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Abstract—We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3D
meshes, we can turn the monocular 3D shape reconstruction of a deformable surface given correspondences with a reference image
into a much better-posed problem. This allows us to quickly and reliably eliminate outliers by simply solving a linear least squares
problem. This yields an initial 3D shape estimate, which is not necessarily accurate, but whose 2D projections are. The initial shape is
then refined by a constrained optimization problem to output the final surface reconstruction.
Our approach allows us to reduce the dimensionality of the surface reconstruction problem without sacrificing accuracy, thus allowing
for real-time implementations.
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1 INTRODUCTION

Shape recovery of deformable surfaces from single images is
inherently ambiguous, given that many different configurations
can produce the same projection. In particular, this is true
of template-based methods, in which a reference image of
the surface in a known configuration is available and point
correspondences between this reference image and an input
image in which the shape is to be recovered are given.

One approach is to compute a 2D warp between the images
and infer a 3D shape from it, which can be done pointwise
and in closed form [1]. The quality of the recovered 3D
shape then depends on the quality of the 2D warp, which
does not necessarily account for the 3D nature of the de-
formations and the constraints it imposes. This problem can
be avoided by computing the 3D shape directly from the
correspondences, which amounts to solving a degenerate linear
system and requires either reducing the number of degrees of
freedom or imposing additional constraints [2]. The first can be
achieved by various dimensionality reduction techniques [3],
[4] while the second often involves assuming the surface to
be either developable [5], [6], [7] or inextensible [8], [9],
[10], [4]. These two approaches are sometimes combined and
augmented by introducing additional sources of information
such as shading or textural clues [11], [12] or physics-
based constraints [13]. The resulting algorithms usually require
solving a fairly large optimization problem and, even though it
is often well behaved or even convex [10], [8], [14], [15], [4], it
remains computationally demanding. Closed-form approaches
to directly computing the 3D shape from the correspondences
have been proposed [16], [12] but they also involve solving
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very large systems of equations and making more restrictive
assumptions than the optimization-based ones, which can
lower performance [4].

Here, we show that, by extending the Laplacian formal-
ism first introduced in the Graphics Community [17], [18],
[19] and introducing a novel regularization term designed to
minimize curvature changes from the potentially non-planar
reference shape, we can turn the large degenerate linear system
mentioned above into a non-degenerate one. We further show
that the resulting least-squares problem can be reduced to a
much smaller one by expressing all vertex coordinates as linear
combinations of those of a small number of control vertices,
which considerably increases computational efficiency at no
loss in reconstruction accuracy.

In other words, instead of performing a minimization in-
volving many degrees of freedom or solving a large system
of equations, we end up simply solving a very compact linear
system. This yields an initial 3D shape estimate, which is not
necessarily accurate, but whose 2D projections are. In practice,
this is extremely useful to quickly and reliably eliminate erro-
neous correspondences. We can then achieve better accuracy
than the methods of [4], [10], [1] on both planar and non-
planar surfaces by enforcing simple inextensibility constraints.
This is done by optimizing over a small number of variables,
thereby lowering the computational complexity and allowing
for a real-time implementation.

In short, our contribution is a novel approach to regularizing
and reducing the dimensionality of the surface reconstruction
problem. It does not require either an estimate of the rigid
transformation with respect to the reference shape or access to
training data or material properties, which may be unavailable
or unknown. Furthermore, this is achieved without sacrificing
accuracy and can handle arbitrarily large deformations and
generic objective functions, which is beyond what earlier
Laplacian formalisms were designed to do. Each one of these
features can be found in isolation in other approaches but ours
brings them all together in a unified framework. It was first
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introduced in a conference paper [20] and is validated more
thoroughly here.

In the remainder of this paper, we first review existing
approaches and remind the reader how the problem can be
formulated as one of solving a linear but degenerate system
of equations, as we did in earlier work [2]. We then introduce
our extended Laplacian formalism, which lets us transform
the degenerate linear system into a non-degenerate one and if
necessary make it smaller for better computational efficiency.
Finally, we present our results and compare them against state-
of-the-art methods [4], [10], [1].

2 RELATED WORK

Reconstructing the 3D shape of a non-rigid surface from a
single input image is a severely under-constrained problem,
even when a reference image of the surface in a different
but known configuration is available. This is the problem
we address here, as opposed to recovering the shape from
sequences as in many recent monocular Non-Rigid Structure
from Motion methods such as [21], [22].

When point correspondences can be established between
the reference and input images, one can compute a 2D warp
between the images and infer a 3D shape from it, which can be
done in closed form and pointwise [1]. However, the accuracy
of the recovered shape can be affected by the fact that the 2D
warp may not take into account he constraints that arise from
the 3D nature of the surface and its deformations.

An alternative is therefore to go directly from correspon-
dences to 3D shape by solving an ill-conditioned linear-
system [2], which requires the introduction of additional
constraints to make it well-posed. The most popular ones
involve preserving Euclidean or Geodesic distances as the
surface deforms and are enforced either by solving a convex
optimization problem [10], [8], [23], [9], [14], [15], [4], [24]
or by solving in closed form sets of quadratic equations [16],
[12]. The latter is typically done by linearization, which results
in very large systems and is no faster than minimizing a convex
objective function, as is done in [4] which has been shown to
be an excellent representative of this class of techniques. The
results can then be improved by imposing appropriate physics-
based constraints [13] via non-linear minimization, but that
requires some knowledge of the physical properties that may
not be available.

The complexity of the problem can be reduced using a
dimensionality reduction technique such as Principal Com-
ponent Analysis (PCA) to create morphable models [25],
[3], [26], modal analysis [12], [14], Free Form Deformations
(FFDs) [10], or 3D warps [27]. One drawback of PCA and
modal analysis is that it requires either training data or
sufficient knowledge of the surface properties to compute a
stiffness matrix, neither of which may be forthcoming. Another
is that the modal deformations are expressed with respect
to a reference shape, which must be correctly positioned.
This makes it necessary to introduce additional rotation and
translation parameters into the computation. This complicates
the computations because the rotations cannot be treated as
being linear unless they are very small. The FFD approach [10]

avoids these difficulties and, like ours, relies on parameter-
izing the surface in terms of control points. However, its
affine-invariant curvature-based quadratic regularization term
is designed to preserve local structures and planarity. For non-
planar surfaces, it tends to flatten the surface in areas with only
limited image information. By contrast, our approach naturally
handles non-planar reference surfaces, tends to preserve cur-
vature, and its control vertices can be arbitrarily placed. This
makes it closer to earlier ones to fitting 3D surfaces to point
clouds that also allow arbitrary placement of the control points
by using Dirichlet Free Form Deformations [28] or, more
recently, sets of affine transforms [29]. These approaches,
however, also require regularization of the control points if
they are to be used to fit surfaces to noisy data.

In short, none of these dimensionality reduction methods
allows both orientation-invariant and curvature-preserving reg-
ularization. To do both simultaneously, we took our inspiration
from the Laplacian formalism presented in [17] and the
rotation invariant formulation of [18], which like ours involves
introducing virtual vertices. In both these papers, the mesh
Laplacian is used to define a regularization term that tends to
preserve the shape of a non-planar surface.

