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Abstract

A finite element heterogeneous multiscale method is proposed for solving the Stokes
problem in porous media. The method is based on the coupling of an effective Darcy
equation on a macroscopic mesh, with unknown permeabilities recovered from micro fi-
nite element calculations for Stokes problems on sampling domains centered at quadrature
points in each macro element. The numerical method accounts for non-periodic micro-
scopic geometry that can be obtained from a smooth deformation of a reference pore
sampling domain. The computational work is nevertheless independent of the smallness
of the pore structure. A priori error estimates reveal that the overall accuracy of the nu-
merical scheme is limited by the regularity of the solutions of the Stokes micro problems.
This regularity is low for a typical situation of non-convex microscopic pore geometries.
We therefore propose an adaptive scheme with micro-macro mesh refinement driven by
residual-based indicators that quantify both the macro and micro errors. A posteriori
error analysis is derived for the new method. Two and three dimensional numerical ex-
periments confirm the robustness and the accuracy of the adaptive method.

Keywords. Stokes flow, Darcy equation, numerical homogenization, a posteriori error
estimates, adaptive finite element method
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1. Introduction. Fluid flow through porous media is an important process appearing
in a wide range of engineering and technical applications. It is present in the modeling of
subsurface contamination and filtration, textile properties, biomedical materials, or natural
reservoirs [30, 50, 55, 56]. The length-scale of a porous structure is usually much smaller than
the computational domain of interest. Standard numerical methods relying on discretization
of the porous domain, such as the finite element method (FEM), need to resolve the finest
scale of the geometry, which is denoted by ε in what follows. Such techniques often lead to
numerical problems of prohibitive size and computational cost.

In practical applications one is often interested in macroscopic quantities such as bulk prop-
erties of the fluid flow. Mathematical models describing such macroscopic quantities are based
on averaging techniques such as homogenization. The derivation of effective equations of flow
in porous media can be traced back to Darcy [28]. Rigorous homogenization theory of Stokes
flow in periodic porous media appeared first in [44] with a proof of convergence by Tartar [47].
This proof was generalized by Allaire [10] to allow for connected solid porous structures in
three dimensions. The effective pressure is given by an elliptic (Darcy) equation which contains
the effective permeability tensor that depends on the pore geometry and can be computed us-
ing the so-called Stokes micro problems. The homogenization theory was further expanded
by introducing correctors and ε-dependent error estimates [34] (see also [21]) and to random
stochastically homogeneous media [15].

Numerical multiscale algorithms that approximate effective Stokes (or Navier-Stokes) flow
in porous media usually rely on a Darcy macro problem. There are numerous works that
address extraction of the effective permeability of porous media from the pore geometry of a
small representative volume element. Stokes micro problems are then solved on these local
pore geometries. We mention explicit analytic results for simple geometries [46], applications
to textile modeling [55], and validation of predicted permeability using micro-tomography [36].
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Some authors assume that the pore structure varies slowly, leading to definitions of slowly-
varying [21] or locally periodic porous media [22, 51]. The multiscale FEM described in [20]
assumes that the Stokes micro problems can be obtained from a reference periodic domain by a
known smooth map and numerically computes micro problems with varying accuracy on nested
grids of points. This method relies on high regularity of the Stokes problems that excludes
re-entrant corners in micro domains. The two-scale finite element method proposed in [45] was
used to compare the multiscale numerical solution of a Darcy equation with a fully resolved
fine scale pressure, yielding excellent agreement. A priori analysis or convergence rates of this
method were not discussed. The multiscale approach presented in [12] uses control volume
method to discretize the Darcy macro equation. The reduced regularity of non-convex micro
domains is taken into account and an appropriate estimate of the micro error is derived. The
homogenized solution is assumed to have H2 regularity.

In this paper we propose an adaptive multiscale method for Stokes flow in porous media.
Our method is based on the coupling of an adaptive FEM for elliptic problem with unknown
permeability recovered form adaptive FEMs for Stokes problems in microscopic domains. Its
construction is obtained as follows. A standard finite element method is used to discretize the
Darcy’s law on a macroscopic mesh whose size is independent (and can be much larger than)
ε. An approximation of the effective permeability is recovered from FE solutions of Stokes
problems on micro domains that are centered at quadrature points of the macro elements. We
consider stable mixed FE pairs for solution of the Stokes problem as the Taylor-Hood FE [48]
or the MINI FE [13]. We then derive a fully discrete a priori error analysis based on [1].

To overcome suboptimal a priori convergence rates caused by non-convexity of the macro
and micro domains we propose an adaptive approach. Unlike the adaptive finite element
heterogeneous multiscale method (FE-HMM) for elliptic equations [2, 6, 40] that uses a priori
error estimates to control the errors committed in micro problems, we derive a residual-based
error estimator that combines the macroscopic residuals and microscopic residuals. We derive
an a posteriori upper and lower bound for the error, and we show that our numerical method
is both efficient and reliable. This is confirmed in a series of numerical experiments including
three-dimensional problems with a non-periodic pore structure.

In this paper we also discuss ellipticity and boundedness of the effective permeability ob-
tained from the velocity fields of Stokes problems on local pore geometries. The well-posedness
of the effective Darcy problem is thus closely related to the variation of the pore geometry
which we investigate in detail by providing practical criteria to characterize media for which
such well-posedness can be established. This is also important to characterize the constants
entering in the a posteriori estimates of our numerical method as they also depend on the
micro pore geometries.

The organization of the paper is as follows. In Section 2 we review the definition of periodic
porous media, define locally periodic porous media, recall the homogenization theory, define
the effective problem and investigate its well-posedness. We then define the numerical method
in Section 3 and derive a priori error estimates in Section 4. In Section 5 we derive a posteriori
upper and lower bound for the numerical method and in Section 6 we describe an adaptive
algorithm based on macro and micro residuals obtained from Darcy and Stokes problems.
Finally, in Section 7 we present a series of numerical experiments for two and three dimen-
sional problems with non-perioidc porous media that corroborate the optimal performance
and robustness of the adaptive multiscale method.

1.1. Notation. Let C denote a generic constant whose value can change at any occur-
rence but it depends only on explicitly indicated quantities. We consider a domain Ω ⊂ Rd,
d ∈ N and the usual Lebesgue space Lp(Ω) and Sobolev space W k,p(Ω) equipped with the
usual norms ‖ · ‖Lp(Ω) and ‖ · ‖Wk,p(Ω). On the factor space L2(Ω)/R, we define ‖q‖L2(Ω)/R =

infs∈R ‖q + s‖L2(Ω). For p = 2 we apply the Hilbert space notation Hk(Ω) and H1
0 (Ω) and

define the seminorm |q|H1(Ω) = (
∑d
i=1 ‖∂iq‖2L2(Ω))

1/2. The standard scalar product on L2(Ω)

is denoted by (·, ·)L2(Ω). Given a matrix A ∈ Rd×d with entries Aij , we denote its Frobe-
nius norm by ‖A‖F = (

∑d
i,j=1A

2
ij)

1/2. Given a vector ξ ∈ Rd with entries ξi, we define
|ξ| = (

∑d
i=1 ξ

2
i )1/2. Let δij denote the Kronecker delta.

2. Stokes flow in porous media and homogenization. In this section we briefly
describe the homogenization of Stokes flow leading to a macroscopic Darcy equation. These
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results were pioneered by Sánchez-Palencia and Tartar [44, 47] and refined and extended by
many authors (see [10, 35] and references therein). We then define locally periodic porous
media, state the homogenized model problem, and investigate its well-posedness.

2.1. Periodic porous media. Let Ω ⊂ Rd be a bounded, connected, polygonal do-
main, where d ∈ {2, 3}. We denote by Y the d-dimensional open unit cube (−1/2, 1/2)d. Let
YS ⊂ Y and set YF = Y \YS. Here and subsequently, the subscripts F and S stand for the fluid
and solid parts of the medium, respectively. For any r > 0, we denote the r-periodic extension
of a set X ⊂ Rd by Er(X) = ∪m∈(r/2+rZd)(m+X). Let ε > 0 and define the periodic porous
medium Ωε ⊂ Ω by (see Figure 1)

Ωε = Ω\(εE1(YS)). (1)

Remark 1. Although Ω is connected, the definition (1) can lead to Ωε with small parts near
the boundary of ∂Ω that are disconnected from the main body. In what follows, we will neglect
these small parts and assume (without changing notation) that Ωε is connected. Moreover,
we observe that ∂Ωε does not necessarily have Lipschitz boundary. See Figure 1(c).

(a) (b) (c)
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Figure 1: A pore geometry (a), global pore structure and Ω (b), and Ωε given by (1) with two
cusps and encircled disconnected parts (c).

2.2. Homogenization of Stokes flow. Consider the incompressible Stokes problem
in Ωε with the velocity field uε, pressure pε, and force field f , given by

−∆uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Ωε.

(2)

Homogenization theory examines the limit behavior of the solutions of (2) for ε→ 0+. Appro-
priate assumptions on the solid and fluid domains are needed to study these limits (see [10]).

Assumption (H):

• the set YS is closed in Y , and both YS and YF have positive measure,

• the sets Rd\E1(YS) and E1(YS) have locally Lipschitz boundaries and are locally located
on one side of their boundaries,

• the sets Rd\E1(YS) and YF are connected and YF has locally Lipschitz boundary.

The analysis proceeds by extending the solution uε, pε, defined in Ωε, to Uε, P ε, defined in
Ω, as described in Remark 2. Assuming (H) it was proved in [10] that Uε/ε2 → u0 weakly
in L2(Ω)d and P ε → p0 strongly in L2

loc(Ω)/R, where p0 is the homogenized pressure given as
the solution to the elliptic system

∇ · a0(f −∇p0) = 0 in Ω,

a0(f −∇p0) · n = 0 on ∂Ω.
(3)

The so-called homogenized velocity satisfies u0 = a0(f − ∇p0) and the homogenized perme-
ability tensor a0 is a d× d matrix defined by

a0 =

∫

YF

[u1, . . . ,ud] dy, (4)
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where ui (i ∈ {1, . . . , d}) is the solution of the following Stokes problem: Find ui, pi such that

−∆ui +∇pi = ei in YF, ui = 0 on ∂E1(YS),

divui = 0 in YF, ui and pi are Y -periodic,
(5)

where ei is the i-th canonical basis vector in Rd.

Remark 2. Suitable extensions of uε, pε to Uε, P ε are defined explicitly in [10] as follows.
The extension of the velocity is given by Uε(x) = uε(x) for x ∈ Ωε and Uε(x) = 0 for
x ∈ Ω\Ωε. For the pressure, we set P ε(x) = pε(x) for x ∈ Ωε and for each z ∈ (1/2 +Zd) with
the property ε(z+ Y ) ⊂ Ω, we define P ε(x) for x ∈ (Ω\Ωε)∩ ε(z+ Y ) as the average of pε(w)
over w ∈ Ωε ∩ ε(z + Y ). Elsewhere in Ω\Ωε, we set P ε(x) = 0.

A strong convergence result in the L2-norm was derived in [11]. If

u0(x, x/ε) =
∑d
i=1 u

i(x/ε)(fi − ∂ip0), then ‖Uε/ε2 − u0(x, x/ε)‖L2(Ω) → 0.

