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Time-frequency analysis of the dynamics of different wake vorticity structures, generated from
a triangular prism orientated with its apex edge against the incoming wind, is carried out.
Time-frequency analysis of time-series obtained with hot-wire anemometry is performed through
a procedure based on proper orthogonal decomposition and spectral components are extracted with a
technique that provides an increased efficiency for fluid dynamic applications.
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1. Introduction

Fluid dynamic signals are generally characterized by significant
fluctuations that must be characterized in order to investigate on
their physical origins. In several conditions, as for instance in wakes
and jets, the flow fluctuations may show dominating spectral
components, which can be singled out through the conventional
Fourier transform. However, this technique gives only a time-
invariant amplitude and frequency for each spectral component,
thus becomes highly inappropriate for non-stationary signals.

The wavelet transform may directly be applied to multi-
component signals in order to characterize the time-variation of
all the spectral components present in a certain frequency range.
Component extraction may also be performed by using, for
instance, the so-called wavelet ridges, as reported in Carmona
et al. (1998), a technique proposed in Buresti et al. (2004) or a
more sophisticated wavelet decomposition presented in Olhede
and Walden (2004).

A technique widely used to detect and extract the different
dynamics present in a flow is the proper orthogonal decomposition
(POD in the following). POD was introduced in fluid dynamics for
investigations on turbulence by Lumley (1967), who proposed a
method for extraction of coherent structures from turbulent velocity
fields. This method was then applied by Payne and Lumley (1967) to
the large eddy simulation of the wake produced from a circular
cylinder, by Bakewell and Lumley (1967) for a boundary layer
survey and by Holmes and Lumley (1996) for turbulence modeling
and detection of coherent structures. POD was used in Gamard
et al. (2002) to analyze signals simultaneously acquired from 138
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hot-wires in order to investigate on an axisymmetric turbulent jet.
In Perrin et al. (2008) the vortex shedding generated from a circular
cylinder was surveyed with the two most energetic components
detected through POD.

POD is also suitable to devise optimal lower-dimensional
subspaces on which the governing equations of a dynamical system
may be projected through, for instance, a Galerkin projection (see
Ma and Karniadakis, 2002; Galletti et al., 2004; Buffoni et al., 2006).
POD is a fundamental tool used for flow control, as in Bergmann
et al. (2009) and Weller et al. (2009). A significant review on the use
of POD in wind engineering, together with some applications (e.g.
for atmospheric flows over different topographies, analysis of the
aerodynamic forces acting on a tall building model, buffeting of a
long-span bridge), is reported in Solari et al. (2007) and its
companion paper (Carassale et al., 2007).

By considering time-frequency analysis of single-point measure-
ments, i.e. time-series, a technique based on POD for component
detection and extraction is the singular-spectrum analysis (SSA). The
application of this technique requires the definition of the so-called
window length or embedding dimension, Nperioa» Which allows to
vary the frequency resolution of the time-frequency analysis. Since
Nperioa i chosen, the eigen-decomposition of the lagged covariance
matrix of the signal, which has a Toeplitz structure, is performed. As
typical for all the POD-based techniques, a certain spectral compo-
nent is associated to a pair of POD modes with nearly equal energy,
thus for its extraction both POD modes must be used; to this end a
method for detection of POD mode pairs was proposed in Vautard
et al. (1992). Moreover, the principal components obtained with SSA
are characterized by a reduced time-length with respect to the one
of the source-signal, so that a method to remedy to this drawback
was proposed in Vautard et al. (1992). In Pastur et al. (2008) an
application of SSA for the analysis of the intermittency of two
different spectral components present in the flow over an open
cavity is reported.
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In the present paper a procedure for time-frequency analysis
of time-series is presented, which is based on POD. The source-
signal is first manipulated in order to generate an ad-hoc data set
consisting of time-portions of the signal, each one composed of
the same number of samples; this data set represents the input
for the POD procedure. The result obtained from the POD is an
orthogonal basis whose elements, denoted as POD modes, are
sorted by their energy. The POD modes corresponding to higher
energy represent the most significant signal fluctuations and their
Fourier analysis already provides spectral information related to
each POD mode. However, and more importantly, the compo-
nents associated with each POD mode, with their amplitude and
frequency modulations, can be obtained through a procedure
based on the convolution of the source-signal with the relevant
POD mode, suitably manipulated.

The present paper is organized as follows: the POD procedure
for time-frequency analysis is described in Section 2 together
with the technique for component extraction. The technique is
then applied to hot-wire anemometry signals acquired in proxi-
mity of the wake generated from a triangular prism (Section 3).
Finally, some conclusions are drawn in Section 4.

