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Abstract— A frequent method for taking into account the
partially observable nature of an environment in which robots
interact lies in formulating the problem domain as a Partially
Observable Markov Decision Process (POMDP). By having
humans demonstrate how to act in this partially observable
context we can leverage their prior knowledge, experience and
intuition, which is dif�cult to encode directly in a control ler, to
solve a task formulated as a POMDP. In this work we learn
search behaviours from human demonstrators and transfer this
knowledge to a robot in a context where no visual information
is available. The task consists of �nding a block on a table.
This is a non-trivial problem since no visual information is
available and as a result, the belief of the demonstrator's
state (position in the environment) has to be inferred. We
show that by representing the belief of the human's position
in the environment by a particle �lter (PF) and learning a
mapping from this belief to their end-effector velocities with a
Gaussian Mixture Model (GMM), we model the human's search
process. We compare the different types of search behaviour
demonstrated by the humans to that of our learned model, to
validate that the search process has been successfully modelled.
We then contrast the performance of this human-inspired
search model to a greedy controller and show that (similarly
to humans) the learned controller minimises uncertainty, hence
demonstrating more robustness in the face of false belief.

I. INTRODUCTION

Constructing controllers or policies to act within a con-
text where the state space is partially observable is of
high relevance to all real robotic applications. Because of
inaccurate perception information, only an approximation
of the environment is available at any given time. If this
inherent uncertainty is not taken into account during planning
or control there is a non-negligible risk of missing goals,
getting lost and wasting valuable resources. This work takes
a Programming by demonstration(PbD) approach to learn a
control policy in a partially observable environment where
no visual information is available. In this context an expert
(human or robot) demonstrates how to accomplish a given
task.

Partially Observable Markov Decision Processes
(POMDP) are an extensive area of research in the operational
research, planning and decision theory community [1][2].
The emphasis is to be able to act optimally when the state
information is only partially available. Most large scale
state-space POMDP planning problems are resolved via
approximate methods such aspoint-based value iteration
(PBVI) [3], in which the policy is optimized at a set of
sampled points drawn from the belief space (a simplex in
which a point is a probability distribution over the state
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Fig. 1: Left: Human demonstrator searching for the green
wooden block on the table given that both vision and hearing
senses are impeded.Right: WAM Robot 7 DOF reproduces
the search strategies demonstrated by humans to �nd the
object.

space). These methods rely on exploratory/search heuristics
to discover a suf�cient set of probability densities to ableto
discover an optimal policy. Taking human demonstrations to
estimate the parameters of a policy acting in a POMDP is
advantageous over classical PBVI approaches, as it avoids
performing the time consuming exploration step and is
applicable to both continuous actions and state spaces.
The demonstrations immediately provide a set of examples
of the (assumed) optimal decisions. Humans perform an
informed search contrary to stochastic sampling methods
since they utilise past experience and are able to evaluate
the cost of their actions in the future. This foresight and
experience are implicitly encoded in the parameters of
the learned policy. Planning and Reinforcement Learning
(RL) methods reason with respect to a Markovian process
where all the information required to make a decision is
encapsulated in the current state and no other information
is used. The discovery of the optimal path, embedding the
implicit information, is dif�cult to retrieve in this Markovian
setting.

In this work we consider a task in which both a robot and
a human must search for an object on a table whilst deprived
of vision. The environmental setup is prior knowledge to the
robot and the human making this a speci�c search problem
with no required mapping of the environment. In �gure 1, a
human has his sense of vision and hearing impeded, making
the perception of the environment partially observable and
only leaving the sense of touch available for solving the
task. Before each demonstration the human volunteer is
disoriented. His transitional position is varied with respect to
the table and his heading remains the same (facing the table)



leaving the uncertainty component out of the orientation.
The reason for the disorientation step is to ensure that the
human's believed location is uniform. At the �rst time step,
the human's state of mind can be considered observable. All
proceeding beliefs can then be recursively estimated from
the initial belief. The hearing sense was impeded since it can
facilitate localisation when no visual information is available
and the robot has no equivalent giving an unfair advantage to
the human. By impeding hearing we reduce the perception
correspondence between the human and robot.

