user-defined) number
of truck types, along with beta distributions for the GVWs, axle
weights, and spacings for each truck type. The traffic modeling
consists of a Monte Carlo simulation, where parameters for each
successive truck are chosen and the vehicle positions are shifted
in a stepwise manner. Stress cycles are counted and recorded in a
stress range histogram using the rainflow cycle counting method.

Both congested and free-moving conditions can bemodeled. The
distance between vehicles for the free-moving traffic condition is
given by a shifted exponential probability distribution (Bailey 1996).
The probability density function (PDF) for this distribution is as
follows:

fDðdÞ ¼ V
3600×s

×exp
�
2 V
3600×s

×ðd2 5:5Þ
�

(9)

where V 5 traffic volume in vehicles per hour; s5 traffic speed in
meters per second; and d 5 distance between vehicles in meters.
This approach assumes full independence of the spacing between
subsequent vehicles. Nontruck traffic can be included in the analysis.
The stress ranges because of automobiles are assumed to be neg-
ligible. Thus, the main effect of automobiles is to influence the
spacing between the trucks. The program can be run with or without
a graphical display of the vehicles passing over the bridge (see
Fig. 4).

The FDABridge program requires as input the following: a real-
traffic stress range histogram, the fatigue load model geometry, and
the shape of the design S-N curve. The damage equivalence factor,
l, is then obtained by shifting the S-N curve vertically until the
cumulative damage index based on Miner’s sum equals 1.0 for the
real-traffic stress range histogram. l is then calculated by dividing
the stress range at 2×106 cycles for this S-N curve by the stress
range because of the passage of the fatigue load model (Hirt et al.
2006). For calculation of the North American g factors using the
FDABridge software, the following conversion formula is needed:

Fig. 3. Influence lines for different locations on (a) one-span; (b) two-
span; and (c) five-span bridges Fig. 4. Graphical display from WinQSIM traffic simulation program
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g ¼ l�
n ×Ntr,sim

2 × 106

�1=m
(10)

whereNtr,sim 5 number of trucks passing over the bridge during the
simulation period. This factor accounts for the fact that the North
American codes employ a fatigue strength based on the expected
number of cycles during the service life, rather than a characteristic
stress range at 2×106 cycles.As discussed inCoughlin andWalbridge
(2011), the g factor is independent of N if the design S-N curve has
only one slope. A large enough analysis period is needed though to
obtain a representative sample of the real-traffic damage. On this
basis, Ntr,sim 5 2×106 was used in the simulations performed for the
current study. Similarly, the DLA has no influence on g, if it
is assumed to be the same for both the fatigue design truck and the
real traffic.

Probabilistic Traffic Models

The truck databases used to construct the probabilistic traffic models
are the same ones used to calibrate theg factors in the current U.S. and
Canadian codes. Specifically, the database from Snyder et al. (1985)
was used to model the U.S. traffic, and a 10,198-truck database, based
on weigh station measurements conducted throughout the province of
Ontario in 1995, was used to model the Canadian traffic (CSA 2007).
These databases are now arguably outdated. However, the authors are
aware of no newer publicly available databases as large (in terms of
size and regional coverage) and containing similar axle weight and
spacing data. Their use also makes it possible to validate the results by
comparison with the current g factors.

The Snyder et al. (1985) database included 27,513 trucks. Of
these, 25,901 could be categorized into one of 11 truck types (see
Table 1). The database contains only GVW histograms for each
truck type. Thus, the axle spacing and distribution ofweight between
each axle had to be treated as deterministic parameters. The per-
centages of each truck type in the database and the GVWhistograms
for each truck type were known, on the other hand, and could be
used to select the truck type andGVWprobabilistically in theMonte
Carlo simulation.

The CSA (2007) database included axle weight and spacing data
for each measured truck. Thus, it was possible to model these
parameters probabilistically for the Canadian traffic simulations. To
define the probabilistic traffic model, a set of truck types must be
established. As a starting point, the same 11 truck types as defined by

Snyder et al. (1985) were used, and ranges for each axle weight
and spacing were defined, so that trucks could be slotted into one
of these truck types. Care had to be taken in the establishment of
these ranges, so that a truck could not be slotted into more than
one type. Using this approach, a significant number of trucks
remained uncategorized. Thus a number of additional truck types
were added, with the goal of increasing the number of classified
trucks to at least 90% of the total database. In the end, one 3-axle,
three 4-axle, ten 7-axle, and ten 8-axle truck types were added.
Even though the 7- and 8-axle trucks comprised less than 15% of
the database, a large number of truck types were needed to
categorize them because of the diversity in the axle config-
urations [see Fischer (2012) for further details]. For illustrative
purposes, Fig. 5 shows samples of the statistical analysis per-
formed for one truck type to establish the probabilistic traffic
model.

