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ABSTRACT

Traditionally, time difference of arrival (TDOA) based acoustic source tracking consists of two stages, more precisely,
estimation of TDOAs followed by a tracking algorithm. In general, these two stages are performed separately and
presume that (1) TDOAs can be estimated reliably; and (2) the errors in detection behave in a well-defined fashion.
The presence of noise and reverberation, however, leads to multimodal TDOA distributions and causes larger errors
in the estimates, which ultimately lowers the tracking performance. To counteract this effect, we propose an approach
that enhances TDOA estimation by (1) accounting for the multimodal aspect through a Gaussian mixture model and
(2) integrating knowledge that has been obtained in the tracking stage. In doing so, this approach tightly couples
the two stages. Experimental results on the AV16.3 corpus show that the proposed approach improves the tracking
performance significantly compared to various other tracking algorithms.

Index Terms— Direction of arrival estimation, Tracking, Microphone Arrays, Kalman filters

1 Introduction

Tracking acoustic sources is becoming, increasingly, more important, with the increase in number of applications,
such as (multiparty) speech enhancement/separation, automatic camera steering, etc. TDOA-based source tracking
solves this problem in two stages, namely a detection stage and a tracking stage. In the detection stage, the TDOA
which is introduced at each sensor pair is estimated, typically, under use of the generalized cross correlation (GCC)
[1]. In the tracking stage, the source position is triangulated in a consistent fashion by integrating the estimated
TDOAs through use of a Kalman filter extension or a particle filter [2, 3, 4]. Unfortunately, the tracking performance
degrades due to noise and multi-path effects. For instance, under room acoustical conditions, early reflections and
reverberation corrupt the GCCs through smearing and through introduction of secondary peaks [5, 6]. This in turn
affects the tracking algorithms, which assume the error is a stationary Gaussian process whereas the TDOA error in
a multi-path environment is rather time-varying and multimodal.

Motivated by previous works [4, 6], this paper proposes a novel probabilistic approach, which enhances TDOA
estimates by interpreting the normalized GCC as a probability density function (pdf) of the TDOAs. More precisely
in this approach, (1) a Gaussian distribution is associated to each GCC peak, as a consequence of which the TDOA
pdf is approximated by a Gaussian mixture model (GMM). Such an approximation is realistic because it takes into
account the multimodal aspect of TDOAs. In addition, it also allows us to integrate knowledge that has been obtained
in the tracking stage. Then, (2) the TDOA pdf, which the tracking algorithm expects at the current time instant, is
predicted and the mixture weights of the above GMM are updated by measuring the “similarity” between each of its
component and the predicted TDOA pdf. Finally, (3) the enhanced TDOA is obtained. We evaluate the proposed
approach on the AV16.3 corpus [7], a real corpus with different motion scenarios, using different tracking algorithms.

This work was partly supported by the European Union through the Marie-Curie Initial Training Network (ITN) SCALE (Speech
Communication with Adaptive LEarning, FP7 grant agreement number 213850); by the Federal Republic of Germany, through the Cluster
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Our studies show that the proposed approach significantly reduces the angular error when compared to conventional
approaches.

The paper is organized as follows. Section 2 provides a brief overview on acoustic source tracking problem.
Section 3 presents the proposed approach. Section 4 presents the experimental results. Finally, in Section 5 we
conclude.

2 Acoustic Source Tracking Problem

The arrival of sound waves at an array of microphones introduces time differences between the individual sensor
pairs. This happens in dependence of the angle of arrival — that is, the azimuth 6 and elevation ¢ — as well as the
positions m;, ¢ = 1,..., M of the microphones. Under the far field assumption, in which the distance of the source
from the microphones is neglected, the TDOA at the (4, j)-th sensor pair (m;,m;) can be calculated as:
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where ¢ denotes the speed of sound and p[f, ¢] denotes the direction of arrival [ cos(¢) sin(d), cos(¢) cos(6), sin(¢)] T
Source localization approaches may use these time differences by either

(a) constructing a spatial filter (beamformer), which scans all possible source locations, and then taking that
position where the signal energy is maximized [5].

(b) using a two stage approach, which consists in first estimating the TDOAs of all considered microphone pairs
and then inferring the most likely source position [2, 3].

As our approach falls into the second category we proceed by first reviewing the Bayesian tracking framework
in Section 2.1, explaining TDOA estimation in Section 2.2. Section 2.3 finally elaborates on how source localization
can be performed based on estimated TDOAs.

