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Abstract—Speaker verification on portable devices like smart-

years. These algorithms use simple localized featuresdbase

phones is gradually becoming popular. In this context, two on comparison of imaggarts These algorithms have the

issues need to be considered: 1) such devices have relatvel

limited computation resources, and 2) they are liable to be sed
everywhere, possibly in very noisy, uncontrolled environrants.

following characteristics relevant to our objectives: abpust-
ness in difficult test scenarios, involving uncontrolleldrii-

This work aims to address both these issues by proposing anation variations, and b) computational efficiency (theg ar

computationally efficient yet robust speaker verification gstem.
This novel parts-based system draws inspiration from face rad

object detection systems in the computer vision domain. The

system involves boosted ensembles of simple threshold-bds
classifiers. It uses a novel set of features extracted from epch
spectra, called “slice features”. The performance of the poposed
system was evaluated through extensive studies involvingwide
range of experimental conditions using the TIMIT, HTIMIT an d
MOBIO corpus, against standard cepstral features and Gausan
Mixture Model-based speaker verification systems.

Index Terms—EDICS: BIO-EXPR (Human Identification
based on voice or handwriting), Speaker verification, binay
features, speaker-specific features, parts-based apprdacnoise
robustness, Adaboost, feature selection, mobile biomets, com-
putational efficiency

. INTRODUCTION

faster compared to older approaches such as Eigenfaces [9],
Fisherfaces [10], etc.). Three representative algoritfiom

this class are as follows: a) Rapid Object Detection using a

boosted cascade of Haar features [11] [12], b) Fast Keytpoin

Recognition using Random Fern features [13], and c¢) Face
Detection and Verification using Local Binary Patterns [12]

In this work, we have drawn inspiration from all these
algorithms. For clarity, we provide a brief description bkt
relevant aspects of these algorithms. They combine desisio
from a set of classifiers, each of which look at specific
parts of the entire object (or feature space). Each classifie
involves the comparison of intensities in two parts of the
object. These could be the intensities at two pixel location
(Fern features) or the average intensities over two patches
of pixel locations (Haar features). The decisions from ¢hes
classifiers are binary. Suitable ensemble learning apphesac

Today, speaker verification (SV) systems are gradualiyich as Adaboost [14] are often used to select the classifiers
becoming more and more ubiquitous, finding their way intwhich are most discriminative with respect to the task (face
smartphones and other portable devices [1] [2] [3]. This ha$ object detection).

led to the following objectives: a) robustness against &ynoi

In this work, this framework is ported to the SV domain

acoustic environment (additive noise) as well as channel aim the following way. The 1-D spectral vectors derived from

session variabilities, and b) computational efficiencg. (the

speech are equivalent of the 2-D images. As in the vision

computations must be light enough to be implementable domain, the algorithm combines decisions from a set of

such devices).

classifiers. Instead of looking at parts of an image, here

To fulfill the first objective, ie. robustness, the basic Gaushe classifiers look at parts of spectral vectors, precitiady
sian Mixture Model (GMM) - Universal Background Modelspectral magnitudes at pairs of frequency points. The Biscr
(UBM) SV framework [4] is often augmented by featureAdaboost algorithm is used to select the most discrimieativ
normalization [5], model normalization [6] [7] and scorerno classifiers. This is the central idea of our approach.

malization [8]. However, improved robustness of such syste

This approach was originally proposed by the authors in a

comes at the cost of more computations which may posepeevious work [15] which showed that it performed well com-
task with respect to the second objective, ie. computationzared to baseline GMM-UBM systems for an SV task using
efficiency. Hence, the question is how to fulfill both theXM2VTS database. Since it is a relatively new approach in the

objectives at the same time.

SV domain, this work provides a detailed description of this

A possible answer comes from a class of object detectiapproach, refining the original concept of “binary featUtis]
algorithms developed in the computer vision domain in réceim terms of “slice” and “slice classifier”. In addition, thigork
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[3]). Secondly, the proposed approach was compared againfsthe current state-of-the-art [1] and hence are calledtést
both baseline GMM-UBM system as well as state-of-the-aof-the-art system” in this work. Figure 1 (a) provides a ldoc
SV systems [2]. Thirdly, we carried out detailed analyses diagram of the baseline and state-of-the-art SV systems.
the proposed approach in terms of a) robustness in noisy

scenarios, b) computational Complexity, and C) the digtiiim I1l. BRIEF OVERVIEW OF PROPOSED SV SYSTEM
of discriminative parts selected by the algorithm. The psaul

approach has performed favorably with all the experimental The Proposed SV system consists of four stages: 1) feature

conditions and databases tested, and compares well WRresentation using slice features, 2) feature modeling
baseline and state-of-the-art SV systems. slice classifiers, 3) slice classifier selection and 4) fiteadsi-

The rest of the paper is organized as follows. A bridfer- We briefly describe each of these below and compare them

overview of standard SV systems and the proposed systen{!|{ Standard SV system. For clarity, some basic notations
given in Sections Il and IIl respectively. The proposed syst '€lated to each stage are also introduced.

is described in detail in Section IV. Section V gives a brief

overview of the experiments carried out, while Sections VA, Feature representation using slice features

and VIl describe these experiments in detail. Section VI
analyses some aspects of the proposed system while Secg
IX concludes the work.

OThe starting point of our system is the short-time spectrum

Wacted from speech. The difference in magnitude at two
distinct frequency points in the short-time spectrum isetak
as a feature, termed as “slice” feature. Enumerating alliptes

1. BRIEF OVERVIEW OF STANDARD SV SYSTEMS pairs of distinct frequency points in the spectrum genertite

complete list of such slice featurés.
Standard SV systems use Mel Frequency Cepstral COef'A slice feature is denoted ds; where: is an index to the

ficients (MFCC) or Linear Prediction Cepstral Coefficientg,q,jete Jist of slice features. Each slite must be uniquely
(LPCC) [18] as their features. These features charactéize ,qqqciated with an ordered pair of frequency points, denhote
shape of the short-time log spectrum of speech. This is d ki1, Kia).

by processing the estimated log spectrum through an energ it is noteWorthy that each feature looks at only certainpart

compacting and decorrelating transform like the Discrete C f the spectrum (precisel§wo frequency points). Hence, it is

sine Trans_form (DCT) or the Fast_ Fourier Transform .('.:F-II calized orparts-basedlt is unaffected ifother parts of the
and retaining only the first few highest energy coefficien

ectrum are affected by noise. This behaviour contragts wi

(typically 13 to 19): Because of this transform, every regioqhe holistic cepstral features in standard SV systems $ex.
of the spectrum contributes teach cepstral feature. Hence,”) 3

such features could be termed holistic and noise in e
of the spectrum could affectll the cepstral features. _ _ B
These cepstral features are modelled by GMM-UBM [4B- Feature modelling by slice classifiers

Typically, speech samples from a large set of speakers(tall Each slice feature is discriminatively modelled for each
the “world” set) distinct from the client is used to trainclient speaker. More precisely, for each slice featuremepks

a GMM. This is called the Universal Background Modefhreshold-based classifier (termed a “slice classifiertieimed
(UBM). Next, for each client, client speech samples are usgsl classify as true client (‘1) or impostor (‘0’), based on
to adapt (typically only the means of) this UBM, to create thgnly that slice. The two-class (‘0’-1’) decisions of these slic
client-specific GMM. During test, log likelihood ratio oféh classifiers are termed as “binary features”. Ifebe the slice
test samples using the UBM and the client-specific GMM igassifier associated with the slidg.

compared with a pre-set threshold. Based on this comparisonThe conceptual relation between features and classifiers is
the speaker is classified as the true client or an impostas. Thepicted as follows:

modeling of cepstral features using GMM forms the basic
framework of standard SV systems. In this work, we call this

the “baseline system” Slice Client- Slice Binary
T hi yb ' i ; ; d ch Feature, + specific — Classifier, — Feature
0 achieve robustness against acoustic noise and channefl ;. threshold f, (0-'1)

and session variabilities, this baseline system is oftegr au
mented a) at the feature level by feature warping [19], b) atFurther stages in the system are unaffected as long as the
the model level by meta-modelling approaches such as Supgttise in the speech signal is not so high as to change the
Vector Machines with GMM Supervector (GSV) kernel [Bpecision of these classifiers, ie. the binary features. @n th
or Generalized Linear Discriminant Sequence (GLDS) kern@iher hand, cepstral features in standard SV systems could
[20], Latent Factor Analysis (LFA) [21], Joint Factor Analg be affected even when there is a small amount of noise (ref.
(JFA) [7] and I-vector system [22], and c) at the decisiorsec. VIII-A).4

making level by score normalization techniques [8] such as Z-zThere is no restriction on the frequency point locationsnédég the total
norm and T-norm. These augmented systems are represent%%ber of slice features depends only on the number of thidrcy points
in the spectrum.

