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Switzerland

Recently, topic models have become an effective tool in mining dominant

patterns in the data in an unsupervised fashion. Eventually, these models

have found relevance in numerous areas such as text analysis, recommenda-

tion systems and computer vision. Topic models use co-occurrence analysis

to discover latent structures called topics, which are dominant co-occurring

sets of words in the data. In practice, one often wants to impose a constraint

on this learning, wherein each topic has only a subset of the vocabulary or

each document is represented using only a few dominant topics. Such a spar-

sity constraint have shown to improve the learning performance even under

adverse conditions such as noise. The objective of this article is to provide a

brief overview of various methods employed within the framework of Topic

models to achieve sparsity. After this review, a demonstration is provided by

applying an information theoretic sparsity approach applied to Probabilis-

tic Latent Sequential Motifs (PLSM), a topic model approach developed to

discover temporal motifs from videos and time-series in general.
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1.1 Introduction

There is an overwhelming amount of data being accumulated these days

through various sources such as web pages, news articles, blogs, videos, and

various other sensor logs. The sheer enormity of the data available makes it

very difficult to find relevant information quickly. Therefore it has become

important to develop efficient data mining and analysis tools that could

help an end-user browse through this vast amount of data. Recently, topic

models have emerged as a powerful data mining tool by allowing us to obtain

a concise representation of the data set by capturing dominant patterns from

simple un-ordered feature counts. While topic models were first proposed to

solve text mining, document clustering and trend analysis, they have also

been successfully employed in other domains like computer vision to address

problems such as scene classification, object class recognition and activity

analysis.

To quickly review the ideas of topic models, let us consider Probabilistic

Latent Semantic Analysis (PLSA) by Hofmann (2001), which is one the

earliest topic models proposed, and perhaps one of the simplest and easiest

to understand and implement.

1.1.1 PLSA and Sparsity issue

PLSA and LDA are generative models, meaning, they are based on proba-

bilistic sampling rules that describe how words in a document are generated.

To get an intuition of the generative process of PLSA, let us consider that a

columnist for Wall Street Journal decides to write an article on the “Global

Economic Crisis”. He would first plan his article based on some sub-topics

that could possibly be Economy, Stocks and Banking for example. Then,

he might decide the importance to be given for each of the sub-topics pos-

sibly reflected by the number of words or paragraphs dedicated to each

subtopic. For instance, he might decide to write about each of the above

topics in about {5, 5, 7} paragraphs of the same size respectively. Then, for

each topic, he would choose the most appropriate words to convey his ideas

on the subject. Let us consider for a moment that a computer, ignorant of

language grammar and word order is assigned a job to generate a number

of such articles using an algorithm. Then if each word is indicated by the

variable w, each topic by z and document by d, perhaps it might have the

method given in algorithm (1.1) in its RAM for drawing a “bag of Nd words”

for each document d,

Distributions: The importance given to each topic is given by a categorical



1.1 Introduction 3

Algorithm 1.1 The PLSA generative model

for d = 1 to D; do
for for j = 1 to Nd; do

draw a topic z ∼ P (z|d)
draw a word w ∼ P (w|z)

end for
end for

(a) PLSA (b) LDA (c) Sparse LDA

Figure 1.1: Differences between the PLSA, LDA topic models, and the Sparse
LDA model.

distribution p(z|d). In the example taken, this would simply be the propor-

tion of the three topics in the article given by {5/17, 5/17, 7/17}. Similarly,

the number of times each word occurring in a topic gives the categorical

distribution p(w|z). This would mean that words like fiscal, deficit, banks

and GDP will have high probability under the topic “Economy” and, words

like profit, booking, NASDAQ, LSE and banks1 may occur more frequently

under the “Stocks” topic.

Graphical Model: The procedure described in algorithm (1.1) is called

a generative process and its pictorial version in Figure 1.1(a) is called the

PLSA graphical model. In this notation, the nodes represent the random

variables in the circles. Shaded circles indicate observed variables and trans-

parent circles represent latent variables.

