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Abstract— A frequent method for taking into account the
partially observable nature of an environment in which robaots
interact lies in formulating the problem domain as a Partially
Observable Markov Decision Process (POMDP). By having
humans demonstrate how to act in this partially observable
context we can leverage their prior knowledge, experienceral
intuition, which is dif cult to encode directly in a control ler, to
solve a task formulated as a POMDP. In this work we learn
search behaviours from human demonstrators and transfer tis
knowledge to a robot in a context where no visual information
is available. The task consists of nding a block on a table.
This is a non-trivial problem since no visual information is "
available and as a result, the belief of the demonstrator's =

state (position in the environment) has to be inferred. We
show that by representing the belief of the human's position )
in the environment by a particle lter (PF) and learning a  Fig. 1: Left: Human demonstrator searching for the green

mapping from this belief to their end-effector velocities wth a  wooden block on the table given that both vision and hearing
Gaussian Mixture Model (GMM), we model the human's search  ¢anseg gre impedeRight: WAM Robot 7 DOF reproduces

process. We compare the different types of search behaviour .
demonstrated by the humans to that of our learned model, to the search strategies demonstrated by humans to nd the

validate that the search process has been successfully médd.  Object.

We then contrast the performance of this human-inspired Th thod | loratorv/ h hesristi
search model to a greedy controller and show that (similarly space). These methods rely on exploratory/search hesristi

to humans) the learned controller minimises uncertainty, kence  to discover a suf cient set of probability densities to abde
demonstrating more robustness in the face of false belief. discover an optimal policy. Taking human demonstrations to
estimate the parameters of a policy acting in a POMDP is
l. INTRODUCTION advantageous over classical PBVI approaches, as it avoids
Constructing controllers or policies to act within a conperforming the time consuming exploration step and is
text where the state space is partially observable is @fpplicable to both continuous actions and state spaces.
high relevance to all real robotic applications. Because dfhe demonstrations immediately provide a set of examples
inaccurate perception information, only an approximatioaf the (assumed) optimal decisions. Humans perform an
of the environment is available at any given time. If thisnformed search contrary to stochastic sampling methods
inherent uncertainty is not taken into account during piagn since they utilise past experience and are able to evaluate
or control there is a non-negligible risk of missing goalsthe cost of their actions in the future. This foresight and
getting lost and wasting valuable resources. This Workﬁak@xperience are implicity encoded in the parameters of
a Programming by demonstratigi*bD) approach to learn a the learned policy. Planning and Reinforcement Learning
control policy in a partially observable environment whergRL) methods reason with respect to a Markovian process
no visual information is available. In this context an experwhere all the information required to make a decision is
(human or robot) demonstrates how to accomplish a giveshcapsulated in the current state and no other information
task. is used. The discovery of the optimal path, embedding the
Partially Observable Markov Decision Processesmplicit information, is dif cult to retrieve in this Markwian
(POMDP) are an extensive area of research in the operatiorgiting.
research, planning and decision theory community [1][2]. In this work we consider a task in which both a robot and
The emphasis is to be able to act optimally when the statehuman must search for an object on a table whilst deprived
information is only partially available. Most large scaleof vision. The environmental setup is prior knowledge to the
state-space POMDP planning problems are resolved vigbot and the human making this a speci ¢ search problem
approximate methods such @®int-based value iteration with no required mapping of the environment. In gure 1, a
(PBVI) [3], in which the policy is optimized at a set of human has his sense of vision and hearing impeded, making
sampled points drawn from the belief space (a simplex ithe perception of the environment partially observable and
which a point is a probability distribution over the stateonly leaving the sense of touch available for solving the
G. de Chambrier and A. Billard are with the Learning Algamith and task. Before each demonstration the human volunteer is