In [19], it is shown that explicitly adding the virtual vertices
is not necessary to achieve similar or even better results. In our
work, we go one step further by not only introducing a rotation
invariant regularization term expressed as a linear combination
of the vertex coordinates but showing that these coordinates
can themselves be written as a linear function of those of
a subset of control vertices while preserving rotation invari-
ance. Furthermore, in [18], the regularization term involves
minimizing the magnitude of the local deformations, which
favors small deformations. By contrast, our approach only
penalizes curvature changes and can accommodate arbitrarily
large deformations.

3 LINEAR PROBLEM FORMULATION
As shown in [2], but for the sake of completeness we show
again that given point correspondences between a reference
image in which the 3D shape is known and an input image,
recovering the new shape in this image amounts to solving a
linear system.

Let vi be the 3D coordinates of the ith vertex of the Nv-
vertex triangulated mesh representing the surface, K be the
intrinsic camera matrix, p be a 3D point lying on facet f .
One can represent p in the barycentric coordinates of f : p =∑3

i=1 bivf,i, where {vf,i}i=1,2,3 are the three vertices of f .
The fact that p projects to the 2D image point (u, v) can be
expressed by

K(b1vf,1 + b2vf,2 + b3vf,3) = k

uv
1

 , (1)

where k is the homogeneous component. Since k can be
expressed in terms of the vertex coordinates using the last
row of the above equation, we can rewrite Eq. 1 to be

[b1H b2H b3H]

vf,1

vf,2

vf,3

 = 0 , (2)
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with

H = K2×3 −
[
u
v

]
K3 , (3)

where K2×3 are the first two rows, and K3 is the third one
of K. Given n correspondences between 3D reference surface
locations and 2D image points, we obtain 2n linear equations
which can be jointly expressed by a linear system

Mx = 0 ,where x =

 v1

...
vNv

 . (4)

and M is a matrix obtained by concatenating the
[b1H b2H b3H] matrices. In practice, the sum of squares of
successive elements of the vector Mx are squared distances
in the direction parallel to the image-plane between the line-
of-sight defined by a feature point and its corresponding 3D
point on the surface. A solution of this system defines a surface
such that 3D feature points that project to specific locations in
the reference image project at corresponding locations in the
input image. Solving this system in the least-squares sense
therefore yields surfaces, up to a scale factor, for which the
overall reprojection error is small.

The difficulty comes from the fact that, for all practical
purposes, M is rank deficient as shown in Fig. 2(a), with at
least one third of its singular values being extremely small
with respect to the other two thirds even when there are many
correspondences. This is why the inextensibility constraints,
as mentioned in Section 2, will be introduced.

A seemingly natural way to address this issue is to introduce
a linear subspace model and to write surface deformations as
linear combinations of relatively few basis vectors. This can
be expressed as

x = x0 +

Ns∑
i=1

wibi = x0 +Bw , (5)

where x is the coordinate vector of Eq. 4, B is the matrix
whose columns are the bi basis vectors typically taken to be
the eigenvectors of a stiffness matrix, and w is the associated
vectors of weights wi. Injecting this expression into Eq. 4 and
adding a regularization term yields a new system[

MB Mx0

λrL 0

] [
w
1

]
= 0 , (6)

which is to be solved in the least squares sense, where L is a
diagonal matrix whose elements are the eigenvalues associated
to the basis vectors, and λr is a regularization weight. This
favors basis vectors that correspond to the lowest-frequency
deformations and therefore enforces smoothness.

In practice, the linear system of Eq. 6 is better posed
than the one of Eq. 4. But, because there are usually several
smooth shapes that all yield virtually the same projection, its
matrix still has a number of near zero singular values. As
a consequence, additional constraints still need to be imposed
for the problem to become well-posed. An additional difficulty
is that, because rotations are strongly non-linear, this linear
formulation can only handle small ones. As a result, the

reference shape defined by x0 must be roughly aligned with
the shape to be recovered, which means that a global rotation
must be computed before shape recovery can be attempted.

In the remainder of this paper, we will show that we can
reduce the dimensionality in a different and rotation-invariant
way.

4 LAPLACIAN FORMULATION

In the previous section, we introduced the linear system of
Eq. 4, which is so ill-conditioned that we cannot minimize
the reprojection error by simply solving it. In this section, we
show how to turn it into a well-conditioned system using a
novel regularization term and how to reduce the size of the
problem for better computational efficiency.

(a) (b)
Fig. 1: Linear parameterization of the mesh using control
vertices. (a) Reference shape and (b) Deformed shape. Every vertex
is a linear combination of the control vertices, shown in red. In this
case, the reference shape is planar.

To this end, let us assume we are given a reference shape as
in Fig. 1(a), which may or may not be planar and let xref be
the coordinate vector of its vertices. We first show that we can
define a regularization matrix A such that ‖Ax‖2 = 0, with
x being the coordinate vector of Eq. 4, when xref = x up to
a rigid transformation. In other words, ‖Ax‖2 penalizes non-
rigid deformations away from the reference shape but not rigid
ones. The ill-conditioned linear system of Eq. 4 is augmented
with the regularization term ‖Ax‖2 to obtain a much better-
conditioned linear system

min
x

‖Mx‖2 + w2
r‖Ax‖2, s. t. ‖x‖ = 1 , (7)

where wr is a scalar coefficient defining how much we
regularize the solution. Fig. 2(a) illustrates this for a specific
mesh. In the result section, we will see that this behavior is
generic and that we can solve this linear system for all the
reference meshes we use in our experiments.

We then show that, given a subset of Nc mesh vertices
whose coordinates are

c =

 vi1
...

viNc

 , (8)

if we force the mesh both to go through these coordinates
and to minimize ‖Ax‖2, we can define a matrix P that is
independent of the control vertex coordinates c and such that

x = Pc . (9)

In other words, we can linearly parameterize the mesh as a
function of the control vertices’ coordinates, as illustrated in
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Fig. 2. Singular values (a) of M and Mwr = [M;wrA] drawn with blue and red markers respectively for a planar model
for a given set of correspondences. There are only a few singular values of Mwr that are close to zero whereas the first
Nv singular values of M are practically zero. Normalized singular values (b) of regularization matrix A applied on a
single coordinate component computed on a non-planar model for various values of �. Note that the curves are almost
superposed for � values greater than one. The first 4 singular values being 0 indicates that affine transformations are
not penalized.

4.1 Regularization Matrix
We now turn to building the matrix A such that Axref = 0 and
kAxk2 = kAx

0k2 when x

0 is a rigidly transformed version of
x. We first propose a very simple scheme for the case when
the reference shape is planar and then a similar, but more
sophisticated one, when it is not.