2.1 Bayesian Tracking Framework

The problem of tracking a time-varying system state x; based on a sequence y1.+ = {y1,...,y:} of corresponding
observations is usually formulated as a Bayesian estimation problem in which

e Step 1: a process model xy = f(x4_1,v:) is used to construct a prior p(z¢|y1.t—1) for the state estimation
problem at time ¢.

e Step 2: the joint predictive distribution p(x:, y¢|y1.4—1) of state and observation is constructed according to a
measurement model y; = h(z¢, w;) with measurement noise wy.

e Step 3: the posterior distribution p(z|y;.¢) is obtained by conditioning the joint predictive density p(xs, ye|y1.t—1)
on the realized (actually measured) observation Y; = y;.

The first step is accomplished by transforming the joint random variable of the last state X;_; and process noise
V; according to f: X; = f(Xy—1,V;). In step 2, the joint distribution of X; and Y; is constructed by transforming
(X, W) according to the augmented measurement function h [8]:
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Recursion of the above mentioned transformations form the Bayesian tracking framework. The posterior filtering
distribution p(z;|y1.:) constitutes the complete solution to the sequential probabilistic inference problem and allows
us to calculate any optimal estimate of the state. Although this approach is simple, the optimal solution is usually
tractable only for linear and Gaussian systems, in this case, all the involved random variables remain Gaussian at
all times and the posterior can be obtained as a conditional Gaussian distribution [8]. This analytical closed form
solution is generally known as the Kalman filter (KF). Most real-world systems, however, are nonlinear or/and
non-Gaussian, therefore the optimal solution is intractable and approximate solutions must be used. These include
well-known extensions of the Kalman filter, such as the Unscented Kalman Filter (UKF) [2], the Eztended Kalman
Filter (EKF) [3], sequential Monte-Carlo methods (particle filters) [4, 6] and Gaussian sum filters [9, 10].



2.2 GCC-Based TDOA Estimation

The most popular approach to estimate the TDOA between two microphones m; and m; is to use the generalized
cross-correlation (GCC) with Phase Transform (PHAT) weighting [1]. This approach is based on calculating the
correlation of the signals s;(t) and s;(t), which have been received at the microphones, according to:
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where S;(w) and S;(w) denote the short-time Fourier transforms of s;(t) and s;(t), respectively, and where R; ; is
their weighted cross correlation. Subsequently, the most “likely” TDOA 7; ; is extracted as:

7,; = argmax, R; ;(7) ?

2.3 Acoustic Source Tracking Based on Estimated TDOAs

Once the TDOA has been estimated for a number of N microphone pairs, acoustic source tracking can be performed
with any algorithm from section 2.1 (e.g., [2, 3, 9]). In order to do this, we use the following process model for
tracking the azimuth 6 and elevation ¢ of the source:
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where v; g and vy 4 denote zero-mean Gaussian process noise with a variance of o3 and 03)7 respectively. Similar to
the approaches taken in [2, 3, 6], we use
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as a measurement model. In this equation, 7;, ;, (p[6:, ¢+]) denotes the predicted TDOA of the n-th microphone pair
(in, jn), with n = 1,..., N, whereas wy , is zero-mean Gaussian measurement noise with a variance of U%V. This
measurement model is nonlinear, as the calculation of the predicted TDOAs according to (1) involves evaluating
sines and cosines for the direction of arrival p[f:, ¢:]. Hence, the tracking should be performed using one of the
approximate solutions in section 2.1.

3 TDOA Gaussian Mixture Model

GCC-based TDOA estimation works well in an environment that is characterized by low noise and reverberation.
However, as mentioned earlier in Section 1, it breaks down in moderately reverberant conditions where, early reflec-
tions and reverberation corrupt the GCC function through smearing and through introduction of secondary peaks.

Interpreting the normalized GCC as a probability distribution of the TDOA, similar as originally proposed in
[6] and firstly applied in [4] for a steered response power (SRP) approach [5], allows a probabilistic approach to the
problem of TDOA estimation. Given this interpretation, the maximal peak of the GCC can be considered to be the
mazimum estimate. This has been implicitly used in [2, 3]. In this work, we continue along these lines and propose
a probabilistic approach, which tries to enhance each TDOA by a) approximating the TDOA pdf by a GMM, as
described in Section 3.1, b) updating the GMM with knowledge that has been obtained in the tracking stage, as
explained in Section 3.2, and c) finally, estimating the TDOA (Section 3.3).

Besides the multimodality of the GCC function, the choice of the GMM as approximation of the TDOA pdf
is also motivated by the Gaussianity assumption of the tracking information, which makes its integration into the
TDOA estimation stage easier and more reliable.

3.1 Gaussian Mixture Model

The most popular approach to estimate a maximum likelihood GMM from given data is the Expectation-
Maximization (EM) algorithm. Using the EM algorithm to estimate a GMM for each microphone pair at each



time t, however, would be computationally expensive. Thus, we use a computationally less expensive method that
provides comparable results to those obtained with the EM algorithm.