Furthermore, under more restrictive conditions on the regularity of Ω and YF, an additional
corrector u1 was defined in [34] allowing for convergence rates (in terms of ε)

∥∥Uε/ε2 − u0(x, x/ε)− εu1(x, x/ε)
∥∥
H(Ω,div )

≤ Cε1/6,

‖P ε − p0‖L2(Ω)/R ≤ Cε1/6,

where C does not depend on ε.

2.3. Locally periodic porous media. We generalize the definition of periodic porous
media from Section 2.1 similarly to [21]. Assume that a reference porous geometry (YS, YF) is
given, satisfying Assumption (H). Let ϕ(x, ·) : Y → Y be a homeomorphism for every x ∈ Ω
and assume that ϕ(x, ·)|∂Y is an identity. For ε ≥ 0 define

Ωε = Ω\
⋃

x∈(1/2+Zd)

ε(x+ ϕ(x, YS)). (6)

Following Remark 1, we assume that Ωε is connected. For any x ∈ Ω we define the local pore
geometry by Y xS = ϕ(x, YS) and Y xF = Y \Y xS . We observe that if ϕ(x, y) ≡ y, then we obtain
the definition (1).

Example 3. Consider the polynomial P (c, t) = 4(1−c)t3 +ct that induces a homeomorphism
from the closed interval [−1/2, 1/2] to itself for c ∈ (0, 3/2). For d = 2 and i ∈ {1, 2} define
ϕi(x, y) = P (5x2

i + 0.1, yi). Finally, we set ε = 1/8, solid geometry YS = [−1/4, 1/4]2, and
Ω = (−0.45, 0.45)2\[0, 1]2, as illustrated in Figure 2.
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Figure 2: A reference pore structure (a), its image after applying ϕ(x, ·) (b), and the locally
periodic porous medium Ωε (c) from Example 3.

Remark 4. A level set definition of locally periodic media was described in [22, 51]. Given
S : Ω×Rd → R that is Y -periodic in its second variable, we set Ωε = {x ∈ Ω | S(x, x/ε) > 0}.
For any x ∈ Ω we then define Y xS = {y ∈ Y | S(x, y) ≤ 0} and Y xF = Y \Y xS .

Remark 5. To allow for some intuitive and simple locally periodic porous media (see the
porous medium C in Section 7), we propose a generalization of the presented definition. We
let ϕ : Ω × Y × R+

0 → Y and use ϕ(x, YS, ε) in the definition (6). The local geometries are
then defined as Y xS = ϕ(x, YS, 0) and Y xF = Y \Y xS . Naturally, we assume that ϕ(x, YS, ε) →
ϕ(x, YS, 0) for ε→ 0+.
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2.4. Formal homogenization and the model problem. Following the homogenized
problem in periodic porous media (3), (5), (8), we define a model problem in the locally periodic
setting. The effective pressure equation (3) stays unchanged but we let a0 depend on x as
follows. For any x ∈ Ω and i ∈ {1, . . . , d} let ui,x, pi,x be the velocity and pressure solutions
of the the Stokes problem

−∆ui,x +∇pi,x = ei in Y xF , ui,x = 0 on ∂E1(Y xS ),

divui,x = 0 in Y xF , ui,x and pi,x are Y -periodic.
(7)

Then set
a0(x) =

∫

Y xF

[u1,x, . . . ,ud,x] dy. (8)

Variational formulation. Let f ∈ L2(Ω) and define

W (YF) = {v ∈ H1(YF)d; v = 0 on ∂E1(YS),v is Y -periodic},

a(u,v) =

d∑

i=1

(∇ui,∇vi)L2(Y xF )d , and b(v, q) = −(q,divv)L2(Y xF ).

A weak formulation of (7) reads: find ui,x ∈W (Y xF ) and pi,x ∈ L2(Y xF )/R such that

a(ui,x,v) + b(v, pi,x) = (ei,v)L2(Y xF ) ∀v ∈W (Y xF ),

b(ui,x, q) = 0 ∀q ∈ L2(Y xF )/R.
(9)

We next recall the weak formulation of (3). Find p0 ∈ H1(Ω)/R such that

B0(p0, q) = L0(q) ∀q ∈ H1(Ω)/R, (10)

where B0(p, q) =

∫

Ω

a0∇p · ∇q dx and L0(q) =

∫

Ω

a0f · ∇q dx. (11)

Remark 6. The Stokes system (9) can be reformulated by excluding the pressure: find
ui,x ∈ V (YF) such that

a(ui,x,v) = (ei,v)L2(Y xF ) ∀v ∈ V (Y xF ), (12)

where V (Y xF ) = {v ∈W (Y xF ); divv = 0 in Y xF }.

Velocity solutions defined by (12) and (9) are identical, see for example [17].

Let us note that the continuous dependence of a0(x) with respect to x can be deduced from
the regularity of the map ϕ(x, y). Assuming sufficient smoothness of ϕ(x, y) : Ω×Y → Y , the
Stokes micro problems (7) can be pulled back to the domain YF and we can use continuous
dependence of coefficients on x to show that a0 ∈ C0(Ω)d×d.

2.5. Well-posedness of the model problem. Assuming that ∂Y xF is piecewise Lip-
schitz, there is a well-known theory [33, 49] that ensures the existence and uniqueness of a
weak solution to the problem (9). Consequently, the tensor a0 : Ω→ Rd×d is defined uniquely
via (8). If a0 is uniformly elliptic and bounded, i.e., there is Λ ∈ R such that ‖a0(x)‖F ≤ Λ
for a.e. x ∈ Ω and there is λ > 0 such that a0(x)ξ · ξ ≥ λ|ξ|2 for each ξ ∈ Rd and a.e. x ∈ Ω,
then the problem (10) has a unique solution by the classical Lax-Milgram theorem.

It is shown in [44] that a0 is elliptic in periodic porous media. However, for locally periodic
porous media, this proof does not guarantee uniform ellipticity and boundedness of a0(x).
This question turned out to be difficult for arbitrary geometry of the pore structure and is
examined in the next subsections.

2.5.1. Uniform boundedness of a0(x). Assume that there is α0 ∈ R such that,
independently of x ∈ Ω, the following Poincaré-Friedrichs inequality is valid: ‖v‖L2(Y xF ) ≤
α0|v|H1(Y xF ) for every v ∈ W (Y xF ). Using the standard estimate of a solution to the Stokes
equation (see [33] or [42, Thm. 15.4]) on ui,x, we obtain

‖ui,x‖L2(Y xF ) ≤ α0|ui,x|H1(Y xF ) ≤ α0‖ei‖L2(Y xF ) < |Y xF |1/2α0. (13)
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Further, the Cauchy-Schwarz inequality yields

‖a0(x)‖2F =

d∑

i,j=1

(∫

Y xF

ui,xj dy

)2

≤ |Y xF |
d∑

i=1

‖ui,x‖2L2(Y xF ) ≤ d|Y xF |2α2
0 ≤ dα2

0. (14)

Hence, a0(x) is uniformly bounded for x ∈ Ω.

2.5.2. Uniform ellipticity of a0(x). In the first step, we follow the well-known result
[44, Ch. 7, Prop. 2.2] and apply it to a non-constant tensor a0(x). Let i, j ∈ {1, . . . , d} and take
v = uj,x in (12) to obtain a(ui,x,uj,x) = (ei,uj,x)L2(Y xF ). Then (8) gives a0

ij(x) = a(ui,x,uj,x)

which implies the symmetry of a0(x). Define uξ,x =
∑d
i=1 ξiu

i,x for any ξ ∈ Rd. We have

a0(x)ξ · ξ =

d∑

i,j=1

ξiξja(ui,x,uj,x) = |uξ,x|2H1(Y xF ) ≥ 0. (15)

To prove that a0(x) is indeed positive definite, we take functions vi,x ∈ V (Y xF ) for i ∈ {1, . . . , d}
with (ej ,vi,x)L2(Y xF ) = δijξi for every j ∈ {1, . . . , d}. Then, a(uξ,x,vi,x) = ξ2

i , which gives
uξ,x 6≡ 0 for ξ 6= 0, implying a strict inequality in (15) for any ξ ∈ Rd, ξ 6= 0.

The above argument shows the ellipticity of a0 but not the uniform ellipticity that we discuss
now.

Lemma 7. We have a0(x)ξ ·ξ ≥ (ξ,v)2
L2(Y xF )/|v|2H1(Y xF ) for any ξ ∈ Rd and v ∈ V (Y xF ), v 6≡ 0.

Proof. The equation (12) and the continuity of a(·, ·) give

|uξ,x|H1(Y xF )|v|H1(Y xF ) ≥ a(uξ,x,v) =

d∑

i=1

ξia(ui,x,v) = (ξ,v)L2(Y xF ). (16)

The result follows by using (16) to provide a lower bound for |uξ,x|H1(Y xF ) in (15).

Lemma 8. Let ν = (ν1, . . . , νd)
T ∈ Rd. Suppose that for every i ∈ {1, . . . , d} and x ∈ Ω there

is vi,x ∈ V (Y xF ) such that |vi,x|H1(Y xF ) ≤ νi and (ej ,vi,x)L2(Y xF ) = δij for every j ∈ {1, . . . , d}.
Then, a0(x)ξ · ξ ≥ |ν|−2|ξ|2 for each ξ ∈ Rd and x ∈ Ω.

Proof. Define vξ,x =
∑d
i=1 ξiv

i,x. Notice that (ξ,vξ,x)L2(Y xF ) = |ξ|2 while the triangle and the
Cauchy-Schwarz inequality give |vξ,x|H1(Y xF ) ≤ |ξ||ν|. The result follows by setting v = vξ in
Lemma 7.

We observe that the representation

(ξ,v)L2(Θ) =

∫

∂Θ

(ξ · y)(v · n) ds (17)

holds for a bounded domain Θ ⊂ Rd and a function v ∈ H1(Θ)d with divv = 0. Indeed, using
integration by parts we have

(ei,v)L2(Θ) =

∫

∂Θ

yivini ds−
∫

Θ

yi
∂vi
∂yi

dy =

∫

∂Θ

yivini ds+
∑

j 6=i

∫

Θ

yi
∂vj
∂yj

dy

=

∫

∂Θ

yivini ds+
∑

j 6=i

∫

∂Θ

yivjnj dy =

∫

∂Θ

yi(v · n) ds =

∫

∂Θ

(ei · y)(v · n) ds

for any i ∈ {1, . . . , d}. The result (17) follows by linearity.
For some pore geometries, Lemma 8 can directly be used to derive (explicit) uniform bounds

for the ellipticity of the tensor a0(x). For example, when the fluid part Y xF contains straight
cylindrical subset as described below. We have then an explicit construction for the test
functions vi,x to be used in Lemma 8 using the Poiseuille flow and the uniform bound for the
ellipticity of the tensor a0(x) is then explicitly dependent on the radius of the cylinders.
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Figure 3: Straight cylindrical subsets of Y xF from Example 9.