1In the case of LPCC, a more direct method is used. Howevers it i SThis contrast is analysed in more detail in Section VIII-A.
mathematically equivalent to taking the FFT of the estimdog spectrum. 4This is analogous to the comparison between analogue aital digstems.
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State-of-the-art system
Baseline system
(@) . z Metamodelling: Score ificati
Standard Short-time Cepstral —> GMM-UBM > Supervector SVM, {—>| Normaliz- > Verl‘ l-c ation
andar Spectra Features Modelling P ’ . Decision
sV P X JFA, LFA, I-vector ation
System @
Feature
Normalization
(b)
Proposed Short-time Slice N Slice gli‘ssfler Lin.ear_ Verification
SV Spectra Features Classifiers . clection Combm‘atlon Decision
System by Adaboost of Classifiers

Fig. 1. Block diagrams showing the main stages of (a) stah@\ systems and (b) proposed SV system. In the case of stilarsystems (a), the
baseline (basic) system and the state-of-the-art systeendepicted. Please consult the text (Sections Il, Ill) fetads.

C. Classifier selection vectors, each of lengtivx. Let X = [X(1),---, X (Nx)]*

The total number of slice features (and hence slice cldd¢ an instance of such a spectral vector. In particularXlgt
sifiers) are typically quite high (16256 for a 256-point FEenote thej-th vector in the sequence. The slice featiifeis
spectrum). Most of these features may not contain any discric@lculated fromX: as follows:
inative information per_tainir!g to the. glient speaker. Imet Li = LX) =X(ki1) — X(kiz). 1)
words, the corresponding slice classifiers may performlgoor
But a few will contain such discriminative information andvhere {k;1,k; 2} is an ordered pair of frequency points
their classifiers will perform relatively better. uniquely associated with slice featude;. The parameters

The Discrete Adaboost algorithm is used to iterativelystelek:, 1, k2 can vary from1 to Nx but cannot be equal,
such discriminative slice classifiers, based on their perfgestricting the total number of slice features as defined/@abo
mance on increasingly misclassified training samples. THB Nz = Nx(Nx —1). Let L;(X) be denoted by.; for short.
stage also has no direct counterpart in standard SV systems.

B. Feature modelling: Slice Classifiers

Each sliceL; has a slice classifief; associated with it. The

The final classifier denoted by is a simple weighted sum classifier is a simple hard threshold classifier with a single
of the '0’-'1’ outputs of individual slice classifiers whichere parameter, the thresholl). This classifier can ‘see’ instances
selected in the previous stage. During test, the final dlassi of only slice L; and it has to classify these as either belonging
output is compared with a pre-set threshold to classify the client (*1’) or impostor (‘0’). The output off; is calculated
speaker as client or impostor. We note that this classifier ds,

D. Final classifier

much simpler compared to classifiers in standard SV systems 1 (client) if L; > 0;,
gﬁll‘.BSec. ). This comparison is analysed in detail in $ect filli) = 0 (impostor) otherwise 2)

Figure 1 (b) provides a block diagram of the proposelraining classifierf; involves selecting threshol@} that will
system. We call the system as the Boosted Slice Classifieinimize misclassification erroe; on a given training set
(BSC) system because it involves selecting (boostingpslief slice values extracted from client and impostor spectral
classifiers. As described above, some of the stages in u@gtors. The optimal; value can be found in a single pass by
proposed system (feature modelling and classifier sefgatio @ search over the sorted slice values. Note that total number
not exist in standard SV systems, while the rest are diftere®f slice classifiers is same as the total number of slicés,
from their counterparts in standard SV systems. This shows

the originality and novelty of the proposed system. C. Classifier Selection by Discrete Adaboost

IV. THE PROPOSED FRAMEWORK: BOOSTED Ou_t.of aIL the slice cl_assmgrs, a small number o_f slice
classifiersN; < N are iteratively selectetbr each client
SLICE CLASSIFIERS (BSC) ) S T » ;
] ) according to their discriminative ability with respect toat
A. Feature representation: The concept of slice client. This selection is done by the Discrete Adaboost al-
Firstly, the input speech waveform is blocked into framegorithm [14] widely used for such classifier selection tasks
and windowed. Silence frames are discarded. Fourier trapfi] [12]. In this algorithm, the positive training samplase
form is applied, yielding a sequence of spectral magnitua@etracted from the speech data of the specific client, while
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the negative samples come from a general pool of speakerss From this subset, extract all the slice featu{da}fiﬁ

distinct from the client. The same pool of ‘impostor’ speake (ref. EQ.1). For each slice featur;, train a threshold
termed the “world” set are used fall clients, as in the classifier f;. Let misclassification error of; bee;.
Universal Background Model (UBM) framework for standard « Select the next best slice classifiet; = f;+ and its
speaker verification systems (ref. Sec. Il). associated slicel¥ = L;- wherei* = argmin;e;,

This algorithm works in a loop. In each iteration of the ie. the classifier with the lowest error. Lei- be the
loop, it selects one slice classifier out of the set based on misclassification error of the selected slice classifier.
how well it performs on a subset of training samples. Eache Setj, + .
iteration has three parts: 1) Selecting a fixed numbgy o Updateall trainiTg sample weights,
of trammg_ samples base(_j on their weights. Samples with Wni1g wn,jﬁn{m%j):y” for 1< j < N
higher weights are more likely to be selectetisually N} « Set the selected slice classifier weight, = — log(53,.).
is a small fraction of the total number of training samplesd,

Ny.. 2) Selecting the best performing slice classifier trained Normalclie Sllcfoflfsjmei V]\@'ghts’
on this subset of training samples. 3) Classifyiatj the On & =77 ' =n= AL

(a8}
n/=1"n

training samples using this selected best slice classifidr Butputs: 1)The sequence of best slice classifie{rﬁ;;}N_zl
re-weighting all of the samples, so that misclassified sasipl selected by the algorithm, along with theirthreshqld,s}ﬁf

weights are proportionately increased, and correctlysdias . : . N . L=l

ones’ weights are decreased. In addition to selecting the 5I2) Their assoc'fé&e‘j Sl'ce$L"_}_nil dgfmed byj\';bew parame-

classifier, each iteration also assigns a weight to the welect®’ {¥n.1,kn.2}, 2, 3) Classifier weightda, },,%;.

classifier, based on its efficiency.
We note that classifier selection and feature modelling

(cla_lssifier trainin.g). are linked and happen aIt_ernateI)e. i_ré‘r ' D. Slice classifier combination

weighting of training samples based on prior classification ] ) -~ ]

performance serves as the feedback link between classifiel':or gach che_nt, the selected_sllc_e classifiers are combined

selection and feature modelling or classifier training:seub Vi@ @ linear weighted sun#” which is called a strong clas-

quent classifiers are selected based on their ability tcsigjas Sifier [14]. Let X be a test spectral vector extracted from an

samples which were poorly classified by previously selectéiferancelJ/. Then the strong classifier score is calculated as,

classifiers. This is a novel concept not found in standard SV N

systems. Also, due to the re-weighting procedure, misitleds F— Z an f1(L7(X)). A3)

samples get more weight in successive iterations. Thisiéspl ot

that, in effect, the more confusable speakers in the impssto

are expected to get more importance, analogous to the idea§ , , )

cohortsin the standard approach [23]. However, in this cas ormalized by number of frames, to obtain the final score

the distinction between what is more easily- and less easi%r t_he L_Jtterance. This is compared with a preset thr_eshnld t
classifiable is at the frame level, not at the speaker level. ecide if the utterance was made by a client or an impostor.