Let K be the number of GCC peaks of the n!” microphone pair at time ¢, and let y* = {77, ...,%}}?} and
wi = {wf, ..., wiy} = {GCC(77), ..., GCC(7i,)} be the corresponding TDOAs and GCC values, respectively. For
ease of notation, the time index ¢ and the microphone pair index n are dropped in the rest of paper. Then, we
construct the GMM as follows:

1. Determine the K peaks of the GCC.

2. Determine the K blocks {Bj, ..., Bk } corresponding to the different peaks. By block we mean the peak interval,

which starts at its left foot and ends at the right foot (e.g., see Figure 1).

3. Calculate the Gaussian pdf associated to each block.

4. Normalize the GMM weights {wy, ..., wx} (GCC peaks).

The Gaussian pdf N(7; ux, 02) corresponding to the k" block By and its mixture weight 1y are given by :
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The statistical properties of the GCC function ensure that one of the peaks corresponds to the true TDOA. This fact
justifies the choice of the TDOA and the GCC values of the peaks to be the means and the weights of the GMM,
respectively. The main problem, however, is to find the peak which corresponds to the direct path. This problem is
treated in the next section.

3.2 Update of The Gaussian Mixture Model Using Tracking Information

Previous works, though not directly related to the acoustic source tracking problem, have shown that the use of
prior information about the measurements can efficiently improve measurement detection [11] (e.g., the “gating”
approach). Along this line, we present in this section an approach for updating the GMM through use of information
that has been obtained in the tracking stage. This is achieved by (1) calculating the predicted pdf of the TDOA
(Step 2 in Section 2.1) as it is expected by the tracking algorithm; and then, (2) calculate the similarity scores
between the predicted pdf and each component in the GMM where the similarity score reflects the probability that
the component generates the true TDOA observation; and finally, (3) updating the mixture weights of GMM based
on the similarity scores.

Let g, and gi be the predicted pdf of the TDOA and the k" component of the GMM, respectively. For calculating
similarity scores, we propose two different similarity measures (SMs):
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Where, KLD(gy,||gx) is the Kullbak-Leibler Divergence between the two Gaussians. The second SM is the Bhat-
tacharyya Coefficient (BC)[12]. These two SMs have closed form solutions for Gaussian distributions.
Having calculated the SM for each component of the GMM, we update the weights of the GM before estimating
the TDOA. The new weight @y, of the k' component is given by
v SM
Wy = ;Uk (gpvgk) ' (11)
Z wiSM(gpa gl)

i=1




The update step smoothes out the unlikely components and enhances the ones which are “close” to the predicted
TDOA. This step can be seen as a “correction” of the GMM (e.g., see Figure 1).

3.3 TDOA Estimation

After the GMM update, the TDOA estimate can be obtained in two different ways — the mazimum estimate from
(12) and the mean estimate from (13):

K
Tmaz = argmax z wrN (5 ke, cr,z) (12)
T k=1
K
Tmean — Z ’wkuk (13)
k=1

In any case, the estimated TDOA can be used in an arbitrary single observation acoustic source tracking approach.
To construct the observation vector, we first estimate the TDOA 7F for each microphone pair, n = 1,..., N, and
then combine these individual estimates to form a joint measurement y;, with y; = [7}, ..., 7" |.
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Fig. 1. Illustration of the TDOA Gaussian mizture model and the Gaussian similarity measure (K = 7).

Figure 1 illustrates the efficiency of the proposed method. The maximal GCC peak corresponds to a TDAO of -9
samples. The use of SM, however, alleviates the estimation error and recovers the true TDOA, which is 8.2 samples.



| Sequence “seqll-1p-0100” / quickly moving |

tracking root mean square error
algorithm azimuth | elevation | DOA || TDOA
UKF 5.56° 15.98° 16.92° 2.01
UKF+Gating 4.17° 7.12° 8.24° 1.05
UKF+SM 2.97° 4.92° 5.74° 0.64
SIR-PF 4.80° 10.33° 11.40° 2.01
SIR-PF+SM 3.29° 5.12° 6.09° 0.64
MH-PF 3.72° 5.94° 7.00° —
MH-PF+SM 3.25° 4.81° 5.80° —
MH-GMF 2.85° 4.25° 5.11° —
MH-GMF+SM 3.21° 5.070° 5.99° —

Sequence “seq02-1p-0000” / more stationary

tracking root mean square error
algorithm azimuth | elevation | DOA || TDOA
UKF 8.15° 20.23° 21.81° 2.33
UKF+Gating 2.71° 8.14° 8.58° 0.99
UKF+SM 2.83° 5.11° 5.84° 0.64
SIR-PF 7.54° 19.57° 20.98° 2.33
SIR-PF+SM 2.97° 5.46° 6.20° 0.62
MH-PF 3.99° 6.44° 7.58° —
MH-PF+SM 3.32° 5.42° 6.36° —
MH-GMF 2.71° 4.07° 4.89° —
MH-GMF+SM 2.60° 3.86° 4.65° —

Table 1. Average root mean square error (RMSE) ,with and without Similarity Measure (SM), in azimuth, elevation
and direction of arrival, with respect to the center of the array. The last column shows the average RMSE of the
TDOA of 18 microphone pairs. This RMSE is calculated only for the single observation filters.