Traffic Flow Modeling

Traffic flow rates on bridges can be highly site and time dependent.
Because the goal of the study was to come up with a generic model for
considering simultaneous vehicle crossing effects, the flow conditions
were initially varied over awide range, to identifyworst-case scenarios.

The only influence of nontruck traffic (that is, automobiles) on the
analysis results was seen to be an increase in the spacing between the
trucks. This effect was seen in preliminary studies to be similar
to reducing the flow rate in a truck-only simulation. The percentage of
trucks in the traffic is also highly site and time dependent. Thus, to
produce generic results, the simulations were performed by simulating
truck-only traffic. The reported flow rates are therefore truck flow rates.
These rates are varied over a wide range, to capture the peak damage
equivalence factor. The following truck flow rates were modeled:
0:047, 0:1, 0:2, 0:5, 0:75, and 1:0 vehicles=s. (Note: The flow rates
in this paper are all per lane.) The lowest flow rate was chosen to
ensure no simultaneous crossings for a one-lane bridge with a length
of 460 m (the maximum investigated bridge length). A practical
upper bound on the flow rate for freeways is 0:67 vehicles=s
(2,400 vehicles=h) according to Transportation Research Board
(TRB 2010). Simulations under the higher flow rates were per-
formed, however, to make sure that peak g values were captured.
The vehicle speed, s, was set to 22 m=s ð80 km=hÞ in all simu-
lations. WinQSIM is not able to model traffic flow with variable
speed. Thus, it does not model overtaking or lane changes within
the bridge length.

Table 1. Truck Types Used in U.S. and Canadian Probabilistic Traffic Models

Axle load (%) Axlespacing [m (ft)] Trucks (%)

Truck category Truck type 1 2 3 4 1 2 3 United States Ontario

Two-axle singles SU2 40 60 — — 4.88 (16) — — 12.9 15.6
Three-axle singles SU3 30 70 — — 5.49 (18) — — 6.7 4.7

SU4 0.1
Two-axle semitrailers 2-S1 27 40 33 — 3.66 (12) 9.76 (32) — 3.2 0.3
Three-axle semitrailers 2-S2 23 35 42 — 3.66 (12) 8.54 (28) — 11.1 0.9

3-S1 0.2
Four-axle semitrailers 3-S2 18 45 37 — 4.27 (14) 9.76 (32) — 62.1 44.9

2-S3 0.2
3-S3 16.3

Five-axle/six-axle semitrailers 2-S1–2 17 29 42 12 3.05 (10) 7.62 (25) 7.62 (25) 4.0 0.5
3-S1–2 0.5

Other — — — — — — — — 0.0 15.8

Note: Axle load and spacing values are deterministic values used in U.S. traffic simulations.
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Bridge Modeling

To model a bridge in WinQSIM, influence lines are needed for each
traffic lane. For the current study, the following caseswere investigated
(Fig. 3): bending moment at the midspan for a simple span girder
(ps-m), a two-span girder (p2tr-m), and a five-span girder (p5tr-m);
support reaction for a simple span girder (ps-r); and negative bending
moment at themidsupport for a two-spangirder (p2tr-a). The following
spanswere considered: 15, 25, 50, and 100m. For thefive-span girder,
the outer spans lengths were 80% of the interior spans.

The following lane configurations where investigated: a one-
lane bridge, a two-lane bridge with unidirectional traffic, and a
two-lane bridge with bidirectional traffic. For the two-lane unidi-
rectional bridge, a worst-case scenario of 50% of traffic in each lane
was modeled. In addition, it was conservatively assumed that the
truck GVW histograms are the same in both lanes, even though it is
recognized that heavier trucks tend to travel in lane 1 (O’Brien and
Enright 2011). For the two-lane bidirectional bridge, equal traffic
volumes were assumed in each direction.