4.1.1 Planar Reference Shape

Given a planar mesh that represents a reference surface in its
reference shape, consider every pair of facets that share an
edge, such as those depicted by Fig. 3(a). They jointly have
four vertices v1ref to v4ref. Since they lie on a plane, whether
or not the mesh is regular, one can always find a unique set
of weights w1, w2, w3 and w4 such that

0 = w1v1ref + w2v2ref + w3v3ref + w4v4ref ,

0 = w1 + w2 + w3 + w4 , (10)
1 = w

2
1 + w

2
2 + w

2
3 + w

2
4 ,

up to a sign ambiguity, which can be resolved by simply
requiring the first weight to be positive. The first equation
in Eq. 10 applies for each of three spatial coordinates x, y, z

and can be rewritten in a matrix form. To form the A

matrix, we first generate a matrix A

0 for a single coordinate
component. For every facet pair i, let j1, j2, j3, j4 be the
indices of four corresponding vertices. The values at row i,
columns j1, j2, j3, j4 of A

0 are taken to be w1, w2, w3, w4.
All remaining elements are set to zero and the matrix A is
A = A

0 ⌦
I3, that is the Kronecker product with a 3 ⇥ 3

identity matrix.
It is easy to verify that Ax = 0 as long as x represents

the vertices of a planar reference mesh and that kAxk2 is
invariant to rotations and translations, and in fact even to some
affine deformations. The first equality of Eq. 10 is designed to
enforce planarity while the second guarantees invariance. The

third equality is there to prevent the weights from all being
zero.

4.1.2 Non-Planar Reference Shape

When the reference shape is non-planar, there will be facets
for which we cannot solve Eq. 10. As in [18], we extend the
scheme described above by introducing virtual vertices. As
shown in Fig. 3(c), we create virtual vertices at above and
below the center of each facet as a distance controlled by
the scale parameter �. Formally, for each facet vi, vj and
vk, its center vc = 1

3 (vi + vj + vk) and its normal n =
(vj � vi)⇥ (vk � vi), we take the virtual vertices to be

v

+
ijk = vc + �

np
knk

and v

�
ijk = vc � �

np
knk

,

(11)
where the norm of n/

p
knk is approximately equal to the

average edge-length of the facet’s edges. These virtual vertices
are connected to vertices of their corresponding mesh facet
and virtual vertices of the neighbouring facets in the same
side, making up the blue tetrahedra of Fig. 3(c)

Let xV be the coordinate vector of the virtual vertices only,

and x

[ =
h
x

T
,x

VT
iT

the coordinate vector of both real and
virtual vertices. Let x[

ref be similarly defined for the reference
shape. Given two tetrahedra that share a facet, such as the red
and green ones in Fig. 3(c), and the five vertices v1

[
ref to v5

[
ref

they share, we can now find weights w1 to w5 such that

0 = w1v1
[
ref + w2v2

[
ref + w3v3

[
ref + w4v4

[
ref + w5v5

[
ref ,

0 = w1 + w2 + w3 + w4 + w5 , (12)
1 = w

2
1 + w

2
2 + w

2
3 + w

2
4 + w

2
5 .

The three equalities of Eq. 12 serve the same purpose as those
of Eq. 10. We form a matrix A

[ by considering all pairs of
tetrahedra that share a facet, computing the w1 to w5 weights
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Fig. 2. Singular values (a) of M and Mwr = [M;wrA] drawn with blue and red markers respectively for a planar model
for a given set of correspondences. There are only a few singular values of Mwr that are close to zero whereas the first
Nv singular values of M are practically zero. Normalized singular values (b) of regularization matrix A applied on a
single coordinate component computed on a non-planar model for various values of �. Note that the curves are almost
superposed for � values greater than one. The first 4 singular values being 0 indicates that affine transformations are
not penalized.

4.1 Regularization Matrix
We now turn to building the matrix A such that Axref = 0 and
kAxk2 = kAx

0k2 when x

0 is a rigidly transformed version of
x. We first propose a very simple scheme for the case when
the reference shape is planar and then a similar, but more
sophisticated one, when it is not.

4.1.1 Planar Reference Shape

Given a planar mesh that represents a reference surface in its
reference shape, consider every pair of facets that share an
edge, such as those depicted by Fig. 3(a). They jointly have
four vertices v1ref to v4ref. Since they lie on a plane, whether
or not the mesh is regular, one can always find a unique set
of weights w1, w2, w3 and w4 such that

0 = w1v1ref + w2v2ref + w3v3ref + w4v4ref ,

0 = w1 + w2 + w3 + w4 , (10)
1 = w

2
1 + w

2
2 + w

2
3 + w

2
4 ,

up to a sign ambiguity, which can be resolved by simply
requiring the first weight to be positive. The first equation
in Eq. 10 applies for each of three spatial coordinates x, y, z

and can be rewritten in a matrix form. To form the A

matrix, we first generate a matrix A

0 for a single coordinate
component. For every facet pair i, let j1, j2, j3, j4 be the
indices of four corresponding vertices. The values at row i,
columns j1, j2, j3, j4 of A

0 are taken to be w1, w2, w3, w4.
All remaining elements are set to zero and the matrix A is
A = A

0 ⌦
I3, that is the Kronecker product with a 3 ⇥ 3

identity matrix.
It is easy to verify that Ax = 0 as long as x represents

the vertices of a planar reference mesh and that kAxk2 is
invariant to rotations and translations, and in fact even to some
affine deformations. The first equality of Eq. 10 is designed to
enforce planarity while the second guarantees invariance. The

third equality is there to prevent the weights from all being
zero.

4.1.2 Non-Planar Reference Shape

When the reference shape is non-planar, there will be facets
for which we cannot solve Eq. 10. As in [18], we extend the
scheme described above by introducing virtual vertices. As
shown in Fig. 3(c), we create virtual vertices at above and
below the center of each facet as a distance controlled by
the scale parameter �. Formally, for each facet vi, vj and
vk, its center vc = 1

3 (vi + vj + vk) and its normal n =
(vj � vi)⇥ (vk � vi), we take the virtual vertices to be

v

+
ijk = vc + �

np
knk

and v

�
ijk = vc � �

np
knk

,

(11)
where the norm of n/

p
knk is approximately equal to the

average edge-length of the facet’s edges. These virtual vertices
are connected to vertices of their corresponding mesh facet
and virtual vertices of the neighbouring facets in the same
side, making up the blue tetrahedra of Fig. 3(c)

Let xV be the coordinate vector of the virtual vertices only,

and x

[ =
h
x

T
,x

VT
iT

the coordinate vector of both real and
virtual vertices. Let x[

ref be similarly defined for the reference
shape. Given two tetrahedra that share a facet, such as the red
and green ones in Fig. 3(c), and the five vertices v1

[
ref to v5

[
ref

they share, we can now find weights w1 to w5 such that

0 = w1v1
[
ref + w2v2

[
ref + w3v3

[
ref + w4v4

[
ref + w5v5

[
ref ,

0 = w1 + w2 + w3 + w4 + w5 , (12)
1 = w

2
1 + w

2
2 + w

2
3 + w

2
4 + w

2
5 .

The three equalities of Eq. 12 serve the same purpose as those
of Eq. 10. We form a matrix A

[ by considering all pairs of
tetrahedra that share a facet, computing the w1 to w5 weights
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Fig. 2: Conditioning of the regularization matrix. (a) Singular values of M and Mwr = [M;wrA], in red and blue respectively, for a
planar model and a given set of correspondences. Mwr has no zero singular values and only a few that are small whereas the first Nv singular
values of M are much closer to zero than the rest. (b) Singular values of regularization matrix A for a non-planar model corresponding to
one specific coordinate divided by the largest one. Each curve corresponds to a different value σ introduced in Section 4.1.2. Note that the
curves are almost superposed for σ values greater than one. The first 4 singular values being 0 indicates that affine transformations are not
penalized.