The algorithm, which is to be run once for each client, ighis preset threshol@ is set to correspond to the Equal Error
detailed as follows: Rate [4].

gpres from each frame in the utterance are added and

Algorithm: Slice classifier selection by Discrete Adaboost V. EXPERIMENTAL VALIDATION - BRIEF OVERVIEW

Inputs: 1) N, training samples (spectral vector@(j};v:“i , To validate the effectiveness of the proposed BSC frame-
2) the corresponding class labels, € {0,1} (O:impostor work in view of the two objectives mentioned in Section |, ie.
Lclient), 3) N3, the number of slice classifiers to be selectediobustness and computational efficiency, two groups (A and

4) N, the number of training vectors to be randomlyB) of speaker verification experiments were carried outhwit

selected at each iteratioV. < N;,.) ©. different levels of difficulty:

Steps: Group A: Experiments were carried out on easy to mod-
1. Initialize the training sample weights: erately challenging databases. The proposed framework was
{wy;} « QN%’QN% for y; = 0,1 respectively and compared with baseline MFCC/GMM-UBM reference sys-

tems (ref. Sec.ll). The experiments were carried out foheac
of the following conditions:

1) Experiments on clean speech (Sec.VI-A). The database

1 <7 < Ny, Nt(f) andNt(f) are the number of impostor and
client training vectors respectively.
2. Repeat fom =1,2,--- N}:

N i | iahtse. W used was TIMIT [16].
« Normalize sample Welghtsun,; SN w, 2) Experiments on noisy speech. Two different noise
« Randomly select a subset &7, training samples, accord- classes were considered:

ing to probability distribution given by weightgw, ; } a) Additive noise (Sec.VI-B). Database used was

5 . . TIMIT. Three types of noise (white, pink and

Initially, the sample weights are all uniform. .

6A value of N equal to 5% of Ny, was found to work well for all babble) at SNRs ranging from 5dB to 20dB were
experiments reported here in subsequent sections. addedonly to the test segments.
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b) Convolutive noise (Sec.VI-C). Database used wasFor training a client classifier in the BSC system (ref.
HTIMIT [17]. Eight different microphone types Secs.IV-B, IV-C), the positive (client, ‘1") training sanes
were considered while testing. were extracted from the client training data, while the tiega

These experiments involved a mismatch between traifimpostor, ‘0’) samples were extracted from a set of 250
ing (using only clean speech) and test (using noigyiterances randomly selected from the “train” portion af th
speech). However, this mismatch vasificially induced TIMIT database. These utterances were made by speaklers
in the datd. distinctfrom the “test” portion, and theamenegative samples

Group B: Experiments were carried out on a much mor&/€re used foall the clients. We term this as the “world” set
challenging recent database (MOBIO [2] [24]) (Sec.VII).eTh(ref. Sec.IV-C).
proposed framework was compared with multiple state-ef-th As mentioned earlier, the BSC system was compared with
art reference systems (Sec.ll) unlike only baseline systasn @ Standard MFCC-GMM system [23]. For clarity, we describe
in Group A. These experiments involved speech data captufé@fe only the chief aspects of this system. Firstly!' teder
on mobile phones and there was mismatch at multiple levéf¢l-frequency cepstral coefficients (MFCC) were extracted
in the data. This mismatch was naturally created as a diré@m the speech frames [25] [26]. These were then modelled
consequence of the recording scenario, in contrast to Grdei 32-mixture GMM [23]. To model impostors, each client

A. had its own specific “world” or “background” seof speakers,
Each of these experiments are detailed further in the f&elected from the set of clients itself [23]. Depending oa th
lowing sections. selection criterion of the background speakers, two refege
system configurations were considered, namely
VI. GROUPA EXPERIMENTS 1) Reference system TI: 10 “maximally spread close”
This group of experiments involved easy to moderately ~ (msc) background speakers were selected.
difficult conditions. 2) Reference system TIl: 5 msc + 5 “maximally spread far”
(msf) background speakers were selected.
A. Experiments on clean speech: matched condition During testing, the mean log-likelihood of the 10 backgrun

The main aim for this first set of experiments was to providdet models is subtracted from the log-likelihood of therokzd
an initial proof-of-concept and demonstrate the feajbitif client model [23] to estimate the log-likelihood ratio seaf
the proposed system. These experiments evaluated how \effSt utterance.
our system can perforrext-independenspeaker verification ~ FOr evaluating the BSC system, experiments were per-
with large populations under near-ideal conditions, comga formed using each of the 168 speakers acting as the claimant,
to a baseline GMM-UBM reference systém. with each of the remaining 167 speakers acting as impostors,
1) Database descriptionThe TIMIT database was choserAnd rotating through all speakers. Since the negative ssmpl
for this part of the work [16]. It is a standard database with in training came from a distinct “world” set, all the remain-
intersession variability, acoustic noise or microphoneail- NG 167 speakers were treated as impostors. For testing the
ity [23]. Each utterance is a read sentence of approximatelyeference systems Tl and Tll, the same experiments were per-
seconds duration. The training and test sentences haeeatiff formed as for the BSC system, excluding the 10 background
lexical content, hence this is an example of text-independépPeakers for each client from the impostors because these
speaker verification. The sampling frequency is 16kHz. ~ Systems did not use a single distinct “world” set as the BSC
2) Systems evaluated, protocol and experimental detailsSystem.
To compare the proposed BSC system, the standard MFCCEXperiments were conducted separately for three condition
GMM system detailed in [23] was chosen as reference. T3]:
speaker verification protocol as used by Reynolds et al.3h [2 1) Mixed sex (F+M), using all 168 speakers.
was followed. The 168 speakers (112 males, 56 females) fronp) Male only (M) (112 speakers).
the “test” portion of the TIMIT database were used as clients 3) Female only (F) (56 speakers).
For each speaker, thesa sentences, 3i sentences and first
3 sx sentences were used for training and the remainisg 2
sentences for testing.

The performance of each system was measured in terms of
the global Equal Error Rate (EER) computed using a client-

I h dinto f b ai&%(ependent threshold [23] on test data. For this, the ltolds
For all systems, speech was segmented into frames by ref. Sec.IV-D) at which the false-acceptance (FA) rate

g;cwindow progrﬁsfsing ata 10 ms fraﬂebrate2[52§]. F_or It:ré uals the false-rejection (FR) rate is calculated, camsid
system, eac rame was processed by a -p0|_nt gl ‘client and impostor test scores together, and the FA using
One half of the symmetric magnitude spectra was retamedtf.'(?S threshold is reported as the EER

form the speciral vectorX. of length Ny = 128. Thus, the global EER measures the overall (client-
This was done by either adding the noise signal to the cleaactp or by Independent) performance of the system and is likely to be

playing the original speech and recording it by differentmophone types. much more statistically significant than results based @mtl
8This is an extension of previous studies on the XM2VTS dataljas] to dependent thresholds [2§].We did not re-implement the

the text-independent case. These previous studies hadghatthe proposed

system performed well but were limited by the fact that thecl content in

training and test were the same, ie. it was not known how tlséesy could 9This is alternatively termed the “cohort” set [4].

perform in the case of text-independent SV. 10Henceforth, we shall use EER to meglobal EER.
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reference systems. We report here directly the results ef 1
systems from [23].