A crucial aspect of our work is that the robot should be
capable of inferring the belief of the human doing the search.
Work on modelling human being beliefs and intentions [4][5]
has been undertaken in cognitive science. This work was able
to show that humans perform inference in a similar fashion to
Bayesian models. Our work takes this further by combining
the modelling of both belief and action. The performance of
the model is evaluated in three separate ways: 1) whether the
search output of the model is comparable to that of humans
2) how well the model performs against a greedy approach
when solving the search task and 3) how robust the model
is to false beliefs.

II. RELATED WORK

The domain of our work lies at the intersection of three
�elds namely programming by demonstration, cognitive sci-
ence and acting under uncertainty. We review the latest
developments in each �eld, highlighting the relevance to our
work.

In many PbD research studies, single one-shot successful
demonstrations (such asPick & Place) in fully observable
environments have been encoded through either statistical
methods such as GMM with Stable Estimator of State Dy-
namics (SEDS) [6], in a latent space with Gaussian Process
(GP) [7] or trajectory encoding methods such as Dynamic
Motion Primitives (DMP) [8] and splines. For an in-depth
review of PbD the reader may refer to [9]. The bene�ts of
these approaches is the dramatic reduction in the search space
of the optimal policy through leveraging human knowledge,
but no work has be undertaken to make them compatible in
a context where the state space in not fully observable.

One aspect of our work employs a probabilistic repre-
sentation of a human's belief over his state in the envi-
ronment. Human mind attributes, such as beliefs, desires
and intentions, are not directly observable. They have to be
inferred from actions. In [10], the authors present a Bayesian
framework for modeling the way humans reason about and
predict actions of an intentional agent. The comparison
between the model and humans' predictions when asked to
infer the intentions of an agent in a 2D world yielded similar
inference capabilities. This provided evidence supporting
the hypothesis that human beings integrate information us-
ing Bayes rule. Further, in [4], a similar experiment was
performed in which the inference capabilities of humans,
with regards to both belief and desire of an agent, were
comparable to that of their Bayesian model.

Many robotic applications have to handle the partially
observable nature of the environment they act in. A widely
used approach to model the dynamics of the problem is
to formulate it as a POMDP. Value Iteration (VI) [11]
(employed for discrete state and action space in RL) is a
popular approach to learn a policy in a POMDP. However
an exact solution only exists in a discrete encoding of the
state-action space [12, p.513]. This is due to the fact that the
value function is de�ned over the space of state belief. As
the agent can occupy a large number of possible states, the
computational costs grow exponentially. As a result much
effort has been put into evaluating an approximation of
the value function at a set of representative beliefs rather
than over the full belief space. Such methods fall under the
category of PBVI [3] in which most research has focused on
determining the best set of beliefs, [13] to be evaluated by
the value function, see [14] for a review. Other approaches
compress the belief to suf�cient statistics (mean and entropy)
as in [15] and perform standard VI. The draw back with
these methods is that they aren't able to deal with both
continuous state and action space. The noticeable exception
is Monte Carlo POMDP [16] which represents the belief of
the position of a robot by a particle �lter. However the value
function is dif�cult to compute and requires storing belief
instantiations for evaluating new unseen beliefs. The major
draw back of all these approaches lies with the exploration
problem which becomes infeasible as the number of states
and actions increase.

Decision-theoretic based approaches have also been ap-
plied. Notable examples are [17] and [18] where a decision
tree graph is constructed with nodes representing beliefs and
edges actions. An time horizon planner is used which makes
a trade of between reducing uncertainty and achieving the
wanted goal. The shortcomings of these methods lie with
the computational cost of constructing the search tree with
PF for the belief nodes. It also effects the responsiveness of
the system which takes time to perform the planning

Our work differs from the above approaches in that we
use human experts to provide training data on how to solve
a speci�c task in a POMDP setting. The bene�ts of our
approach are that we can use both continuous actions and
state spaces and largely reduce the exploration problem since
we can leverage the prior knowledge by means of the human
demonstrations. These demonstrations restrict the solution's
search space and hence free us from having to explore all
the branches of the belief-state-action tree.