Systems Laboratory (LASA), School of Engineeririgzole Polytéchnique disoriented. Hi§ tranSit?onal pos.ition is varied With respto
Fédérale de Lausanne (EPFL), Switzerland the table and his heading remains the same (facing the table)




leaving the uncertainty component out of the orientation. Many robotic applications have to handle the partially
The reason for the disorientation step is to ensure that tledservable nature of the environment they act in. A widely
human's believed location is uniform. At the rst time step,used approach to model the dynamics of the problem is
the human's state of mind can be considered observable. Al formulate it as a POMDP. Value Iteration (VI) [11]
proceeding beliefs can then be recursively estimated frofemployed for discrete state and action space in RL) is a
the initial belief. The hearing sense was impeded sincenit cgopular approach to learn a policy in a POMDP. However
facilitate localisation when no visual information is dadile an exact solution only exists in a discrete encoding of the
and the robot has no equivalent giving an unfair advantage state-action space [12, p.513]. This is due to the fact tiet t
the human. By impeding hearing we reduce the perceptioralue function is de ned over the space of state belief. As
correspondence between the human and robot. the agent can occupy a large nhumber of possible states, the
A crucial aspect of our work is that the robot should becomputational costs grow exponentially. As a result much
capable of inferring the belief of the human doing the searcleffort has been put into evaluating an approximation of
Work on modelling human being beliefs and intentions [4][5the value function at a set of representative beliefs rather
has been undertaken in cognitive science. This work was aldfean over the full belief space. Such methods fall under the
to show that humans perform inference in a similar fashion teategory of PBVI [3] in which most research has focused on
Bayesian models. Our work takes this further by combinindetermining the best set of beliefs, [13] to be evaluated by
the modelling of both belief and action. The performance ahe value function, see [14] for a review. Other approaches
the model is evaluated in three separate ways: 1) whether tb@mpress the belief to suf cient statistics (mean and gtyo
search output of the model is comparable to that of humas in [15] and perform standard VI. The draw back with
2) how well the model performs against a greedy approadhese methods is that they aren't able to deal with both
when solving the search task and 3) how robust the modedntinuous state and action space. The noticeable exoeptio
is to false beliefs. is Monte Carlo POMDP [16] which represents the belief of
the position of a robot by a particle Iter. However the value
Il. RELATED WORK function is dif cult to compute and requires storing belief
instantiations for evaluating new unseen beliefs. The majo
The domain of our work lies at the intersection of threeiraw back of all these approaches lies with the exploration
elds namely programming by demonstration, cognitive sciproblem which becomes infeasible as the number of states
ence and acting under uncertainty. We review the lateshd actions increase.
developments in each eld, highlighting the relevance to ou Decision-theoretic based approaches have also been ap-
work. plied. Notable examples are [17] and [18] where a decision
In many PbD research studies, single one-shot successiitde graph is constructed with nodes representing beliefs a
demonstrations (such d@ick & Place) in fully observable edges actions. An time horizon planner is used which makes
environments have been encoded through either statisticaltrade of between reducing uncertainty and achieving the
methods such as GMM with Stable Estimator of State Dywanted goal. The shortcomings of these methods lie with
namics (SEDS) [6], in a latent space with Gaussian Procefise computational cost of constructing the search tree with
(GP) [7] or trajectory encoding methods such as DynamiBF for the belief nodes. It also effects the responsiventss o
Motion Primitives (DMP) [8] and splines. For an in-depththe system which takes time to perform the planning
review of PbD the reader may refer to [9]. The bene ts of Our work differs from the above approaches in that we
these approaches is the dramatic reduction in the search spase human experts to provide training data on how to solve
of the optimal policy through leveraging human knowledgea specic task in a POMDP setting. The bene ts of our
but no work has be undertaken to make them compatible kpproach are that we can use both continuous actions and
a context where the state space in not fully observable. state spaces and largely reduce the exploration problesa sin
One aspect of our work employs a probabilistic reprewe can leverage the prior knowledge by means of the human
sentation of a human's belief over his state in the envidemonstrations. These demonstrations restrict the ealsiti
ronment. Human mind attributes, such as beliefs, desiregarch space and hence free us from having to explore all
and intentions, are not directly observable. They have to like branches of the belief-state-action tree.
inferred from actions. In [10], the authors present a Bayesi
framework for modeling the way humans reason about and ll. PROBLEM STATEMENT
predict actions of an intentional agent. The comparison The search task being considered is to nd a wooden
between the model and humans' predictions when asked lddock on the table given that both vision and hearing senses
infer the intentions of an agent in a 2D world yielded similathave been impeded. The rst consideration is that the human
inference capabilities. This provided evidence suppgrtinor robot localises himself in the environment. He/lt then
the hypothesis that human beings integrate information usavigates towards the goal using a range of strategiesmangi
ing Bayes rule. Further, in [4], a similar experiment wadrom risk averse strategies, where the path taken remains
performed in which the inference capabilities of humanglose to salient features so as to not to get lost, to risktaki
with regards to both belief and desire of an agent, wergtrategies where the person follows the shortest path to the
comparable to that of their Bayesian model. goal's location. It is non-trivial to have a robot learn the