3) Results: In all the three experimental conditions, the
proposed BSC system has performed equally well as or ve 4
close to the reference systems. The EER of the systems he ;|
been shown in Figure 2 (a)-(c). For the BSC system, tix=
EER has been plotted against the number of slice classifi= 2r
N7 selected by Adaboost and used to form the final stror |
classifier /' (ref. Sec.IV-D). == m o = SNty YR AU IRCLOR. -
The EER of the BSC system drops quickly from abov O 5700 150 200 250 300 350 200 450 500
5% below 10 slice classifiers to below 1% after about 2t (@
slice classifiers have been selected. For all 3 conditidres, 1 5
EER consistently shows a downward trend with increasir

Reference system TT (Reynolds’ 1995),
F+ M- MFCC-GMM (10 msc), EER = 0.50

_ _ Reference system TII (Reynolds’ 1995),
MFCC-GMM (5msc, 5 msf), EER = 0.24

Proposed BSC system, EER = 0.31 at N; = 450

- : . . . . M only e Reference system TI, N
Nj, interspersed with small oscillations, finally reaching EER = 0.14
saturation levet! X3 _ _ _ Reference system TIL, ||
EER = 0.32

This saturation level is close to the EER achieved k&
reference system TII for all 3 cases. For the F+M case, =
is slightly lower than the TI EER while for the M only and F 1}

only cases, itis slightly higher than the TI EER. This saiora e eyl -lff o -‘:%::, TT====-==
level is reached after about 400 to 450 slices have be % . 50 100 150 200 250 300 350 400 450 500
selected. At this value oN;, the computational complexity
of the BSC system is significantly lower than the referenc

Proposed BSC system, H
EER = 0.45 at N} = 450

SyStemS. 4H F only . g];f;{rin%e;gystem TI, 4
. . . i X 3+ Reference system TII, =
B. Experiments on speech corrupted by additive noise: m _ == "EER - 071

matched condition Bl

The aim here was to examine the effect of mismatche
additive noise on the performance of our proposed syste I L R e L
compared to a standard reference system. o) o M . i L

1) Database descriptionThe TIMIT database [16] was O(c) 0 100 Nfoof bi%%tedzfﬁce Caﬁgﬂﬁfio NZAOO 450 500
used in this part of the work also. The training and test '

sentences had different lexical content, hence this is atso Fig. 2. Equal Error Rates (EER %) for same-sex (M only, F osl mixed-
ex_ample of text-independent speaker verification. Howeher se?(l (|5+M;qexperiments on the TIMIT database, for the gr’omﬁﬁc system
original clean TIMIT data was used only for training. FOand two MFCC-GMM based reference systems Tl and TII. For tS€B

testing, TIMIT data corrupted by additive noise was useéystem, EER has been plotted N}, the number of boosted slice classifiers
d to form the strong classifiéf. The numerical values of the EERs are

For this, three t_ypes_ of noise from the Noisex-92 databagﬁwn in the legend boxes. For the BSC system, the EER atiaytartpoint
[27], namely, white, pink and babble, were added to each test — 450 is shown. The reference systems are from Reynolds [23]sPlea

utterance at 4 SNR levels (20dB, 15dB, 10dB and 5@B). consult the text (Sec.VI-A) for more details.

2) Systems evaluated, protocol and experimental details:

Apart from the proposed system, a standard MFCC-GMM . ) ] ] .

system [4] was used as referefi@eThe BSC system con- For fair comparison, this common impostor set is the same

figuration was precisely the same as in Sec.VI-A. For the reéts the “world” set which provided the negative samples for

erence MFCC-GMM system, we experimented using differefte BSC system (ref. Sec.VI-A2) extracted from the “train”

number of cepstral coefficients (12 and 16) [4] [26] for th@art of TIMIT. For each client, a model is created by adapting

features and different number of Gaussians (from 32 to 1024 means in the UBM using the client training data [4].

for the GMM. Among the different configurations of reference systems

Instead of the client-dependent background set descridégd. we report here the two overall best performing ones:

in Sec.VI-A and [23], we used a common impostor set to 1) Reference system NTI: 16 MFCC + ABIFCC +

create a single GMM model called the Universal Background  AEnergy, Cepstral Mean Subtraction (CMS) [4] and

Model (UBM) to model impostors (Section 11). The advantage  1024-mixture GMM.

for large speaker databases is that individual backgroetsl s 2) Reference system NTII: 12 MFCC [25] [26], no delta,

need not be selected for each clight. no CMS, and 1024-mixture GMM.

LAlthough only the first 500 slices are shown in Figure 2, wedtmted The features used_ by the system NT_” are the same as the

experiments using upto 1000 slices and the test EER stilhired stable.  reference systems in Sec.VI-A [26] while the features uged b

12The noise segments were randomly chosen and were equalgih lem system NTI involve slightly more calculations [4].

13 thi . The same speaker verification protocol as used in Sec.VI-A
n this case, we implemented the reference system ourselves

14The single background model has become the predominaragpused was foIIovyed [23]' The experimental de.tails were exaCtb' th
in speaker verification systems [4]. same as in Sec.VI-A except for one difference: all the data

Proposed BSC system, |
EER = 0.85 at N; = 450
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for training came from original TIMIT while for test, diffent reduce linear filter effects due to the headset transducers,
types of noise from the Noisex-92 database was added tocipstral mean subtraction (CMS) was performed on the MFCC
Apart from this, in this experimentall the remaining 167 for the reference system. Similarly, for the BSC system, the
speakers were used as impostors even for the referencensystpectral magnitude vectd (ref. Sec.IV-A) was replaced by
since they used the distinct “world” impostor set for traigpi its log followed by mean normalization.
like the BSC system. As in Sec.VI-B2, different values of the metaparameters (ie
Separate experiments for the 3 different noise types amdmber of cepstral features, number of Gaussian mixtures)
different SNR levels were conducted, leading to 12 differemwere tried for the reference system. Among the different
conditions. In the face of this, experiments were conductednfigurations tried, we report here two of the best perfagmi
for mixed sex (F+M) condition only, using all 168 speakersnes:

[23]. The performance of the systems was calculated in terms]) Reference system HTI: 16 MFCC, CMS and 32-mixture
of the global equal-error rate (EER) as before. GMM.

3) Results: For all the 3 noise types and 4 SNR levels, 2) Reference system HTII: 16 MFCC [25] [26], CMS, and
the proposed BSC system has performed equally well as or  1024-mixture GMM.

better than the reference systems. The EER of the systefpg, speaker verification protocol for HTIMIT described in
have been shown in Figure 3 (a)-(l). For the BSC systemg] [29] was taken as a guideline. More precisely, 100
the EER has been plottecs. the number of slice classifiersgpeakers were randomly chosen out of the total 384 to form
Np. Asin Sec.VI-A, the EER of the BSC system has showge cjient set. A different subset of 50 speakers were rafyom

a general downward trend with increasing, although the chosen as the test impostor set. In addition, 250 randomly
errors are much higher here due to the more difficult testigosen utterances from the remaining speakers were used as

scenario. _ _ _ the “world” set during training (ref. Secs.VI-A2 and VI-B2)
For pink and babble noise, the EER has either continugg| sets were gender balanced.

plropping or.saturated at a certain Igvel, vyithou.t any subsRl o each client, the Za and 5 sx sentences recorded
increase (Figures 3 (€)-()). For white noise (Figures A@). sing the ‘senh’ microphone only were used for training. For

the BSC system EER has increased slightly at some poinissiing separate experiments were performed using the 3
In spite of this, for both white and babble noise, the Bsg'entences recorded using the ‘senh’ microphoneadinthe 8

system has outperformed the reference systems much befQgqset types. We note that this consists of one matched con-

N7 = 100. For pink noise, the BSC system has consistentlyion (‘senh’-senh’) and 8 mismatched conditions (‘senh

outperformed system NTII while it finally catches up with.pq: «gann’-ch2.. . . ‘senh’-“pt1").

system NTI in all cases. _ _ Each client model was tested against its owsi 8entences
We note that these results support the evidence of Previq4Sirye accesses) and thesBsentences of all 50 speakers

studies by the authors [15] where a similar framework invol, he test impostor set (150 impostor accesses). This was
ing boosted binary features performed better than the aténd,eeated for all 100 clients. The performance of the systems

MFCC-GMM system on speech corrupted by different typggas calculated in terms of the global equal-error rate (EER)

of additive noise. as before, for each microphone type separately.