1. Note that the term banks can occur in more than one topic. For instance, banks can
also occur in documents that talk about rivers and water bodies, which is an example if
polysemy.
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In the case of Figure 1.1(a), w and d are observed and z is called a

latent variable which needs to be estimated. The directed edges indicate

conditional dependencies. Here, we have w depending on z and the presence

of z introduces a conditional independence: a word w and document d

are conditionally independent given the topic z, indicated as w ⊥⊥ d|z.
Intuitively, this means that words depend only on the topic and not on

the document for which it is generated. The plates indicate repetition of

the sampling process, where the variable in the bottom right of the plate

indicates the number of samples. In Figure 1.1(a), the plate surrounding

w and z indicates that z is sampled Nd times, each time followed by a w

sample. In other words, for each document d, there are Nd (z, w) pairs.

Our objective in creating a graphical model as in Figure (1.1) is to simplify

the joint distribution into simpler factors as in equation (1.1) and infer

them. More specifically, we would like to learn the topics: P (w|z), and their

weights in a document: P (z|d), from a corpus of documents and observations

represented as a word-count matrix P (w, d). The conditional independence

assumption in the model is used to split the joint distribution of the model

into smaller factors, i.e., the joint distribution of all the variable triplets

(w, z, d) can be written as

P (w, z, d) = P (d)P (w|z)P (z|d) (1.1)

Furthermore, the probability of an observation pair (w, d) can be obtained

by marginalizing out the topic variable in the joint distribution:

P (w, d) =

Nz∑
z=1

P (w, z, d) = P (d)

Nz∑
z=1

P (z|d)P (w|z). (1.2)

A closer look at equation( 1.2) reveals that the model decomposes the condi-

tional probabilities of words in a document p(w|d) as a convex combination

of the topic specific word distributions p(w|z), where the weights are given

by the topic distribution p(z|d) in a document.

Sparsity issue – While the distributions learned from PLSA give us a

concise representation of the corpus, they are often loosely constrained,

resulting in non-sparse process representations which are often not desirable

in practice. For instance, in PLSA, one would like each document d to be

represented by only a small number of topics z with high weights p(z|d),

or each topic z to be represented by a small number of words with high

p(w|z) weights. This would provide a more compact representation of the

data and in many cases improve efficiency in storage and computation. But

nothing in the modeling encourages such a learning mechanism. Recently,

there have been some attempts in including such an objective in learning
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the distributions that have also shown improvement in performance. In the

following sections we will review some of these proposed methods.

1.1.2 Matrix factorization methods

Historically matrix factorization methods like Singular Vector Decompo-

sition (SVD) were used to identify concepts hidden in the data. Given a

document-term matrix D, SVD factorizes D as D = UΣV ′, where U and V

are matrices with orthonormal columns and Σ contains the singular values.

By taking the top K singular values and setting the rest to zero (Σ̃) we get

our concept space from the rows of U Σ̃. Though SVD is one of the simplest

matrix factorization methods, it suffers from several problems. For instance

there is no clear interprestation of the magnitude of the vectors that define

the concept space in SVD. Furthermore, there is a possibility of obtaining

negative values while reconstructing D with the top K singular values. This

has motivated several other alternatives such as the Non-negative Matrix

Factorization (NMF) and Probabilistic Topic Models (PTM).

Non-negative matrix factorization (NMF) by Lee and Seung (1999) is

an improvement over SVD, where the matrix D is decomposed into non-

negative factors W and H, i.e., D = WH. This is preferred over SVD

because we often want to decompose the count matrix into additive compo-

nents of non-negative factors. This was successfully used in many applica-

tions including text mining and face-recognition by Lee and Seung (1999).

In NMF the matrix W represents the set of basis vectors and H represents

the coefficients of linear decomposition. But many a times, depending upon

the application domain a sparse set of coefficients or the basis vectors is

desired. Hoyer (2005) proposed a method wherein sparse basis vectors W

and the coefficients H can be obtained for a desired degree of sparsity. To

this end, a measure to describe the degree of sparsity of any vector as

sparseness(X) =

√
n− |X|1/|X|2√

n− 1
(1.3)

was proposed, where n is the dimension of the vector X. The measure takes

values in the interval [0, 1], where a sparseness value of 0 indicates that all

the coefficients have equal non zero value, and a sparseness of 1 indicates

a single non-zero component. From the above equation we see that one can

obtain the desired degree of sparsity of a vector by manipulating its L1 and

L2 norms. To achieve this at each iteration of the estimation, first W and

H are estimated by proceeding along the negative gradient that minimizes

the error ||D −WH||2, then, based on whether the constraints apply to W

or H or both, each column or row respectively of the matrices are projected
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to have unchanged L2 norm and desired L1 norm.