Example 9 (pore geometries Y xF containing straight cylindrical subsets). Let r > 0, zx ∈ Y ,
and suppose that (see Figure 3)

Bi,x = {y ∈ Y ; r2 −∑j 6=i(yj − zxj )2 ≥ 0} ⊂ Y xF . (18)

Then a0(x) is uniformly elliptic with λ = r3/3 for d = 2 and λ = πr4/24 for d = 3.
This can indeed easily be seen. Let us use a Poiseuille parabolic flow as test functions

vi,x(y) = C

(
r2 −

∑

j 6=i
(yj − zxj )2

)
·
{
ei for y ∈ Bi,x,
0 for y ∈ Y xF −Bi,x.

(19)

It is clear that vi,x ∈ V (Y xF ). Notice that the constant C can be set such that (ej ,vi,x)L2(Y xF ) =

δij . An explicit computation then allows to estimate |vi,x|H1(Y xF ) ≤ νi for i ∈ {1, . . . , d}. Using
Lemma 8 we conclude the proof.

Example 10 (pore geometries Y xF containing curved cylindrical subsets). Let r > 0 and for
i ∈ {1, . . . , d} consider Bi,x, as defined in (18), but without assuming Bi,x ⊂ Y xF . Suppose
that Φi,x : Bi,x → B̃i,x = Φi,x(Bi,x) ⊂ Y xF is a C1-diffeomorphism such that

(a) Φi,x(y) = y for all y ∈ ∂Bi,x ∩ ∂Y ,

(b) ∂jΦ
i,x
i (y) = 0 for y ∈ Bi,x and j 6= i,

(c) there is L > 0 independent of x ∈ Ω and i ∈ {1, . . . , d} such that the C1-norms of Φi,x

and (Φi,x)−1 are bounded by L.

Then a0(x) is uniformly elliptic with λ depending only on r, d, and L.
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Figure 4: Curved cylindrical subsets from Example 10.

An illustration of a possible geometry that fulfills the above assumptions is given in Figure 4.
To construct suitable test functions to be used in Lemma 8, we take the functions vi,x from
(19) and define ṽi,x ∈ H1(Y xF ) by ṽi,x(y) = vi,x((Φi,x)−1(y)) for y ∈ B̃i,x and ṽi,x(y) = 0
elsewhere in Y xF . The assumption (a) implies ṽi ∈ W (Y xF ) and using (b) one can prove
ṽi,x ∈ V (Y xF ). The assumption (a) and the observation (17) lead to (ej , ṽi,x) = (ej ,vi,x) = δij
for all j ∈ {1, . . . , d}. We observe that |ṽi,x|1 can be bounded by an explicit constant depending
on r, d, and L. We then conclude by applying Lemma 8 with test functions ṽi,x.

Remark 11. The assumption (b) from Example 10 is needed to show that ṽi,x is divergence-
free. For d = 2, this assumption can be removed provided a higher regularity of Φi,x. Indeed,
we take qi,x ∈ H2(Y ) such that vi,x = [∂2q

i,x,−∂1q
i,x], where vi,x is defined in (19). Then,

we can define q̃i,x = qi,x((Φi,x)−1(y)) and ṽi,x(y) = [∂2q̃
i,x,−∂1q̃

i,x]. Notice that we need Φi,x

to be a C2-diffeomorphism.

7



The next step is to simplify Lemma 8 such that the test functions vi,x do not have to be
divergence-free. We start by introducing the inf-sup constant of b(·, ·) in Definition 12.

Definition 12. For any x ∈ Ω let βx0 > 0 be the constant from the following inf-sup condition:
for every q ∈ L2(Y xF )/R there is v ∈ H1

0 (Y xF )d such that b(v, q) ≥ βx0 ‖q‖L2(Y xF )/R|v|H1(Y xF ).

In what follows, we will assume a uniform inf-sup constant for all domains Y xF with x ∈ Ω,
i.e., βx0 ≥ β for every x ∈ Ω. Such results can be obtained for a large class of geometries than
can be expressed as a union of star-shape domains with respect to open balls [31, Chap. III.3].
We note however that for domains with thin channels or large aspect ratio, β degenerate with
increasing aspect ratio [29].

Lemma 13. Let η = (η1, . . . , ηd)
T ∈ Rd. Suppose that for any x ∈ Ω and i ∈ {1, . . . , d}

there is wi,x ∈ W (Y xF ) such that |wi,x|H1(Y xF ) ≤ ηi and
∫
∂Y xF

yj(w
i,x · n) dy = δij for every

j ∈ {1, . . . , d}. Further, suppose that there exists β > 0 such that βx0 ≥ β for every x ∈ Ω.
Then a0(x)ξ · ξ ≥ λ|ξ|2 for each ξ ∈ Rd and x ∈ Ω with λ depending only on β, η, and the
dimension d.

Proof. Let ṽi,x ∈ H1
0 (Y xF )d and p̃i,x ∈ L2(Y xF )/R be given by the Stokes problem

a(ṽi,x,w) + b(w, p̃i,x) = −a(wi,x,w) ∀w ∈ H1
0 (Y xF )d,

b(ṽi,x, q) = −b(wi,x, q) ∀q ∈ L2(Y xF )/R.

Define vi,x = ṽi,x + wi,x. One can show that vi,x is divergence-free, yielding vi,x ∈ V (Y xF ).
Standard Stokes estimates [33,42] give

|vi,x|H1(Y xF ) ≤ 2(1 +
√
d/βx0 )|wi,x|H1(Y xF ) ≤ 2(1 +

√
d/β)ηi =: νi.

Further, using (17) and the condition vi,x = wi,x on ∂Y xF yield (ej ,vi,x)L2(Y xF ) = δij for any
j ∈ {1, . . . , d}. Using Lemma 8 gives λ = |ν|−2, with ν = (ν1, . . . , νd)

T .

D1,x,1 D1,x,2

D2,x,1

D2,x,2

zx

− 1
2

− 1
2

1
2

1
2

Figure 5: Half-balls from the construction of test functions in Example 14.

We now apply Lemma 13 to derive uniform bounds for the ellipticity of the tensor a0(x) in
a general situation.

Example 14. Let r > 0 and zx ∈ Y be such that the half-balls

Di,x,k = {y ∈ Y ; r2 − (yi + (−1)k/2)2 −∑j 6=i(yj − zxj )2

︸ ︷︷ ︸
=:gi,x,k(y)

≥ 0}

(see Figure 5) satisfy Di,x,k ⊂ Y xF for i ∈ {1, . . . , d} and k ∈ {1, 2}. Then a0(x) is uniformly
elliptic with λ depending only on r and β. Indeed, define

wi,x(y) = Cgi,x,k(y) ·
{
ei for y ∈ Di,x,k, k ∈ {1, 2},
0 otherwise,

(20)

where C is a constant depending on r that assures
∫
∂Y xF

xj(w
i,x · n) dy = δij for every j ∈

{1, . . . , d}. Using test functions wi,x in Lemma 13 concludes the proof.
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3. DS-FE-HMM for the Stokes Problem. In this section we define the numer-
ical multiscale method for the Stokes problem in porous media with an acronym DS-FE-
HMM (Darcy-Stokes finite element heterogeneous multiscale method). Since the effective
equation (10) is elliptic, we can use the strategy developed in [1] for the macro solver. The
coupling with micro problems, however, differs from the FE-HMM as we now have to solve
micro Stokes problems. There we use mixed finite elements.

3.1. Definition of the method. Let ε > 0 and assume that Ω and Ωε are connected
bounded polygonal domains in Rd with Ωε ⊂ Ω. Let {TH} be a family of conformal, shape-
regular triangulations of Ω parametrized by the mesh size H = maxK∈TH HK , where HK =
diam(K).

Macro FE space and quadrature formulas. We consider the macro FE space

SlH(Ω) = {qH ∈ H1(Ω); qH |K ∈ P l(K), ∀K ∈ TH},
where P l(K) is the space of polynomials on K of degree l ∈ N. For the sake of simplicity of
notation, we indicate the dependence of spaces Wh(Y x,δF ) and Lh(Y x,δF ) on the micro triangu-
lation T xh only by the subscript h. For each element K ∈ TH we consider an affine mapping FK
such that K = FK(K̂), where K̂ is the simplicial reference element. Let J ∈ N and {x̂j , ω̂j}Jj=1

be a given quadrature formula on K̂ with positive weights and x̂j ∈ K̂. The transformation
FK induces a quadrature formula on K with integration points xKj = FK(x̂j) and weights
ωKj = ω̂j |det(∂FK)|. Denote

QK = {xKj}Jj=1 and QH = ∪K∈THQK , (21)

where we notice that QK ⊂ K and QH ⊂ Ω. Denote the family of all quadrature points for
H > 0 by {QH}. Since exact integration will be replaced by a quadrature formula, we need
the following assumption to recover well-posedness of the numerical method and guarantee
the optimal order of accuracy, see [24, Chap. 4.1].
Assumption (Q). For m = max(2l − 2, l) and any q̂(x̂) ∈ Pm(K̂) we assume

∫

K̂

q̂(x̂) dx̂ =

J∑

j=1

ω̂j q̂(x̂j).

The assumption (Q) is valid for example if J = 1, ωK1
= |K|, and xK1

is the barycenter of
K. See [26,27] and the references therein for further examples of quadrature formulas.

Micro FE spaces. Let δ ≥ ε. For each x ∈ {QH} we define the local geometry snapshot

Y x,δS = (((Rd − Ωε) ∩ (x+ δY ))− x)/ε, Y x,δF = ((δ/ε)Y )\Y x,δS . (22)

For any x ∈ {QH}, we assume that {T xh }h is a family of conformal, shape-regular triangulations
of Y x,δF parametrized by the mesh size h = maxT∈T xh hT , where hT = diam(T ). The shape-
regularity constants are assumed to be the same for each x ∈ {QH} and δ ≥ ε. We consider
two standard stable pairs of micro velocity and pressure elements (see [17]): the Taylor-Hood
Pk+1/Pk FE for k ≥ 1 and the MINI FE (see Remark 15). We consider two different boundary
conditions (BC) on the micro scale: periodic and Neumann. The pressure FE space is given
by

Lh(Y x,δF ) =

{
{q ∈ Skh(Y x,δF ); q is (δ/ε)Y -periodic} for periodic BC,
Skh(Y x,δF ) for Neumann BC,

(23)

The velocity FE space is given by

Wh(Y x,δF ) = W (Y x,δF ) ∩ Sk+1
h (Y x,δF )d, (24)

where

W (Y x,δF ) =





{v ∈ H1(Y x,δF )d; v = 0 on ∂Eδ/ε(Y
x,δ
S ),

v is (δ/ε)Y -periodic} for periodic BC,
{v ∈ H1(Y x,δF )d; v = 0 on ∂Y x,δS } for Neumann BC.
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For the sake of simplicity of notation, we indicate the dependence of spaces Wh(Y x,δF ) and
Lh(Y x,δF ) on the micro triangulation T xh only by the subscript h.

Remark 15. To use MINI finite elements, we take (23) with k = 1 and

Wh(Y x,δF ) = W (Y x,δF ) ∩ (S1
h(Y x,δF )d ⊕ B(Y x,δF , T xh )d),

where B is the bubble space B(Y x,δF , T xh ) = {q ∈ Sd+1
h (Y x,δF ); q = 0 on ∂K,∀K ∈ T xh }.