The contribution of each traffic lane to the fatigue damage de-
pends on the degree to which the bridge is capable of redistributing
loads transversally. For this study, two extreme cases were consid-
ered. In the case of a multigirder bridge with a flexible deck, each
girder will be influenced by only one lane of traffic. Thus, this case is
modeled using the single-lane bridge analysis. The other extreme
would be a very stiff single box girder bridge. In this case, both
lanes would influence the fatigue verification equally—that is,
h1 5 h2 5 1:0. This case is therefore modeled by assuming that the
same influence line applies to both traffic lanes.

S-N Curves

The analyses for the current study were performed assuming an
S-N curve with a single slope of either m5 3:0 (for steel) or
m5 6:85 (the largest m value for aluminum).

Parametric Study Results

Key trends observed in the parametric study output are illustrated
in Figs. 6 and 7, using the U.S. g factor results for illustrative

purposes. Fig. 6 shows g versus truck flow rate curves for two
influence lines (ps-m and p2tr-a) and the four investigated spans. In
Fig. 6(a), results for the one-lane analysis are plotted. These actually
show g decreasingwith an increase in the flow rate for the 15- to 50-m
spans. The reason for this trend is that simultaneous crossings happen
on a one-lane bridge only if the following truck arrives on the bridge
before the leading truck leaves. This may increase the maximum
stress. However, it also decreases the minimum stress, because the
stress does not drop down to zero between trucks. The relative im-
portance of these two effects determines whether g increases as
a result of the simultaneous vehicle crossings.

Fig. 6(b) shows similar results for the bidirectional analysis. In
this case, there is a possibility of having two trucks near the midspan
in adjacent lanes. As a result, the peakg values are higher. In general,
they increase, up to a truckflow rate of ∼0:5 vehicles=s, afterwhich,
they decrease. In Fig. 6(c), results for the p2tr-a influence line show
similar trends, but with much higher peak g values. The reason for
this is that the p2tr-a influence line has a parabolic (rather than
triangular) shape, and two peaks (rather than one). Thus, there is
a greater chance of two trucks being at locations along the bridge
length associated with high stress levels.

Looking at the g values in Fig. 6, it can be seen that for the cases
where simultaneous crossing effects are small, the results are very
close to the code value of 0.75. Results below 0.75 are seen in some
cases for the p2tr-a influence line. This can be explained by the
fact that n steps up to 1.5 for this influence line, whereas n5 1:0
otherwise. The highest observed damage equivalence factor was
1.17 for a 100-m-long bridge, p2tr-a influence line, and flow rate
5 0:5 vehicles=s. It should be noted that the results of the two-lane
unidirectional analysis, with 50% of the total traffic in each lane,
were very similar to the two-lane bidirectional results, and are
therefore not shown. It is expected that these results would fall
between the results presented in Fig. 6 for one-lane and bidirectional
two-lane traffic if a more realistic volume split between lanes were
assumed.

It should also be noted that the g values for the two-lane bi-
directional case are calculated with N based on ADTT ×2 instead of
ðADTTÞSL, as would normally be done for a single box girder bridge.
Thus, the increase in g in this figure is solely because of the effects of

Fig. 5. Sample of statistical analysis of data from CSA (2007) database for 3-S2 truck: (a) GVW histogram; (b) axle weight correlation analysis;
(c) fitting of beta distribution to axle spacing; (d) axle configuration
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simultaneous vehicle crossings, and not simply because a second
traffic lane has been added.

Discussion

Field measurements of traffic flow rate versus speed tend to show
a common trend. As illustrated in Fig. 7(a), the flow rate is the
greatest at a speed S0, which is less than the maximum speed, Sf .
According to theHighway capacity manual (TRB 2010), a practical
limit on the flow rate for two-lane highways is Vm 5 1,700 epc=h,
where epc 5 equivalent passenger cars. Vm 5 2,400 epc=h is
a practical limit for freeways. Trucks and buses have a passenger car
equivalent (PCE) ranging from 1.5 to 4.5, depending on the terrain.
Assuming a typical value of 2.5, a relationship can be plotted

between truck percentage and maximum flow. As shown in
Fig. 7(b), this relationship flattens out as the traffic composition
approaches 100% trucks to a value ranging from 0:19 to 0:27
vehicles=s. Although real-traffic compositions can vary consider-
ably, this number is normally well below 100% trucks. According to
TRB (2010), values of 5 or 12% are typical for urban and rural roads,
and values greater than 25% are considered extreme.

