

Temporally Consistent Snow Cover Estimation from Noisy, Irregularly Sampled Measurements

Dominic Rüfenacht¹, Matthew Brown², Jan Beutel³, and Sabine Süsstrunk¹

¹ Image and Visual Representation Group, EPF Lausanne, Switzerland
 ² Department of Computer Science, University of Bath, UK
 ³ Computer Engineering and Networks Lab, ETH Zürich, Switzerland

GMM

Outline

- Introduction
 - PermaSense Project
- Single Image Snow Segmentation
 - GMM of Color
- Temporal Consistency
 - Median
 - Markov Random Field
- Improvement
- Results
- Conclusions

(P4)

PermaSense Project

- Wireless Sensor Network (WSN) to monitor **Permafrost**
 - = rock, ground and debris **frozen** throughout the year
- DSLR to monitor snow coverage
 - Programmed to take hourly captures
- Challenges
 - Camera at 3500 m.a.s.l.
 - Extremely harsh weather conditions
 - Uninformative images
 - Missing images

Image Set

- Very different image taking conditions
 - Changing illumination
- Noisy data
 - Precipitation on lens
 - Fog
 - Ice
- Irregular Sampling

Project Aim

Create a temporally consistent snow cover map which
is driven by informative images, and robust to
uninformative images where the illumination/visibility
is poor.

Single Image Snow Segmentation

Gaussian Mixture Model of Color

GMM

z = observation
x = snow state

$$p(z) = p_{s} \cdot \mathcal{N}(z; \mu_{s}, \Sigma_{s}) + \sum_{c} p_{c} \cdot \mathcal{N}(z; \mu_{c}, \Sigma_{c})$$

$$p(z|x=1) \qquad p(z|x=0)$$

Bayes Formula leads to:

$$p(x = 1|z) = \frac{p(z|x = 1) \cdot p_s}{p(z|x = 1) \cdot p_s + p(z|x = 0)}$$

Temporal Cons.

Splitting

Some Segmentation Results

GMM

Temporal Consistency

- Use temporal dependence between images to obtain temporally consistent results
- Different Approaches
 - Median Filter
 - In space and time
 - Not sensitive to data
 - Markov Random Field
 - Contains data and prior term

Markov Random Field (MRF)

Minimize the following energy function

$$-\log p(z,x) = \sum_{i} f_1(z_i,x_i) + \sum_{i} \sum_{j \in N(i)} f_2(x_i,x_j)$$

Data term: Negative log likelihood from GMM

$$f_1(z_i, x_i) = -\log p(z_i|x_i)$$

Prior term: Potts Model

$$f_2(x_i, x_j) = \lambda_{i,j} |x_i - x_j|$$

controls the strength of the bond between adjacent pixels

 Only need to connect neighboring pixels in time for temporally (and spatially) consistent results

Demo I on *Daytime* Images

 Long temporal filter sizes needed to be robust to uninformative images

Demo II on *Daytime* Images

Problems if too many consecutive images are uninformative

A Closer Look at the Dataset

Excluding Uninformative Images

- Manually labelled 250 informative and 250 uninformative images
 - Sharpness Index

$$s = \frac{\sum_{m} \sum_{n} |L_{\text{high}}(m,n)|^2}{\sum_{m} \sum_{n} |L_{\text{low}}(m,n)|^2}$$

 Threshold set such that there are less than 1% false positives

GMM

Results: Median Filter

→Temporal filter length **reduced** by a **factor of 8**

Results: Markov Random Field (MRF)

Results

Method	Correctness	Std Dev
GMM of Color	83.3%	8.7
Median <i>Daytime</i>	86.1%	6.9
MRF Daytime	86.5%	6.6
Median <i>Good</i>	87.2%	6.8
MRF Good	87.9%	6.1

Demo on *Good* Images

Conclusions & Future Work

GMM

- Challenging dataset
 - Single image segmentation insufficient
 - Temporal filtering for more consistent results
- Incorporate domain knowledge
 - Discard uninformative images to improve results
- Future work
 - Implementation of a snow depositioning model
 - → Smoother transitions
 - Different models for different weather states
 - → Improve initial snow cover estimates

Swiss Federal Institute of Technology Zurich

Thank you for your attention Question?

More information:

PermaSense project:

http://www.permasense.ch

Time Lapse Videos:

http://ivrg.epfl.ch/research/snow_segmentation

Number of Mixture Components

GMM

Three Mixture Components

XYZ Color Space