3) Results: For all the 9 conditions tested, the proposed
C. Experiments on speech corrupted by channel noise: mBSC system has performed nearly as well as the reference
matched condition systems. The EER of the systems have been shown in Figure

The aim here was to examine channel effects, more pfe{(a)-()). For the BSC system, the EER has been plotted
cisely handset transducer effects, on the performance of 8¢ number of slice classifiers7 .
system, compared to a standard MFCC-GMM system. As before, the EER of the BSC system has shown a general
1) Database description'The handset TIMIT (HTIMIT) downward trend with increasing/; and saturates to values
database was chosen for this work [17]. The database vegeund 10% fomll the 9 conditions. It is noteworthy that the
constructed by playing a gender-balanced subset of the TTIMperformance of the proposed system is fairly independent of
database through a Sennheizer head-mounted microphBgemicrophone type.
(‘senh’) and 8 telephone headsets: 4 carbon button micro-On the contrary, the reference systems have shown a wider
phones (‘cb1’-‘cb4’), 4 electret microphones (‘ell’-‘&l4nd Vvariation in EER, particularly if we observe their performea
one Sony portable microphone (‘ptl’). In this way, heads&r ‘senh’ and ‘cb3'18 This is an important contrast between
transducer degradations were imposed in a systematic wég proposed and reference systems. Also, there is no single
keeping the speaker and linguistic richness of the origin@@st reference system: for some microphones HTI is better
TIMIT database. The training and test sentences had diffétan HTII while for others, it is the reverse.
ent lexical content, hence this is also an example of text-
independent speaker verification. VII. GROUPB EXPERIMENTS

2) Systems evaluated, protocol and experimental details: This group of experiments involved more difficult condi-
Apart from the proposed system, the MFCC-GMM systefiipns and were performed on the MOBIO database.
described in Sec.VI-B2 [4] [28] was used as refereftc&o

16These two microphones have the best and worst sound chisticste
15In this case also, we implemented the reference systemloesse respectively [17].
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Fig. 3. Equal Error Rates (EER %) for mixed-sex (F+M) experts on the noisy TIMIT database (TIMIT + Noisex), for the pseed BSC system and
two MFCC-GMM based reference systems NTI and NTII. For theCBystem, EER has been plotted N}, the number of boosted slice classifiers used
to form the strong classifief’. Three different noise types at four different SNR levelsehheen considered. The noise type and level are shown in each
subfigure. The numerical values of the EERs are shown in @yenté box. For the BSC system, the EERNf = 450 is shown. Please consult the text
(Sec.VI-B) for more details.

A. Database description while 35 % had between 2 to 3 seconds of speech. Thirdly,
Experiments were performed on the MOBIO Phase the (_1ata preser_wted possibilitie_s for testing diﬁe_zrentelev
database [1] [2] which consists of speech data collecten fr®®f Mismatch using a challenging protocol (Section VII-C).
152 people (100 males, 52 females) using mobile phones. THE0: it was used for the recent MOBIO Face and Speaker

data was collected at 6 different sites in 5 different cqestr Verification Evaluation contest at ICPR 2010Hence, there
There were both native and non-native English speakers. T#|Eeady exists a large number of reference results fronovari
sampling frequency was 48 kHz. Data for each speaker wil€S involving state-of-the-art SV systems. This is ubstdu
collected in 6 separate sessions, with a gap of at least dfEnParson.
month between sessions. In each session, the speakers were
asked to answer a set of 21 questions. There were 3 tyfesSystems evaluated
of questions: a) 5 questions requiring 5 short set respons&he proposed BSC system was compared with 17 state-of-
answers (read speech from a mobile display), b) one questthe-art reference systems from 5 independent researclpgrou
requiring one long set response answer (read speech frorh)a@rno University of Technology (BUT), 2) The University
paper), and c¢) 15 questions each requiring free speech answkAvignon (LIA), 3) Tecnologico de Monterrey, Mexico and
Each answer was recorded as one utterance. Arizona State University, USA (TEC-ASU), 4) The University

This database was chosen because it has some challengfe$Vest Bohemia (UWB), and 5) Swansea University and
Firstly, all speech data was collected on mobile phones add Walidsoft (SUV)8 All of these participated in the MOBIO
significant amount of noise [1]. About 10 % of the utterancesvaluation at ICPR 2010.
had SNRs less than 5 dB, while 60 % had SNRs between 5, N ,

. www.mobioproject.org/icpr-2010

to 10 dB. Secondly, utterances had limited amount of speechusygnceforth, reference systems shall be denoted by the fdignaup-
About 25 % of utterances had less than 2 seconds of speetime system-number”, for example, BUT 1, BUT 2, LIA 3, etc.



ROY et al. A FAST PARTS-BASED APPROACH TO SPEAKER VERIFICATION USINBOOSTED SLICE CLASSIFIERS

senh . — cbl —- HTL EER = 8.0 cb2 —— _
40 == HTLEER =67 || 4 - - -HTIL EER = 8.6|{ 40 HTL EER = 7.0
x - = =HTIL, EER = 4.7 ——BSC, EER = 10.9 = = =HTIL EER = 7.7
ot ——BSC, EER = 8.4 ——BSC, EER = 9.7
= 20 420 20
=
_______________________________ R o i sppy oy o gy oo I . 1 e e T
0 0
( )00 100 200 300 400 500 O 100 200 300 400 500 ( ? 100 200 300 400 500
a ) c
: -.= HTI, EER = 18.6 |-
cb3 cb4 —-= HTL BER = 133 ell —-= OTL BER = 7.1
20 - = =HTIL, EER = 25.0|| 40 - - -HTIL EER = 1734 40 - = =HTIL, EER = 7.1 |
——BSC, EER = 12.7 ——BSC, EER = 10.0)
——BSC, EER = 13.7
T N RN : { =
0 0 i i i i 0
) 100 200 300 400 500 0 100 200 300 400 500 (f)o 100 200 300 400 500
(d) e)
el2 — = HILEER = 113 elz DT eld = HTL, BER = 7.8
40 = = =HTII, EER = 10.7 : ? e 40 - = =HTIL EER = 8.6
o ——BSC,EER = 11.3)| *° - - -HTIL EER = 12.0 ——BSC, EER = 11.0
X : : ——BSC, EER = 12.0 . =11
&
20 L 20F
=) 20
b e e (M
e . 1 e e
o ; ; ; ; o ; ; ; ; o ; ; ; ;
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
(8) * (h) (i) *
Ny NL
ptl —. = HTL EER = 100

= = =HTII, EER = 10.3
—— BSC, EER = 13.0

o i i | W i | S i

100

200

300 400

Np

500

Fig. 4. Equal Error Rates (EER %) for mixed-sex (F+M) expenits on the HTIMIT database, for the proposed BSC systemwendi-CC-GMM based
reference systems HTI and HTII. For the BSC system, EER hes pttedvs N, the number of boosted slice classifiers used to form thegtotassifier
F. Ten different microphone types have been considerednifigaifor all systems was done using only data collected bySienheizer (senh) microphone.
The numerical values of the EERs are also shown in the legerdFor the BSC system, the EER AL = 450 is shown. Please consult the text (Sec.VI-C)

for more details.