In case of periodic boundary conditions, we assume that the micro meshes T xh are conformal
over periodic boundaries and periodicity can be thus enforced strongly (see Figure 6(c)).

(a) (b) (c) (d)

H

δ

Figure 6: DS-FE-HMM with P1 macro elements (l = 1): (a) TH ; (b) zoom on Ωε in the two
highlighted macro elements; (c) T xh in Y x,δF with periodic coupling (periodic: , Dirichlet: );
(d) T xh in Y x,δF with Neumann coupling (Neumann: , Dirichlet: ).

Coupling macro and micro methods (DS-FE-HMM). The coupled Darcy-Stokes finite
element heterogeneous multiscale method (DS-FE-HMM) is defined as follows. Find pH ∈
SlH(Ω)/R such that

BH(pH , qH) = LH(qH) ∀qH ∈ SlH(Ω)/R, (25)

where the discrete macro bilinear form and right-hand side corresponding to (10), (11) are

BH(pH , qH) =
∑

K∈TH

J∑

j=1

ωKja
h(xKj )∇pH(xKj ) · ∇qH(xKj ),

LH(qH) =
∑

K∈TH

J∑

j=1

ωKja
h(xKj )f

H(xKj ) · ∇qH(xKj ),

(26)

Here, fH ∈ S̃l−1
H (Ω)d is an appropriate interpolation of the force field f ∈ L2(Ω)d, where

S̃l−1
H (Ω) = {qH ∈ L2(Ω); qH |K ∈ P l−1(K), ∀K ∈ TH},

and ah(xKj ) is a numerical approximation of the tensor a0(xKj ) computed by the micro Stokes
problems: for each i ∈ {1, . . . , d} and quadrature point x ∈ QH find ui,x,h ∈ Wh(Y x,δF ) and
pi,x,h ∈ Lh(Y x,δF )/R such that

a(ui,x,h,v) + b(v, pi,x,h) = (ei,v)L2(Y x,δF ) ∀v ∈Wh(Y x,δF )

b(ui,x,h, q) = 0 ∀q ∈ Lh(Y x,δF )/R
(27)

and set

ah(x) =
εd

δd

∫

Y x,δF

[u1,x,h, . . . ,ud,x,h] dy. (28)

Remark 16. Neumann boundary conditions in the micro problems are especially useful when
the periodically extended fluid part Rd\Eδ/ε(Y x,δS ) is not connected (see for example Fig-
ure 7(right)). There, periodic boundary conditions would yield ah(x) = 0.
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Computational cost. Denote the number of macroscopic degrees of freedom by Nmac and
the (average) number of microscopic degrees of freedom by Nmic. If the time cost of solving
one (micro or macro) problem is assumed to be linear in the degrees of freedom, the total
cost of the DS-FE-HMM method is O(NmicNmac), which does not depend on the pore size
ε. Indeed, in general δ ≥ ε is of size comparable to ε and δ = ε can be chosen for periodic
problems.

Velocity reconstruction. We reconstruct a discontinuous velocity field using piecewise
approximation of ah(fH − ∇pH) by interpolation from quadrature points. In addition to
the assumption (Q) we assume that the number of quadrature nodes J is minimal, i.e., J =(
l+d−1
d

)
. Given a macro elementK ∈ TH (recall the definition (21)) and a function q : QK → R,

there is a unique interpolant Π(q) ∈ P l−1(K) such that Π(q)(x) = q(x) for every quadrature
point x ∈ QK (see [37, Prop. 50], [7]). Therefore, for any tensor a : QH → Rd×d, there is a
unique operator Πa that maps S̃l−1

H (Ω) to itself and satisfies

Πa(v)(x) = a(x)v(x), ∀x ∈ QH .

We define the DS-FE-HMM velocity reconstruction by uH = Πah(fH −∇pH).

Remark 17. Quadrature formulas that satisfy (Q) and J =
(
l+d−1
d

)
are known only for l ≤ 3

in two dimensions and l ≤ 2 in three dimensions, see [26] and the references therein. If the
number of quadrature nodes is not minimal, we can still define Π(q) as

Π(q) = argmin
r∈Pl−1(K)

J∑

j=1

ωKj |q(xKj )− r(xKj )|2.

We note that the assumption (Q) and definition of Π give

BH(pH , qH) =
∑

K∈TH

J∑

j=1

ωKja
h(xKj )∇pH(xKj ) · ∇qH(xKj )

=
∑

K∈TH

J∑

j=1

ωKjΠah(∇pH)(xKj ) · ∇qH(xKj ) (29)

=
∑

K∈TH

∫

K

Πah(∇pH) · ∇qH dx =

∫

Ω

Πah(∇pH) · ∇qH dx

and analogously

LH(qH) =
∑

K∈TH

∫

K

Πah(fH) · ∇qH =

∫

Ω

Πah(fH) · ∇qH . (30)

3.2. Well-posedness of the DS-FE-HMM. There is a well-known theory [13,17,19]
that guarantees well-posedness of the micro problems (27) with finite element spaces defined
in (23) or (24). The well-posedness of the macro problem (25) relies on the Lax-Milgram
lemma.

Proposition 18. In addition to Assumption (Q), assume that there exist Λ, λ > 0 such that
‖ah(x)‖F ≤ Λ and ah(x)ξ · ξ ≥ λ|ξ|2 for all ξ ∈ Rd, quadrature points x ∈ QH , and h > 0.
Then there is a unique solution pH of (25). Moreover, |pH |H1(Ω) ≤ Λ/λ‖fH‖L2(Ω).

Proof. The assumptions imply continuity of LH(·) and BH(·, ·) and ellipticity of BH(·, ·).
Indeed, for any qH , rH ∈ SlH(Ω), we have

BH(qH , qH) ≥ λ
∑

K∈TH

J∑

j=1

ωKj |∇qH(xKj )|2 = λ|qH |2H1(Ω),

BH(qH , rH) ≤ Λ|qH |H1(Ω)|rH |H1(Ω), LH(qH) ≤ Λ‖fH‖L2(Ω)|qH |H1(Ω).

The Lax-Milgram lemma concludes the proof.
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We now study the conditions under which ah(x) is uniformly elliptic and bounded. In
particular, the dependence of Λ and λ on the local geometries Y x,δF is discussed.

Let us first examine the case of micro problems (27) being solved exactly in Sobolev spaces.
Using here the variant of Stokes problem (12), which excludes pressure, we arrive at the
following definition. For any x ∈ {QH} and i ∈ {1, . . . , d}, let ui,x ∈ V (Y x,δF ) be the unique
solution to the Stokes problem

a(ui,x,v) = (ei,v)L2(Y x,δF ) ∀v ∈ V (Y x,δF ), (31)

where V (Y x,δF ) = {v ∈W (Y x,δF ); divv = 0 in Y x,δF }.
We then define

a(x) =
εd

δd

∫

Y x,δF

[u1,x, . . . ,ud,x] dy. (32)

If we show that a(x) is elliptic for every x ∈ QH , then we can already claim that, for a given
macro mesh TH , the tensor ah(x) is elliptic for each x ∈ QH provided that h > 0 is sufficiently
small. Indeed, the convergence properties of the stable FE scheme (27) assure that

lim
h→0
‖ah(x)− a(x)‖F = 0 ∀x ∈ QH . (33)

We thus examine the ellipticity of a(x) and then show how a global (independent of x ∈ {QH})
ellipticity constant of ah(x) can be obtained for h < ĥ, where ĥ > 0 also does not depend on
x ∈ {QH}.

3.2.1. Uniform ellipticity of a(x). Independently of the boundary conditions (peri-
odic or Neumann) that are used in the Stokes micro problems (27), we can apply the ellipticity
results from Section 2.5.2 on the tensor a(x) with very little changes. One has to substitute
the spaces W (Y xF ) and V (Y xF ) by the spaces W (Y x,δF ) and V (Y x,δF ), respectively, and apply
the scaling factor (ε/δ)d appearing in the definition of a(x). Analogously to Lemma 7 we get

a(x)ξ · ξ ≥ (ε/δ)d(ξ,v)2
L2(Y x,δF )

/|v|2
H1(Y x,δF )

∀ξ ∈ Rd, ∀v ∈ V (Y x,δF ), v 6≡ 0. (34)

However, there is an important class of pore geometries (Y x,δF , Y x,δS ) where adapting results
from Section 2.5.2 does not yield a desirable estimate, see for example Figure 7(right). When
the fluid part Y x,δF is not connected over opposite edges of (δ/ε)Y , periodic boundary conditions
in micro problems will yield ui,x ≡ 0, implying a(x) = 0 and finally ah(x) = 0. To avoid such
scenarios, Neumann boundary conditions can be used. To account for such geometries, we
start with a variant of Lemma 8 that shows ellipticity of a(x) with weaker assumptions on the
scalar products of test functions with ej .

− δ1
2ε

− δ1
2ε δ1

2ε

δ1
2ε

δ1 = ε

Rd\Eδ1/ε(Y x,δ1S )

z1,x,1

z1,x,2

z2,x,1

z2,x,2

− δ2
2ε

− δ2
2ε δ2

2ε

δ2
2ε

δ2 = 3ε/2

Rd\Eδ2/ε(Y x,δ2S )

Figure 7: Considering a porous medium with circular solid parts (light gray), we take two
pore geometries (Y x,δF , Y x,δS ) of different sizes δ1 (left) and δ2 (right). Each pore geometry is
periodically repeated in R2. Half-balls at the boundaries (dark gray) indicate the use of either
Example 14 (left) or Example 21 (right).

Lemma 19. Let L > 0 and η = (η1, . . . , ηd)
T ∈ Rd. Assume that for any x ∈ {QH}

and i ∈ {1, . . . , d} there is vi,x ∈ V (Y x,δF ) such that |vi,x|H1(Y x,δF ) ≤ ηi, and denote Axij =

(ei,vj,x)L2(Y x,δF ) for any i, j ∈ {1, . . . , d}. Assume that the matrix Ax is invertible with
‖(Ax)−1‖F ≤ L. Then a(x)ξ · ξ ≥ λ|ξ|2 for each ξ ∈ Rd and x ∈ {QH} with λ = CL2|η|−2

and C depending only on the dimension d.
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Proof. Set Bx = (Ax)−1 and define vξ,x =
∑d
j=1 ξiB

x
jiv

j,x. Notice that (ξ,vξ,x)L2(Y xF ) = |ξ|2,
while the triangle and the Cauchy-Schwarz inequality give |vξ,x|H1(Y xF ) ≤ CL|η||ξ|, where C
depends only on d. The result follows by setting v = vξ in (34).

The previous lemma can be used to obtain generalizations of Example 10, Lemma 13, and
Example 14 that allow for non-periodic test functions. As an illustration, we show a simple
way to generalize Example 14.

Definition 20. For any quadrature point x ∈ {QH} let βxδ > 0 be the constant from the
following inf-sup condition: for every q ∈ L2(Y x,δF )/R there is v ∈W (Y x,δF ) such that b(v, q) ≥
βxδ ‖q‖L2(Y x,δF )/R|v|H1(Y x,δF ).