2. POD procedure for time-frequency analysis of time-series

POD is a method providing an orthonormal basis for the modal
decomposition of an ensemble of data functions and is completely
a posteriori, data dependent and does not neglect the nonlinea-
rities of the original dynamical system, even being a linear
procedure; furthermore, the POD basis is orthogonal. The most
peculiar feature of POD is optimality: among all linear decom-
positions it provides the most efficient detection, in a certain least
squares optimal sense, of the dominant components and trends of
an infinite-dimensional process.

Let us consider a generic zero-mean time-series u(t), which can
represent a measurement performed in a fixed point of the flow
field with a sampling frequency Fsqmp and a total number of samples
equal to Ngpmp. In order to perform POD, a certain number of
observations of the analyzed process are required, the so-called
snapshots; to this end, time-portions of the source-signal u(t) are
generated, all with the same number of samples, Nperioq, partially
overlapped and uniformly distributed along its time-length.
Generally, the number of snapshots, Ngngp, is gradually increased
through a sensitivity analysis, so that the convergence of the POD
eigenvalues and of the most energetic POD modes is obtained.

A crucial task is represented by the choice of the time-length
of each snapshot, i.e. the number of samples, Nperioq, COMpoOsing
each snapshot, which is strictly related to the frequency resolu-
tion of the analysis; in other words, if Af is the required frequency
interval between two consecutive elements of the signal power
spectrum, then Nperiog Will be equal to the ratio between the
sampling frequency and the frequency resolution, Fsqmp/Af.

Once the required number of samples for each snapshot,
Nperioa» 1S chosen and the total number of snapshots, Nengp, is
fixed, a matrix M is generated, whose rows are the time-series of
the snapshots. Subsequently, the covariance matrix of M
is evaluated, which is Hermitian symmetric and non-negative
definite, thus its eigenvalues are real and non-negative. The
eigenvectors are orthogonal and are normalized through the L,-
norm (=./3";x?) so that the eigenvalues represent the energy
associated with the respective eigenvectors.

Any snapshot, i.e. each row of the matrix M, is represented
through a linear combination of the POD modes, ¢(j):

N, 'period

M= > d()ai() M

i=1

where aij) are denoted as principal components, which are
evaluated through the following projection:

ai(j) = <M, () > ()

where (e,0) is the scalar product.

The computer-generated signal used to assess the POD proce-
dure for time-frequency analysis is a stationary time-series
composed of three different spectral components (f;=40 Hz,
f>=60Hz and f3=70Hz) and white noise with an energy equal
to 23% of the total energy of the signal:

y1 = sin(27nfit)+2sin(27fyt) +4sin(2nfst) + WN A3)

The signal is sampled with a frequency of 1kHz. The POD
procedure for time-frequency analysis is applied by using for
this test-case 10* snapshots, which represent adjacent time-
portions of the signal, each comprising 501 samples, i.e. the used
frequency resolution is about 2 Hz. The eigenvalues reported in
Fig. 1, which represent the fluctuating energy of the respective
POD modes, are reported as percentage of the total energy of the
signal, and show that just the first six POD modes are character-
ized by a significant fluctuating energy and, thus, they are the
only POD modes to be considered for the component extraction.

Fourier power spectra of the first eight POD modes are
reported in Fig. 2. The most energetic POD modes, with the same
energy, are POD modes 1 and 2, which are characterized by a
dominant frequency of 70 Hz, as expected being the most ener-
getic spectral component of y; characterized by this frequency.
From Fig. 2 it is seen that these two POD modes are characterized
by the same power spectrum, but they are in quadrature, being
elements of an orthogonal basis. As already highlighted in
Vautard et al. (1992) for SSA, when a periodic dynamics is present
in the signal a pair of eigen-elements with nearly equal energy is
detected.

The POD modes 3 and 4 are related to the component at
frequency f,=60Hz, while 5 and 6 to the component at
fi=40Hz; as expected they are sorted by their energy. The
remaining POD modes do not show any dominant spectral
component and are due to white noise, but they are not analyzed
because, as shown in Fig. 1, their relative energy is negligible.