System Feature No. of Gaussians
dimension,Np | in the GMM, Ng
BUT 1, BUT 2 60 2048
LIA1, LIA 1a 70 512
LIA 2, LIA 2a 50 256
TEC-ASU 1 33 512
TEC-ASU 2 49 512
UWB 1, UWB 2 40 510
SUV 1, SUV 1la 59 512
SUV 2 33 512
TABLE |

BASIC PARAMETERS OF THE REFERENCE SYSTEM&ROUPED ACCORDING

TO SUBMITTING INSTITUTION. PLEASE SEESEC.VII-B FOR DETAILS.

used. All rererence systems (except one) used GMM-UBM
as the primary modelling block. Number of Gaussians in the
GMM varied from 256 to 2048 (ref. Table VII-B). System
UWB 3 used 3rd-order polynomial expansion resulting in a
12341-dimensional supervector. A majority of reference- sy
tems (BUT 1,2,3, LIA 1,1a,2,2a, UWB 2,3,4) used secondary
modelling blocks like supervector SVM with Joint Factor
Analysis, or I-vector system. Most systems also used some
kind of score normalization like S-norm, Z-norm or T-norm.
Some systems like BUT 3, UWB 4, SUV 3 were fusions of
other systems submitted by the same group.

For the proposed BSC system, precisely the same setup as
in previous experiments was used (Sec.VI-A2). No processin
step was changed or added nor were any system parameters

The details of these systems are provided in [1] [2]. Fauned.
convenience, we highlight here the chief aspects of these
reference systems. All reference systems used cepsttaidsa . )
[4]. Systems varied in the number of filterbanks (ranging: Protocol and experimental details
from 24 to 50), the number of cepstral features (16 to 29) The SV protocol used was the same as in the MOBIO
and the use of delta and delta-delta cepstra. The final feat@valuation, details of which are given in [1] [2]. Here, we
dimension varied from 33 to 70 (ref. Table 1). Systems aldughlight the chief aspects of this protocol. The database i
varied in the type of feature normalization and feature wayp split into three distinct sets: training set, developmettend
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test set. The 3 sets are completely distinct in terms of syeak

and data collection sites. Purpose of each set is described BUT 1
BUT 2 M only
below. BUT Jm—
The purpose of training set was to derive background mod- eN
els or JFA subspaces for reference systems and for providing LIA 2

negative (‘0") samples while boosting each client model for TEC_L,@Sa

the BSC system. Purpose of development set was to derive an TEC-ASU

UWB 1

EER-based threshold while purpose of test set was to eealuat UWB 2 Reference Sy s
. . uUwB X =26.2%
the system performance using this thresh_old. - OWE 4 max HTER =262% |
The development and test sets had their own distinct set of SUV 1
. . . SUV 1 Proposed BSC
clients. The protocol for enroling and testing were the séane SUV 2 systern: ]
both sets. Only 5 se_t response questions from sessic_)lj 1 could SLé\éL m;
be used to enrol a client. Thus, they provided the positi¥§ (* o 5 10 15 20 75 30
samples while boosting a client model for BSC system. Tgstin (a) HTER %
was then conducted on all 1ffee speech questions from
sessions 2 to 6 each, equalling 75 test utterances per.client gﬁl
When producing imposter scores, all the other clients were BUT 3 — F only
used as imposters. The performance was calculated in terms LIL/'\Alé
of the Half Total Error Rate (HTER) on the test set. Separate LIA2
experiments for male and female speakers were conducted.  ___"4%
The protocol for MOBIO presents some special challenges Tec-asu P —p——
; i : . . UWB 1 esss— € ystems:
in addition to the noisy data itself. They are: Bession UWB min HTER = 10.0%
variability. Only a single session per client could be used ng‘l mean HTER = 15.3%
. . ]
to train (enrol) the target speaker models. Testing was done SUV 1 Proposed BSC system:
on remaining five sessions. Pgxical mismatctSpeech used SSUL\val FTER = 155%
in enrolment and testing had different lexical contetexi- suv «[Proposed sysiem
independenBYV task). 3)Speech-type mismatchihe training BSCO . o e 20 Y = o,
(enrolment) was done on read speech while testing was o) HTER %
free speech.4¥ite mismatchAll background (impostor) data
allowed fortraining came from 2 sites while all impostor data BUT 1
used fortestingcame from the 4 remaining sites. e F+M
LIA1
LIA 1a
D. Results L|L/|AA22
a
The Half Total Error Rate (HTER %) on the test set TEC-ASU
of the MOBIO database for all the 18 systems have been =5+ Reference Systems:
shown in Figure 5. In all cases, the performance of the UWB 2 max HTER =23.0%
. . WB mean HTER = 15.4 %
proposed BSC system is reasonably good, lying near the UWE 4
, . Proposed BSC system:
mean of the reference systems’ performance. It is noteyorth S%L\J/Vll HTER = 17.2 %
that the proposed system achieved reasonable performance SUV ]
using only a simple framework involving a weighted sum of Sté‘éc [Proposed system | |
threshold-based classifiers. For both genders, the BS@rsyst 0 5 10 15 20 25 30

performance saturated around = 100. In contrast, most of © HTER %

the reference systems used more complex techniques such as

SVM supervectors and factor analysis in addition to StaI‘hdaifig. 5. Half Total Error Rates (HTER %) for SV experiments ba Test set

MFCC-GMM setup. of the MOBIO Phase | database using (a) only male speakgrenltyp female
While such enhancements enabled the best reference §B§)§akefs and (c) and average of the two. HTERs are showneigréiposed

SC system and 17 reference systems. Please consult th¢Staxw/Il) for

tems to perform better than the proposed BSC system, sevq@i details.

of the reference systems also performed worse than BSC

in spite of their complexity. This indicates that the BSC

system achieves a good trade-off between system perfoEmaggngard Sv systems (both baseline and state-of-theeacds
and computational complexity, consistent with resultsro 5 yige spectrum of conditions, both clean and noisy, matched

experiments in previous sections. and mismatched, using speech either collected using asthnd
microphone setup or a mobile phone.
VIII. ANALYSIS OF PROPOSED SYSTEM Hence, it seems to fulfill the first objective outlined in Sec-

From Secs.VI-A3, VI-B3, VI-C3 and VII-D, we ob- tion I, ie. robustness. At the same time, the proposed system
serve that the proposed BSC system shows comparable téxifills the second objective, ie. computational efficientty
independent speaker verification performance vis-a-liss tthe next two sections, we analyze these two important aspect
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of the proposed system: a) robustness in the presence & nois?) Frame-level behaviour under noisy conditiotn the
(Section VIII-A), and b) computational complexity (Sectio case of the BSC system, as different types of noise are added
VIII-B). In the final section, we analyse the distribution ofat different SNRs to the clean test frame, the slice classifie
the slice classifiers selected by the system as being the mmstputs vary due to the change in the shape of the spectrum.
discriminative. These variation§ A(f;)}2%, are shown in subfigures (b1-3),
(d1-3). The main point to note is that a significant number of
slice classifier outputs remaimchangedafter noise addition,