Example 21. Suppose that the inf-sup constants βxδ have a lower bound βxδ > βδ > 0 for
every quadrature point x ∈ {QH}. For any i ∈ {1, . . . , d}, any quadrature point x ∈ {QH},
and any k ∈ {1, 2}, let zi,x,k ∈ ∂Y such that zi,x,ki = (−1)kδ/(2ε). Define a matrix Ax by
Axij = zi,x,2j − zi,x,1j and suppose that there exists γ > 0 such that |det(Ax)| ≥ γ. Further,
assume that the half-balls

Di,x,k = {y ∈ Y ; r2 −∑d
j=1(yj − zi,x,kj )2 ≥ 0}

(see Figure 7(right)) satisfy Di,x,k ⊂ Y x,δF for i ∈ {1, . . . , d} and k ∈ {1, 2}, where r > 0 is
a given radius. Then a(x) is uniformly elliptic with λ depending only on r, γ, βδ, and δ/ε.
Indeed, define

wi,x(y) = C(r2 −∑d
j=1(yj − zi,x,kj )2) ·

{
ei for y ∈ Di,x,k, k ∈ {1, 2},
0 otherwise,

(35)

where C is the constant from Example 14, depending only on r. Direct integration gives∫
∂Y xF

yj(w
i,x · n) dy = Axij for any j ∈ {1, . . . , d}. Using the auxiliary Stokes problems as in

Lemma 13 and then the formula (17), we can find vi,x ∈ V (Y x,δF ) such that (ej ,vi,x) = Axij
and |vi,x|H1(Y x,δF ) ≤ C, where C depends on r and βδ. Finally, the assumption on Ax (observe
also that ‖Ax‖F ≤ (δ/ε)d) gives ‖(Ax)−1‖F ≤ C, where C depends only on γ, d, and δ/ε. We
can conclude by using the test functions vi,x in Lemma 19.

3.2.2. Uniform boundedness of ah(x). We follow the reasoning from Section 2.5.1.
Assume that there is α ∈ R such that the Poincaré-Friedrichs inequality ‖v‖L2(Y x,δF ) ≤
α|v|H1(Y x,δF ) is valid for every v ∈ W (Y x,δF ), independently of δ ≥ ε and quadrature point
x ∈ {QH}. Following the estimates (13), (14), while using the standard discrete solution
stability result (see [33,42]) and Wh(Y x,δF ) ⊂W (Y x,δF ), we obtain ‖ah(x)‖F ≤

√
dα.

3.2.3. Uniform ellipticity of ah(x). Similarly to Section 2.5.2, we derive lower bounds
of ah(x)ξ · ξ. Using here the variant of Stokes problem (12), which excludes pressure, we can
restate (27) as follows. For any x ∈ {QH} and i ∈ {1, . . . , d} find ui,x,h ∈ Vh(Y x,δF ) such that

a(ui,x,h,v) = (ei,vh)L2(Y x,δF ) ∀vh ∈ Vh(Y x,δF ), (36)

where
Vh(Y x,δF ) = {vh ∈Wh(Y x,δF ); b(vh, qh) = 0,∀qh ∈ Lh(Y x,δF )/R}.

As in Section 2.5.2, we obtain ahij(x) = (ε/δ)da(ui,x,h,uj,x,h), which implies that ah(x) is
symmetric. Following Lemma 7 we get

ah(x)ξ · ξ ≥ (ε/δ)d(ξ,vh)2
L2(Y x,δF )

/|vh|2
H1(Y x,δF )

∀ξ ∈ Rd, ∀vh ∈ Vh(Y x,δF ), vh 6≡ 0. (37)

The main idea in what follows is to take, for any x ∈ {QH} and any unit vector η ∈ Rd, a
test function vη,x ∈ V (Y x,δF ) that satisfies the property

(η,vη,x)2
L2(Y x,δF )

≥ γ|vη,x|2
H1(Y x,δF )

(38)
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where γ > 0 is a constant. Notice that vη,x is a velocity solution to the Stokes problem: find
v ∈W (Y x,δF ) and p ∈ L2(Y x,δF )/R such that

a(v,w) + b(w, p) = a(vη,x,w) ∀w ∈W (Y x,δF ),

b(v, q) = 0 ∀q ∈ L2(Y x,δF )/R.
(39)

Let vη,x,h ∈Wh(Y x,δF ) be a discrete velocity solution of (39) where we replace the continuous
spaces W (Y x,δF ) and L2(Y x,δF )/R by the discrete spaces Wh(Y x,δF ) and Lh(Y x,δF ), respectively.
Standard Stokes estimates (see [33,49]) give

lim
h→0

|vη,x,h − vη,x|H1(Y x,δF )

|vη,x|H1(Y x,δF )

= 0. (40)

The following lemma now combines these considerations into an ellipticity result for ah.

Lemma 22. Suppose that for each quadrature point x ∈ {QH}, and unit vector η ∈ Rd,
there exists vη,x ∈ V (Y x,δF ) with the property (38), where γ > 0 is a constant and let
vη,x,h ∈ Vh(Y x,δF ) be defined as described after (39). Assume that there are uniform bounds on
the Poicaré-Friedrichs inequalities introduced in Sections 2.5.1 and 3.2.2 denoted by α0 and
α, respectively. Finally, assume that the functions vη,x,h ∈ Vh(Y x,δF ) satisfy the limit condi-
tion (40) uniformly (with respect to quadrature points x ∈ {QH} and η ∈ Rd). Then there is
λ > 0 and ĥ > 0 such that ah(x)ξ · ξ ≥ λ|ξ|2 for all h > 0 with h < ĥ, vectors ξ ∈ Rd, and
x ∈ {QH}.
Proof. A simple computation gives

∣∣∣∣∣∣

(η,vη,x,h)2
L2(Y x,δF )

|vη,x,h|2
H1(Y x,δF )

−
(η,vη,x)2

L2(Y x,δF )

|vη,x|2
H1(Y x,δF )

∣∣∣∣∣∣
≤ C
|vη,x,h − vη,x|2

H1(Y x,δF )

|vη,x|2
H1(Y x,δF )

, (41)

where C depends on δ/ε and on the Poincaré-Friedrichs constants α0 and α. Using the
assumption (40) we know that there is ĥ > 0 such that for all h ≤ ĥ the right-hand side
in (41) can be bounded by γ/2. That in turn gives (ξ,vη,x,h)2

L2(Y x,δF )
≥ γ/2|vη,x,h|2

H1(Y x,δF )
for

all h < ĥ. The estimate (37) concludes the proof with λ = γ(ε/δ)d/2.

Remark 23. Test functions vη,x in Lemma 22 can be constructed in many ways. One can
use the test functions from the proofs of coercivity of a in Section 3.2.1 or we can take directly
vη,x =

∑d
i=1 ηiu

i,x, where ui,x is defined in (31). The only additional assumption is the
uniformity of the limit behavior (40).

We close this section by a construction of the test functions for Lemma 22 in a specific
situation, where the rate of convergence of (40) can be derived explicitly. First, we need a
definition of a discrete inf-sup condition.

Definition 24. For any quadrature point x ∈ {QH} let βx,hδ > 0 be the constant from the
following inf-sup condition: for every qh ∈ Lh(Y x,δF )/R there is vh ∈ Wh(Y x,δF ) such that
b(vh, qh) ≥ βx,hδ ‖qh‖L2(Y x,δF )/R|vh|H1(Y x,δF ).

For every x ∈ {QH} we have continuous (βxδ ) and a numerical (βx,hδ ) inf-sup constants. As
in Section 3.2.1, we assume that there is βδ > 0 such that βxδ ≥ βδ for all x ∈ Ω. Then for
stable pairs of finite element spaces in shape-regular meshes (see [17]), we also have a uniform
bound for the discrete inf-sup constants, i.e., there is βδ,num > 0 such that βx,hδ ≥ βδ,num
independently of x ∈ {QH} and h > 0. Recall that the constant of shape-regularity for the
families of triangulations {T xh }h is assumed to be independent of x ∈ {QH}.
Example 25. LetM ≥ µ(δ/ε)d−1, where µ > 0 is a constant. Assume that there is r > 0 such
that for every quadrature point x ∈ {QH} and m ∈ {1, . . . ,M}, there is a point zx,m ∈ (δ/ε)Y
with the following properties. The cylinders

Bi,x,m = {y ∈ (δ/ε)Y : r2 −∑j 6=i(yj − z
x,m
j )2 ≥ 0}
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satisfy Bi,x,m ⊂ Y x,δF and if m 6= n, then Bi,x,m ∩ Bi,x,n = ∅ (see Figure 8). Then there are
test functions vη,x satisfying the assumptions of Lemma 22. Indeed, we can define

vi,x(y) = C(r2 −∑j 6=i(yj − z
x,m
j )2)2 ·

{
ei for y ∈ Bi,x,m,m ∈ {1, . . . ,M},
0 for y ∈ Y x,δF \ ∪Mm=1 B

i,x,m,
(42)

where C is the constant from Example 9 depending only on r, which then gives (ej ,vi,x) =

δijM(δ/ε)d. We set vη,x =
∑d
i=1 ηiv

i,x for any unit vector η ∈ Rd and show that these test
functions satisfy the conditions of Lemma 22. A direct computation shows that (38) is satisfied
with γ = C(δ/ε)d, where C > 0 depends only on µ, r, and d. Notice also (using only (42))
that vη,x ∈ H2(Y x,δF )d ∩ V (Y x,δF ) and ‖vη,x‖H2(Y x,δF ) can be computed explicitly. Recall that
vη,x,h is defined in Lemma 22 as a discrete solution of a Stokes problem where the continuous
solution is vη,x. Using standard approximation results (see [33,49]) we obtain

|vη,x − vη,x,h|H1(Y x,δF ) ≤ Ch‖vη,x‖H2(Y x,δF ) ≤ Ch|vη,x|H1(Y x,δF ), (43)

where C depends on r, d, the lower bound on the discrete inf-sup constants βδ,num, micro
FE space, and the shape regularity constant of T xh . The estimate (43) implies a uniform
convergence rate in (40). Hence, all the assumptions of Lemma 22 are satisfied and the
coercivity constant λ only depends on µ, r and d (and not on δ > ε and x ∈ {QH}).

...
...

...

. . .

. . .

. . .

. . .

− δ
2ε

− δ
2ε

δ
2ε

δ
2ε

B2,x,1

B2,x,2

B2,x,M

B1,x,1

B1,x,2

B1,x,M

Figure 8: Straight cylindrical subsets of Y x,δF from Example 25. Points zx,m are marked by
bullets on the intersections of B1,x,m and B2,x,m.

4. A priori error estimates. To estimate the error between the DS-FE-HMM solution
pH of (25) and the homogenized solution p0 of (46), we follow [2] and decompose the error in
three parts, the macro, the micro and the modeling error, as

| p0 − pH︸ ︷︷ ︸
e

|H1(Ω) ≤ | p0 − p0,H

︸ ︷︷ ︸
emac

|H1(Ω) + | p0,H − pH︸ ︷︷ ︸
emod

|H1(Ω) + | pH − pH︸ ︷︷ ︸
emic

|H1(Ω). (44)

The functions p0,H , pH , solutions of problems (45), (46), respectively, are FE solutions of a
problem similar to (25) but with different effective tensors as described below.

