
TROPER
HCRAESER

PAIDI

VTLN-BASED RAPID CROSS-LINGUAL
ADAPTATION FOR STATISTICAL

PARAMETRIC SPEECH SYNTHESIS

Lakshmi Saheer        Hui Liang        John Dines
Philip N. Garner

Idiap-RR-12-2012

APRIL 2012

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch





VTLN-Based Rapid Cross-Lingual Adaptation for
Statistical Parametric Speech Synthesis

Lakshmi Saheer+#1, Hui Liang +#2, John Dines#3, Philip N. Garner#4

# Idiap Research Institute, Martigny, Switzerland
+ École Polytechnique F́ed́erale de Lausanne (EPFL), Switzerland

1lsaheer@idiap.ch, 2 hliang@idiap.ch, 3dines@idiap.ch, 4pgarner@idiap.ch

Abstract—Cross-lingual speaker adaptation (CLSA) has
emerged as a new challenge in statistical parametric speechsyn-
thesis, with specific application to speech-to-speech translation.
Recent research has shown that reasonable speaker similarity
can be achieved in CLSA using maximum likelihood linear
transformation of model parameters, but this method also has
weaknesses due to the inherent mismatch caused by differing
phonetic inventories of languages. In this paper, we propose
that fast and effective CLSA can be made using vocal tract
length normalization (VTLN), where strong constraints of the
vocal tract warping function may actually help to avoid the most
severe effects of the aforementioned mismatch. VTLN has a single
parameter that warps spectrum. Using shifted or adapted pitch,
VTLN can still achieve reasonable speaker similarity. We present
our approach, VTLN-based CLSA, and evaluation results that
support our proposal under the limitation that the voice identity
and speaking style of a target speaker don’t diverge too far from
that of the average voice model.

Index Terms—vocal tract length normalization, cross-lingual
speaker adaptation, rapid speaker adaptation, HMM-based
speech synthesis

I. I NTRODUCTION

The ability to transform voice identity in text-to-speech
synthesis (TTS) has been an important area of research with
applications in medical, security and entertainment industries.
One specific application that has seen considerable interest by
the speech research community is that of speech-to-speech
translation, where the challenge of voice transformation is
further compounded by the differing languages of target
speaker data and output synthesis. Statistical parametricsyn-
thesis [1] has proven to be a particularly flexible and robust
framework for voice transformation, leveraging off a range
of speaker adaptation techniques previously developed for
automatic speech recognition (ASR). The extension of these
approaches to a cross-lingual setting is commonly referredto
as cross-lingual speaker adaptation (CLSA).

CLSA takes speech data in one language and uses this to
adapt a set of acoustic models for synthesis in a different
language. Unlike in intra-lingual speaker adaptation, it is
evident that the correspondence between adaptation data and
the acoustic models to be adapted is largely lost at the
linguistic level. To date, the most successful approaches have
relied on the construction of a set of mapping rules between
acoustic model distributions (i.e. HMM states) for the two
languages, thus establishing sub-phonemic (or senone-level)

correspondence between the two languages [2]. Given this
state mapping, CLSA may be performed using conventional
speaker adaptation techniques such as constrained structural
maximuma posteriori linear regression (CSMAPLR).

Despite the progress that has been made in CLSA, it is
evident that the state-of-the-art still lags behind intra-lingual
speaker adaptation in terms of synthesis performance (i.e.
speaker similarity, speech naturalness, etc.). This is in large
part due to the fact that the state-level mapping is still unable
to fully account for the inherent mismatch between phonetic
inventories of different languages [3]. Vocal tract lengthmay
be considered to be inherently language independent, hence,
we postulate that VTLN may not suffer from such mismatch
issues.

The application of VTLN to statistical parametric speech
synthesis has previously been shown to be promising for rapid,
intra-lingual speaker adaptation [4], revealing that VTLN-
synthesis was able to produce naturalness ratings close to
average voice and significantly better than model adaptation
techniques like CSMAPLR while still improving speaker simi-
larity over the average voice. This paper investigates the use of
VTLN for CLSA, especially in the scenario where very little
adaptation data is available. A new framework facilitatingsu-
pervised rapid CLSA is presented, where HMM state mapping
is integrated into bilinear transform-based VTLN. We tested
the hypothesis that the constrained nature of VTLN transfor-
mation might help to alleviate some problems associated with
current CLSA approaches. Experiments were performed on the
Mandarin-English language pair and VTLN adaptation was
compared with CSMAPLR, which is the best-known robust
and rapid adaptation technique in synthesis.