III. PROBLEM STATEMENT

The search task being considered is to �nd a wooden
block on the table given that both vision and hearing senses
have been impeded. The �rst consideration is that the human
or robot localises himself in the environment. He/It then
navigates towards the goal using a range of strategies ranging
from risk averse strategies, where the path taken remains
close to salient features so as to not to get lost, to risk taking
strategies where the person follows the shortest path to the
goal's location. It is non-trivial to have a robot learn the



Fig. 2: A participant is trying to locate the green wooden
block on the table given that both vision and hearing senses
have been inhibited. A black glove is worn which has had
its �ngers sewn together in order to limit the variability of
motion. These two measures were taken in order to equate
the human's level of perception to that of the robot, and hence
reduce the correspondence problem. The top of the glove
harbours a small platform with three re�ective markers which
are used to track the hand with the OptiTrackR system.

behaviour exhibited by humans performing this task. As we
cannot encapsulate the true complexity of human thinking,
we take a simplistic approach and model the human's state
through two variables. The �rst variable is the human's
uncertainty about his current location. The second variable
is the human's belief of his position. The various strategies
adopted by human's are modelled by building a mapping
from the state variables to actions, consisting of the motion
of the human arm. Aside from the problem of correctly
approximating the belief and its evolution over time, the
model need to take into consideration that people act very
differently given the same situation. As a result it is not just
a single strategy that will be transferred but rather a mixture
of strategies. While this will provide the robot with a rich
portfolio of search strategies, appropriate methods must be
developed to encode these, at times, contradictory strategies.

A. Experimental setup

In the experimental setup, a group of 15 human volunteers
were asked to search for a wooden green block located
at a �xed position on a bare table, see �gure 2. Each
participant repeated the experiment 10 times from each of 4
mean starting points with an associated small variance. These
starting positions were: in front, to the left, to the right,and
being on the table itself. Before each trial the participantwas
told that he would always be facing the same direction with
respect to the table (so always facing the goal, like in the
case of a door) but his transitional starting position would
vary. For instance, the table might not be always directly in
front of him and his distance to the edge or corner could be
varied.

B. Formulation

In the standard PbD formulation of this problem, a
parametrised function is learned, mapping from statex,
which denotes the current position of the demonstrator's

hand, to_x, which denotes the displacement of the hand at the
next time step. In our case since the environment is partially
observable we have a belief or probability density function
p(x t jz0:t ), which is conditioned on all sensing informationz
up to timet, over the state space at any given point in time.
We seek to learn this mapping from demonstrations:

f : p(x t jz0:t ) 7! _x (1)

During each demonstration we record a set of variables
consisting of the following:

1) _x 2 R3, velocity of the hand in Cartesian space, which
is normalised.

2) x̂ = arg maxx p(x t jz0:t ), the most likely position of
the end-effector, or believed position.

3) U 2 R, the level of uncertainty which is evaluated
through the entropy ofp(x t jz0:t ).

A statistical controller was learned from a data set of triples
f (x; x̂; U )g and a desired direction (normalised velocity),
was obtained from conditioning on the belief and uncertainty.

Having described the experiment and the type of data, we
proceed to give an in-depth description of the mathematical
representation of the belief and that of the dynamics.

IV. MODEL OF BELIEF

A human's belief of his location in an environment can
be multimodal or unimodal, gaussian or non-gaussian and
may change from one distribution to another. To be able to
represent such a wide range of probability distributions we
chose a particle �lter. From previous literature [4] it has been
shown that there is a similarity between Bayes update rule
and the way humans integrate information over time. Under
this assumption we hypotheses that if the initial belief of
the human is known then the successive update steps of the
particle �lter should correspond to a good approximation of
the next beliefs.