On this basis, the analyzed truck flow rate of 0:2 vehicles=s is
considered in the current study to be representative of a flow rate at
the high end of the plausible range for quantifying the severity of
simultaneous truck crossing effects. Analysis results for the U.S.
traffic simulations are thus plotted in Fig. 8, with truck flow rates
below or equal to 0:2 vehicles=s used to calculate the average and
maximumg curves. Looking at thisfigure, it can be seen that average
g values as high as 0.81 or 0.92 are predicted for the one-lane and
two-lane bidirectional cases, for the 0:2 vehicles=s truck flow rate.
Curves are also plotted in Fig. 8, with g divided by the current code
value of 0.75. The resulting value is essentially an amplification
factor (g2) that can be used to consider the effects of simultaneous
vehicle crossings. This factor can be as high as 1.08 or 1.22 for the
one-lane and two-lane bidirectional cases, for the 0:2 vehicles=s
truck flow rate. Also shown in Fig. 8 is a thick solid line, corre-
sponding to the following equation:

g2 ¼
��

ð12 cÞ þ
�
N2

N1
2 c

�
×
�
Df2
Df1

�m

þ c ×
�
1þ Df2

Df1

�m
�
×
�

N1

N1 þ N2

�	1=m

(11)

with the simultaneous crossing rate varying linearly from c5 0% at
a bridge span of zero, to c5 4:6% for the one-lane case or 13.5% for
the two-lane case at a bridge span of 100 m. Df1=Df2 and N1=N2

are the design stress ranges and traffic volumes associated with the
two load sources—that is, the trucks in lanes 1 and 2 for two-lane
bridges or the leading and following trucks in a one-lane bridge. In
the second case, Df1=Df2 and N1=N2 are assumed to be equal.

Eq. (11) is simply Eq. (8), modified so that (1) the S-N curve
slope,m, can be varied; and (2) it is considered that theg values in the
current study were calculated using ADTT ×1 (for unidirectional
traffic) or ADTT ×2 (for bidirectional traffic) instead of ðADTTÞSL.
[Note: If g is calculated based on ðADTTÞSL, then the N1=ðN1 1N2Þ
term can be removed.] For the special case where the traffic volumes
and stress ranges associated with the two load sources are equal,
Eq. (11) simplifies to

g2 ¼ ½ð12 cÞ þ 0:5×c×2m�1=m (12)

The assumed values selected for c are effective simultaneous
crossing rates, established by trial and error with the goal of
bounding the mean curves for the 0:2 vehicles=s flow rate.

Fig. 9 shows a similar set of amplification factor results based
on the Canadian traffic simulations. Results are shown for m5 3:0
and for m5 6:85 (the maximum value for aluminum). For plotting
these curves, g5 0:52 was assumed for m5 3:0 and g5 0:65 was
assumed for m5 6:85. These results show that the assumed si-
multaneous crossing rates also give good predictions of the average
0:2 vehicles=s amplification factor for the Canadian traffic simu-
lations. They also show that Eqs. (11) and (12) can be extended to
S-N curve slopes other than m5 3:0. The peak values of g2 in this
figure are 1.20 and 1.54 for m5 3:0 and 6:85.

In the previous analyses, the DLAwas assumed to be constant
and equal to the code-specified value for both the fatigue design
truck and the real traffic. The actual dynamic response of a bridge

Fig. 6. U.S. traffic simulation results for (a) one-lane bridge, ps-m
influence line; (b) bidirectional traffic, ps-m influence line; (c) bidi-
rectional traffic, p2tr-a influence line
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as trucks pass over it depends on many parameters, including the
number of trucks on the bridge, their weight(s), their speed(s),
the bridge stiffness, and the road surface quality. The presented
analyses may overestimate the effects of simultaneous vehicle
crossings on fatigue damage because, as noted in the commen-
tary of AASHTO (2008) and shown in several studies (e.g.,
Bailey 1996; Maclean and March 1998; Ludescher 2003), the
DLA generally decreases with an increase in truck weight and is

lower for simultaneous truck crossing events, because the dy-
namic effects of the multiple trucks will likely be out of phase.

To further study this the DLA influence, several of the simu-
lations were repeated with the code IM applied to the fatigue design
truck and an IM from Ludescher (2003) applied to the real traffic,
which varies as a function of the total static live load acting on the
bridge at any point in time. This model and sample analysis results
are presented in Fig. 10.