A. Robustness to additive noise ie. A(f%) = 0. These are marked by light green bands. Several
classifier outputs change from ‘1’ (correct) to ‘0’ (erroorf
In Sec.VI-B3, it was shown that the BSC system wage client frames A(f*) = —1, dark green band), and ‘O’

significantly more robust to different types of additive s®i (correct) to ‘1’ (error) for the impostor frameA(f;) = 1,
in a mismatched scenario, than the MFCC-GMM system. Thygllow band). However, the error is limited exclusively to
is an important property of the BSC system. Here, we presehése outputs. Interestingly, some erroneous outputsnieco
an analysis of this property at the frame letfl. correct too A(f}) = 1 for the client andA(f}) = —1 for

For our analysis, we picked out two speakers from tHbe impostor).
TIMIT database at random. The first speaker served as thelhe number of classifiers predicting ‘1’ is again shown in
true client, while the second served as an impcd$tdve had subfigures (f1-3), (h1-3) and the final scoi€&X) are shown
already created the models for the client (the strong dlassi by the red lines in subfigures (i1-3), (j1-3). We note that
F for the BSC system and the UBM-GMM for MFCC-GMMthe client and impostor scores have approached each other
system) using clean training data. Next, one speech fragr@dually, as the SNR has reduced. This is expected.
from the test data of both speakers in the TIMIT databaseSimilarly, in the case of the standard MFCC-GMM SV
was extracted. Three types of noise (white, pink and babbkystem, as different types of noise are added to the clean tes
at 4 different SNRs were subsequently added to these cldeame, the cepstral vectors,,; change values. These changes
speech frames to create noisy speech frames (ref. Sec.VI-8) X)) are shown in subfigures (11-3), (n1-3)Contrary to
These frames were then passed to the client models and finéllg BSC system where the error is limited to certain slices,
the frame scores were generated. we note that the entire cepstrum has been distorted by noise,

The process of score generation is depicted in Figure 6.84en when the SNR is high. Some cepstral coefficients will
this figure, the left half illustrates true client accessesthe be affected more and some affected less. The loglikelihood
client speech frame was matched with the client model, whilgtio scores obtained by passing these noisy vectors throug
the right half illustrates impostor accesses, ie. the irgosthe UBM-GMM of the client is shown by the red lines in
speech frame was matched with the client model. The figbfigures (01-3), (p1-3).

three rows from the top depict the BSC system while the lastWe observe that for each noise type and SNR level, the
two depict the MFCC-GMM system. client and impostor scores have approached each dkser

in the BSC system than in the MFCC-GMM system, which
Mgpuld lead to better separability and lower verificatioroesr
for the BSC system. This is mainly due to the fact that

clean speech frames. We note that the classifiers are pregicf!though the noise did affect some of the slice classifier
mostly ‘client (‘1': light yellow bands) for the client frame outputs, it could not affect a large fraction of the outputs.

and mostly ‘impostor’ (‘0": dark green bands) for the impmst These correct outputs could combine together and offset the

frame. The precise number of classifiers predicting ‘1’ {gffect of the incorrect ones. In MFCC-GMM system, the

shown in subfigures (e) and (g) in the second row: a hi&ptire cepstrum is _affected and we cannot avail of this umiqu
number for the client and low for the impostor. The final ssoré2dvantage, which is a characteristic of parts-based sgstem

F(X) considering only these first 40 classifiers (ref. Eq.3) is
shown by the green broken line in subfigures (i1-3), (j1-3). B. Complexity of the system

In the fourth row, subfigures (k) and (m) show the cepstral |n this section, we compare the computational complexity
vectors X, extracted from the clean speech frames for thsf the proposed BSC system with that of the reference systems
MFCC-GMM system. The loglikelihood ratio scoré§X,;) [30]. For simplicity, we consider only the reference system
obtained by passing these vectors through the UBM-GMM @fed in Group B experiments (ref. Sec.VIl). We consider the
the client is shown by green broken line in subfigures (01-3jlient access (otes) phase because it is online, as opposed
(p1-3). to the training phase which is offline. For this, we count

For both the BSC and MFCC-GMM systems, we see th#ie number of floating-point operations (FLOP) startingxfro
the client and impostor scores are well separated in thenclegfter the feature extraction stage until the calculatiorthef
condition. final score at a frame level. In fact, the BSC system has a

simpler feature extraction stage, with no filterbanks natuee

19For simplicity, we restrict ourselves to analysis of systeshaviour under Warping. For the sake of simplicity, we ignore this.

additive noise in this work. Similar analyses could be eafrout for the case

of convolutive noise also. 21The same noisy frame was used for both the BSC and MFCC-GMM
20\e shall henceforth denote them as ‘client’ and ‘impostespectively.  systems, for all cases.

1) Frame-level behaviour under clean conditidm:the first
row, subfigures (a) and (c) show the outputs of the first
boosted slice classifier§f;}2° , of the BSC system for the
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Fig. 6. Effect of additive noise: (a, c) Outputs of the firstbtibsted slice clz';lssifie@fj;}ﬁ(’:1 using clean speech frames. (b1-3, d1-3) Chardgeé&f*) ﬁ():

in the classifier outputs as 3 different noise types are adol¢ke speech frames at 4 SNRs. (e, f1-3, g, h1-3) Number ssiflers with outputf,: = 1 for
each of the above cases. (i1-3, j1-3) Final strong clasgifigput F for the above cases. (k, m) MFCC vectaXs,, extracted from the same clean speech
frames as in (a, c). (I11-3, n1-3) The chang&6X ) in the MFCC vectors due to additive noise. (01-3, p1-3) Uagihood ratio scores using these MFCC
vectors for the standard MFCC-GMM system. Please see thdg3ex.VIII-A) for more details.

1) Reference MFCC-GMM systerfor reference systems,diagonal covariance matriX and mixture weighp using,
we consider only the essential modelling block while com-

puting the number of FLOPs, ie. only the computation of the(Xas; 1, X,p) = % Lem 3 (X TE T (Xar—p)
Gaussian components for GMM-based systems. We ignore all (2m) = [X]z

other blocks, such as those related to factor analysisctove p- BIAC MOEMONES (4)
supervector SVM, etc. which are present in a majority of

reference systems. We do this for keeping the analysis simphhere p = —x2——, § = 20(1) and {o(i)} Y5 are

at the cost of a pessimistic bias against our system.

2D
the diagonal elemelntls @t (which can all be precomputed),
the number of floating point additions, multiplications and
exponentiations involved areNp — 1, 2Np + 1 and 1
respectively¥> However, most practical GMM implementa-
tions involve code optimization, which reduces the numider o

Let Np be the feature dimension of the MFCC feature
vector X, extracted from one frame of speech. To evalu- 2y, note the replacement of division by multiplication (within Eqgn. 4

ate a single Gaussiat; (X s; 1, 3, p) with mean vectory,

because multiplication is usually faster than division][31
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FLOPs. In particular, the exponentiation can often be aawid

by thel og- add operation. oyt

Hence, in order to keep the current analysis simple, again  sut

at the cost of a pessimistic bias against our system, we  ‘A*

only consider the computation of the quadratic tef®n, — LIA 2 Referance Systems:
p) TS (X — ) = Y5 (Xor (i) — pu(i))?-5; in EQ. 4. This  rec-asu: o e
termmustbe computed once per Gaussian, independent of theTECLﬁé’l mean o, = 15x 16
level of optimization achieved. To compute 2N, floating UWB Proposed BSC systent
point multiplications an@Np — 1 floating point additions are W Ny op = 300

required. Hence, to process one frame of speech, we multiply  suvi

these quantities bV, the number of Gaussians. Thus, the 5% ]
total number of multiplications and additions per frame is, suv [Proposed systen
n* = 2NgNp, nt = Ng(2Np — 1) respectively. Hence, the Bsioz 7 i G o
total number of FLOPs per frame is: NeLop

]\]}:Lop:’n>< —|—n+ :NG(4ND—1). (5)