The Sparse-NMF method was applied to face image datasets and natural

image datasets. It was shown that by imposing sparsity constraint on the

basis vectors obtained more local features which otherwise was not possible

in situations where faces are not well aligned. Similarly, by seeking sparse

coefficients H on a natural image dataset, Sparse-NMF learned oriented

features resembling edges and lines. The method thus enables us to control

sparsity explicitly with a parameter that can be easily interpreted.

At this point, it is relevant to mention that it has also been shown

by Gaussier and Goutte (2005) that PLSA is equivalent to NMF with the

Kullback-Leibler (KL) divergence. However, the probabilistic framework in

which PLSA works gives us several advantages. It gives a clear interpre-

tation of the matrix decomposition in terms of conditional distributions.

Additionally, the graphical model framework enables us to create principled

hierarchical extensions, which can be solved by well established inference

tools like Expectation-Maximization, Mean-field approximation and Gibbs

sampling.

1.1.3 Sparsity in LDA and HDP

PLSA is not a fully generative model. While the method gives the topic

weights for all the training documents indexed by d, it does not explain how

topic weights p(z|d) can be drawn for an unseen document. Also, a Bayesian

treatment to this requires that all parameters of the model are drawn from a

prior distribution. In Latent Dirichlet Allocation Figure 1.1(b), this is solved

by having the topic weights θd as a random variable drawn from a Dirichlet

distribution Dir(α) with hyper-parameter α, and the topic parameters ϕz
drawn from a Dirichlet distribution Dir(β) with hyper-parameter β. But

in practice, due to lack of any prior knowledge on the topic presence in

documents or word participation in topics, a symmetric Dirichlet prior

which has the same scalar value for all the components of the vector is

used for α and β. Let us consider the case of the β prior first, such a non-

informative prior has two main consequences: a) large values of the scalars of

β, provides more smoothing over the terms of the vocabulary, and b) when

β value goes to zero, the role of the smoothing prior reduces resulting in

empirical estimates of ϕz) (topics that place their weights only on few terms

or less smooth distribution over words). In order to circumvent this effect of

priors on smoothing and sparsity, Wang and Blei (2009) proposed a model

that decouples the request for sparsity and the smoothing effect of Dirichlet

prior. Although the model was presented as a sparse version of Hierarchical



1.1 Introduction 7

Dirichlet Process (HDP)2, it can be simplified and understood even in the

context of LDA.

Sparse LDA – The graphical model of Sparse LDA is provided in Fig-

ure 1.1(c) and the generative process is as follows: For each topic z =

1, 2, . . . , Nz, a term selection proportion πz is first drawn from Beta(r, s).

Then for each term v, 1 ≤ v ≤ Nw (where Nw is the number of words in the

vocabulary), a selector {0, 1} is drawn from a Bernoulli(πz). Furthermore,

drawing the topic proportions is akin to the LDA model as discussed above,

i.e., the topic weights θd for each document is drawn from Dir(α). For each

term wdi, the topic assignment zdi is drawn from a categorical distribution

Categ(θd) and each word wdi is drawn from another categorical distribution

Categ(βzdi).

We can observe that by using the selector variables for each term in the

topic, the topics are defined only over a sub-simplex and the smoothing

prior is applied to only the selected terms. From a sparsity perspective

what the model achieves by having explicit selector variables is the effect

of introducing the L0 norm on the vocabulary for each topic. We see that

an elegant generative process is used to solve an otherwise very complex

problem in the combinatorial sense.3 While this method allows us to tune the

expected level of sparsity from each topic by adjusting the Beta parameters,

this does not improve the sparsity of the topic decomposition if desired. This

was exactly addressed using a different generative process by Williamson

et al. (2009).

Focused topic model – In this mode proposed by Williamson et al.

(2009), the goal is to explain each document using only a small set of topics.

Overlooking the nitty-gritties of HDP in focused topic model, we see that

it relies on the Indian Buffet Process (IBP) by Griffiths and Ghahramani

(2005) to generate a sparse binary matrix which serves as a prior (switching

variable) to indicate if a topic is present in a document or not. Thus a

sparse prior results in using only a few topics to explain the document

hence the name “Focused”. The two main steps of this generative model

that differentiates this from the HDP model concerns the generation of topic

specific weights for each document i.e.,: first, a binary matrix B ∼ IBP(α) is

created. The entries of the binary matrix are given by bmk taking values 0 or

1. Second, for each topic k, a global topic proportion is sampled according to,

2. HDP uses non-parametric methods like Dirichlet process to obtain topics. Since the
number of topics is unlimited it is often called infinite LDA.