A particle �lter is a Bayesian probabilistic methods which
recursively integrates dynamics and sensing to estimate a
posterior from a prior probability density. The particle �lter
has two elements. The �rst estimates a distribution over
the possible next state given dynamics and the second
corrects it through integrating sensing. Given amotion model
p(x t jx t � 1; _x t ), and asensing modelp(zt jx t ), we recursively
apply a prediction phase, where we incorporate motion to
update the state time index, and an update phase, where
the sensing data is used to compute the state's posterior
distribution. The two steps are depicted below.

prediction:

p(x t jz0:t � 1) =
Z

p(x t jx t � 1; _x t ) p(x t � 1 jz0:t � 1) dxt � 1 (2)

update:

p(x t jz0:t ) =
p(zt jx t )p(x t jz0:t � 1)

p(zt jz0:t � 1)
(3)

The probability distribution over the statep(x t jz0:t ) is
represented by a set of weighted particlesf wi ; x i gi =1 :::N

which represent hypothetical locations of the end-effector



and their density which is proportional to the likelihood.The
particular particle �lter used was theRegularised Sequential
Importance Sampling[19, p.182]. We proceed to describe
the two components needed for �ltering namely the sensing
and the motion models.

A. Sensing model

The sensing model represents the likelihood,p(zjx), of a
particular sensationz given a positionx. In a human's case,
the sensation of a curvature indicates the likelihood of being
near an edge or a corner. However the likelihood cannot
be modelled through using the human's sensing information.
Direct access to pressure, temperature and such salient infor-
mation is not available. Real sensory information needs to be
matched against virtual sensation at each hypothetical loca-
tion x of a particle. Additionally, for the transfer of behaviour
from human to robot to be successful, the robot should be
able to perceive the same information as the human, given the
same situation. An approximation of what a human or robot
senses can be inferred, based on the end-effector's distance
to particular features in the environment. In our case four
main features are present, namely corners, edges, surfaces
and an additional dummy feature de�ning no contact, air.
The choice of these features is prior knowledge given to
our system and not extracted through statistical analysis of
recorded trajectories. We represent the sensing model as a
Multinomial distribution,M , evaluated from the normalised
histogram of the euclidean distance to the closest features
in the environment. The likelihood is evaluated by taking
the Jensen-Shannon divergence (JSD) of the Multinomial
distribution of the actual real inferred sensationM r and that
of the hypothetical virtualM v sensation.

p(zjx) = 1 � JSD(M r jjM v) (4)

B. Motion model

The motion model is straight forward compared with the
sensing model. In the robot's case the Jacobian gives the
next Cartesian position given current joint angles and angular
velocity of the robot's joints. From this the motion model is
given by:

_x = J( q) _q + � (5)

whereq is the angular position of the robot's joints,J (q) is
the Jacobian and� � N (0; � 2I ) is white noise. The robot's
motion is very precise and it's noise variance is very low.
For humans, the motion model is the velocity of the hand
movement provided by the tracking system.

V. STATISTICAL MODEL OF SEARCH

A detailed description is given next on, A) the computation
of the uncertainty and belief, B) the statistical encoding of
the strategies demonstrated by the human volunteer and C)
the combination of the two in a control loop.

Fig. 3: Representation of the estimated density function.
Top Left and Right:Initial starting point, all Gaussian
functions are uniformly distributed with uniform priors. The
red cluster always has the highest likelihood (indicated by
the yellow arrow) is taken to be the believed location of
the robots/humans end-effector.Bottom Left:Contact with
the table has been established, the robot location differers
with his belief.Bottom Right:Contact has been made with
a corner, the clusters re�ect that the robot could be at
any corner (note that weights are not depicted, only cluster
assignment).