4.1. Preliminaries. We start with the semi-discrete DS-FE-HMM. This is a version of
the DS-FE-HMM where the micro problems (27) are solved exactly, in Sobolev spaces, yielding
micro velocities ui,x ∈ W (Y x,δF ) and tensor a(x) as described in (36) and (32), respectively.
We search pH ∈ SlH(Ω)/R such that

BH(pH , qH) = LH(qH) ∀qH ∈ SlH(Ω)/R, (45)

where BH , LH are given by (26) with ah(x) replaced by a(x). The reconstructed velocity is
then defined as uH = Πa(fH −∇pH).

We next consider the classical FEM with numerical quadrature for the elliptic macro problem
with exact effective tensor. Find p0,H ∈ SlH(Ω)/R such that

B0,H(p0,H , qH) = L0,H(qH) ∀qH ∈ SlH(Ω)/R, (46)

where where B0,H , L0,H are given by (26) with ah(x) replaced by a0(x). Finally, let u0,H =
Πa0(fH −∇p0,H).

15



Remark 26. The well-posedness of the intermediate (in terms of discretness) problems (45)
and (46) depends on the properties of the tensors a(x) and a0(x), which are examined in
Section 3.2 and Section 2.5, respectively.

4.2. Macro error. If Assumption (Q) holds, p0 ∈ H l+1(K), and a0 is uniformly
elliptic, bounded, and sufficiently smooth, then

|p0 − p0,H |H1(Ω) ≤ C(H l + ‖f − fH‖L2(Ω)), (47)

where C is independent of H and ε (see [24, Chap. 4.1]). If Ω is a convex and a0 is sufficiently
regular, we have p0 ∈ H2(Ω). If f ∈ H l−1(Ω), we can bound the term ‖f − fH‖L2(Ω) by CH l.

For the velocity field we have the estimate

‖u0 − u0,H‖L2(Ω) ≤ C(|p0 − p0,H |H1(Ω) + ‖a0(fH −∇p0,H)−Πa0(fH −∇p0,H)‖L2(Ω)).

We can decompose the second term of the previous estimate further to ‖a0fH−Πa0(fH)‖L2(Ω)

and ‖a0pH − Πa0(pH)‖L2(Ω). These terms vanish if we assume that a0(x) is constant within
each element K ∈ TH . In a general situation, these terms can be bounded by CH l, if higher
derivatives of fH and pH are bounded.

4.3. Modeling error. Using the ellipticity and boundedness of the bilinear formBH(·, ·)
(see Remark 26) and recalling that emod = p0,H − pH , we obtain

|p0,H − pH |H1(Ω) ≤ C
|BH(p0,H , emod)−BH(pH , emod)|

|emod|H1(Ω)

≤ C |BH(p0,H , emod)−B0,H(p0,H , emod)|+ |LH(emod)− L0,H(emod)|
|emod|H1(Ω)

≤ sup
qH∈SlH(Ω)

C
|BH(p0,H , qH)−B0,H(p0,H , qH)|+ |LH(qH)− L0,H(qH)|

|qH |H1(Ω)

≤ C(|p0,H |H1(Ω) + ‖fH‖L2(Ω)) sup
x∈QH

‖a(x)− a0(x)‖F

≤ C‖fH‖L2(Ω) sup
x∈QH

‖a(x)− a0(x)‖F,

where C depends only on the constants λ and Λ from the assumptions. Further, one has

‖u0,H − uH‖L2(Ω) ≤ C|p0,H − pH |H1(Ω).

If we use DS-FE-HMM with periodic micro boundary conditions and explicit scale separation
(δ = ε and Y x,δF = Y xF ), then this error vanishes.

4.4. Micro error. This error arises from the FE approximation of the Stokes problem
on the micro scale. We can use the same strategy as for the modeling error to show

|pH − pH |H1(Ω) ≤ C‖fH‖L2(Ω) sup
x∈QH

‖a(x)− ah(x)‖F,

‖uH − uH‖H1(Ω) ≤ C|pH − pH |H1(Ω),

where C depends only on the ellipticity and boundedness constants of the bilinear formBH(·, ·).
Using the definitions of a and ah and the Cauchy-Schwarz inequality, we obtain

‖a(x)− ah(x)‖2F =

( d∑

i,j=1

εd

δd

∫

Y x,δF

(ui,xj − ui,x,hj ) dy

)2

≤
d∑

i=1

εd

δd
‖ui,x − ui,x,h‖2

L2(Y x,δF )
. (48)

Hence, the micro error can be bounded using the L2-norm of the error of the micro problems.
Using a priori convergence estimates for Stokes problem (see [18,33,52]), one can obtain

|pH − pH |H1(Ω) ≤ Chθ·, (49)

where C does not depend on the mesh sizes H and h. The constant θ depends on the regularity
of the micro problem. Optimally, one has θ = k+2 for the Pk+1/Pk Taylor-Hood FEs or θ = 2
for MINI FEs (see [18]).
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5. A posteriori error estimates. There are tow major issues for the DS-FE-HMM
method (25) when using uniform mesh refinement on the macro and the micro scales. First,
it is well-known that for non-convex macro domain Ω the optimal convergence rates (47) will
deteriorate. Second, the DS-FE-HMM accuracy will also deteriorate if the approximation of
the effective tensor ah(x) is not accurate enough, leading to a large micro error. However,
the domains Y x,δF are usually not convex for porous medium so the regularity of the micro
problems is low. For example, in two dimensions the exponent from (49) satisfies θ ∈ (1, 2)

depending on the maximal interior angle of Y x,δF (see [52]).
We can thus not rely on a priori error analysis in general to develop a robust approximation

of flow in porous medium. We therefore propose an adaptive method for both the macro and
the micro solvers. To drive the coupled adaptive mesh refinement we need therefore to derive
rigorous a posteriori error estimates on both scales and derive an algorithm to adequately
balance the macro and micro mesh refinement. Inspired by [4, 6] we prove reliability and
efficiency of the multiscale macro residual. We then define the multiscale micro residual and
prove the reliability of the combined multiscale macro-micro residuals.

5.1. Notations, auxiliary identities and inequalities. Denote the set of all edges
of triangles of TH by EH . For any edge e ∈ EH or element K ∈ TH set

N(K) = {T ∈ TH ; K ∩ T 6= ∅}, M(K) = {T ∈ TH ; K = T or ∂K ∩ ∂T ∈ EH},
N(e) = {T ∈ TH ; e ∩ T 6= ∅}.

If e ∈ EH is a common edge of two distinct elements K,T ∈ TH , then [·]e denotes the jump of
a (possibly discontinuous) quantity over the edge e. If v is a vector field with v|K ,v|T ∈ C0,
then

[v · n]e(x) = v|K(x) · nK(x) + v|T (x) · nT (x).

If e ⊂ ∂K ∩ ∂Ω, we assume an artificial element T on the other side of e and define v|T ≡ 0.
We will denote by IH : H1(Ω)→ S1

H(Ω) the Clément interpolation operator [25] and recall
the inverse inequality (see [24, Thm. 3.2.6])

|qH |H1(K) ≤ CH−1
K ‖qH‖L2(K) (50)

for any qH ∈ SlH(Ω) and K ∈ TH , where C depends only on d, l, and the shape-regularity of
K. For any q ∈ H1(Ω), K ∈ TH , and e ∈ EH , we have (see [8, Thm. 3.10]) the trace inequality

‖q‖L2(e) ≤ CH1/2
e |q|H1(K) + CH−1/2

e ‖q‖L2(K),

where He = diam(e) and the interpolation estimates (see [25])

‖q − IHq‖L2(K) ≤ CHK |q|H1(N(K)),

|q − IHq|H1(K) ≤ C|q|H1(N(K)),

‖q − IHq‖L2(e) ≤ CH1/2
e |q|H1(N(e)),

(51)

where C depends only on d and the shape-regularity of TH .

5.2. Residual-based error estimates. Our goal is to find an a posteriori error esti-
mate of e = p0 − pH in the H1-seminorm and prove efficiency of these bounds. Let

ξ2
K = ‖a0(f −∇pH)−Πah(fH −∇pH)‖2L2(K),

η2
K = H2

K‖∇ ·Πah(fH −∇pH)‖2L2(K) +
∑
e∈∂K

1
2He‖[Πah(fH −∇pH) · n]e‖2L2(e)

(52)

for any K ∈ TH . If K ′ is any union of elements K in TH , e.g., K ′ = Ω, we define ξ2
K′ =∑

K⊂K′ ξ
2
K and η2

K′ =
∑
K⊂K′ η

2
K .

Theorem 27. Assume that a0(x)ξ · ξ ≥ λ|ξ|2 and |a0(x)ξ| ≤ Λ|ξ| for each ξ ∈ Rd and a.e.
x ∈ Ω. Then there exists a constant C depending only on Ω, λ, and the shape-regularity of TH
such that

|pH − p0|2H1(Ω) ≤ C(η2
Ω + ξ2

Ω) (53)
and a constant C depending only on Ω, d, l, Λ, and the shape-regularity of TH such that for
any K ∈ TH we have

η2
K ≤ C(|pH − p0|2H1(M(K)) + ξ2

M(K)). (54)

The proof of Theorem 27 follows closely [7, 37] and is divided into two parts.
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Part 1: Upper bound. Let us state and prove an error representation formula.

Lemma 28. For any q ∈ H1(Ω)/R and any qH ∈ SlH(Ω)/R we have

B0(e, q) =
∑

K∈TH

∫

K

(a0(f −∇pH)−Πah(fH −∇pH)) · ∇q dx

+
∑

e∈EH

∫

e

[Πah(fH −∇pH) · n]e(q − qH) ds

−
∑

K∈TH

∫

K

(∇ ·Πah(fH −∇pH))(q − qH) dx.

Proof. Using (10) and (11) for any q ∈ H1(Ω)/R we get

B0(e, q) =
∑

K∈TH

∫

K

(a0(f −∇pH)−Πah(fH −∇pH)) · ∇q dx

+
∑

K∈TH

∫

K

Πah(fH −∇pH) · ∇q dx.

The integration by parts formula

∑

K∈TH

∫

K

Πah(fH −∇pH) · ∇q dx =
∑

e∈EH

∫

e

[Πah(fH −∇pH) · n]eq ds

−
∑

K∈TH

∫

K

(∇ ·Πah(fH −∇pH))q dx

yields

B0(e, q) =
∑

K∈TH

∫

K

(a0(f −∇pH)−Πah(fH −∇pH)) · ∇q dx

+
∑

e∈EH

∫

e

[Πah(fH −∇pH) · n]eq ds−
∑

K∈TH

∫

K

(∇ ·Πah(fH −∇pH))q dx.

(55)

Using LH(qH)−BH(pH , qH) = 0 for any qH ∈ SlH(Ω)/R, formulas (29), (30), and integration
by parts, gives

0 =
∑

e∈EH

∫

e

[Πah(fH −∇pH) · n]eq
H ds−

∑

K∈TH

∫

K

(∇ ·Πah(fH −∇pH))qH dx. (56)

Subtracting (56) from (55) we get the desired result.