Fig. 1, where the control vertices are shown in red and (a) is
the reference shape and (b) is a deformed shape according to
Eq. 9. Injecting this parameterization into Eq. 7 yields a more
compact linear system

min
c

‖MPc‖2 + w2
r‖APc‖2, s. t. ‖c‖ = 1 , (10)

which similarly can be solved in the least-square sense up to
a scale factor by finding the eigenvector corresponding to the
smallest eigenvalue of the matrix MT

wr
Mwr , in which

Mwr =

[
MP
wrAP

]
. (11)

We fix the scale by making the average edge-length be the
same as in the reference shape. This problem is usually suffi-
ciently well-conditioned as will be shown in Section 5.1.5. Its
solution is a mesh whose projection is very accurate but whose
3D shape may not be because our regularization does not
penalize affine deformations away from the reference shape.
In practice, we use this initial mesh to eliminate erroneous
correspondences. We then refine it by solving

min
c

‖MPc‖2 + w2
r‖APc‖2, s. t. C (Pc) ≤ 0 , (12)

where C (Pc) are inextensibility constraints that prevent Eu-
clidean distances between neighboring vertices to grow beyond
a bound, such as their geodesic distance in the reference shape.
We use inequality constraints because, in high-curvature areas,
the Euclidean distance becomes smaller than the geodesic
distance. These are exactly the same constraints as those
used in [4], against which we compare ourselves below. The
inequality constraints are reformulated as equality constraints
with additional slack variables whose norm is penalized to
prevent lengths from becoming too small and the solution
from shrinking to the origin [30]. This makes it unnecessary
to introduce the depth constraints of [4]. As shown in Ap-
pendix B, this non-linear minimization step is important to
guarantee that not only are the projections correct but also the
actual 3D shape.

4.1 Regularization Matrix
We now turn to building the matrix A such that Axref = 0 and
‖Ax‖2 = ‖Ax′‖2 when x′ is a rigidly transformed version of
x. We first propose a very simple scheme for the case when
the reference shape is planar and then a similar, but more
sophisticated one, when it is not.

4.1.1 Planar Reference Shape
Given a planar triangular mesh that represents a reference
surface in its reference shape, consider every pair of facets
that share an edge, such as those depicted by Fig. 3(a). They
jointly have four vertices v1ref to v4ref. Since they lie on a
plane, whether or not the mesh is regular, one can always find
a unique set of weights w1, w2, w3 and w4 such that

0 = w1v1ref + w2v2ref + w3v3ref + w4v4ref ,

0 = w1 + w2 + w3 + w4 , (13)
1 = w2

1 + w2
2 + w2

3 + w2
4 ,

up to a sign ambiguity, which can be resolved by simply
requiring the first weight to be positive. The first equation in
Eq. 13 applies for each of three spatial coordinates x, y, z.
To form the A matrix, we first generate a matrix A′ for
a single coordinate component. For every facet pair k, let
i1, i2, i3, i4 be the indices of four corresponding vertices. The
values at row k, columns i1, i2, i3, i4 of A′ are taken to be
w1, w2, w3, w4. All remaining elements are set to zero and the
matrix A is A = I3 ⊗A′, that is the Kronecker product with
a 3× 3 identity matrix.

We show in Appendix A that Ax = 0 when x is an affine
transformed version of the reference mesh and that ‖Ax‖2
is invariant to rotations and translations. The first equality
of Eq. 13 is designed to enforce planarity while the second
guarantees invariance. The third equality is there to prevent
the weights from all being zero. The more the mesh deviates
from an affine transformed version of the reference mesh, the
more the regularization term penalizes.

4.1.2 Non-Planar Reference Shape
When the reference shape is non-planar, there will be facets
for which we cannot solve Eq. 13. As in [18], we extend the
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Fig. 3: Building the A regularization matrix of Section 4.1. (a) Two facets that share an edge. (b) Non-planar reference mesh. (c) Non-planar
reference mesh with virtual vertices and edges added. The virtual vertices are located above and below the center of each facet. They are
connected to vertices of their corresponding mesh facet and virtual vertices of the neighbouring facets on the same side. This produces pairs
of blue tetrahedra, one of those is shown in green and the other in red.

scheme described above by introducing virtual vertices. As
shown in Fig. 3(c), we create virtual vertices at above and
below the center of each facet as a distance controlled by
the scale parameter σ. Formally, for each facet vi, vj and
vk, its center vc = 1

3 (vi + vj + vk) and its normal n =
(vj − vi)× (vk − vi), we take the virtual vertices to be

v+
ijk = vc + σ

n√
‖n‖

and v−ijk = vc − σ
n√
‖n‖

, (14)

where the norm of n/
√
‖n‖ is approximately equal to the

average edge-length of the facet’s edges. These virtual vertices
are connected to vertices of their corresponding mesh facet and
virtual vertices of the neighbouring facets on the same side,
making up the blue tetrahedra of Fig. 3(c).

Let xV be the coordinate vector of the virtual vertices only,
and x∪ =

[
x;xV

]
the coordinate vector of both real and virtual

vertices. Let x∪ref be similarly defined for the reference shape.
Given two tetrahedra that share a facet, such as the red and
green ones in Fig. 3(c), and the five vertices v1

∪
ref to v5

∪
ref they

share, we can now find weights w1 to w5 such that

0 = w1v1
∪
ref + w2v2

∪
ref + w3v3

∪
ref + w4v4

∪
ref + w5v5

∪
ref ,

0 = w1 + w2 + w3 + w4 + w5 , (15)
1 = w2

1 + w2
2 + w2

3 + w2
4 + w2

5 .

The three equalities of Eq. 15 serve the same purpose as those
of Eq. 13. We form a matrix A∪ by considering all pairs of
tetrahedra that share a facet, computing the w1 to w5 weights
that encode local linear dependencies between real and virtual
vertices, and using them to add successive rows to the matrix,
as we did to build the A matrix in the planar case. One can
again verify that A∪x∪ref = 0 and that ‖A∪x∪‖ is invariant to
rigid transformations of x∪. In our scheme, the regularization
term can be computed as

C = ‖A∪x∪‖2 =
∥∥∥Âx+ ÃxV

∥∥∥2 , (16)

if we write A∪ as
[
Â Ã

]
where Â has three times as many

columns as there are real vertices and Ã as there are virtual
ones. Given the real vertices x, the virtual vertex coordinates

that minimize the C term of Eq. 16 is

xV = −
(
ÃT Ã

)−1
ÃT Âx (17)

⇒ C =

∥∥∥∥Âx− Ã
(
ÃT Ã

)−1
ÃT Âx

∥∥∥∥2 = ‖Ax‖2 ,

where A = Â − Ã
(
ÃT Ã

)−1
ÃT Â. In other words, this

matrix A is the regularization matrix we are looking for and
its elements depend only on the coordinates of the reference
vertices and on the scale parameter σ chosen to build the
virtual vertices.