A. Uncertainty & Belief

A natural framework to represent uncertainty in the context
of probability distributions is entropy. It is the expectation
of a random variable's total amount of unpredictability. The
higher the entropy the more uncertainty, and the lower the
less uncertainty. In our context we don't have at our disposi-
tion the true probability density function of the belief,p(xjz),
but instead a set of weighted samples,f wi ; x i gi =1 :::N ,
drawn from it. A reconstruction of the underlying proba-
bility density is achieved by �tting a set weighted Gaussian
functions to the particles. The main dif�culty of this step
is determining the number of parameters of the density
function in a computationally ef�cient manner. We approach
this problem by �nding all the modes in the particle set
via mean-shift hill climbing and set these as the means of
the Gaussian functions. Their covariances are determined
by maximizing the likelihood of the density function via
Expectation-Maximization (EM).

Given the estimated density we can compute the upper
bound of the differential entropy [20],H , which is the
uncertaintyU.

H (x) =
KX

k=1

� k

�
� log(� k ) +

1
2

log((2�e )D j� k j)
�

(6)

Where e is the base of the natural logarithm andD the
dimension (being 3 in our case). The reason we use the
upper bound is because the exact differential entropy of a
Mixture of Gaussian functions has no analytical solution. We
computed both the upper and lower bound and found that the
difference between the two were insigni�cant, making any
bound a good approximation of the true entropy. The choice



of the believed location of the robot/human end-effector is
taken to be the mean of the Gaussian function with the
highest weight� . Figure 3 depicts different con�gurations of
the modes (clusters) and believed position of the end-effector
(yellow arrow).

B. Model of human search

From the trajectories recorded during the experiments, dif-
ferent actions are present for the same belief and uncertainty
making the data multimodal (for a particular position and
uncertainty different velocities are present). The Gaussian
Mixture Model (GMM) was chosen as the statistical method
to model the normalised velocity, belief and uncertainty.
It is assumed that a mixture of strategies are present with
the data gathered from the demonstrations. That is multiple
actions are possible given a speci�c point in space or belief.
This results in a one-to-many mapping which is not a valid
function, eliminating any regression technique which directly
learns a non-linear function.

The velocity was normalised, in order to reduce the
amount of information to be learned and to take into
consideration that velocity is more speci�c to embodiment
capabilities: the robot might not be able to reproduce safely
some of the velocity pro�les demonstrated.

The training data set comprised a total of 20'000 triples
( _x; x̂; U ), from the 150 trajectories gathered from the demon-
strators. A generative GMMP( _x; x̂; U ) was �tted, which
had a total of 7 dimensions, 3 for direction, 3 for position
and 1 scalar for uncertainty. The de�nition of the GMM is
presented below in equation 7.

P( _x; x̂; U j� ) =
KP

k=1
� k N ( _x; x̂; U j� k ; � k ) (7)

� k =

2

4
� _x

� x̂

� U

3

5 � k =

2

4
� _x _x � _x x̂ � _xU

� x̂ _x � x̂ x̂ � x̂U

� U _x � U x̂ � UU

3

5

Where K is the number of Gaussian components, the
scalar� k represents the weight associated to mixture com-
ponentk (indicating the component's overall contribution to
the distribution) and

P K
k=1 � k = 1 . The parameters� k and

� k are the mean and covariance of the normal distributionk.
The total set of parameters of the GMM is� = f � ; � ; � g.

The following section details the model selection, akin to
�nding the number of mixture componentsK , and parameter
�tting, �nding the values of � .

1) Model selection & Parameter learning:The trajecto-
ries were segmented based on whether they are either on
or off the table and then on their direction. This step was
necessary since the optimisation employs EM which only
guarantees local maximisation of the likelihood function.It
is dif�cult to �nd the global optimum when starting the
learning process from the whole data set in one go. For each
segmented data set (one for trajectories off the table, and
4 for trajectories on the table), the Bayesian Information
Criterion (BIC) was used to �nd the optimal number of
mixture components and �ve sets of parameters were learned.