Fig. 7. No. of floating-point operationsyg op plotted in log-scale, for the
2) Proposed BSC systemiet X be a spectral vector 17 reference systems used in the Group B experiments anddhesed BSC

extracted from a speech frame (ref. Sec.IV-A). Letystem. Please see text (Sec. VIII-B) for more details.
N; be the number of slice classifiers used to form

the strong classifier ' (ref. Sec.IV-C). To obtain the 128 (BkH2)g
final frame-level scoreF(X), we must use Egns. 1, 2
and 3 which we combine and implement as follows:

F(X)«0

for n=1to N}
a+ {0, an}
b+ (X(kml) — X(k‘ng) > Gn) <
F(X) «+ F(X) + ab]

end

Here, a[b] denotes theb-th element of array:. Since they
usually take almost the same time [31], we group the numbel
of comparisons, additions and subtractionsrds From the ; -
above implementation, we find that for the BSC system, no 32(2kHz) 64 (akiz) 96 (BkHz) 128 (8kH2)
multiplication is required and, m

NrLop = nt =3N 2 (6) Fig. 8. Distribution of slices selected by Adaboost: The gmantensity at

a point{kn,1, kn,2} in the image indicates the expected weight of the slice
The total number of FLOPs for BSC and reference systemsssifier corresponding to the slice defined by the paraméte, 1, kn 2},

calculated using Egns. 5 & 6 are shown in Fig. 7. Parametesrset by the Adaboost algorithm (ref. Sec. VIII-C).
values forNp, Ng in Egn. 5 are enlisted in Table I. In Egn.
6, parametetN; = 100.%

It is observed from Fig. 7 that BSC system requires lighter yellow colours) would mean a more discriminative or
few hundred FLOPs, significantly less than that required Igpeaker-informative slice, as determined by AdaboostmFro
reference systemsl@ — 10° FLOPs). Hence, even with athe figure, we observe that certafk, i, k, 2} pairs have
pessimistic bias, BSC system is shown to be computationafligtinctly higher expected weights than others although in
more efficient. This is an important advantage of the BSC sy@eneral, slices were selected from all regions of the spectr
tem particularly with respect to the computational coristsa (both low frequency and high frequency regions). In pakéicu
for mobile phone SV systems (ref. Sec. ). values ofk,, 1, kn2 < 1kHz seem to be given higher weights.

Also, pairs{kn1,kn2} with k, ;1 close tok, » were given
C. Distribution of selected slice classifiers higher weights. Note that the TIMIT sampling frequency of
L . . , 16 kHz was used to convektvalues in the rangél, - - - , 128}

We analyse the distribution of slice classifiers which werg frequencies.
selected by Adaboost. In Figure 8, we show the matrix of
expected weights assigned to all the slice classifiers xaule
by their frequency point§k,, 1, k,2}, averaged over all 168 IX. CONCLUSIONS

clients in the TIMIT database. A higher weight (indicated by This paper investigated a novel parts-based system for text

23This is average value at which the BSC system reached bdstmpance independent spe_aker verification. This system u_ses a novel
(Sec.VII-D) for the Group B experiments. feature called “slice feature” extracted from short-tippeech
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spectrum and simple threshold-based “slice classifiers” s¢7] P.Kenny, G. Boulianne, P. Ouellet, and P. Dumouchelirftffactor anal-
lected and combined by a boosting framework. The approach ysis versus eigenchannels in speaker recogniti®EE Transactions on

. . Audio Speech and Language Processwvg. 15, no. 4, p. 1435, 2007.
was compared against standard cepstral features using b%ﬁ R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Scorerializa-

baseline and state-of-the-art speaker verification system tion for Text-Independent Speaker Verification SysteBigital Signal
TIMIT, HTIMIT and MOBIO corpus. Processingvol. 1, no. 10, pp. 42-54, 2000.

9] M. Turk and A. Pentland, “Face Recognition Using Eigeefs"
The proposed parts'baSEd system showed gOOd performarﬁéein Proc. of IEEE Intl. Conf on Computer Vision and Pattern

over a wide range of experimental conditions, ranging from Recognition (CVPR) 1991, pp. 586-591. [Online]. Available:

clean speech to noisy speech collected on mobile phones, http:/www.cs.ucsb.edu/ mturk/Papers/mturk-CvPROfL.pd
[10] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigesface Fisher-

Compared to S_t?ndard systems, it performed equal!y well in faces: Recognition Using Class Specific Linear ProjecCtitiEE Trans.
the clean condition and performed better than them in skvera on Pattern Analysis and Machine Intelligenoeol. 19, no. 7, pp. 711—

of the noisy conditions. We note that the system configunatio 720, 1997.

d t | f th d t kept 1& P. Viola and M. Jones, “Rapid object detection using adbed cascade
and parameter values o € proposed system were Kep of simple features,” irProc. of the IEEE Conf. on Computer Vision and

same oveall the conditions, unlike the standard systems. Pattern Recognition (CVPRR001, pp. 511-518.
Furthermore, the proposed approach involves lower ComFﬂ:@] Y. Rodriguez, “Face Detection and Verification usingchb Binary

. . Patterns,” Ecole Polytechnique Federale de Lausanne, PleBiS 3681,
tational complexity compared to the standard approachcélen 5506 Y a

it seems to fulfill the two objectives related to implemeiuiat [13] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fastypeint

of SV systems on portable devices such as mobile phones, ie. Recognition using Random FerndEEE Trans. on Pattern Analysis
bust d tati | effici and Machine Intelligencevol. 32, no. 3, pp. 448-461, 2010.

robus n_ess an Cpmpu ational € 'C|enc_3/' [14] J. Friedman, T. Hastie, and R. Tibshirani, “Additivedistic Regression:
Possible directions for future work include: 1) Augmen-  a Statistical View of Boosting,Annals of Statisticsvol. 28, p. 2000,

tation of the feature set by joint modeling in the spectrq; 1998

. . . . . . A. Roy, M. Magimai-Doss, and S. Marcel, “Boosted bindBatures
temporal pIane (usmg 2-dimensional instead of 1-dimeraio for noise-robust speaker verification,” Proc. of IEEE Intl. Conf. on

approach). 2) Model-level fusion between the parts-based Acoustics, Speech and Signal Processing (ICASS@)0, pp. 4442—
approach and the standard cepstral feature based approach 244>

3) Furth Vsi f th . k ifi &6] G. Fisher, W.M and Doddington, “The DARPA speech redtign
) urther analysis ot the precise speaker-specitic a@ustl research database: Specifications and stausg. of DARPA Workshop

information captured by the boosted slice classifiers. on Speech Recognitippp. 93-99, Feb. 1986.

Since the proposed approach involves working with speciffe/] D: Reynolds, "HTIMIT and LLHDB: speech corpora for theugy of
handset transducer effects,”Rmoc. of IEEE Intl. Conf. on Audio, Speech

frc_aquency points_ in the spectrum, it n_1ight be directly c_:@apl and Signal Processing (ICASSRpl. 2, 1997, pp. 1535-1538.
with a suitable time-frequency masking framework aimed @8] A.V. Oppenheim and R.W. SchafeBiscrete-Time Signal Processing
noise removal [32] or signal separation [33]. Finally, ginc__ Prentice-Hall, Englewood Cliffs, NJ, USA, 1989.

. - . . 19] J. Pelcanos and S. Sridharan, “Feature warping for sblapeaker
the approach is data-driven, it could be applled to Othbr verification,” in 2001: A Speaker Odyssey Workshdpn. 2001.

related tasks like phoneme recognition. Preliminary wark {20] W. Campbell, “Generalized linear discriminant sequeerkernels for
this direction has shown promising results [34]_ speaker recognition,” ifProc. of IEEE Intl. Conference on Acoustics,
Speech and Signal Processing (ICASSB). 1, 2002, pp. I-161-1-164.

[21] D. Matrouf, N. Scheffer, B. Fauve, and J.-F. Bonastkestraightforward
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