From the power spectra of the POD modes the dominant
frequencies of the signal are detected and sorted by their energy;
however, their contribution along the time-length of the whole
source-signal is not yet determined. Then, the technique for
component extraction is based on the convolution of the source
signal with the considered POD mode. However, a generic POD
mode is not a symmetric filter due to its initial phase and, thus,
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Fig. 1. POD eigenvalues evaluated for the computer-generated signal y;.
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Fig. 2. Fourier power spectra of the first eight normalized POD modes evaluated for the signal y;.

the convolution produces a certain phase-shift, A¢, on the
extracted principal component with respect to the source-signal.
In the context of signal processing, it is common to avoid this
phase-shift by using as filter the reversed function, denoted as
POD flip-mode. This function is composed of the elements of the
considered POD mode, but from the last one backwards to the
first one. Consequently, the convolution of the source-signal with
the POD flip-mode produces a phase-shift equal to —A¢; there-
fore, performing a double convolution of the source-signal,
i.e. with the POD mode and with its POD flip-mode, a phase-
correction of the extracted principal component may be per-
formed. However, a more robust procedure, and with lower
computational effort, is based on performing a single convolution
of the source-signal with a function obtained from the convolu-
tion of a POD mode with its respective POD flip-mode. This
function, denoted as POD conv-mode, is a symmetric filter and,
thus, no phase-shift is produced through the convolution of the
source-signal with the POD conv-mode.

An important step regarding principal component extraction
through the convolution procedure consists of avoiding any
amplification or damping. The basic idea of the filtering is that
the convolution of a certain POD conv-mode with itself must
produce the POD conv-mode without any amplification or damp-
ing. In order to reach this goal, the result of the convolution must
be normalized through the norm of the convolution of the POD
conv-mode with itself, and then multiplied with the norm of the
POD conv-mode in order to restore its initial energy. Therefore,
the result of the convolution must be multiplied by the factor K:

K— |conv—mode)|
~ |convolution(conv—mode,conv—mode)|

“

where |e| represents the Li-norm, i.e. the sum of absolute values
of the elements, consistently with the precision adopted for the
convolution algorithm.

As regards the computer-generated signal y;, the three differ-
ent spectral components are now extracted through the convolu-
tion of y; with the respective POD modes. Starting from the most
energetic spectral component, i.e. the one related to f3=70 Hz, its
amplitude is equal to 4 (Eq. (3)) and through the spectral
component extraction its mean value is found to be 3.996 with
a standard deviation of 0.087 (about 2% of the mean value),
demonstrating that the spectral contribution of interest is

completely captured by this spectral component. The instanta-
neous frequency of the spectral component is also evaluated
through the Hilbert transform and a mean value of 69.915 Hz
and a standard deviation of 0.013 (about 0.02% of the mean value)
are found.

Since the spectral component related to the POD mode 1 is
extracted, a residual signal can be evaluated by subtracting the
extracted spectral component from the source-signal y;. If the
spectral component related to the POD mode 2 is then extracted,
it is found to correspond to a practically null signal, which can be
added to the one extracted with the POD mode 1 or just
neglected. This assesses that the spectral component of interest
is already completely extracted by only using POD mode 1 and
POD mode 2 is considered only as its coupled POD mode. This is
an important feature of the present technique with respect to
other possible POD-based ones; for instance, regarding SSA in
Vautard et al. (1992) a method to detect pairs of eigen-elements
related to a periodic activity is proposed, and to completely
extract each spectral component both eigen-elements of the
respective pair must be used. Conversely, with this proposed
technique no detection of pairs of POD modes is required to
extract a certain spectral component, which turns out to be very
useful for very complex and noisy time-series. Furthermore, with
respect to SSA the extracted spectral components are character-
ized by the same time-length of the source-signal, thus avoiding
any loss of samples.

Subsequently, the spectral component related to the POD
mode 3 is extracted, i.e. the one corresponding to f,=60 Hz. This
spectral component is characterized by a mean value of 2 and
standard deviation of 0.087, while the mean value of the IF is
59.961 Hz, with a standard deviation equal to 0.025.

The last component related to the frequency f;=40Hz, is
extracted by using the POD conv-mode 5. The extracted compo-
nent has the following characteristics: modulus with a mean
value of 1.003 and standard deviation of 0.091, mean IF equal to
39.995 Hz, with a standard deviation of 0.053.

3. Application of the POD procedure to hot-wire signals

The procedure based on POD for component detection and
extraction from time-series is now applied to the case of hot-wire
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anemometry signals acquired in proximity of the wake generated
from a triangular prism.

The wakes produced from finite-length circular cylinders and
prisms are dominated by the alternate vortex shedding from
the body sides, but further fluctuations at different frequencies,
connected with the dynamics of the vorticity structures originated
over the body free-end, may appear. Considering circular cylinders,
pressure and velocity measurements have shown the presence of
clear vortex shedding from most of the cylinder span with Strouhal
numbers of the same order as those typical of 2D flows (see e.g.
Farivar, 1981; Ayoub and Karamcheti, 1982; Fox et al, 1993).
However, a lower frequency was found in a zone approaching the
free-end of the cylinders and in Park and Lee (2000) these fluctua-
tions were shown to be associated with a couple of counter-rotating
streamwise vortices originating from the model free-end.