hand, tox, which denotes the displacement of the hand at the
next time step. In our case since the environment is partiall

observable we have a belief or probability density function
p(Xtjzo:t), which is conditioned on all sensing informatian

up to timet, over the state space at any given point in time.
We seek to learn this mapping from demonstrations:

fop(Xtjzot) 7' x 1)

During each demonstration we record a set of variables
consisting of the following:

1) x 2 RS, velocity of the hand in Cartesian space, which

Fig. 2: A participant is trying to locate the green wooden is normalised. . -

block on the table given that both vision and hearing senses2) ® = argmax, p(xjzo:t), the most likely position of
have been inhibited. A black glove is worn which has had _ the end-effector, or believed position.

its ngers sewn together in order to limit the variability of 3) U 2 R, the level of uncertainty which is evaluated
motion. These two measures were taken in order to equate  through the entropy ob(xtjZo:t).

the human's level of perception to that of the robot, and kend? statistical controller was learned from a data set of éspl
reduce the correspondence problem. The top of the glo¥éx; ®;U)g and a desired direction (normalised velocity),
harbours a small platform with three re ective markers whic was obtained from conditioning on the belief and uncenaint

are used to track the hand with the OptiTr&ckystem. Having described the experiment and the type of data, we

. o . . proceed to give an in-depth description of the mathematical
behaviour exhibited by humans perfor_mlng this task. As Weepresentation of the belief and that of the dynamics.
cannot encapsulate the true complexity of human thinking,

we take a simplistic approach and model the human's state IV. MODEL OF BELIEF
through two variables. The rst variable is the human's A human's belief of his location in an environment can
uncertainty about his current location. The second vagiabbe multimodal or unimodal, gaussian or non-gaussian and
is the human's belief of his position. The various Stl’atsgiEmay change from one distribution to another. To be able to
adopted by human's are modelled by building a mappingepresent such a wide range of probability distributions we
from the state variables to actions, consisting of the nmotiochose a particle Iter. From previous literature [4] it hasem
of the human arm. Aside from the problem of correctlyshown that there is a similarity between Bayes update rule
approximating the belief and its evolution over time, theand the way humans integrate information over time. Under
model need to take into consideration that people act vefiiis assumption we hypotheses that if the initial belief of
differently given the same situation. As a result it is naitju the human is known then the successive update steps of the
a single strategy that will be transferred but rather a métu particle Iter should correspond to a good approximation of
of strategies. While this will provide the robot with a richthe next beliefs.
portfolio of search strategies, appropriate methods mast b A particle Iter is a Bayesian probabilistic methods which
developed to encode these, at times, contradictory steateg recursively integrates dynamics and sensing to estimate a
. posterior from a prior probability density. The particlaef
A. Experimental setup has two elements. The rst estimates a distribution over
In the experimental setup, a group of 15 human volunteefge possible next state given dynamics and the second
were asked to search for a wooden green block locate@rrects it through integrating sensing. Givemation model
at a xed position on a bare table, see gure 2. Eacrb(xtjxt 1;%;), and asensing modab(zjx), we recursively
participant repeated the experiment 10 times from each offpp|y a prediction phase, where we incorporate motion to
mean starting points with an associated small variancesd heupdate the state time index, and an update phase, where
starting positions were: in front, to the left, to the rigatd  the sensing data is used to compute the state's posterior

being on the table itself. Before each trial the participaas  distribution. The two steps are depicted below.
told that he would always be facing the same direction with

respect to the table (so always facing the goal, like in th@rediction:

case of a door) but his transitional starting position would _ z _ _
vary. For instance, the table might not be always directly in P(XtjZox 1) = P(XtJXt 1;Xt) P(Xt 1Zo:t 1) dx¢ 1 (2)
front of him and his distance to the edge or corner could be
varied. el p(zix)p(xiiZor 1)
. tJAt tJ40:t 1
+) = ] 3
B. Formulation P(xt]z0:) P(ztjzo:t 1) )

In the standard PbD formulation of this problem, a The probability distribution over the staig(xjzo:) is
parametrised function is learned, mapping from state represented by a set of weighted particfes ;x;g'=t "N
which denotes the current position of the demonstratorishich represent hypothetical locations of the end-effiecto



and their density which is proportional to the likelihoober
particular particle Iter used was thRegularised Sequential
Importance Samplingl9, p.182]. We proceed to describe
the two components needed for Itering namely the sensin
and the motion models.