4 Experiments and Results

4.1 Database and Experimental Setup

In order to evaluate the performance of the proposed algorithm, we performed a set of tracking experiments on the
AV16.3 corpus [7]. In this corpus, real human speakers have been recorded in a smart meeting room (approximately
30m? in size) with a 20cm 8-channel circular microphone array. The sampling rate is 16 KHz and the real mouth
position is known with an error of < 5cm [7]. We present studies for two different sequences of this corpus: the
highly non-stationary sequence “seql1l-1p-0100”, in which a single speaker is quickly moving in the room; and the
relatively stationary sequence “seq02-1p-0000”, in which a speaker is moving through 16 predefined locations while
uttering one sentence “One,Two,Three,...” at each of the positions. These sequences are 32 and 185 seconds in
length, respectively. The average distance of the speaker from the array is 1.18 and 1.53 meters, with a minimum of
0.57 and a maximum of 2.40 (links to the videos can be found in [7]).

The signal is divided into frames of 1024 samples (64ms). All the GCCs were calculated under use of PHAT [1]
weighting. As there is no point in tracking an inactive speaker, we use a voice activity detector [13] for suppressing
observations during silence frames. As a further precaution, the SM is replaced by gating [11] in the first frames and
is used only after a duration 7" that ensures the true source is tracked.

In order to test the performance, we have combined the proposed method with 4 different algorithms that have
been proposed as a solution to the acoustic source tracking problem: (i) the UKF [2] as well as a combination of the
UKF with Gating [11], (ii) the Sequential Importance Resampling Particle Filter (SIR-PF) [4], which is implemented
here as a TDOA-based approach, (iii) the Multiple Hypothesis Auxiliary Particle Filter (MH-PF) approach from [6],
and (iv) the Multiple Hypothesis Gaussian Mixture Filter (MH-GMF) from [9]. UKF and PF are single observation



acoustic source tracking approaches which use the TDOA estimates from (12). In case of the MH-PF and MH-GMF
the GCC is replaced by the updated GMM. The results are presented with and without the proposed approach using
the second SM, i.e. BC. The use of KLD gives similar results.

4.2 Results and Analysis

Table 1 shows clearly that the integration of the prior information of the TDOA into the detection stage, through
Gating or through the proposed approach denoted as “SM”, improves the TDOA estimation and thereby, the tracking
performance. The results also show that the proposed approach improves the performance of almost all the tracking
algorithms, except the MH-GMF when it is applied to the sequence “seqll-1p-0100”. This exception is due to
the measurement model Eqn. (5), which assumes the source is stationary, whereas the speaker in this sequence
is quickly moving. We can also conclude that the use of this approach is more relevant with single observation
tracking algorithms, where the DOA error is 66% and 73% lower for the UKF and 46% and 70% lower for the PF.
This compares to 17% and 16% improvement for the MH-PF and only 4% for the MH-GMF when it is applied to
sequence “seq02-1p-0000”. The difference in the improvement was expected, regarding that the multiple hypothesis
filters propose to overcome the multimodality problem by considering multiple peaks with equal weights, whereas
the SM assigns a likelihood weight to each Gaussian before estimating the observations, and thereby, improves the
TDOA estimates. We can also notice that, with SM, the performance of the single observation filters, which are
computationally more efficient, is close to the performance of the multiple observations filters. This makes the former
more attractive.

Table 1 also shows that the reason behind the improvement is the reduction of the TDOA root means square
error, which is around 0.63. This value is compared to the inherent 0.5 samples precision error due to the GCC
method. Although this could be slightly improved through GCC interpolation, the gain we obtained from this was
negligible.

5 Conclusions

We presented a Gaussian mixture model of the TDOA which couples detection stage and tracking stage to enhance
TDOA estimates. More specifically, our study shows that the proposed model can be efficiently used to improve the
performance of acoustic source tracking algorithms, as it reduces the problem of erroneous TDOA estimates by using
the prior information given by the predicted pdf of the TDOA. In this work, our focus was on single source tracking
problem. Future work will investigate the generalization of this approach to multiple source tracking problem.
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