To study the influence of the scale parameter σ of Eq. 14,
which controls the distance of the virtual vertices from the
mesh, we computed the A matrix and its singular values
for a sail shaped mesh and many σ values. For each σ, we
normalized the singular values to be in the range [0, 1]. As can
be seen in Fig. 2(b), there is a wide range of σ for which the
distribution of singular values remains practically identical.
This suggests that σ has limited influence on the numerical
character of the regularization matrix. In all our experiments,
we set σ to 1 and were nevertheless able to obtain accurate
reconstructions of many different surfaces with very different
physical properties.

4.2 Linear Parameterization
We now show how to use our regularization matrix A to
linearly parameterize the mesh using a few control vertices.
As before, let Nv be the total number of vertices and Nc < Nv

the number of control points used to parameterize the mesh.
Given the coordinate vector c of these control vertices, the
coordinates of the minimum energy mesh that goes through
the control vertices and minimizes the regularization energy
can be found by minimizing

‖Ax‖2 subject to Pcx = c , (18)

where A is the regularization matrix introduced above and
Pc is a 3Nc × 3Nv matrix containing ones in columns
corresponding to the indices of control vertices and zeros
elsewhere. We prove below that, there exists a matrix P whose
components can be computed from A and Pc such that

∀c , x = Pc , (19)
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if x is a solution to the minimization problem of Eq. 18.
To prove this without loss of generality, we can order the

coordinate vector x so that those of the control vertices come
first. This allows us to write all coordinate vectors that satisfy
the constraint as

x =

[
c
λ

]
, (20)

where λ ∈ R3∗(Nv−Nc). Let us rewrite the matrix A as

A = [Ac|Aλ] , (21)

where Ac and Aλ have 3Nc and 3(Nv − Nc) columns, re-
spectively. Solving the problem of Eq. 18, becomes equivalent
to minimizing

‖Acc+Aλλ‖2 ⇒ λ = −(AT
λAλ)

−1AT
λAcc (22)

⇒ x =

[
I

−(AT
λAλ)

−1AT
λAc

]
c .

Therefore,

P =

[
I

−(AT
λAλ)

−1AT
λAc

]
, (23)

is the matrix of Eq. 19 under our previous assumption that the
vertices were ordered such that the control vertices come first.

4.3 Rejecting Outliers
To handle outliers in the correspondences, we iteratively
perform the unconstrained optimization of Eq. 10 starting with
a relatively high regularization weight wr and reducing it by
half at each iteration. Given a current shape estimate, we
project it on the input image and disregard the correspondences
with higher reprojection error than a pre-set radius and reduce
it by half for the next iteration. Repeating this procedure a
fixed number of times results in an initial shape estimate and
provides inlier correspondences for the more computationally
demanding constrained optimization that follows.

Even though the minimization problem we solve is similar
to that of [4], this two-step outlier rejection scheme brings us
a computational advantage. In the earlier approach, convex but
nonlinear minimization had to be performed several times at
each iteration to reject the outliers whereas here we repeatedly
solve a linear least squares problem instead. Furthermore, the
final non-linear minimization of Eq. 12 involves far fewer
variables since the control vertices typically form a small
subset of all vertices, that is, Nc � Nv .

5 RESULTS
In this section, we first compare our approach to surface re-
construction from a single input image given correspondences
with a reference image against the recent methods of [10],
[4], [1], which are representative of the current state-of-the-art.
We then present a concrete application scenario and discuss
our real-time implementation of the approach. We supply the
corresponding videos as supplementary material. They are
also available on the web 1 along with the Matlab code that
implements the method. 2

1. http://cvlabwww.epfl.ch/~fua/tmp/laplac
2. http://cvlab.epfl.ch/page-108952-en.html

TABLE 1: The five datasets used for quantitative evaluation. Number
of frames in each sequence and specifics of the corresponding
reference shape.

Dataset # frames # vertices # facets Planar
Paper 192 99 160 Yes

Apron 160 169 288 Yes
Cushion 46 270 476 No

Leaf 283 260 456 No
Sail 6 66 100 No

5.1 Quantitative Results on Real Data
To provide quantitative results both in the planar and non-
planar cases we use five different sequences for which we have
other means besides our single-camera approach to estimate
3D shape. We first describe them and then present our results.
Note that we process every single image individually and do
not enforce any kind of temporal consistency to truly compare
the single-frame performance of all four approaches.

5.1.1 Sequences, Templates, and Validation
We acquired four sequences using a Kinecttm, whose RGB
camera focal length is about 528 pixels. We show one rep-
resentative image from each dataset in Figs. 4 and 5. We
performed the 3D reconstruction using individual RGB images
and ignoring the corresponding depth images. We used these
only to build the initial template from the first frame of each
sequence and then for validation purposes. The specifics for
each one are provided in Table 1.

For the paper and apron of Fig. 4, we used the planar
templates shown in the first two rows of Fig. 8 and for the
cushion and banana leaf of Fig. 5 the non-planar ones shown
in next two rows of the same figure. For the paper, cushion,
and leaf, we defined the template from the first frame, which
we took to be our reference image. For the apron, we acquired
a separate image in which the apron lies flat on the floor so
that the template is flat as well, which it is not in the first frame
of the sequence, so that we could use the method of [10] in
the conditions it was designed for.

To create the required correspondences, we used either
SIFT [31] or Ferns [32] to establish correspondences between
the template and the input image. We ran our method and three
others [10], [1], [4] using these correspondences as input to
produce results such as those depicted by Figs. 4 and 5.

As stated above, we did not use the depth-maps for re-
construction purposes, only for validation purposes. We take
the reconstruction accuracy to be the average distance of the
reconstructed 3D vertices to their projections onto the depth
images, provided they fall within the target object. Otherwise,
they are ignored. Since we do the same for all four methods
we compare, comparing their performance in terms of these
averages and corresponding variances is meaningful and does
not introduce a bias.

The last dataset is depicted by Fig. 6. It consists of 6 pairs
of images of a sail, which is a much larger surface than
the other four and would be hard to capture using a Kinect-
style sensor. The images were acquired by two synchronized
cameras whose focal lengths are about 6682 pixels, which let
us accurately reconstruct the 3D positions of the circular black
markers by performing bundle-adjustment on each image pair.
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(a) (b) (c) (d)

Fig. 4: Paper and Apron using a planar template. In the first and third rows, we project the 3D surfaces reconstructed using different
methods into the image used to perform the reconstruction. The overlay colors correspond to those of the graphs in Fig. 9. In the second and
fourth rows, we show the same surfaces seen from a different viewpoint. The gray dots denote the projections of the mesh vertices onto the
ground-truth surface. The closer they are to the mesh, the better the reconstruction. (a) Our method using regularly sampled control vertices.
(b) Brunet et al. [10] (c) Bartoli et al. [1] (d) Salzmann et al. [4].

As before we took the first image captured by the first camera
to be our reference image and established correspondences
between the markers it contains and those seen in the other
images. We also established correspondences between markers
within the stereo pairs and checked them manually. We then
estimated the accuracy of the monocular reconstructions in
terms of the distances of the estimated markers’ 3D positions
to those obtained from stereo.