A. Sensing model

The sensing model represents the likelihop@jx), of a
particular sensation given a positiorx. In a human's case,
the sensation of a curvature indicates the likelihood ofipei
near an edge or a corner. However the likelihood canni
be modelled through using the human's sensing informatio

Direct access to pressure, temperature and such salient infFig. 3: Representation of the estimated density function.
mation is not available. Real sensory information needsto bl'op Left and Right:Initial starting point, all Gaussian
matched against virtual sensation at each hypotheticat IOCfunctions are uniformly distributed with uniform priorsh&

tion x of a particle. Additionally, for the transfer of behawourred cluster always has the highest likelihood (indicated by
from human to robot to be successful, the robot should j}Fe

ble t ve th e i the h : tﬁe yellow arrow) is taken to be the believed location of
able fo perceive the same information as the human, given robots/fhumans end-effect@ottom Left: Contact with

same situation. An approximation of what a human or rOb%e table has been established, the robot location differer

senses can be inferred, based on the end-effector's d'P“Star\]/ﬁth his belief.Bottom Right:Contact has been made with

corner, the clusters re ect that the robot could be at
and an additional dummy feature de ning no contact, airizzgr?g];:t)(_mte that weights are not depicted, only cluster
The choice of these features is prior knowledge given to
our system and not extracted through statistical analyisis 8. Uncertainty & Belief
recorded trajectories. We represent the sensing model as g patyral framework to represent uncertainty in the context
Multinomial distribution,M , evaluated from the normalised ¢ probability distributions is entropy. It is the expedtat
histogram of the euclidean distance to the closest featurgs, rangom variable's total amount of unpredictability.€Th
in the environment. Th_e likelihood is evaluated by Fak'n,ghigher the entropy the more uncertainty, and the lower the
the Jensen-Shannon divergence (JSD) of the Multinomiglss ncertainty. In our context we don't have at our disposi
distribution of the act_ual real mferre_d sensatidn and that  4ion the true probability density function of the belipfxjz),
of the hypothetical virtuaM, sensation. but instead a set of weighted sampldsy;;xig =N |
drawn from it. A reconstruction of the underlying proba-
bility density is achieved by tting a set weighted Gaussian
functions to the particles. The main dif culty of this step
is determining the number of parameters of the density

The motion model is straight forward compared with thdunction in a computationally ef cient manner. We approach

sensing model. In the robot's case the Jacobian gives tfféiS problem by nding all the modes in the particle set

next Cartesian position given current joint angles and krgu Via mean-shift hill climbing and set these as the means of
velocity of the robot's joints. From this the motion model isthe Gaussian functions. Their covariances are determined

given by: by maximizing the likelihood of the density function via
Expectation-Maximization (EM).
x=J(aa+ ®) Given the estimated density we can compute the upper
bound of the differential entropy [20]H, which is the
uncertaintyU.

p(zjx)=1 JISD(MjjMy) (4)

B. Motion model

whereq is the angular position of the robot's joint$(q) is
the Jacobian and N (0; 21) is white noise. The robot's
motion is very precise and it's noise variance is very low. X 1

For humans, the motion model is the velocity of the hand H (X) = «log( i)+ 5 log((2 e)°j «i)  (6)

movement provided by the tracking system. k=1
Where e is the base of the natural logarithm amd the
V. STATISTICAL MODEL OF SEARCH dimension (being 3 in our case). The reason we use the

upper bound is because the exact differential entropy of a
A detailed description is given next on, A) the computatioMixture of Gaussian functions has no analytical solutioe. W
of the uncertainty and belief, B) the statistical encodifig ocomputed both the upper and lower bound and found that the
the strategies demonstrated by the human volunteer and difference between the two were insigni cant, making any
the combination of the two in a control loop. bound a good approximation of the true entropy. The choice



of the believed location of the robot/human end-effector is
taken to be the mean of the Gaussian function with the
highest weight . Figure 3 depicts different con gurations of
the modes (clusters) and believed position of the end-ffec
(yellow arrow).