3. In a naive method, a desired L0 norm sparsity can be achieved by generating
(
V
N

)
subsets of words and checking all the combinations for each topic.
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φk ∼ Gamma(γ, 1). Finally, n
(m)
k , the number of words for kth topic in the

mth document is drawn according to, n
(m)
k ∼ Poisson−Gamma(bmkφk, 1).

The entries of the matrix serve as switching/decision variables for the

topic selection, thus a sparse binary matrix would result in a sparse topic

decomposition of the document. The performance of the model is evaluated

using two measures called topic presence frequency (fraction of documents

in the corpus with an incidence of the topic) and topic proportion (fraction

of words in the corpus assigned to the topic). A sparse decomposition should

have the least correlation between these two measures.

We can conclude from studying the above models that the Sparse LDA and

Focused topic model, are different generative models for achieving sparsity

on two different distributions, they eventually rely on priors to generate

binary variables to decide whether to select a word for a topic in the former

case or a topic for a document in the latter case.

1.1.4 Information theoretic sparsity methods

A different view of the sparsity problem in the context of probabilistic

topic modeling is to seek more peaky distributions. In such cases, as we

are searching the space of distributions, a natural choice would be to guide

the learning process towards attaining more peaky distributions character-

ized by a smaller entropy instead of a norm based regularization constraint,

although not in a probabilistic context. Traditionally, information theoretic

measures like entropy and Kullback-Leibler (KL) divergence have been used

as a regularization constraint in several inverse or under-constrained prob-

lems (Besnerais et al. (1999)). Recently, KL divergence has also been used

successfully as a means to achieve sparsity. In Bradley and Bagnell (2009),

a sparse coefficient vector with respect to a fixed bases are learned by op-

timizing the generalized KL divergence (Bregman divergence) with uniform

distribution. They show that this achieves a higher degree of sparsity in a

classification task when compared to the well known L1 or L2 optimization.

In another application of topic model for video scene analysis by Varadara-

jan et al. (2010a), the goal is to learn distributions over time that indicate

the start of a certain activity in the scene. Using the regular EM optimiza-

tion procedure is loosely constrained, and therefore we obtain a sub-optimal

solution that gives a smooth distribution for the activity start times. To

solve this, a regularization constraint in the EM optimization procedure is

added to select a peaky distribution by maximizing the KL divergence be-

tween the uniform distribution and the learned distribution. This results in

a simple procedure that can be applied to any distribution for which such a

sparsity constraint is desirable.
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In the following section we describe how the KL divergence based sparsity

constraint was applied to Probabilistic Latent Sequential Motifs model,

provide its motivations, modeling details and further go on to explain how

sparsity constraint is imposed in this model.

1.2 Probabilistic Latent Sequential Motif Model

In this section, we introduce the PLSM model, its motivation, the generative

model along with details of the learning procedure. Then the inference

procedure and how it is improved by using a KL divergence based sparsity

constraint is presented. The model and its properties are then validated on

synthetic experiments and illustrated on real surveillance videos.

1.2.1 Motivation

Let us consider for example a temporally ordered set of observations from

which one would like to extract sequential patterns called motifs (e.g. a

text document or a speech signal). Our observation here at any point in

time would be a single word in the case of text, or a single phoneme in

the case of speech. But if we consider a video signal, it would contain

multiple observations at any point in time. These observations could be due

to multiple local activities occurring simultaneously. For example, consider

a video signal obtained by recording a busy traffic scene. In such scenes

many activities occur simultaneously due to more than one object present

in the scene. These activities occur without any particular synchrony or

order resulting in the superposition of multiple overlapping observations,

making any analysis a complex problem. From these observations, we are

interested in identifying the dominant activity patterns in the scene and

their time of occurrence. This is similar to the case of topic models applied

to text, where topics that model dominant co-occurrences are obtained. But

the added difficulty here is due to observations caused by multiple activities

simultaneously and the lack of a-priori knowledge of how many activities

occur in the scene.

In Varadarajan et al. (2010b), we introduced the Probabilistic Latent Se-

quential Motif (PLSM) topic model to discover dominant sequential activity

patterns from sensor data logs represented by word×time count documents.