II. FRAMEWORK FORVTLN- BASED CLSA

CLSA remains a challenging task and relevant literature
is sparse as the field draws on several disparate concepts,
each non-trivial in its own right [5]–[7]. Previous work on
CLSA normally employs CSMAPLR or related adaptation
techniques. In the context of intra-lingual speaker adaptation,
CSMAPLR has proven effective in capturing main speaker
characteristics, but its application in a cross-lingual context
has met with less success, especially when multiple adaptation
transforms are used [3]. By contrast, VTLN has significantly
fewer parameters (typically only one parameter is used to



modify the vocal tract warping function) and as such the range
of speaker characteristics that can be represented is restricted.
However, in the cross-lingual scenario, where CSMAPLR is
susceptible to learning not only speaker characteristics,but
also undesirable language mismatches, VTLN may provide
more acceptable results. The fact that CSMAPLR and our
VTLN implementation operate on the underlying HMM dis-
tributions in the same manner (i.e. as maximuma posteri-
ori/likelihood linear feature transformation) provides a good
basis for testing this hypothesis.

A. Vocal Tract Length Normalization

Vocal tract length (VTL) varies across different speakers
(around 18 cm in males to around 13 cm in females). Formant
frequency positions are inversely proportional to VTL, thus,
a variation of around 25% in formant center frequencies is
observed among speakers. It follows that we can normalize
feature vectors extracted from speech of different speakers to
represent an average vocal tract – so calledvocal tract length
normalization(VTLN).

The main components involved in VTLN are a warping
function, a warping factor and an optimization criterion. Typ-
ically, the warping function has only a single variableα as
the warping factor, which is representative of the ratio of the
VTL of a speaker to the average VTL.

In ASR, where a mel- or bark-spaced filter bank is used,
the warping function tends to be piecewise linear, and is
normally applied directly to spectrum prior to applicationof
the filter bank (thereby making direct warping of features
impossible except via spectrum interpolation). By contrast,
feature extraction for TTS does not rely on filter bank analysis
due to the problem this poses for signal reconstruction. Rather,
the analysis approach undertaken is mel-generalized cepstrum
(MGCEP) [8], which makes use of a bilinear transform to
achieve frequency warping. The bilinear transform of a simple
first-order all-pass filter with unit gain leads to:

βα(ω) = arctan
(1− α2) sinω

(1+ α2) cosω− 2α
(1)

whereα is the warping factor andω is the frequency being
warped. Since MGCEP already includes a bilinear transform
as its spectral warping function to approximate the mel au-
ditory scale, a bilinear transform-based VTLN can thus be
implemented as a zero-overhead modification of the MGCEP
codec [9]. The frequency warpingβα(ω) can be represented
as a linear transformation of the cepstral features [10]:

C log(F[βα(ω)]) = AαC log(F[ω]) (2)

whereC is the discrete cosine transformation (DCT) matrix,
log represents an element-wise logarithmic function,F rep-
resents the element-wise magnitude of discrete Fourier trans-
formation andAα is the transformation matrix representing
the bilinear transform. The cepstral features are extracted by
applying DCT on the log spectrum. The transformed cepstral
features (xα) can thus be represented as

xα = Aαx. (3)

The bilinear transformation generatesAα in a special form as
shown below:
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The maximum likelihood optimization is [11]:

α̂s = arg max
α

p (Aαs
xs | µ,Σ,q) (4)

wherexs represents original feature vectors to be warped with
the warping factorαs for speakers, µ andΣ represent mean
vectors and covariance matrices of average voice models,q
represents state sequences of transcriptions andα̂s represents
the best warping factor for speakers.

1) Estimation of VTLN Warping Factors:VTLN amounts
to linear transformation in the cepstral domain [10] and can
be implemented as as equivalent model transformation. Such
representation enables the use of techniques like expectation
maximization (EM) for finding optimal warping factors [12],
[13]. The main advantage of using EM over, say, a grid search
is that the resulting warping factor estimation is based on a
gradient descent technique which provides finer granularity
of α values and efficient implementation in time and space.
EM can be embedded into HMM training utilizing the same
sufficient statistics as in CSMAPLR and the resulting auxiliary
function for VTLN is [4]:
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wi represents theith row of the transformation matrixAα

for an input feature vectorx. F andM are the total number
of frames and mixtures, respectively.γm, µm and Σm are
posterior probabilities and parameters of the Gaussian mixture
componentm. N is the feature dimensionality. Formulation
of VTLN as model transformation leverages many techniques
that have been developed from linear transform-based adapta-
tion such as multiple transforms via regression classes and
use of prior probability distributions via CSMAPLR. The
efficient implementation of VTLN using EM, with Brent’s
search optimization for synthesis, by Saheeret al. [4] is used
in this work.