B. Model of human search

From the trajectories recorded during the experiments, dif
ferent actions are present for the same belief and uncgrtain
making the data multimodal (for a particular position and
uncertainty different velocities are present). The Gaussi
Mixture Model (GMM) was chosen as the statistical methodrig. 4: The resulting GMM for the table, a total of 67
to model the normalised velocity, belief and uncertaintyGaussian mixture components are present. We note the many
It is assumed that a mixture of strategies are present witlverlapping Gaussians: this results from the level of uncer
the data gathered from the demonstrations. That is multiptainty over the different choices taken. For example, husnan
actions are possible given a speci ¢ point in space or beliefollow along the edge of the table in different directionslan
This results in a one-to-many mapping which is not a valignight leave the edge once they are con dent with respect to
function, eliminating any regression technique whichclise  their location.

learns a non-linear function. )
The velocity was normalised, in order to reduce the The parameters from each set (mean and covariance) were

amount of information to be learned and to take im&ombined and served as an initialisation when retrainireg ov

consideration that velocity is more specic to embodimen{he whole data set which resulted in the nal model. A total

capabilities: the robot might not be able to reproduce yafepf S?’ Ga_ussian functions were used in th_e nal model, 67 for
some of the velocity pro les demonstrated. trajectories on the table and 15 for those in the air. In gdire

The training data set comprised a total of 20°000 triple&/® illustrate the model learned from human demonstrations
(x; %, U), from the 150 trajectories gathered from the demonhere we plot the 3 dimensional slice (the position) of the 7
strators. A generative GMMP (x; ®: U) was tted, which dimensional GMM to give a sense of the size of the model.
had a total of 7 dimensions, 3 for direction, 3 for position
and 1 scalar for uncertainty. The de nition of the GMM isC. Control

presented below in equation 7. To get a control output from a GMM we condition on the

most likely position and uncertainty and the result is a new

coe | i _ R TR distribution over direction. The output is the expectedueal
P&V = k=1 KN OEEUT G o) ) of the conditional (see equation 8 below).
2 3 2 3
x xx xR XU X
k=435 =4 RX RR qu x = EfP (xjgx;U)g= Zk;u 'an;u (8)
U Ux uR uu k=1

Where K is the number of Gaussian components, the The problem with this expectation approach, also know
scalar i represents the weight associated to mixture conys Gaussian Mixture Regression (GMR), is that it averages
ponentk (indicating ghe component's overall contribution togut opposing directions or strategies and may leave a net
the distribution) and ., « = 1. The parametersx and  velocity of zero. One possibility would be to sample from the

x are the mean and covariance of the normal distribution conditional, however this can lead to non-smooth behaviour
The total set of parameters of the GMM is= f | | 9. and ipping back and forth between modes resulting in no

The following section details the model selection, akin tqjisplacement. To maintain consistency between the choices
nding the number of mixture componenks, and parameter and avoid random switching we perform a weighted expec-
tting, nding the values of . tation on the means so that directions (modes) similar to the

1) Model selection & Parameter learningThe trajecto- cyrrent direction of the end-effector receive a higher \eig
ries were segmented based on whether they are either g opposing directions. For every mixture comporera
or off the table and then on their direction. This step Wageight  is computed based on the distance between the
necessary since the optimisation employs EM which onlyyrrent direction and itself. If the current direction agse
guarantees local maximisation of the likelihood functitin. \ith the mode then the weight remains unchanged but if it

is dif cult to nd the global optimum when starting the s in disagreement a lower weight is calculated according to
learning process from the whole data set in one go. For eaghe equation below.

segmented data set (one for trajectories off the table, and

4 for trajectories on the table), the Bayesian Information k(X) =
Criterion (BIC) was used to nd the optimal number of

mixture components and ve sets of parameters were learne@MR is then performed with the normalised weights

ZR;U exp( cos H(< x; zk;u >)  9)