Its main features are: i) the estimated patterns are not merely defined as

static word distributions but also incorporate the temporal order in which

words occur; ii) automatic estimation of activity starting times, and iii) the

ability to deal with multiple temporally overlapping activities in the scene.
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This model is detailed in the following sections.

1.2.2 Model overview and generative process

Figure 1.2(a) illustrates how the documents are generated. Let D be the

number of documents in the corpus, indexed by d, each spanning Td dis-

crete time steps. Let V = {wi}Nw

i=1 be the vocabulary of words that can

occur at any given instant ta ∈ {1, · · · , Td}. A document is then described

by its count matrix n(w, ta, d) indicating the number of times a word w

occurs at the absolute time ta. These documents are generated from a set

of Nz temporal patterns or motifs {zi}Nz

i=1 represented by the distributions

P (w, tr|z). The motifs have a maximal duration of Tz time steps, where tr
denotes the relative time at which a word occurs within a motif. Each motif

can start at any time instant ts, ts ∈ {1, · · · , Tds} within the document.

Qualitatively, documents triplets (w, ta, d) are generated by sampling words

from the motifs and placing them in the document relative to a sampled

starting time according to (cf Figure 1.2(a)). The PLSM graphical model is

given in Figure 1.2(b) and the procedure to generate the triplets (w, ta, d)

is as follows:

Algorithm 1.2 The PLSM generative model

draw a document d ∼ P (d)
for each word w in the document d do

draw a latent motif z ∼ P (z|d)
draw the starting time ts ∼ P (ts|z, d) % where P (ts|z, d) denotes the probability

that the motif z starts at time ts within the document d.
draw the relative time tr ∼ P (tr|z) % where P (tr|z) denotes the probability of

observing any word w at time tr.
draw a word w ∼ P (w|tr, z) % where P (w|tr, z) denotes the probability that the

word w within the motif z occurs at time tr.
set ta = ts + tr % this assumes that P (ta|ts, tr) = δ(ta − (ts + tr)), that is, the

probability density function P (ta|ts, tr) is a Dirac function.
end for

The main assumption with the above model is that the occurrence of

a word only depends on the motif, not on the time instant when a motif

occurs. Given the deterministic relation between the three time variables

(ta = ts + tr), the joint distribution of all variables can be written as:

P (w, ta, d, z, ts) = P (d)P (z|d)P (ts|z, d)P (w|z)P (ta − ts|w, z) (1.4)

1.2.3 Model inference with sparsity

Our goal is to discover the motifs and their starting times given the

data D defined by the count matrices n(w, ta, d). The model parameters
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(a) (b)

Figure 1.2: a) document n(w, ta, d) generation. Words (w, ta = ts + tr) are
obtained by first sampling the motifs and their starting times from the P (z|d)
and P (ts|z, d) distributions, and then sampling the word and its temporal
occurrence within the motif from P (w, tr|z). b) graphical model.

Θ = {P (z|d), P (ts|z, d), P (tr|z), P (w|tr, z)} can be estimated by maximiz-

ing the log-likelihood of the observed data D, which is obtained through

marginalization over the hidden variables Y = {ts, z}:

L(D|Θ) =

D∑
d=1

Nw∑
w=1

Td∑
ta=1

n(w, ta, d) log

Nz∑
z=1

Tds∑
ts=1

P (w, ta, d, z, ts) (1.5)

Such an optimization can be performed using an Expectation-Maximization

(EM) approach, maximizing the expectation of the complete log-likelihood.

However, as motivated in the introduction, the estimated distributions may

exhibit a non-sparse structure that is not desirable in practice. In our model

this is the case of P (ts|z, d): one would expect this distribution to be peaky,

exhibiting high values for only a limited number of time instants ts. To

encourage this, we propose to guide the learning process towards sparser

distributions characterized by smaller entropy, and achieve this indirectly

by adding to the data likelihood a regularization constraint to maximize

the KL divergence DKL(U ||P (ts|z, d)) between the uniform distribution U

(maximum entropy) and the distribution of interest. This gives a constrained

log-likelihood function given by:

Lc(D|Θ) = L(D|Θ) +
∑
ts,z,d

λz,d ·
1

Tds
· log(

1/Tds
P (ts|z, d)

) (1.6)

After development and removing the constant term, our constrained objec-

tive function is now given by:
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Lc(D|Θ) = L(D|Θ)−
∑
ts,z,d

λz,d
Tds
· log(P (ts|z, d)) (1.7)

The EM algorithm can be easily applied to the modified objective function.