Fig. 4: The resulting GMM for the table, a total of 67
Gaussian mixture components are present. We note the many
overlapping Gaussians: this results from the level of uncer-
tainty over the different choices taken. For example, humans
follow along the edge of the table in different directions and
might leave the edge once they are con�dent with respect to
their location.

The parameters from each set (mean and covariance) were
combined and served as an initialisation when retraining over
the whole data set which resulted in the �nal model. A total
of 83 Gaussian functions were used in the �nal model, 67 for
trajectories on the table and 15 for those in the air. In �gure4
we illustrate the model learned from human demonstrations
where we plot the 3 dimensional slice (the position) of the 7
dimensional GMM to give a sense of the size of the model.

C. Control

To get a control output from a GMM we condition on the
most likely position and uncertainty and the result is a new
distribution over direction. The output is the expected value
of the conditional (see equation 8 below).

_x = EfP ( _xjx̂; U )g =
KX

k=1

� k
_x j x̂;U � � k

_x j x̂;U (8)

The problem with this expectation approach, also know
as Gaussian Mixture Regression (GMR), is that it averages
out opposing directions or strategies and may leave a net
velocity of zero. One possibility would be to sample from the
conditional, however this can lead to non-smooth behaviour
and �ipping back and forth between modes resulting in no
displacement. To maintain consistency between the choices
and avoid random switching we perform a weighted expec-
tation on the means so that directions (modes) similar to the
current direction of the end-effector receive a higher weight
than opposing directions. For every mixture componentk, a
weight � k is computed based on the distance between the
current direction and itself. If the current direction agrees
with the mode then the weight remains unchanged but if it
is in disagreement a lower weight is calculated according to
the equation below.

� k ( _x) = � k
_x j x̂;U � exp(� cos� 1(< _x; � k

_x j x̂;U > )) (9)

GMR is then performed with the normalised weights�



Fig. 5: Overview of the decision loop. At the top given an
initial belief p(x0 jz0) of the location of the end-effector a
strategy is chosen (initially through sampling the conditional)
and based on the believed distance to the goal a speed
is applied to the given direction. This velocity is passed
onwards to a low level impedance controller which sends
out the required torques. The resulting sensation, encoded
through the Multinomial distribution over the environment
features, and actual displacement are sent back to update the
belief.

instead of� , the initial weight obtained when conditioning.

_x = E� fP ( _xjx̂; U )g =
KX

k=1

� k ( _x) � k
_x j x̂;u (10)

The �nal output of equation 10 gives the desired direction (_x
is re-normalised). In the case when the mode suddenly disap-
pears (because of sudden change of the level of uncertainty
caused by the appearance or disappearance of a feature)
another present mode is selected at random For instance,
when the robot has reached a corner, the level of uncertainty
for this feature drops to zero. A new mode, and hence new
direction of motion, will then be computed. However this is
not enough to be able to safely control the robot. One needs
to control the amplitude of the velocity and ensure compliant
control of the end-effector when in contact with the table.
This behaviour is not learned here, as this is speci�c to the
embodiment of the robot and unrelated to the search strategy.
The amplitude of the velocity is computed by a proportional
controller based on the believed distance to the goal.

� = max(min( � 1; K p(xg � x̂); � 2) (11)

where the� 's are lower and upper amplitude limits,xg is
the position of the goal, andK p the proportional gain which
was tuned through trials.

As mentioned previously, the other important aspect when
having the robot duplicate the search strategies is compli-
ance. As a result of the uncertainty, collisions with the
environment occur. To avoid risks of breaking the table or
the robot sensors we have at the lowest level an impedance
controller which outputs appropriate joint torques� . The
overall control loop is depicted in �gure 5.
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Fig. 6: Illustration of trajectories.Top left: 5 sample tra-
jectories from the human volunteers.Top right: 6 sample
trajectories generated from the learned model and controller.
The red and orange trajectories are risk-prone since they are
either not fully localised (orange) or take a long straight
shot toward the goal through featureless space (red). On
the other hand the pink and green trajectories stay close to
features until as close as possible to the goal.Lower left:
3 emergent strategies not witnessed in training data due to
the combination of multiple strategies. The blue trajectory is
similar to the inverse of the purple trajectory in the top left
�gure, however it goes in opposite direction.Lower right:
6 trajectories from the greedy controller, non-smooth and
abrupt. The scale is in meters.

