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PermaSense Project
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* Wireless Sensor Network (WSN) to

monitor Permafrost
= rock, ground and debris frozen
throughout the year

* DSLR to monitor snow coverage
* Programmed to take hourly captures

* Challenges
e Camera at 3500 m.a.s.l.

* Extremely harsh weather conditions
e Uninformative images
* Missing images

Matterhorn, Switzerland
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Image Set

* Very different image
taking conditions

* Changing illumination
* Noisy data

* Precipitation on lens

* Fog
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* Irregular Sampling
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Project Aim

* Create a temporally consistent snow cover map which
is driven by informative images, and robust to

uninformative images where the illumination/visibility
IS poor.
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Single Image Show Segmentation

Z = observation
e Gaussian Mixture Model of Color [“S“OW slate J
p(z) = ps- Nz s, Xs) + ZPC Nz e, e )
1 )]  C J
p(zlx=1) p(zlx=0)

* Bayes Formula leads to:

p(Z‘X — 1) " Ps

ple=1lz) = p(zlx = 1) ps+p(zlx=0)
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Temporal Consistency

* Use temporal dependence
between images to obtain
temporally consistent
results

* Different Approaches
 Median Filter

* In space and time

* Not sensitive to data

e Markov Random Field

* Contains data and prior term
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Markov Random Field (MRF)

 Minimize the following energy function
—logp(z,x) Zfl Zi, Xi +Z Z f2(xi,x;)
[ JEN(i)
 Data term: Negative log likelihood from GMM

f1(zi,xi) = —log p(zi|x;)
* Prior term: Potts Model

[ (xi,xj) = N jlxi — x;

* Only need to connect neighboring pixels in time for
temporally (and spatially) consistent results
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Demo | on Daytime Images

26. November 2009, 13:02
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Single Segmentation (GMM) Markov Random Field (Lambda = 500) Median (f_t = 64)

* Long temporal filter sizes needed to be robust to
uninformative images
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Demo |l on Daytime Images

31. March 2010, 05:52

* Problems if too many consecutive images are
uninformative
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A Closer Look at the Dataset
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Excluding Uninformative Images

 Manually labelled 250
informative and 250

Images
* Sharpness Index
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Results: Median Filter

Best results on daytime images
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—>Temporal filter length reduced by a factor of 8 ﬂ
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Results: Markov Random Field (MRF)

Lower weight -> Faster reactivity to changes

== daytime
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Quantitative Results

GMM of Color 83.3% 8.7
Median Daytime 86.1% 6.9
MRF Daytime 86.5% 6.6
Median Good 87.2% 6.8
MRF Good 87.9% 6.1
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Demo on Good Images

Original Single Segmentation (GMM) Markov Random Field (Lambda = 100) Median (f_t = 8)
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Conclusions & Future Work

e Challenging dataset
* Single image segmentation insufficient
 Temporal filtering for more consistent results
* Incorporate domain knowledge

e Discard uninformative images to improve results

* Future work
* Implementation of a snow depositioning model
—> Smoother transitions
e Different models for different weather states
— Improve initial snow cover estimates
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Thankyou
for your attention

Questions?

More information:

PermaSense project:
http://www.permasense.ch

Time Lapse Videos:
http://ivrg.epfl.ch/research/snow segmentation
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Number of Mixture Components

0.86 | |
-4-rgb
ychcer
084 oo
i pm e o hsv
-l '0\5\, h |
082 L R \’:'\’\ <
TRk 'k;\'\,\ -4 xyz
..-'_",':: ::: N ) .
osf “\ - ™ * :a:
o NS, _ 8. &
~ - ~,
o \5\ L ~,
5 >':"" \'\ \‘\
Q 078_ _'_.""' \'\ .\‘ ~ |
& - AING * s
g ﬂd - - \'\;\ - - -~ -
o 0.76 B SN N - |
= ' \ 2 - N,
I 1 N T~ ~, ~,
© 2 , N N “
.9 - “-.. ~, .y ~,
= o T T e ~.2 “ \3;.
a 074_ I/' ~.I‘1§‘ ‘\J
w ’,'/ \,‘J..” \,\
o - SN
O I/K J\‘ .hll§l
- ” N
072 iy
¢ ~¢
0.7r- i
0.68- i
0.66 L L
2 3 4 s

Number of mixture components

Three Mixture Components XYZ Color Space