In the E-step, the posterior distribution of hidden variables is calculated as

(the joint probability is given by equation( 1.4)):

P (z, ts|w, ta, d) =
P (w, tad, z, ts)

P (w, ta, d)
with P (w, ta, d) =

Nz∑
z=1

Tds∑
ts=1

P (w, ta, d, z, ts)

(1.8)

In the M-step, the model parameters (the probability tables) are updated

according to:

P (z|d) ∝
Tds∑
ts=1

Tz−1∑
tr=0

Nw∑
w=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (1.9)

P (ts|z, d) ∝ max

(
ε,

(
Nw∑
w=1

Tz−1∑
tr=0

n(w, ts + tr, d)P (z, ts|w, ts + tr, d)

)
−
λz,d
Tds

)
(1.10)

pw(w|z) ∝
D∑
d=1

Tds∑
ts=1

Tz−1∑
tr=0

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (1.11)

ptr(tr|w, z) ∝
D∑
d=1

Tds∑
ts=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (1.12)

Qualitatively, in the E-step, the responsibilities of the motif occurrences in

explaining the word pairs (w,ta) are computed (high responsibilities are ob-

tained for informative words, i.e. words appearing in only one motif and at a

specific time), whereas the M-steps aggregates these responsibilities to infer

the motif patterns and occurrences. Importantly, thanks to the E-steps, the

multiple occurrences of an activity in documents are implicitly aligned in

order to learn its pattern.

Sparsity analysis – A closer look at equation( 1.7), reveals that while max-

imizing the KL divergence between the uniform distribution and P (ts|z, d)

amounts to maximizing the factor H = −
∑

(1/Tds)log(P (ts|z, d)) which is

nothing but the cross entropy between uniform distribution and P (ts|z, d).
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Figure 1.3: Comparison of L1 norm sparsity and KL divergence based
sparsity: L1 norm curve has a slower rate of decay than log(x) in the range
[0, 1]

Ideally, this factor reaches its maximum when P (ts|z, d) takes value 0 for all

ts. But due to the constraint that sum of probability values over ts should

sum to one, we obtain a sparse vector with only few non-zero values. This

is again revealed in the equation( 1.10), where we see that the effect of the

introduced constraint is to the probability of terms to 0 which are lower

than λz,d

Tds
, thus increasing the sparsity as desired.4

It might be worth to do a comparison of the usual L1 norm based penalty

which is widely used in the sparsity community with the KL divergence

based penalty for achieving sparsity, specifically when the vector values lie

in [0, 1]. Figure 1.3 gives the plot of three functions: i) y = |x|0 that is

used in L0 norm based sparsity optimization, ii) y = |x|1 that is used in L1

norm based sparsity optimization, and iii) y = log(x) that is used in the KL

divergence based sparsity constraint. In the L1 norm optimization, where at

each step the L1 of the vector is minimized, the vector takes steps along the

gradient of the L1 curve which is constant throughout its range. While using

KL divergence of the vector with the uniform distribution, the minimization

proceeds along the gradient of the log function. The log function has a

gradient similar to the L1 norm at values near 1, but it becomes much higher

at values near 0. This phenomenon of the log function ensures a faster rate

of decay for small values of the vector and hence results in a sparse solution

much faster than the L1 norm.

4. In practice, during optimization one needs to set to a small value ε instead of 0 so that
the constraint remains defined.
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(a) Five motifs (b) Clean document

(c) Document with uniform noise (σsnr = 1) (d) Document with location noise (σ = 1)
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(f) For (b)
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(g) For (b),
with sparsity
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(h) For (c),
with sparsity
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Figure 1.4: Synthetic experiments. (a) the five motifs, (b) a segment of
a generated document, (c,d) the same segment perturbed with (c) uniform
noise added by sampling (w, ta) uniformly (σsnr = 1) and (d) Location noise
added to each word time occurrence (σ = 1). (e)–(i) the true motif occurrences
P (ts|z, d) (only 3 of them are shown for clarity). (e) ground truth of document
segment shown in (b). (f-i) the recovered motif occurrences P (ts|z, d); (f) the
clean document (cf b) with no sparsity λ = 0 (g) the clean document with
sparsity λ = 0.5; (h) the noisy document (c) with sparsity λ = 0.5 (i) the
noisy document (d) with sparsity λ = 0.5.