The 3D positions of the markers used to evaluate the
reconstruction error are estimated from the stereo images up
to an unknown scale factor: This stems from the fact that both
the relative pose of one stereo camera to the other and the 3D
positions of the markers are unknown and have to be estimated
simultaneously. However, once a stereo reconstruction of the
markers has been obtained, fitting a mesh to those markers
lets us estimate an approximate scale by assuming the total
edge length of the fitted mesh to be that of the reference
mesh. However it is not accurate and, for evaluation purposes,
we find a scale factor within the range [0.8, 1.25] that we
apply to each one of the monocular reconstructions so as
to minimize the mean distance between the predicted 3D
marker positions of the monocular reconstructions and the 3D
positions obtained from stereo.

5.1.2 Robustness to Erroneous Correspondences
We demonstrate the robustness of our outlier rejection scheme
described in Section 4.3 for both planar and non-planar

(a) (b) (c)

Fig. 6: Sail using a non-planar template. As in Figs. 4 and 5, we
both overlay the surfaces reconstructed using the different methods on
the image used to perform the reconstruction and show them as seen
from a different viewpoint. (a) Our method using regularly sampled
control points. (b) Bartoli et al. [1] (c) Salzmann et al. [4].
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(a) (b) (c)
Fig. 5: Cushion and banana leaf using a non-planar template. As in Fig. 4, we overlay the surfaces reconstructed using the different
methods on the corresponding images and also show them as seen from a different viewpoint. The gray dots denote the projections of the
mesh vertices onto the ground-truth surface and the overlay colors correspond to those of the graphs in Fig. 10(a) Our method using regularly
sampled control vertices. (b) Bartoli et al. [1] (c) Salzmann et al. [4].

surfaces. We also compare our method against two recent
approaches to rejecting outliers in deformable surface re-
construction [34], [33] whose implementations are publicly
available. Alternatives include the older M-estimator style
approaches of [35], [36], which are comparable in matching
performance on the kind of data we use but slower [33]. A
more recent method [37] involves detecting incorrect corre-
spondences using local isometry deformation constraints by
locally performing intensity-based dense registration. While
potentially effective, this algorithm requires several seconds
per frame, which is prohibitive for real-time implementation
purpose.

We used one image from both the paper and the cushion
datasets in which the surfaces undergo large deformations, as
depicted by the first row of Figs. 4 and 5. We used both
the corresponding Kinect point cloud and SIFT correspon-
dences to reconstruct a mesh that we treated as the ground
truth. We then synthesized approximately 600’000 sets of
correspondences by synthetically generating 10 to 400 inlier
correspondences spread uniformly across the surface, adding
a zero mean Gaussian noise with standard deviation of 1
pixel to the corresponding pixel coordinates, and introducing
proportions varying from 0 to 100% of randomly spread outlier
correspondences.

We ran our algorithm with 25 regularly sampled control
vertices on each one of these sets of correspondences. To

ensure a fair comparison of outlier rejection capability in the
context of deformable surface reconstruction, also because
[33] was designed only for outlier rejection, and the imple-
mentation of [34] only performs outlier rejection, we used
the set of inlier correspondences returned by these methods
to perform surface registration using our method assuming
that all input correspondences are inliers. For [34], [33], we
used the published parameters except for the threshold used
to determine if a correspondence is an inlier or an outlier and
the number of RANSAC iterations. We tuned the threshold
manually and used 5 times more RANSAC iterations than
the suggested default value for [33] to avoid a performance
drop when dealing with a large proportion of outliers. Note
that choosing the threshold parameter for [33] is non trivial
because the manifold of inlier correspondences is not exactly
a 2-D affine plane, as assumed in [33].

We evaluated the success of these competing methods in
terms of how often at least 90% of the reconstructed 3D
mesh vertices project within 2 pixels of where they should.
Fig. 7 depicts the success rates according to this criterion
over many trials as a function of the total number of inliers
and the proportion of outliers. Our method is comparable
to [33] on the cushion dataset and better on the paper dataset.
It is much better than [34] on both datasets. Our algorithm
requires approximately 200 inlier correspondences to guar-
antee the algorithm will tolerate high ratios of outliers with
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(a) Ours (b) Tran et al. ECCV 2012 [33] (c) Pizarro et al. IJCV 2012 [34]
Fig. 7: Probability of success as a function of the number of inlier matches and proportion of outliers, on the x-axis and y-axis respectively.
The lines are level lines of the probability of having at least 90% mesh vertices reprojected within 2 pixels of the solution. Top row: paper
dataset. Bottom row: cushion dataset.

0.99 probability. Rejecting outliers and registering images on
approximately 600’000 set of synthesized correspondences on
the paper and cushion dataset, respectively, took our method
11.73 (14.80) hours i.e. 0.070 (0.089) second per frame, took
[33] 44.02 (48.83) hours i.e. 0.26 (0.29) second per frame,
and took [34] 197.46 (201.23) hours i.e. 1.18 (1.21) second
per frame.

5.1.3 Control Vertex Configurations
One of the important parameters of our algorithm is the
number of control vertices to be used. For each one of
the five datasets, we selected four such numbers and hand-
picked regularly spaced sets of control vertices of the right
cardinality. We also report the results using all mesh vertices
as control vertices. The left side of Fig. 8 depicts the resulting
configurations.

To test the influence of the positioning of the control
vertices, for each sequence, we also selected control vertex
sets of the same size but randomly located, such as those
depicted on the right side of Fig. 8. We did this six times
for each one of the four templates and each possible number
of control vertices.

In other words, we tested 29 different control vertex con-
figurations for each sequence.

5.1.4 Comparative Accuracy of the Four Methods
We fed the same correspondences, which contain erroneous
ones, to implementations, including the outlier rejection strat-
egy, provided by the authors of [10], [4], [1] to compare
against our method. In the case of [1], we computed the 2D

image warp using the algorithm of [34] as described in the
section Experimental Results of [1].

As discussed above, for the kinect sequences, we charac-
terize the accuracy of their respective outputs in terms of
the mean and variance of the distance of the 3D vertices
reconstructed from the RGB images to their projections onto
the depth images. For the sail images, we report the mean and
variance of the distance between 3D marker positions com-
puted either monocularly or using stereo, under the assumption
that the latter are more reliable.

In Fig. 9, we plot these accuracies when using planar
templates to reconstruct the paper and apron of Fig. 4. The
graphs are labeled as

• Ours Regular and Ours Random when using our
method with either the regular or randomized control
vertex configurations of Fig. 8. They are shown in blue
and green respectively. In the case of the randomized con-
figurations, we plot the average results over six random
trials. We denote our results as Ours All when all mesh
vertices are used as control vertices.

• Brunet 10, Bartoli 12, and Salzmann 11 when using the
methods of [10], [1], and [4]. They are shown in cyan,
purple, and yellow respectively.