VI. EXPERIMENTAL RESULTS

We evaluate our system by �rstly comparing search roll
outs against those of the human demonstrators. We make a
qualitative analysis of the modes present in the GMM. We
contrast the performance, with respect to the distance taken
to reach the goal and how the uncertainty decreases over
time for three controllers (greey, GMM and hybrid). Finally,
we test the robustness of the system with respect to false
beliefs.

A. Human & GMM search trajectories

We visually compare the trajectories gathered from the
human volunteers with those of the learned controller. We
notice that humans like to play safely, meaning that they
remain as close as possible to informative features such as
the edges. Once close to the goal they go straight towards it.
Figure 6 contrasts the trajectories of the human's hand (top
left) with those generated by our GMM controller (top right).
Starting points were drawn from a uniform distribution over
the table and the colour coding is to better differentiate the
different trajectories in each sub-�gure. The generated trajec-
tories from the GMM model are similar to the training data
provided by the human demonstrators, as one would expect.
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Fig. 7:Top Left:Plot of distance taken to reach to goal for all
three controllers. The x-axis values correspond to a speci�c
roll out, whilst the y-axsi values, are the distances taken
to reach the goal. The trajectories are sorted in ascending
order. The greedy controller by far takes the most time to
reach the goal as oppose to both the GMM and hybrid. Using
the variance (uncertainty) at the beginning plays a vital part
in the performance of the controllers. The hybrid goes even
faster than the GMM since once localized it goes straight
to the goal.Other three plots:Level of uncertainty with
variance (gray shaded area) decreasing over time for greedy,
GMM and hybrid controllers. The decrease in uncertainty of
the GMM and hybrid controllers is much more rapid than
the greedy one. This re�ects the fact that as humans we tend
to play safe and avoid taking risks as opposed to the greedy
controller. For the three controllers a total of a 70 trials were
gathered for this analysis.

For both the human and GMM trajectories they all start by
going downwards until a contact with the table is made. Then
proceed to an edge and follow it until as close as possible to
the goal (risk-averse). Other trajectories (orange in top left
sub-�gure) once localised go straight to the goal through a
featureless space where no edges or corners are present (risk-
prone). However, this does not hold true for all generated
trajectories (lower left sub-�gure). This is due to the way
we perform the control. A trajectory is generated from a
mixture of strategies which can lead to the emergence of
previously unseen behaviour and the zig-zagging behaviour
of the green trajectory is due to unstable attractors. We also
note, through observing resulting generated trajectoriesfrom
the GMM model, that not all strategies demonstrated are
encoded in the GMM. For example, there is an instance when
a demonstrator cuts across the table (see red trajectory in the
top left plot of �gure 6). There were not many examples
of such behaviour, making it statistically insigni�cant with
respect to the GMM which in the EM learning stage did not
attribute a Gaussian function to represent it. However since
the search strategy of the robot is composed from a mixture
of strategies it is possible that new trajectories emerge which
are similar to these one-off demonstrations.
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Fig. 8: Illustration of three different types of modes present
during the execution of the task where the robot is being
controlled by the learned model. The white ball represents
the actual position of the robot's end-effector. The blue
ball represents the believed position of the robot's end-
effector and the robot is acting according to it. Arrows of
the blue ball represent modes, colours encode the modes
weights given by the priors� k after conditioning ( but not
re-weighted as previously described). The spectrum ranges
from red (high weight) to blue (low weight).Top left: Three
modes are present, but two agree with each other.Top
right: Three modes are again present indicating appropriate
ways to reduce the uncertainty.Lower left: Two modes in
opposing directions, no �ipping behaviour between modes
occurs since preference is given to the modes pointing in the
same direction as the robot's current trajectory.Lower right:
GMM modes when conditioned on the state represented in
the lower left �gure. The two modes represent the possible
directions (un-normalised).