Human demonstrations

GMM trajectories

Fig. 5: Overview of the decision loop. At the top given an
initial belief p(xojzo) of the location of the end-effector a
strategy is chosen (initially through sampling the cormdiil)

and based on the believed distance to the goal a speec

is applied to the given direction. This velocity is passegiqg. 6: |llustration of trajectoriesTop left: 5 sample tra-
onwards to a low level impedance controller which Se”dﬁ;ctories from the human volunteerSop right: 6 sample
out the required torques. The resulting sensation, encodggiectories generated from the learned model and coetroll
fea_tures, and actual displacement are sent back to update fxner not fully localised (orange) or take a long straight
belief. shot toward the goal through featureless space (red). On
instead of , the initial weight obtained when conditioning. the other hand the pink and green trajectories stay close to
features until as close as possible to the ghalver left:
3 emergent strategies not witnessed in training data due to
the combination of multiple strategies. The blue trajecisr
similar to the inverse of the purple trajectory in the top lef
ure, however it goes in opposite directiohower right:

X
x=E P xaU)g= (X e  (10)
k=1
The nal output of equation 10 gives the desired directign (
is re-normalised). In the case when the mode suddenly d|s. ‘trajectories from the greedy controller, non-smooth and
pears (because of sudden change of the level of uncertaua%upt. The scale is in meters.
caused by the appearance or disappearance of a feature)
another present mode is selected at random For instance, VI. EXPERIMENTAL RESULTS

when the robot has reached a corner, the level of Uncertainwv\/e evaluate our System by rsﬂy Comparing search roll
for this feature drops to zero. A new mode, and hence neyts against those of the human demonstrators. We make a
direction of motion, will then be computed. However this isgualitative analysis of the modes present in the GMM. We
not enough to be able to safely control the robot. One neeggntrast the performance, with respect to the distancentake
to control the amplitude of the velocity and ensure complianp reach the goal and how the uncertainty decreases over
control of the end-effector when in contact with the table'nme for three controllers (greey’ GMM and hybnd) F|na||y

This behaviour is not learned here, as this is speci ¢ to th@e test the robustness of the system with respect to false
embodiment of the robot and unrelated to the search strategy|iefs.

The amplitude of the velocity is computed by a proportional
controller based on the believed distance to the goal.  A. Human & GMM search trajectories
. We visually compare the trajectories gathered from the
= max(min( 1;Kp(xg  R); 2) (11) human volun{eers \f)vith those ojf the Ieargr]led controller. We
where the 's are lower and upper amplitude limitgg is  notice that humans like to play safely, meaning that they
the position of the goal, anid , the proportional gain which remain as close as possible to informative features such as
was tuned through trials. the edges. Once close to the goal they go straight towards it.
As mentioned previously, the other important aspect whelRigure 6 contrasts the trajectories of the human's hand (top
having the robot duplicate the search strategies is compleft) with those generated by our GMM controller (top right)
ance. As a result of the uncertainty, collisions with theStarting points were drawn from a uniform distribution over
environment occur. To avoid risks of breaking the table othe table and the colour coding is to better differentiate th
the robot sensors we have at the lowest level an impedandifferent trajectories in each sub- gure. The generataget-
controller which outputs appropriate joint torques The tories from the GMM model are similar to the training data
overall control loop is depicted in gure 5. provided by the human demonstrators, as one would expect.
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Fig. 8: lllustration of three different types of modes prase
. . during the execution of the task where the robot is being
0 5 LB 0 2 4 6 8 1012 14 16 controlled by the learned model. The white ball represents
Fig. 7: Top Left:Plot of distance taken to reach to goal for allthe actual position of t.he robots_.end-effector. Th'e blue
) -ball represents the believed position of the robot's end-

three controllers. The x-axis values correspond to a speci : . . .