1.3 Experiments on synthetic data

We first demonstrate the PLSM model’s performance and the effect of

sparsity constraint using synthetic data. Using a vocabulary of 10 words, we

created five motifs with duration ranging between 6 and 10 time steps (see

Figure 1.4(a)). Then, we created 10 documents of 2000 time steps assuming

equi-probable motifs and 60 random occurrences per motif. In the rest of

the article, average results from the 10 documents and corresponding error-

bars are reported. One hundred time steps of one document are shown in

Figure 1.4(b), where the intensities represents the word count (larger counts

are darker), and Figure 1.4(e) shows the corresponding starting times of

three out of the five motifs. We can observe that there is a large amount of

overlap between the motif occurrences. Finally, in equation( 1.10) we defined

λz,d = λnd

Nz
, where nd denotes the total number of words in the document,

and use λ to denote the sparsity level. As a result, note that when λ = 1,

the correction term λz,d

Tds
is, on average, of the same order of magnitude than

the first part of the right hand side in equation( 1.10).

Results on clean data – Figure 1.5(b) and Figure 1.5(a) illustrate the

recovered topics with and without the sparsity constraint respectively. We
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(a) (b)

(c) (d)

(e) (f)

Figure 1.5: Recovered motifs without (a,c,e) and with (b,d,f) sparsity con-
straints λ = 0.5 (a,b) from clean data; (c,d) from documents perturbed with
random noise words, σsnr = 1, cf Figure 1.4(c); (e,f) from documents per-
turbed with Gaussian noise on location σ = 1, cf Figure 1.4(d).
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Figure 1.6: Average motif correlation between the estimated and the ground
truth motifs for different sparsity weight λ and for different levels of (a)
the uniform noise, (b) the Gaussian noise on a word time occurrence ta. (c)
Average entropy of P (ts|z, d) in function of the sparsity λ.

can observe that two of the obtained motifs are not well recovered without

the sparsity constraint. This can be explained as follows. Consider the first

of the five motifs. Samples of this motif motif starting at a given instant

ts in the document can be equivalently obtained by sampling words from

the learned motif Figure 1.5(a) and sampling the starting time from three

consecutive ts values with lower probabilities instead of one ts value. This

can be visualized in Figure 1.4(f), where the peaks in the blue curve P (ts|z =

1, d) are three times wider and lower than in the ground truth. When using

the sparsity constraint, the motifs are well recovered, and the starting time

occurrences better estimated (see Figure 1.5(b) and Figure 1.4(g)).

Robustness to Noise and sparsity effect – Two types of noise were used

to test the method’s robustness. In the first case, words were added to the

clean documents by randomly sampling the time instant ta and the word w
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from a uniform distribution, as illustrated in Figure 1.4(c). The amount of

noise is quantified by the ratio σsnr = Nnoise
w /N true

w where, Nnoise
w denotes

the number of noise words added and N true
w the number of words in the

clean document. The learning performance is evaluated by measuring, the

average normalized cross correlation between the learned motifs P̂ (tr, w|z)
and the true motifs P (tr, w|z) (see Figure 1.6).

Noise can also be due to variability in the temporal execution of the activ-

ity. This “location noise” was simulated by adding random shifts (sampled

from Gaussian noise with σ ∈ [0, 2]) to the time occurrence ta of each word,

resulting in blurry documents (see Figure 1.4(d)). Figure 1.5(c-f) illustrates

the recovered motifs. Without sparsity constraint, the motif patterns are not

well recovered (even the vertical motif). With the sparsity constraint, motifs

are well recovered, but reflect the effects of the generated noise, i.e. uniform

noise in the first case, temporal blurring in the second case. Figure 1.6 shows

that the model is able to handle quite a large amount of noise in both cases,

and that the sparsity approach provide significantly better results. Finally,

we validate that, as desired, there is an inverse relation between the sparsity

constraint and the entropy of P (ts|z, d) which is clearly seen in Figure 1.6(c).