Let q = e and qH = IHe in Lemma 28 and use the Cauchy-Schwarz inequality to get

B0(e, e) ≤
∑

K∈TH
‖a0(f −∇pH)−Πah(fH −∇pH)‖L2(K)|e|H1(K)

+
∑

e∈EH
‖[Πah(fH −∇pH) · n]e‖L2(e)‖e− IHe‖L2(e)

+
∑

K∈TH
‖∇ ·Πah(fH −∇pH)‖L2(K)‖e− IHe‖L2(K).

(57)

Using the interpolation results (51) and the Cauchy-Schwarz inequality then yields

B0(e, e) ≤ C(ξ2
Ω + η2

Ω)1/2|e|H1(Ω),

where C depends only on d and the shape-regularity of TH , using the finite overlapping
property of the neighborhoods N(K). Combining (57) and the uniform ellipticity of a0(x)
proves (54).
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Part 2: Lower Bound. We derive two estimates related to the interior and to the jump
parts of the residual ηK . The result (54) then follows by combining the inequalities (58)
and (63) for all e ∈ ∂K.

Interior Residual. Let K ∈ TH and ΨK be the standard bubble function for element K,
i.e., ΨK ∈ Sd+1

H (Ω) such that ΨK |Ω\K ≡ 0 and ΨK(xK,bary) = 1 at the barycenter xK,bary of
K. We next use the representation formula of Lemma 28 with q = ΨK∇·Πah(fH −∇pH) and
qH = 0 to obtain
∫

K

ΨK(∇ ·Πah(fH −∇pH))2 dx = −B0(e, q) +

∫

K

(a0(f −∇pH)−Πah(fH −∇pH)) · ∇q dx.

Using the continuity of a0, the Cauchy-Schwarz inequality, and the equivalence of norms
‖ν‖L2(K) and (

∫
K

ΨKν
2 dx)1/2 for ν ∈ P l−1(K) (see e.g., [9, Theorem 3.3]), we obtain

‖∇ ·Πah(fH −∇pH)‖2L2(K) ≤ C(|e|H1(K) + ξK)|q|H1(K),

where we have used the definition (52) for ξK . Using the inverse inequality (50) for q and the
property |ΨK | ≤ 1 leads to

H2
K‖∇ ·Πah(fH −∇pH)‖2L2(K) ≤ C(|e|2H1(K) + ξ2

K). (58)

Jump Residual. We set qH ≡ 0 in Lemma 28, then use the Cauchy-Schwarz inequality and
continuity of B0 to obtain

∑

e∈EH

∫

e

[Πah(fH −∇pH) · n]eq ds ≤ C
∑

K∈TH
(‖∇ ·Πah(fH −∇pH)‖L2(K)‖q‖L2(K)

+ |e|H1(K)|q|H1(K) + ξK |q|H1(K)).

(59)

Let K ∈ TH , e ∈ ∂K, and Ψe ∈ Pd(e) be the bubble function on e, i.e., Ψe|∂e ≡ 0 and
Ψe(ebary) = 1 at the barycenter ebary of e. Define function qe = Ψe[Πah(fH −∇pH) · n]e and
notice that qe ∈ Pd+l−1

0 (e) = {r ∈ Pd+l−1(e); r|∂e ≡ 0}.
By [16, Chap. XI, Lemma 2.7], there is a lifting operator RK,e : Pd+l−1

0 (e) → Pd+l−1(K)
such that RK,e(qe)|e = qe|e and RK,e(qe)|∂K\e = 0. Moreover, we have

|RK,e(qe)|H1(K) +H−1
K ‖RK,e(qe)‖L2(K) ≤ CH−1/2

e ‖qe‖L2(e), (60)

where C depends only on d, l, and the shape-regularity of TH . For any interior interface
e ∈ EH , let K1 and K2 be two elements such that e = ∂K1 ∩ ∂K2 and define

q =

{
RKi,e(qe) in Ki for i = 1, 2,

0 elsewhere in Ω.

Using this function q in (59) together with the inequality (60) gives
∫

e

Ψe[Πah(fH −∇pH) · n]2e ds ≤CH−1/2
e ‖qe‖L2(e)

∑

i=1,2

(ξKi + |e|H1(Ki)

+HKi‖∇ ·Πah(fH −∇pH)‖L2(Ki)).

(61)

Using the the property |Ψe| ≤ 1 and the equivalence of norms ‖ν‖L2(e) and (
∫
e

Ψeν
2 ds)1/2

in (61) yields

He‖[Πah(fH −∇pH) · n]e‖2L2(e) ≤ C
∑

m=1,2

(ξ2
Km + |e|2H1(Km)

+H2
Km‖∇ ·Πah(fH −∇pH)‖2L2(Km)).

(62)

The last step is to use (58) in (62) and obtain

He‖[Πah(fH −∇pH) · n]e‖2L2(e) ≤ C
∑

m=1,2

(ξ2
Km + |e|21,Km). (63)

Finally, combining the estimate for the interior residual (58) and the jump residual (63) gives
the lower bound (54).
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5.3. A posteriori analysis of the micro error. Let K ∈ TH be arbitrary and use
the triangle inequality to obtain the decomposition ξK ≤ ξdata,K + ξmic,K , where

ξ2
data,K = ‖a0(f −∇pH)−Πa(fH −∇pH)‖2L2(K), ξ2

mic,K = ‖Πah−a(fH −∇pH)‖2L2(K).

Recall the definition of QK in (21). A simple estimation gives

ξ2
mic,K =

J∑

j=1

ωKj |(ah(xKj )− a(xKj ))(f
H(xKj )−∇pH(xKj ))|2

≤ ‖fH −∇pH‖2L2(K) max
x∈QK

‖ah(x)− a(x)‖2F.
(64)

The inequality (64) is a foundation for the a posteriori estimation of the micro error ξmic,K .
Using (48) and the Poincaré inequality gives

ξ2
mic,K ≤ C

(ε
δ

)d
‖fH −∇pH‖2L2(K) max

x∈QK

d∑

i=1

|ui,x,h − ui,x|2
H1(Y x,δF )

, (65)

where C depends only on the bound α for the continuity of ah (see Section 3.2). The micro FE
error |ui,x,h−ui,x|H1(Y x,δF ) can be estimated using the classical residual-based error estimator
for Stokes problem, see [53, Theorem 3.1]. For any quadrature point x ∈ QK there exists a
constant C that depends only on the inf-sup and Poincaré-Friedrichs constants of the Stokes
micro problem, shape regularity of T xh , and the micro FE type such that for any i ∈ {1, . . . , d}
we have

C−1η2
stokes,x,i ≤ |ui,x,h − ui,x|2

H1(Y x,δF )
+ ‖pi,x,h − pi,x‖2

L2(Y x,δF )/R ≤ Cη
2
stokes,x,i, (66)

where

η2
stokes,x,i =

∑

T∈T xh


 ∑

e∈∂T∩Exh

He

2

∥∥∥∥
[
∂ui,x,h

∂n
− pi,x,hn

]

e

∥∥∥∥
2

L2(e)

+ h2
T ‖∆ui,x,h −∇pi,x,h + ei‖2L2(T ) + ‖∇ · ui,x,h‖2L2(T )

)

and Exh is the set of all edges in T xh except the Dirichlet boundary edges. Notice that (66)
does not contain any data approximation error, since the force term in (27) is constant. Ap-
plying (66) in (65) yields ξ2

mic,K ≤ Cη2
mic,K , where

η2
mic,K = (ε/δ)d‖fH −∇pH‖2L2(K) max

x∈QK

d∑

i=1

η2
stokes,x,i. (67)

As before, we set η2
mic,Ω =

∑
K∈TH η

2
mic,K and ξ2

data,Ω =
∑
K∈TH ξ

2
data,K .

Theorem 29. There is a constant C depending only on the domain Ω, the continuity (Λ) and
coercivity (λ) constants of a0(x), the degree l of the macro finite element, the shape-regularity
of TH and the constant C in (66) such that

|p0 − pH |2H1(Ω) ≤ C(η2
Ω + η2

mic,Ω + ξ2
data,Ω). (68)

6. Adaptive algorithm. We propose an adaptive numerical algorithm for the DS-FE-
HMM problem (25), (27), (28). The individual macro and micro adaptive processes follow the
standard FEM refinement cycle

SOLVE ESTIMATE MARK REFINE.

Our main goal is to optimally couple the macro and micro mesh refinements. To accomplish
that, we enforce

η2
mic,K ≤ µη2

K ∀K ∈ TH , (69)
where the constant µ > 0 is problem dependent and can be calibrated as described in Re-
mark 30. While solving a micro problem (27), we refine the micro mesh T xh until the condition

η2
stokes,x,i ≤

µ

d
η2
K‖fH −∇pH‖−2

L2(K), (70)

is met, which implies (69).
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Start: user input

For K ∈ TH , x ∈ QK , i ∈ {1, . . . , d}

Solve micro problem (27)
Estimate η2stokes,x,i (67)

Is (70) true?

Mark and refine T x
h

Define ah(x)

Solve macro problem (25)
Estimate η2K (52), η2mic,K (67)

Is (69) true?

Mark and refine TH

no
yes

yes

no

Figure 9: A flow-chart of the adaptive DS-FE-HMM algorithm for the Stokes problem.

Algorithm. We assume that the user provides Ω, Ωε, δ, an initial macro mesh TH of Ω,
finite element spaces, and the micro coupling (periodic or Neumann). The adaptive procedure
that is depicted as a flow chart in Figure 6 consists in the following steps:

Solve. Solve for each quadrature point x ∈ QH the Stokes micro problems (27) adaptively using
the stopping criterion (70) (using pH and ηK from the previous step). Assemble and
solve the macro elliptic problem (25).

Estimate Compute ηK and ηmic,K and repeat the previous step until (69) is satisfied.

Mark. Mark a subset of the elements in TH by using the indicator ηK (we use the marking
strategy E [54, Chapter 4.1]).

Refine. The marked elements are refined so as to guarantee the conformity and shape-regularity
of the refined meshes.

An efficient implementation of the proposed algorithm must contain a mechanism for saving
and reusing the data from the micro problems. We propose to store for each quadrature point
x ∈ QH the values ah(x), η2

stokes,x,i, the most refined micro mesh T xh that was reached and the
corresponding micro solution. Since we can verify (69) only after all the micro problems (and
the macro problem) are computed, it occurs that one needs to solve some micro problems with
higher precision. If the finest solution and the finest mesh of a micro problem is saved, then
they can be reused as a starting point for the additional refinement cycles.

Remark 30. The exact value of µ is not crucial for the efficiency of the algorithm, only its
order of magnitude matters. In an offline stage we estimate emic and emac by performing a few
iterations of uniform refinements in the DS-FE-HMM (at the macro and the micro-level) and
denote ẽmic and ẽmac these approximations and η̃Ω, η̃mic,Ω the corresponding residuals. We
then set

µ =
|ẽmac|2H1(Ω)

η̃2
Ω

·
η2
mic,Ω

|ẽmic|2H1(Ω)

·

We note that the value of µ can be updated during the adaptive DS-FE-HMM.