B. Qualitative analysis of modes

We next illustrate some of the modes (action choices)
present during simulation and evaluated their plausibility.
Figure 8 shows that multiple decision points have been
correctly embedded in the GMM model. All directions (red
arrows) indicate directions that reduce the level of uncer-
tainty.

C. Greedy vs GMM vs Hybrid controller
We evaluated the performance of a greedy controller,

which takes the most likely position̂x and goes straight to-
wards the goal, as opposed to a controller solely learned from
human demonstrations and a hybrid controller which uses
the GMM controller until a minimum uncertainty threshold
is reached before switching to the greedy controller. We
performed 70 runs in each case and evaluated the uncertainty
and distance taken to reach the goal. The results are illus-
trated in �gure 7 and six trajectories of the greedy controller
are depicted in the lower right of �gure 6. The results con�rm
that the GMM controller decreases uncertainty quadratically
as opposed to the greedy method where the uncertainty
does not seem to decrease in a consistent fashion. The
trajectories of the greedy controller are also non-smooth,
abrupt and unnatural. The Hybrid controller takes even less
time/distance to reach the goal since it does not seek to stay
close to informative features once localized and goes straight



Fig. 9: Depiction of the robustness with respect to false
beliefs. Top left: both the believed and actual position of
the end-effector coincide with each other and most of the
probability massp(xjz) lies on top of them.Top right: the
actual end-effector's position, white ball, has been teleported
to another position making the believed position, blue ball,
inaccurate.Bottom left: all the particles which were at the
end-effector's believed position were resampled to feasible
areas which yield similar sensing to the actual position.
Bottom right: the overall search process continues until the
goal is reached.

towards the goal. The GMM on the contrary re�ects the risk-
averse behavior of humans. When we don't have any visual
feedback our behavior is very different and this is not taken
into account by the Hybrid controller (in the �nal stage of
the search) which has no such concept of prudence.

D. Robustness

We now turn to the evaluation of robustness of the learned
model with respect to false beliefs. False belief, in our
experiment, corresponds to situations where the ”believed”
location of the end-effector is far from the true position. To
simulate this situation, once the robot had localised itself
(that is, the uncertainty level is close to zero) and was
heading towards the goal, it was teleported to one of four
possible locations (middle of the table in the air, near top
right, bottom right and bottom left corners of the table).
The system recovered well from such failure, as the end-
effector moved towards the goal but failed to reach it as it had
expected, the probability densityp(xjz) redistributes itself
across the feasible locations in the environment, see �gure
9. This is made possible since we keep1% of the particles
distributed at random across the environment at all times.
A total of 50 runs were performed with the teleportation
mentioned above and in the runs the goal was found.

VII. CONCLUSION

In this work we have shown a novel approach in teaching
a robot to act in a partially observable environment. Through
having human volunteers demonstrate the task of �nding an
object on a table, we recorded both the inferred believed
position of their hand and associated action (normalised
velocity). A generative model mapping the believed end-
effector position to actions was learned, encapsulating this
relationship. As speculated and observed, multiple strate-
gies are present given a speci�c belief re�ecting the fact
that humans act differently given the same situation. Some

trajectories generated by the model were similar to those
of the human demonstrations while others emerged through
the combination of multiple strategies. When compared to a
greedy controller humans prefer to �rst reduce uncertainty
and then minimise risk. The model is able to handle false
beliefs and environmental perturbations. Future researchwill
focus on adding another probability density function to
represent the believed location of the goal. In this way the
goal no longer has to be �xed and this situation makes for
a more interesting problem, where interacting probability
density functions need to be addressed.
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