The estimation of VTLN warping factors for TTS turns out
to be a more complex problem than that for ASR due to the
increased feature dimensionality. This results in issues related
to numerical stability, amplification of unmodelled correlation,
and Jacobian normalization [14] severely reducing the range of



warping factors. These issues were dealt by Saheeret.al. [4].
Here, the warping factors are estimated using lower order
features without Jacobian normalization, which was shown
previously to be effective for TTS [4].

B. Integration of VTLN into State Mapping-Based CLSA

We integrate HMM state mapping, which has proven ef-
fective for CLSA [2], into bilinear transform-based VTLN.
First of all, we define the language in which speech is
synthesized as theoutput languageand the language of
given adaptation utterances from a target speaker as theinput
language. Two monolingual average voice model sets are
established in the input and output languages respectively,
S

in =
{

Sin
1 ,Sin

2 , · · · ,Sin
Nin

}

and S
out =

{

Sout
1 ,Sout

2 , · · · ,Sout
Nout

}

,
whereS refers to state distributions. Following this, a set of
state mapping rules,M(·), is constructed such that

M
(

Sin
i

)

= arg min
Sout
j ∈Sout

DK-L
(

Sin
i ,Sout

j

)

, ∀Sin
i ∈ S

in (5)

whereDK-L (·, ·) denotes the symmetric Kullback-Leibler di-
vergence between two Gaussian distributions1.

Wu et al. [2] proposed two ways of applying these state
mapping rules: data transfer and transform transfer. It hasbeen
observed [3], [7] that data transfer is preferred over transform
transfer, thus, the work in this paper is based on data transfer
and a cross-lingual warping factorα̂s is estimated as follows,
in a similar fashion to Eq. (4) (the intra-lingual version):

α̂s = arg max
α

p
(

Aαs
xin
s

∣

∣ µout,Σout,M
(

qin
))

(6)

where xin
s is acoustic feature vectors of adaptation data of

speakers, qin consisting of
{

Sin
i

}

is the state sequence of
xin
s , µout andΣout are mean vectors and covariance matrices

of an average voice in the output language.
Using a greater number of transforms is generally bene-

ficial to the performance of intra-lingual speaker adaptation.
Interestingly, Lianget al. [3] discovered the fact was just the
opposite in CLSA: It was better to estimate only a single global
transform for all state emission distributions when using data
transfer. This paper also investigates whether this phenomenon
will be observed in VTLN-based CLSA.

III. I NVESTIGATION

The experiments performed in this paper are mainly fo-
cussed on testing two hypotheses:

1) As a highly constrained feature transformation, VTLN
may perform better than CSMAPLR in a rapid-CLSA
scenario where limited adaptation data is available.

2) Multiple transform-based VTLN will also degrade per-
formance in the cross-lingual scenario, as has been
previously observed for CSMAPLR.

In this work we used the Mandarin-English language pair,
with Mandarin/English being the input/output language. One

1We assume that state distributions comprise single Gaussian PDFs as is
usual for HTS.

Mandarin adaptation utterance and its context-dependent la-
bels were used to generate speaker-specific transforms. The
techniques compared were global/multiple VTLN transform
and global/multiple CSMAPLR transform based adaptation.
A global VTLN transform corresponded to a single speaker-
specific warping factor applied to an entire model set. Multiple
VTLN transforms corresponded to different speaker-specific
and phoneme class-dependent warping factors generated from
a regression class tree in the usual fashion. Likewise, a
global CSMAPLR transform applied to an entire model set
and multiple CSMAPLR transforms were regression class-
dependent. The prior weighting for the CSMAPLR transforms
were adjusted to an empirically determined value2 of 1000,
which has been previously observed to give the best results
with a small amount of adaptation data [15].

A. Experimental Setup

Two average voice synthesis models were trained on the
SpeeCon (Mandarin, 12.3 hours) and WSJ SI84 (English, 15.0
hours) corpora in the HTS-2007 framework [1]. The HMM
topology was five-state (single mixture, multivariate Gaus-
sians) and left-to-right with no skips. Speech features were
39th-order mel-cepstra, log F0, five-dimensional band aperi-
odicity, and their delta and delta-delta coefficients, extracted
from 16kHz recordings with a window shift of 5ms. Detailed
evaluations were performed on a pilot corpus recorded in
an anechoic studio in University of Edinburgh by a male,
native Mandarin speaker uttering Mandarin and reasonably
natural English. Only one Mandarin adaptation utterance of
7.71 seconds was used for transform estimation in all cases.In
addition, a limited number of systems were selected for further
evaluations with one male and three female speakers from an
EMIME bilingual (Mandarin-English) corpus [16] recorded in
the same anechoic studio. These four speakers were with the
least foreign accents in their spoken English amongst all the
speakers in the EMIME bilingual corpus, and only a single
Mandarin adaptation utterance of similar duration was used
for each of them. The above experimental setup is the same
as that of Lianget al. [7], except for the source of adaptation
and evaluation data.