The marking strategy E contains one parameter that is usually denoted θ. We use θ = 0.5
for the micro problems and θ = 0.25 for the macro problem. To guarantee conformity and
shape-regularity of the refined meshes, we use the newest vertex bisection in two dimensions
and the modified longest edge bisection [14] in three dimensions.

7. Numerical Experiments. In this section, we present numerical experiments that
test the capabilities of the adaptive DS-FE-HMM. Three different non-periodic porous media,
called A, B and C, are presented. They are all based on a locally periodic porous geometry
as described in Section 2.3. The two-dimensional medium A has a simple pore geometry
and is used to demonstrate the convergence rates of various element types. We also test the
multiscale method for different boundary conditions and sizes of the representative domains in
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the Stokes micro problems. The two-dimensional medium B illustrates the performance of the
method on a more complex porous material. We conclude this section by a three-dimensional
experiment performed on the medium C.

All the numerical computations were performed in Matlab with FE code inspired by [5]
and the AFEM code [23] with mesh generation provided by gmsh [32]. Linear systems were
solved using Matlab’s mldivide for d = 2. In three dimensions, we used algebraic multigrid
solver AGMG [38] for positive definite (macro) problems and an Uzawa method [41] for saddle
point (micro) problems. The Uzawa method uses algebraic multigrid preconditioning for the
coercive part and pressure mass matrix preconditioning for the Shur’s complement.

7.1. Porous medium A. Consider the macro domain Ω = ((0, 2)×(0, 3))\([1, 2]×[1, 2])
with periodic boundary conditions that connect the edges (0, 2)×{0} and (0, 2)×{3} and the
force field f ≡ fH ≡ (0,−1) as shown in Figure 10.

Ω

f
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− 1
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− 1
2 1

2
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2

r3
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r1

θ

Figure 10: Ω and pore geometries (Y xS , Y
x
F ) for the media A and B (gray solid part).

We define Y xS to be a closed rectangle of size 0.6 × 0.3 centered in the middle of Y and
rotated by the angle θ(x) = (1− x2

1/8− x2/3)π. The mapping ϕ can be appropriately defined
to satisfy ϕ(x, YS) = Y xS , where YS is Y xS for x = [0, 0]. A sketch of the pore geometry is given
in Figure 10 and examples of the micro problem solutions are plotted in Figure 11.
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Figure 11: Medium A: micro velocity solutions for x = [0.5, 1] (left) and x = [0.5, 1.5] (right).

Porous domains Ωε and fine scale solution pε are plotted in Figure 12 for various values of ε.
The solutions pε were computed numerically using single-scale adaptive FEM with P2/P1 FEs.
This is a costly computation and we therefore limited such a fine scale solve to ε ≥ 2−4.

For the numerical multiscale method we set ε = δ = 10−4 and use periodic BC on micro
problems. We take P1 macro FEs (l = 1) and P2/P1 micro FEs (k = 1). The initial macro
mesh is set as in Figure 16(left). Following Remark 30 we obtain µ ≈ 1200. We apply the
adaptive DS-FE-HMM and observe that the expected convergence rate |p0−pH |H1(Ω) ∝ N−l/dmac
is obtained as displayed in Figure 13, where Nmac is the number of degrees of freedom of the
macro problem. The micro error decays at a faster rate, proportional to N−(l+1)/d

mac . This is
expected, as we estimate the L2-norm by the H1-norm in (65). Sample solutions pH with
different mesh refinements and the homogenized solution p0 are plotted in Figure 14.

For experiments with different FE spaces we use the DS-FE-HMM with periodic BC on
micro scale and explicit scale separation, that is, Y x,δF := Y xF . There, the value of δ =
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Figure 12: Medium A: Plots of pε for different ε > 0.
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Figure 13: Medium A: Errors analysis (δ = ε = 10−4, macro: P1, micro: P2/P1, periodic BC).
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Figure 14: Medium A: p0 (right) and DS-FE-HMM solutions (δ = ε = 10−4, macro: P1,
micro: P2/P1 and periodic BC).

ε does not affect the computation and the modeling error is thus eliminated. We test six
different combinations of micro and macro FEs. The convergence rates displayed in Figure 15
corroborate the theoretical results obtained in Section 5. As in standard adaptive FEM, the
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Figure 15: Medium A: Error analysis of DS-FE-HMM with different FE (micro: periodic BC)

mesh is more refined close to the corner singularities at points [1, 1] and [1, 2]. With increasing
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l, the refinement is even stronger close to the corners. Figure 16 compares meshes for the
same relative error of different macro FEs. In Figure 17 we plot the convergence rates versus

initial

#elem:
Nmac

rel. err.: 5%

P1

4344
2241

P2

179
391

P3

107
516

rel. err.: 0.5%

P2

2269
4663

P3

399
1881

Figure 16: Medium A: Macro meshes at different stages of DS-FE-HMM (micro: periodic BC)

the the total cost of the method, that is, the sum of the degrees of freedom in the macro and
all the micro problems. The obtained convergence rate − l

d · k+1
l+k+1 is slightly smaller than

the optimal convergence rate − l
d · k+2

l+k+2 . This can be explained because of the suboptimal
estimate in (65).
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Figure 17: Medium A: Error vs. total cost of DS-FE-HMM (micro: periodic BC)

To show that our method is robust without the precise knowledge of the size of micro domains
for the Stokes flow, we changed δ to be a non-integer multiple of ε with both Neumann and
periodic BC on the micro problems. The detailed error analysis can be seen in Figure 18.
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Figure 18: Medium A: Error analysis of DS-FE-HMM with Neumann BC (left) and periodic
BC (right) on micro problems for different δ > ε = 10−4.

7.2. Porous medium B. We use the same macro domain Ω and force filed f ≡
fH ≡ (0,−1) as for the porous medium A, but the pore geometry is now more involved
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(see Figure 10(c)). The solid part Y xS consists of three regular hexagons with centers at
a distance 0.25 from the point [0, 0]. The sides of the hexagons r1, r2, r3 and the rotation
angle θ are given by rj(x) = A(ζ + (j − 1)/3) for j ∈ {1, 2, 3} and θ(x) = 2πζ/3, where
ζ = (1 + sin(x1))(1 + sin(2πx2/3))/4 and A(ζ) = 0.145 + 0.035 sin(2πζ). The mapping ϕ
governing the slow variation of the medium depends on r1, r2, r3 and the rotation angle θ.
This mapping thus rotates and changes the size of the solid parts.

Porous domains Ωε and fine scale solution pε are plotted in Figure 19 for various values of ε.
The solutions pε were computed as for the medium A.
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Figure 19: Medium B: pε for different ε > 0 and the homogenized pressure p0.

We performed an experiment with P1 macro FE (k = 1) and P2/P1 micro FE (l = 1). The
convergence rates presented in Figure 21 again corroborate the theoretical results obtained in
Section 5.
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Figure 20: Medium B : micro velocity solutions for x = [0.5, 1] (left) and x = [0.5, 1.5] (right).
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Figure 21: Medium B: DS-FE-HMM error analysis (macro: P1, micro: P2/P1, periodic BC).

7.3. Porous medium C. Let Ω be a subset of (0, 2) × (0, 2) × (0, 3) for which (x3 −
2)(x3 − 1) > 0 or max(x1, x2) < 1 and let f ≡ fH ≡ (0, 0,−1), see Figure 22(left). Let the
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faces (0, 2)× (0, 2)× {0} and (0, 2)× (0, 2)× {3} be periodically connected. We will define a
three-dimensional porous structure where the solid part Ω\Ωε is connected.

Ω ϕ(x, YF, ε) medium C ϕ(x, YS, ε)
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Figure 22: Medium C: macroscopic domain Ω (left) and a description of the pore struc-
ture. The fluid part (middle) consists of a rectangular prism (black) and three connecting
polyhedrons (red, green, blue).

We will define the domain Ωε such that it will consist of rectangular prisms spaced in an
ε-sized grid, connected in all three basic directions by simple channels (see Figure 24(right)).
To describe such medium in the locally periodic fashion, we follow Remark 5 and use the
generalized definition of locally periodic porous media, where the map ϕ(x, y, ε) takes ε as a
parameter. Instead of stating ϕ explicitly, we define ϕ(x, YF, ε), where YF can be set appropri-
ately. While reading the following description, follow Figure 22(right). We let ϕ(x, YF, ε) be a
rectangular prism of size r1(x)× r2(x)× r3(x) located in the corner of Y . Its three faces that
do not lie on ∂Y are faces of three polyhedrons that reach to the opposite side of Y and these
polyhedrons will serve as a connection to the neighboring cells in Ωε, which contain rectangu-
lar prisms of sizes r1(xk) × r2(xk) × r3(xk), where xk = x + εek for k ∈ {1, 2, 3}. We define
rk(x) = 0.5 + 0.2 cos(2π(ζ + (k − 1)/3)) for k ∈ {1, 2, 3}, where ζ(x) = x1/2− x2/2 + x3/3.
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Figure 23: Medium C: an interior view of micro velocity solutions for x = [0, 0, 1/3]
with a0(x) ≈ 10−3diag(1.495, 4.638, 1.69) (up) and x = [0, 0, 2] with a0(x) ≈
10−3diag(2.895, 1.638, 2.895) (down).

We apply the DS-FE-HMM with P1 macro FEs (l = 1), and P2/P1 micro FEs (k = 1).
Periodic BC are used on the micro problems and we set Y x,δF = Y xF . Sample micro solutions
can be seen in Figure 23. The convergence rates given in Figure 25 are as predicted by
the results of Section 5. Despite choosing very coarse initial micro meshes, the macro error
dominates the micro error. The adaptive algorithm detects this behavior and allows for coarse
micro meshes reducing the computational cost by order of magnitudes compared to a multiscale
macro-micro method that would be used with uniform micro mesh refinement.

8. Conclusion. We have presented a multiscale FE method for the Stokes flow in
porous media. The method is based on a macroscopic FE discretization of an elliptic problem
(Darcy flow) with effective permeability recovered from micro FE solutions of Stokes problems
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Figure 24: Medium C: DS-FE-HMM solutions with relative errors 30% and 6%, p0, and pε

for ε = 1/8.
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Figure 25: Medium C: DS-FE-HMM error analysis (macro: P1, micro: P2/P1, periodic BC).

and its computational cost is independent of the pore size. We have focused on a class of
problems with non-periodic pore structures that can be obtained from a smooth deformation
of a reference pore sampling domain. As the well-posedness of the Darcy problem depends
on the Stokes flow at the pore level, we have analyzed classes of microscopic geometries that
ensure existence and uniqueness of a solution of the macroscopic problem and its FE discretiza-
tion. While a priori error analysis has been discussed, our main objective has been to derive
an adaptive algorithm combining macroscopic and microscopic mesh refinement. Rigorous a
posteriori error estimates have been derived that show efficiency and reliability of the pro-
posed adaptive method as corroborated by numerical experiments for non-periodic two- and
three-dimensional problems. The adaptive algorithm presented here also allows for further
generalizations and improvements. In particular, the application of goal-oriented adaptive
FE methods [39] or reduced basis techniques [3, 43] could be used to compute the functionals∫
Y x,δF

ui,x,hj and control the error in the quantity of interest ‖ah(x)− a(x)‖F.
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