1.4 Scene activity patterns

1.4.1 Activity words

We also applied our PLSM model to discover temporal activity patterns

from real life scenes. This work flow is summarized in Figure 1.7. To ap-

ply the PLSM model on videos, we need to define the words w forming its

vocabulary. Instead of using low-level visual features directly, we perform a

dimensionality reduction step on the low level features as done in Varadara-

jan et al. (2010b) by applying PLSA on low level features wll = (p, v), where

p is a quantized image location (obtained by dividing the image into 10×10

grids) and v is a quantized direction of the optical flow feature (we used

the 4 cardinal directions as our bins). The low-level documents for applying

PLSA are created from these feature counts accumulated over overlapping

clips of 1 second duration. As a result, we obtain temporally and spatially

localized activity (TSLA) patterns zll from the low-level features and use

the occurrences of these as our words to discover sequential activity motifs

in PLSM model. Thus, NA dominant TSLA patterns obtained from PLSA

define our words for PLSM i.e., Nw = NA, and the word count for each

time instant dta is given by n(w, dta) ∝ P (zll|dta). The word counts defining

the PLSM documents d are then built from the amount of presence of these

TSLA patterns.
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Figure 1.7: Flowchart for discovering sequential activity motifs in videos.

1.4.2 Data

Experiments were carried out on two complex scenes. The Far-field video

(Varadarajan et al. (2010b)) contains 108 minutes of a three-road junction

captured from a distance, where typical activities are moving vehicles. As

the scene is not controlled by a traffic signal, activities have large temporal

variations. The Traffic Junction video is 45 minutes long and captures a

portion of a busy traffic-light-controlled road junction. Activities include

people walking on the pavement or waiting before crossing the road, and

vehicles moving in and out of the scene.

Given the scene complexity and the expected number of typical activities,

we arbitrarily set the number Nz of sequential motifs to 15 and the motif

duration Tz to 10 time steps (10 seconds). Some top ranking sequential

motifs from the Far-field dataset are shown in Figure 1.8(a,b,c). They

exactly correspond to the dominant patterns in the scene namely, vehicle

moving along the main road in both directions in the Far-field data. In the

interest of space and better illustration we have provided sample clips and

comprehensive results at http://www.idiap.ch/paper/1930/sup.html. In

the Traffic Junction scene, despite the low amount of data, we could recover

motifs that correspond to vehicular movements, pedestrian activities, and

complex interactions between vehicles and pedestrians.

1.4.3 Event detection and Sparsity effect

We also did a quantitative evaluation of how well PLSM can be used to

detect particular events. We created an event detector by considering the

most probable occurrences P (ts, z|d) of a topic z in a test document d.

By setting and varying a threshold on P (ts, z|d), we can control the trade-

off between precision and completeness. For this event detection task, we

labelled a 10 minute video clip from the Far-field scene, distinct from the

training set, and considered 4 events depicted in Figure 1.8(d). To each event

type, we manually associated a motif, built an event detector and varied the

decision threshold to obtain precision/recall curves. Figure 1.8(e) shows the

obtained results.

The sparsity constraint employed on P (ts, z|d) distribution resulted in

clear peaks for the motif start times (see Figure 1.8(g)) as opposed to

smoother distributions obtained without the sparsity constraint in Fig-

ure 1.8(f). This was useful in removing some of the false alarms and im-
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Figure 1.8: (a–c) Sample motifs from Far-field data representing dominant
vehicular activities in the scene. (d–e) Event detection experiments. d) Four
motifs from PLSM representing four events in the scene. e) Interpolated
Precision/Recall curves for the detection of the four types of events evaluated
on a 10 minute test video. (f–i) Effect of sparsity constraint on P (ts|z, d). (f,h)
without sparsity, (g,i) with sparsity constraint.

proving the quantitative results in the event detection task. However, look-

ing at the motifs qualitatively revealed that a sparse p(ts, z|d) (and hence

more peaky) distribution results in smoother motifs: the uncertainty in start

times is transfered to the time axis of the motifs as could be already seen on

synthetic data (cf. Figure 1.5(f) and Figure 1.5(b)) or in the real case (see

Figure 1.8(h) vs Figure 1.8(i))
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1.5 Conclusion

In this article we reviewed some of the methods used to impose sparsity

constraint within the framework of topic models. We provided a more de-

tailed look at PLSM, a topic-based method for temporal activity mining

that extracts temporal patterns from documents where multiple activities

occur simultaneously. We provided a simple yet effective approach to en-

courage sparsity in the model, and more specifically on the motif start time

distributions of the PLSM model. Experiments carried out both on synthetic

data under variety of noise and real life data have shown that the sparsity

constraint improves the quality of recovered activity patterns and increases

the model’s robustness to noise. The formulation of the sparsity regular-

ization constraint as an entropy minimization makes it straightforward to

introduce in the EM optimization. This can be similarly introduced in most

topic models like PLSA and LDA.
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