Regarding bodies with fixed separation points, the effects of
the three-dimensional flow on the vortex shedding generated
from triangular plates with different tapers and aspect ratio were
investigated in Castro and Watson (2004). An analysis of the
mean and fluctuating loads acting on triangular prisms placed
with different wind directions was presented in several works like
Lindsey (1938), El-Sherbiny (1983), Luo et al. (1994) and Alonso
(2005). In Srigrarom and Koh (2008) a qualitative analysis of the
flow generated from a rotationally oscillating triangular cylinder
was carried out through flow visualizations and PIV measure-
ments. In lungo and Buresti (2009) the interaction between the
alternate vortex shedding and the oscillation of the streamwise
vorticity structures generated over the model free-end is inves-
tigated, through flow visualizations, velocity and force measure-
ments, by varying the wind direction.

In Buresti and Iungo (2010) it was highlighted that a wake
with highly complex morphology and dynamics is produced from
a prism with equilateral triangular cross-section orientated with
its apex edge against the incoming wind. The model aspect ratio is
h/w=3, where h is the height and w the base edge of the model,
and the tests were carried out at a Reynolds number, based on w,
of 1.5x 10°. For this configuration flow fluctuations at three
prevailing frequencies were singled out, with different relative
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intensities depending on the wake regions. In particular, the
frequency connected with alternate vortex shedding from the
vertical edges of the prism was found to dominate in the regions
just outside the lateral boundary of the wake at a Strouhal
number of about St =fw/U. ~ 0.16, where U, is the freestream
velocity. On the other hand, a lower frequency, at St =~ 0.05, was
found to prevail in the velocity fluctuations on the whole upper
wake. Simultaneous measurements carried out over the wake of
the prism at symmetrical locations with respect to the symmetry
plane showed that these fluctuations correspond to a vertical, in-
phase, oscillation of two counter-rotating axial vortices detaching
from the front edges of the free-end. This finding was confirmed
by the results of a LES simulation of the same flow configuration,
described in Camarri et al. (2006), which also highlighted the
complex topology of the upper near-wake produced by the
vorticity sheets shed from all the edges of the prism. Wake
velocity fluctuations were also observed at an intermediate
frequency St =~ 0.09, and were found to prevail in the symmetry
plane and may be caused by a flag-like oscillation of the sheet of
transversal vorticity shed from the rear edge of the body free-end,
and approximately lying along the downstream boundary of the
recirculation region in the central part of the near-wake.

The time-frequency analysis of a hot-wire signal acquired in
proximity of the wake is carried out and its Fourier power
spectrum is reported in Fig. 3(a). The map of the modulus of the
wavelet coefficients, calculated through a Morlet function
(Fig. 3(c)), shows that a large amount of the energy of this signal
is included in a frequency range between St~ 0.03 and 0.2;
several spectral components seem to be present but their detec-
tion is not sufficiently clear due to their comparable energy and
limited spectral separation. However, the wavelet spectrum in
Fig. 3(b) highlights the presence of three dominant spectral
contributions at St~ 0.05, 0.09 and 0.16. As observed from the
wavelet map, the extraction of these components through band-
pass filtering is very challenging because they are highly modu-
lated and spectrally close.

Before performing the spectral decomposition, the signal is filtered
through a high-pass filter with a cut-off frequency of St = 0.03, in
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Fig. 3. Hot-wire signal: (a) Fourier power spectrum; (b) wavelet spectrum; (c) map of the modulus of the wavelet coefficients.
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order to remove the typical low-frequency flow fluctuations that
were known to be present in the wind tunnel freestream and, thus,
avoiding to analyze spectral components with no physical meaning.
The POD procedure is applied to the signal by using a number of
samples for each snapshot equal to 1001, i.e. a frequency resolution of
about 2 Hz; a total number of snapshots equal to 10% is produced. The
obtained first 50 POD eigenvalues are reported in Fig. 4.

Starting with the extraction of the spectral contribution
related to the most energetic POD mode, viz. POD mode 1, it is
seen from its Fourier power spectrum, reported in Fig. 5 that it
represents a narrow-band signal at St~ 0.05. As suggested in
Buresti and Iungo (2010), this spectral contribution is connected
to the dynamics of a couple of axial vortices detaching over the
model free-end. In effect, as this velocity signal was acquired at a
relative high position, this phenomenon turns out to be the most
energetic one.