The numbers below the graphs denote the number of control
vertices we used. For a fair comparison, we used the same
number of control vertices to run the method of [10] and to
compute the 2D warp required by the method of [1]. The
algorithm of [4] does not rely on control vertices since it
operates directly on the vertex coordinates. This means it
depends on far more degrees of freedom than all the other
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(16) (25) (36) (49) (99) (16) (25) (36) (49)

(16) (25) (36) (49) (169) (16) (25) (36) (49)

(16) (25) (36) (49) (270) (16) (25) (36) (49)

(16) (25) (36) (49) (260) (16) (25) (36) (49)

(8) (12) (18) (27) (66) (8) (12) (18) (27)
Fig. 8: Templates and control vertices. Each row depicts the template and control vertex configuration used for the paper, apron, cushion,
banana leaf, and sail sequences. The number below each figures denotes the number of control vertices used in each case. Leftmost four
columns: Manually chosen control vertices. Fifth column: All vertices as control vertices. Rightmost four columns: Examples of randomly
chosen control vertices.

methods and, for comparison purposes, we depict its accuracy
by the same yellow bar in all plots of any given row.

Fig. 10 depicts the results similarly in the non planar case
of the cushion, banana leaf, and sail of Figs. 5 and 6. The
only difference is that we do not show the “Brunet 10” results
because this method was not designed to handle non-planar
surfaces.

5.1.5 Analysis
Our approach performs consistently as well or better than all
the others when we use enough control vertices arranged in
one of the regular configurations shown on the left side of
Fig. 8. This is depicted by the blue bars in the four right-
most columns of Figs. 9 and 10. Even when we use too few
control vertices, we remain comparable to the other methods,
as shown in the first columns of these figures.

More specifically, in the planar case, our closest competitor
is the method of [10]. We do approximately the same on the
paper but much better on the apron. In the non-planar case
that [10] is not designed to handle and when using enough
control vertices, we outperform the other two methods on the
cushion and the leaf and perform similarly to [4] on the sail.

As stated above, these results were obtained using regular
control vertex configurations and are depicted by blue bars
in Figs. 9 and 10. The green bars in these plots depict the
results obtained using randomized configurations such as those
shown on the right side of Fig. 8. Interestingly, they are often
quite similar, especially for larger numbers of control vertices.
This indicates the relative insensitivity of our approach to the

exact placement of the control vertices. In fact, we attempted
to design an automated strategy for optimal placement of the
control vertices but found it very difficult to consistently do
better than simply spacing them regularly, which is also much
simpler.

Note that our linear subspace parameterization approach to
reducing the dimensionality of the problem does not decrease
the reconstruction accuracy when enough control vertices
are used. We interpret this to mean that the true surface
deformations lie in a lower dimensional space than the one
spanned by all the vertices’ coordinates.

All these experiments were carried out with a regularization
weight of wr = 1 in Eq. 12. To characterize the influence
of this parameter, we used the control vertex configuration
that yielded the best result for each dataset and re-ran the
algorithm with the same input correspondences but with 33
different logarithmically distributed values of wr ranging from
0.00833 = 1/120 to 120. Fig. 11 depicts the results and
indicates that values ranging from 1 to 10 all yield similar
results.

Fig. 12 illustrates how well- or ill-conditioned the linear
system of Eq. 10 is depending on the value of wr. We plot
condition numbers of Mwr

in Eq. 11, averaged over several
examples, as a function of wr for all the regular control-vertex
configurations we used to perform the experiments described
above on the four kinect sequences. We also show the singular
values of Mwr

, also averaged over several examples, for two
different configurations of the control vertices in the apron
case. Note that the best condition numbers are obtained for
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Fig. 9: Accuracy results when using planar templates and different numbers of control vertices for the paper (top row) and apron (bottom
row) sequences of Fig. 4.
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Fig. 10: Accuracy results when using non-planar templates and different numbers of control vertices for the cushion (top row), banana
leaf (middle row), and sail (bottom row) sequences of Figs. 5 and 6.

values of wr between 1 and 10, which is consistent with the
observation made above that these are good default values to
use for the regularization parameter. This can be interpreted as
follows: For very small values of wr, the MP term dominates
and there are many shapes that have virtually the same pro-
jections. For very large values of wr, the AP term dominates
in Eq. 10 and many shapes that are rigid transformations of
each other have virtually the same deformation energy. The
best compromise is therefore for intermediate values of wr.

5.2 Application Scenario
In this section, we show that our approach can be used to ad-
dress a real-world problem, namely modeling the deformations
of a baseball as it hits a bat. We obtained from Washington

State University’s Sport Science Laboratory 7000 frames-per-
second videos such as the one of Fig. 13, which shows the
very strong deformation that occurs at the moment of impact.
The camera focal length is about 2853 pixels. In this specific
case, the ball was thrown at 140 mph by a launcher against a
half cylinder that serves as the bat to study its behavior.

We take the reference frame to be the first one where the
ball is undeformed and can be represented by a spherical
triangulation of diameter 73.52 mm. In this case, the physics
is slightly different from the examples shown in the previous
section because the surface does stretch but cannot penetrate
the cylinder, which is securely fastened to the wall. We
therefore solve the unconstrained minimization problem of
Eq. 10 as before and use its result to initialize a slightly
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Fig. 13: Reconstruction of a baseball colliding with a cylinder in a video sequence. Top row: Reprojection of the reconstructed meshes
for different frames in the sequence. Bottom row: The reconstructed meshes seen from a different view point. Black dots represent on-contact
vertices.
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Fig. 11: Influence of the regularization parameter. Mean re-
construction errors for the four kinect sequences as a function of
the regularization weight. For each sequence, we used the control
vertex configuration that gave the best result in the experiment of
Section 5.1.4.

modified version of the constrained minimization problem of
Eq. 12. We solve

min
c

‖MPc‖2 + w2
r‖APc‖2 +

w2
l

∑
ij

||d(Vi, Vj)− lij ||2 + w2
t Traj(c) , (24)

s. t. C (Pc) ≤ 0 ,

where C (Pc) now stands for constraints that prevent the
vertices from being inside the cylinder, the Traj(c) term
encourages the ball to move in a straight line computed
from frames in which the ball is undeformed, the d(Vi, Vj)
are distances between neighboring vertices, and the lij are
distances in the reference shape. In other words, the additional
term

∑
ij ||d(Vi, Vj)−lij ||2 in the objective function penalizes

changes in edge-length but does not prevent them. Since the
horizontal speed of the ball is approximately 140 mph before
impact and still 70 mph afterwards, we neglect gravity over
this very short sequence and assume the ball keeps moving in
a straight line. We therefore fit a line to the center of the ball
in the frames in which it is undeformed and take Traj(c) to
be the distance of the center of gravity from this line.