Fig. 7. Relationships between (a) traffic speed and flow rate and (b) truck percentage and flow rate based on TRB (2010)

Fig. 8. U.S. traffic simulation results for flow rates #0:2 vehicles=s: (a) g from one-lane analysis; (b) g2 from one-lane analysis; (c) g from bi-
directional analysis; (d) g2 from bidirectional analysis
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Looking at this figure, it can be seen that the effect of the
variable IM is to reduce the slopes of the g2 versus span curves and
to reduce the spread between these curves for different flow rates.
At the lower spans (less than 30 m), the curves are shifted upward.
This is because of the fact that the IM value assumed in the
Ludescher (2003) model for single, light trucks (IM5 0:4 for total
static live load up to 300 kN) is considerably higher than the
code-specified IM value.

Onemight conclude from the variable IM results that the effects of
simultaneous crossings are negligible—in particular, for m5 3:0—
but that the basic g factors in the NorthAmerican codes are too low. It
should be noted, however, that the IM value for single, light trucks
assumed in the Ludescher (2003) model represents an estimate of the
expected value that is on the high side compared with other values
reported in the literature (e.g., Bailey 1996; Lee et al. 2006). If this
model weremodified by reducing this value (e.g., to 0.15 or 0.25), it is

Fig. 9. Canadian traffic simulation g2 results for flow rates#0:2 vehicles=s: (a) one-lane m5 3:0; (b) bidirectional m5 3:0; (c) one-lane m5 6:85;
(d) bidirectional m5 6:85

Fig. 10. IM analyses and comparisons: (a) variable IM model from Ludescher (2003); (b) U.S. traffic simulation; (c) Canadian traffic simulation
average g2 results
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expected that the results would fall between the constant and variable
IM results presented in Fig. 10.

To further study the influenceof theDLAong2, it is believed that a
multidegree of freedom dynamic modeling approach (see Ludescher
2003; Lee et al. 2006) would be appropriate, with consideration given
to uncertainties in the road surface quality and other significant pa-
rameters. While the approach used herein does not consider all of
these parameters, it has the advantage of being conservative (in that
it may slightly overestimate simultaneous crossing effects) and not
dependent on numerous site-specific parameters.

Conclusions

Based on thework presented in this paper, the following conclusions
are drawn:
• The bridge code procedures described in this paper for fatigue

design all employ approximate approaches for relating the fatigue
damage because of real truck traffic to a design stress range. In
general, these approaches lead to ahighdegree of scatter becauseof
variations in the influence line shape and bridge span. In addition,
none of the described codes considers the effects of simultaneous
vehicle crossings in the calculation of fatigue damage.

• The effects of simultaneous vehicle crossings on the damage
equivalence factors, g, for North American roadway bridges can
be considerable for certain traffic conditions, influence lines,
spans, and cross sections. Specifically, long-span single box girder
bridges can be significantly influenced by these effects—in par-
ticular, at interior supports where the p2tr-a influence line applies
and under bidirectional traffic.

• A simulation-based study has shown that the amplification factor
(g2) for considering these effects can be as high as ∼1:2 for steel
girders (that is, with m5 3:0), if average values for the different
influence lines are compared at a truck flow rate of 0:2 vehicles=s
and a constant IM model is assumed. For the case of m5 6:85,
this value increases to 1.54. This increase can be explained by the
fact that the large cycles because of simultaneous crossings do
more damage with the flatter S-N curve slope. If a variable IM
model is assumed, then the effects of simultaneous crossings on
fatigue damage will generally be reduced.

• Eqs. (11) and (12) are proposed for amplifying the damage equiv-
alence factor in cases where the effects of simultaneous vehicle
crossings are expected to be significant. Alongwith this equation,
a set of effective simultaneous crossing rates, ranging from 0 to
13.5%, are proposed for calculating this amplification factor.
Further study would be of interest to extend these results to

bridges supporting more than two lanes of traffic. It is believed that
the presented results effectively bound the problem. However, ad-
ditional simulations are recommended to quantify the effects of si-
multaneous crossings for structures with intermediate degrees of
torsional stiffness (that is, between single box girder andmultigirder
bridges), as well as unidirectional traffic with a higher percentage of
trucks in lane 1 (that is, the slow or far right-hand lane). Simulations
wherein the truck flow rates are allowed to vary, to reflect daily,
weekly, or seasonal trends, are also recommended. Last, it is sug-
gested that a similar simulation-based approach be employed to
investigate the effects of simultaneous vehicle crossings on the de-
sign factors used in the infinite-life domain.
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