The POD mode 2 is the one coupled to the POD mode 1, i.e.
characterized by roughly the same power spectrum but with a
phase shift of 90°. The spectral contribution extracted with the
POD mode 2 from the residual signal, obtained after the extrac-
tion of the contribution due to the POD mode 1, represents a
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Fig. 4. First 50 POD eigenvalues evaluated for the hot-wire anemometry signal.

residue of the contribution previously extracted with the POD
mode 1, as shown in Fig. 5.

Moving to the extraction of the spectral contribution con-
nected to the POD mode 3, the corresponding power spectrum
shows that it is characterized by a mean Strouhal number of
St~ 0.16, while POD mode 4 is its coupled one.

The following analyzed POD mode 5 represents a further
contribution to the spectral component due to alternate vortex
shedding being characterized by a mean IF of St~ 0.16. The POD
mode 6 is its coupled one.

Interestingly, the spectral contribution related to the POD
mode 7 is characterized by Stx0.09. POD mode 8 is its
coupled one.

Subsequently, the extracted spectral contributions are grouped
by their mean IF in order to obtain three different spectral
components. Therefore, the first component is obtained by adding
the contributions due to the POD mode 1 and 2, the second
with the POD modes from 3 to 6 and the last one with the POD

Table 1
Statistics of the spectral components extracted from the hot-wire signal.
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St St
POD mode 1 POD mode 2
1200 1200
800 i 800
400 400
0 0 .
0 0.1 0.2 0.3 0 0.1 0.2 0.3
St St
POD mode 5 POD mode 6

POD modes used Mean modulus o modulus Mean IF g IF
1,2 0.09 0.05 0.052 0.004
3,4,5,6 0.11 0.06 0.159 0.008
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Fig. 6. Hilbert spectrum of the hot-wire signal.
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Fig. 5. Fourier power spectra of the components extracted with different POD modes from the hot-wire signal.
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Fig. 7. Amplitudes of the components extracted from the hot-wire signal. A;, amplitude related to the component with St~ 0.05; A,, amplitude related to the component
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Fig. 8. Reconstruction of the hot-wire signal.

modes 7 and 8. The statistics of these three spectral components
are reported in Table 1.

In Fig. 6 the resulting Hilbert spectrum (a 3D plot where the
x-axis represents time, y-axis the frequency and grey level the
envelope of the extracted components) related to these three
components is reported. Those components are found to be
practically uncorrelated, as can be seen from Fig. 7. Indeed, the
correlation coefficient between the envelope of the component at
St 0.05 and the one at St~ 0.16 is e;;= —0.05, the one between
the component at St~ 0.05 and the one at St~ 0.09 is e;3=0.01,
and the remaining one e;3=0.01. Therefore, this can assess that
the physical origin of these flow fluctuations is due to the
dynamics of different vorticity structures. Finally, in Fig. 8 the
reconstructed signal obtained by adding the three spectral com-
ponents is compared to the source-signal showing that this
simplified signal represents the skeleton of the source-signal
from which the effects due to turbulence or to instrument noise
are removed.

4. Discussion and conclusions

A procedure based on proper orthogonal decomposition (POD)
for detection and extraction of components present in time-series
has been presented. The time-series is divided into different time-
portions, denoted as snapshots, uniformly distributed along the
signal time-length and composed of the same number of samples.
POD is then applied to these snapshots producing an orthogonal
basis composed of the so-called POD modes, for which the
dominant ones represent the most significant realizations of the
analyzed process. The POD modes are sorted by their significance
and their contributions to the total energy of the signal is also
evaluated.

The extraction of a component corresponding to a certain POD
mode is performed through the convolution of the source-signal
with the considered POD mode, suitably manipulated. For POD-
based techniques a pair of eigen-elements with roughly the same
energy is typically detected when a periodic activity is present in

the signal and only the sum of the components related to these
two eigen-elements enables the reconstruction of the considered
spectral component. Conversely, with this convolution procedure
a complete component extraction is performed by using only one
POD mode of the pair, so that the detection of pairs of eigen-
elements is not required.

Due to the POD optimality, an automated procedure for
principal component extraction is used, and the fluctuations of
a signal can be considered as adequately characterized when a
certain fluctuating energy is extracted or when the main spectral
components are captured.

The procedure based on the POD for component detection and
extraction has been applied to hot-wire signals acquired in
proximity of the wake generated from a triangular prism placed
with a vertical edge against the incoming flow. Flow fluctuations
due to the dynamics of different vorticity structures can be easily
extracted through the analysis of the most energetic POD modes
and the time-frequency analysis is simultaneously carried out
through the use of the Hilbert spectrum.
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