. : . effector and the robot is acting according to it. Arrows of
roll out, whilst the y-axsi values, are the distances takep
. ) . -the blue ball represent modes, colours encode the modes
to reach the goal. The trajectories are sorted in ascendlu%. . . L
ights given by the priorsy after conditioning ( but not

order. The greedy controller by far takes the most tlme.tPe-Weighted as previously described). The spectrum ranges

reach the goal as oppose to both the GMM and hybrid. Usi om red (high weight) to blue (low weightYop left: Three

the variance (uncertainty) at the beginning plays a vitat Pa  Jdes are present, but two agree with each otfiep

in the performance of the controllers. The hybrid goes evern ht Three modes are aaain present indicatind aporooriate
faster than the GMM since once localized it goes straigh{g i gain p 9 approp

to the goal.Other three plots:Level of uncertainty with ways FO re(_juce_ the unce_rta!ntlyower '?ft: Two modes in
. . . posing directions, no ipping behaviour between modes
variance (gray shaded area) decreasing over time for gree

GMM and hybrid controllers. The decrease in uncertainty gfocurs since preference is 9"’9” to the mOdeS pomt_lng !n the
same direction as the robot's current trajectdugwer right:

the GMM and hybrid controllers is much more rapid tha o .
the greedy one. This re ects the fact that as humans we te:jide modes when conditioned on the state represented in

: . . e lower left gure. The two modes represent the possible
to play safe and avoid taking risks as opposed to the gree fections (un-normalised)
controller. For the three controllers a total of a 70 triaksrgv ‘
gathered for this analysis. B. Qualitative analysis of modes

We next illustrate some of the modes (action choices)

present during simulation and evaluated their plausybilit
For both the human and GMM trajectories they all start byigyre 8 shows that multiple decision points have been
going downwards until a contact with the table is made. Theggrrectly embedded in the GMM model. All directions (red

proceed to an edge and follow it until as close as possible fgrows) indicate directions that reduce the level of uncer-
the goal (risk-averse). Other trajectories (orange in &fp | tainty.

sub- gure) once localised go straight to the goal through a

featureless space where no edges or corners are presknt (r%-v\(freedyl Vst %Mt';]/l Vs H%/brid controlfler d oll
prone). However, this does not hold true for all generated ¢ evaluate € performance of a greedy controller,

trajectories (lower left sub- gure). This is due to the WayWhiCh takes the most likely positioh and goes straight to-

we perform the control. A trajectory is generated from ards the goal, as Qpposed toacont_roller solely Iear_ne,rd fro
mixture of strategies which can lead to the emergence man demonstrations and a hybrid controller which uses

previously unseen behaviour and the zig-zagging behaviome GM:]V' (;:oglt;oller ““{"h? m|rt1|mtl:]m unce(rjtalnty ihrﬁsho\l;\j/
of the green trajectory is due to unstable attractors. We al > reached belore switching to the greedy controtier. Ve
note, through observing resulting generated trajectdrigs performed 70 runs in each case and evaluated the uncertainty

the GMM model, that not all strategies demonstrated ar%nd distance taken to reach the goal. The results are illus-
encoded in the G;\AM. For example, there is an instance whéWted iq gure 7 and six tr.ajectories of the greedy congoll
a demonstrator cuts across the table (see red trajectongin gare depicted in the lower right of gure 6. The results con rm

top left plot of gure 6). There were not many examplesthat the GMM controller decreases uncertainty quadragical

of such behaviour, making it statistically insigni cant tvi as oppotsed to t?e dgreedy methOd whgrc: t?ef urrllf:ertal_lr_lrt]y
respect to the GMM which in the EM learning stage did noPlO_es tno_ se?n:h 0 ec(;ease Itn I? consis Ien ashion. the
attribute a Gaussian function to represent it. Howeveresindr&jéctories of the greedy controller are also non-smooth,

the search strategy of the robot is composed from a mixtu?ebrum. and unnatural. The Hybriq cor!troller takes even less
of strategies it is possible that new trajectories emergelwh time/distance to reach the goal since it does not seek to stay

are similar to these one-off demonstrations. close to informative features once localized and goesgstrai

Uncertainty
A
Uncertainty
A

&>
&




trajectories generated by the model were similar to those
of the human demonstrations while others emerged through
the combination of multiple strategies. When compared to a
greedy controller humans prefer to rst reduce uncertainty
and then minimise risk. The model is able to handle false
beliefs and environmental perturbations. Future reseaiith
focus on adding another probability density function to
represent the believed location of the goal. In this way the
goal no longer has to be xed and this situation makes for
a more interesting problem, where interacting probability

Fig. 9: Depiction of the robustness with respect to falseensity functions need to be addressed.

beliefs. Top left: both the believed and actual position of
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