The results are shown in Fig. 13. As in the case of the sail of
Fig. 6, we had a second sequence that we did not use for recon-
struction purposes but used instead for validation purposes. To
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Fig. 12: First two rows: Plots of the condition number of the matrix
Mwr of Eq. 11 as a function of wr for each one of the four kinect
sequences used to perform the experiments of Section 5.1.4. In each
plot, we show one curve for each regular control vertex configuration
of Fig. 8. Their respective labels denote the number of control vertices
used. Bottom row: Singular values of Mwr in the apron case for
two different configurations of the control vertices and several values
of wr . The curves for the three other cases look very similar.

this end, we performed dense stereo reconstruction [38] and
show in Fig. 14 the median distance between the resulting
3D point cloud and our monocular result. The undeformed
ball diameter is 73.52 mm and the median distance hovers
around 1% of that value except at the very beginning of the
sequence when the ball is still undeformed but on the very
left side of the frame. In fact, in those first few frames, it
is the stereo algorithm that is slightly imprecise, presumably
because the line of sight is more slanted. This indicates that it
might not be perfectly accurate in the remaining frames either,
thus contributing to some of the disagreement between the two
algorithms.
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Fig. 15: Real-Time Implementation. (a,b) Screen-shots for two different configurations of a piece of paper. (c,d) Screen-shots for two
different configurations of a cushion. (e) Average computation times to solve the linear system of Eq. 10 five times to eliminate outliers
(green), to do this and solve the constrained minimization problem of Eq. 12 (red), and to perform the full computation including keypoint
extraction and matching (blue). These times are expressed as a function of the number of control vertices.
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Fig. 14: Median distance in each frame between our monocularly
reconstructed surface and a 3D point cloud obtained from stereo [38].
The two red arrows indicate the frames in which the ball first and
last touches the bat.

5.3 Real Time Implementation

We have incorporated our approach to surface reconstruction
into a real-time demonstrator that we showed at the CVPR’12
and ECCV’12 conferences. It was running at speeds of up to
10 frame-per-second on a MacBook Pro on 640×480 images
acquired by the computer’s webcam, such as those depicted
by Fig. 15 that feature a planar sheet of paper and non-planar
cushion such as those we used in our earlier experiments. The
videos we supply as supplementary material demonstrate both
the strengths and the limits of the approach: When there are
enough correspondences, such as on the sheet of paper or in
the center of the cushion, the 3D reconstruction is solid even
when the deformations are severe. By contrast, on the edges of
the cushion, we sometimes lose track because we cannot find
enough correspondences anymore. To remedy this, a natural
research direction would be to look into using additional image
clues such as those provide by shading and contours, while
preserving real-time performance.

Our C++ implementation relies on a feature-point detector
to extract 500 interest points from the reference and 2000 ones
from input images as maxima of the Laplacian and then uses
the Ferns classifier [32] to match them. Additionally, since our
algorithm can separate inlier correspondences from spurious
ones, we track the former from images to images to increase
our pool of potential correspondences, which turns out to be
important when the surface deformations are large.

Given the correspondences in the first input image of a
sequence, we use the outlier rejection scheme of Section 4.3 to

eliminate the spurious one and obtain a 3D shape estimate. As
long as the deforming surface is properly tracked, we can then
simply estimate the 3D shape in subsequent frames by using
the 3D shape estimate in a previous frame to initialize the
constrained minimization of Eq. 12, without having to solve
again the linear system of Eq. 10. However, if the system
loses track, it can reinitialize itself by running the complete
procedure again.

Real-time performance is made possible by the fact that
the 3D shape estimation itself is fast enough to represent
only a small fraction of the required computation, as shown
in Fig. 15(e). A further increase in robustness and accuracy
could be achieved by enforcing temporal consistency of the
reconstructed shape from frame to frame [39], [40], [4].

We will release the real-time code on the lab’s website so
that fellow researchers can try it for themselves.

6 CONCLUSION

We have presented a novel approach to parameterizing the
vertex coordinates of a mesh as a linear combination of a
subset of them. In addition to reducing the dimensionality
of the monocular 3D shape recovery problem, it yields a
rotation-invariant curvature-preserving regularization term that
produces good results without training data or having to
explicitly handle global rotations.

In our current implementation we applied constraints on
every single edge of the mesh. In future work, we will explore
other types of surface constraints in order to further decrease
computational complexity without sacrificing accuracy. An-
other direction of research would be to take advantage of tem-
poral consistency as has been done in many recent works [39],
[40], [4] and of additional sources of shape information, such
as shading and contours, to increase robustness and accuracy.
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APPENDIX A
PROPERTIES OF THE REGULARIZATION TERM

Here we prove the claim made in Section 4.1.1 that Ax = 0
when x represents an affine transformed version of the ref-
erence mesh and that ‖Ax‖2 is invariant to rotations and
translations.

The first equation in Eq. 13 applies for each of three spatial
coordinates x, y, z and can be rewritten in a matrix form as

[w1 w2 w3 w4]


v1refx v1refy v1refz
v2refx v2refy v2refz
v3refx v3refy v3refz
v4refx v4refy v4refz

 = 0T . (25)

It can be seen from Eq. 25 and the second equation in Eq. 13
that the three vectors of the x, y, z components of the reference
mesh and the vector of all 1s lie in the kernel of the matrix
A′. It means our regularization term ‖Ax‖2 does not penalize
affine transformation of the reference mesh. Hence, Ax = 0
as long as x represents an affine transformed version of the
reference mesh.

Let v′i = Rvi + t be the new location of vertex vi under
a rigid transformation of the mesh, where R is the rotation
matrix and t is the translation vector. Since RTR = I3 and
w1 + w2 + w3 + w4 = 0, we have∥∥w1v

′
i1 + w2v

′
i2 + w3v

′
i3 + w4v

′
i4

∥∥2
=

∥∥R(w1vi1 + w2vi2 + w3vi3 + w4vi4)

+t(w1 + w2 + w3 + w4)
∥∥2 (26)

= ‖w1vi1 + w2vi2 + w3vi3 + w4vi4‖
2
.

Hence, ‖Ax′‖2 = ‖Ax‖2 when x′ is a rigidly transformed
version of x. In other words, ‖Ax‖2 is invariant to rotations
and translations.

APPENDIX B
IMPORTANCE OF NON-LINEAR MINIMIZATION

Fig. 16 illustrates the importance of the non-linear constrained
minimization step of Eq. 12 that refines the result obtained
by solving the linear least-squares problemof Eq. 10. In the
left column we show the solution of the linear least-squares
problem of Eq. 10. It projects correctly but, as evidenced by
its distance to the ground-truth gray dots, its 3D shape is
incorrect. By contrast, the surface obtained by solving the
constrained optimization problem of Eq. 12 still reprojects
correctly while also being metrically accurate. Fig. 17 depicts
similar situations in other frames of the sequence.

(a) (b)

Fig. 16: Unconstrained vs constrained optimization results. (a)
The surface obtained by solving the unconstrained minimization
problem of Eq. 10 and rescaling the result. It is projected on the
original image at the top and shown from a different angle at
the bottom. (b) The surface obtained by solving the constrained
minimization problem of Eq. 12. The projections of both surfaces
are almost identical but only the second has the correct 3D shape.
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Fig. 17: Additional unconstrained and constrained results for the paper sequence. Top row: Reprojection on the input images of the
final reconstructions obtained by solving the constrained minimization problem of Eq. 12. Middle row: Intermediate reconstructions obtained
by solving the unconstrained minimization problem of Eq. 10 and seen from a different view-point. Bottom row: Final reconstructions seen
from the same view-point as the intermediate ones. Note that the 3D shapes can be quite different, even though their image projections are
very similar.