This paper focuses on cross-lingual adaptation of spectrum.
The subjective evaluations were based on AB and ABX tests
for naturalness and speaker similarity, respectively. Listeners
were presented with two speech samples at a time and asked
to judge which one sounded more natural or closer to the
voice of a reference sample. Mandarin reference samples were
presented to the listeners for judging speaker similarity of syn-
thesized speech in English for ABX tests. The listening tests
were performed only on selected pairs of systems that could
give the most useful insights with respect to our hypotheses.

B. Evaluation Results and Discussions

It is expected that VTLN produces far more natural-
sounding speech than CSMAPLR, since the adaptation of a

2The HTK variableHADAPT:SMAPSIGMA was set to 1000.



single parameter prevents gross modification of the average
voice model, thereby maintaining the better naturalness ofthe
original average voice model [17].

The initial evaluations were conducted with 4 pairs of
systems for the male speaker from the pilot bilingual corpus.
Each listener evaluated 80 English utterances in total. The
results are plotted in Figure 1 with 95% confidence intervals.
It is evident from these figures that VTLN is far more natural
compared to CSMAPLR, but the ability to achieve good
speaker similarity with VTLN alone is limited.

Based on this result and our own observations, we suppose
that the effectiveness of VTLN as a speaker adaptation tech-
nique for TTS is dependent on the characteristics of a target
speaker – some speakers cannot be sufficiently reproduced
using VTLN adaptation while others can. To that end, evalua-
tions were performed with the four speakers from the EMIME
bilingual corpus. Only two pairs of systems (average voice vs
global-VTLN and global-VTLN vs global-CSMAPLR) were
compared for these speakers for finding the effectiveness of
VTLN as an adaptation technique. Each listener was presented
with 20 pairs of sentences for each of the four speakers,
judging naturalness and speaker similarity. Results are plotted
in Figure 2. Similar trends are observed in these results. Since
the training data for estimation of average voice is dominated
by male speakers, better results are observed with VTLN for
female test speakers. Unlike the previous case, the VTLN
system is preferred over CSMAPLR, even for speaker similar-
ity, mainly because of the fact that VTLN-synthesized speech
sounded more natural than CSMAPLR. To further elaborate,
neither adaptation technique could exactly reproduce a target
speaker’s voice characteristics with a little adaptation data.
Listeners are unable to separate their preference for naturalness
from their judgement of speaker similarity. Hence, the listeners
preferred more natural-sounding speech. For the same reason,
some male speakers could be judged closer to the average
voice in speaker similarity since the average voice is male
dominant and better in naturalness when compared to VTLN.

It is also worth noting results of perception experiments
in [18], which suggest that the correctness of speaker dis-
crimination is only 51%-61% if two speech samples for
comparison are in different languagesand of different speech
types (i.e. natural or speaker-adapted). Thus, judgement of
speaker similarity in a CLSA context is already a difficult
task regardless of the the approach employed. By contrast,
the advantages offered by VTLN-based CLSA with respect to
naturalness are quite clear, while the approach still maintains
gross speaker qualities (e.g. gender, etc.). The results thus
confirm the first hypothesis made at the beginning of this
section that VTLN performs better compared to CSMAPLR
in a rapid CLSA scenario.

Concerning a comparison of global and multiple trans-
form adaptation approaches, it is clear from the subjective
evaluation that multiple transforms provide inferior CLSA
performance. This is consistent with earlier studies [4], [7]
that showed that while multiple transforms improve the per-
formance of intra-lingual speaker adaptation, a degradation

in CLSA performance is observed. We also note that, based
on subjective evaluation, multiple transform VTLN-based
CLSA was more preferable compared to multiple transform
CSMAPLR. The second hypothesis presented at the beginning
of this section also proves to be correct for both CSMAPLR
and VTLN, with VTLN-based adaptation being more prefer-
able in the multiple transform case as well.

IV. CONCLUSIONS

This paper presents a new framework for rapid CLSA
using VTLN. A single adaptation utterance in Mandarin from
a target speaker was used to generate English speech in
that speaker’s voice. The results of VTLN adaptation were
compared with those of CSMAPLR adaptation. It is observed
that VTLN provided better naturalness than CSMAPLR, but
at the price of reduced speaker similarity. This is especially
evident when target speaker characteristics were far from those
of the average voice model. The constrained nature of VTLN
could provide some subjective improvements to adaptation
using multiple transforms, but overall global transformation
still proved the most effective.

The results are promising, especially in the sense that the
merits of both CSMAPLR and VTLN can potentially be
combined, for instance, by using VTLN matrices as prior
information for CSMAPLR. This future research direction
could result in improved quality of cross-lingually adapted
speech with as little as a single utterance of adaptation data.
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