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KL-HMM and Probabilistic Lexical Modeling

Ramya Rasipuram and Mathew Magimai.-Doss

Abstract

Kullback-Leibler divergence based hidden Markov model (KL-HMigl)an approach where a posteriori proba-
bilities of phonemes estimated by artificial neural networks (ANN) areeteatidirectly as feature observation. In
this paper, we show the relation between standard HMM-based automagichspecognition (ASR) approach and
KL-HMM approach. More specifically, we show that KL-HMM is a proliatic lexical modeling approach which
is applicable to both HMM/GMM ASR system and hybrid HMM/ANN ASR systemrditgh experimental studies
on DARPA Resource Management task, we show that KL-HMM appra@n improve over state-of-the-art ASR
system.

Index Terms

Automatic speech recognition, hidden Markov model, Lexical modelirasté?ior features, Kullback-Leibler

divergence based HMM

I. INTRODUCTION

In standard hidden Markov model (HMM) based automatic dpeecognition (ASR) systems, the feature
observations are typically short-term spectral basedifeatsuch as, mel frequency cepstral coefficients (MFCCs),
perceptual linear prediction (PLP) cepstral coefficiemtd the emission distribution is modeled by either Gaussian
mixture models (GMMs) or artificial neural networks (ANNg)][ [2]. The system using GMMs is referred to as
HMM/GMM system and the system using ANNSs is referred to asridyBlMM/ANN system.

In more recent works, different approaches have been peopém modeling the output of the ANN i.e. a
posteriori probabilities of acoustic classes (e.g., phoe® as feature observation such as, Tandem approach [3],
Kullback-Leibler divergence based HMM approach [4], [5]iri€hlet mixture model approach [6]. In Tandem
approach, the a posteriori probabilities are transfornrmedre precisely whitened and decorrelated, and used as
feature input for HMM/GMM system. While, in KL-HMM approachd Dirichlet mixture model approach the a
posteriori probabilities of phone classes are directlyduse feature observation and modeled by HMM.

The focus of this paper is on KL-HMM approach which until noasHargely been investigated froposterior

feature modeling perspective (Section Il). In this paper, we firstcelate that standard HMM-based ASR system

R. Rasipuram is with Idiap Research Institute, Martigny,it8evland and Ecole Polytechniqué&derale de Lausanne (EPFL), Switzerland.
M. Magimai.-Doss is with Idiap Research Institute, MartigByitzerland. Both authors have equally contributed te thork. This work was
supported by the Swiss NSF through the grants Flexible GmaghBased Automatic Speech Recognition (FlexASR) and themNa&tCenter
of Competence in Research (NCCR) on Interactive Multimodfdrination Management (www.im2.ch)

February 27, 2013 DRAFT



usesdeterministic lexical model (Section Ill). We then show that KL-HMM is a (mabilistic lexical modeling
approach, where the local emission score is estimated bghmatlexical evidence and acoustic evidence (Section
IVV). While doing so, we also introduce a new approach, refetoeas scalar product HMM (SP-HMM), and show
its link to tied posterior approach [7]. Finally, we presexperimental studies in the framework of HMM/GMM
system which shows that KL-HMM approach and SP-HMM apprazant yield improvements over state-of-the-art
ASR system (Section V).

Il. KULLBACK-LEIBLER DIVERGENCEBASED HMM

In KL-HMM approach [5], posterior probabilities of phoneselso referred to agosterior feature, estimated
by ANN is used as feature observation. lzgt= [z}, --- ,2P]T = P(p1|x:), -+, P(pp|x:)]* denote the posterior
feature vector estimate at time framgwherex; is the acoustic feature (e.g., cepstral feature) at timmdra
t, {p1, - pa, - -pp} is the phoneme set) is the number of phonemes, afp,|x;) denotes the a posteriori
probability of phonemey, given x;.

Each HMM state: € {1,---I} in the KL-HMM system is parameterized by a categorical distion y; =

[yl,---,yP]T. The local score at each HMM state is estimated as Kullbaakter (KL) divergence betweeg;
andz,, i.e., D d
y.
KL=>Y y! log(Zy) @
d=1

In this casey; serves as the reference distribution andserves as the test distribution. KL-divergence being an
asymmetric measure, there are also other ways to estimatedhl score,
1) Reverse KL-divergenceRK L): D 4
REL=Y"zllog(*4) @)

d=1 Yi
2) Symmetric KL-divergenceSK L): )
SKL:§-[KL+RKL] (©)]
The HMM state parameter§y;}/_, are estimated by using Viterbi expectation maximizatiogoethm which
minimizes a cost function based on one of the above localescduring testing, decoding is performed using

standard Viterbi decoder. For more details the reader &rned to [5], [4].

Ill. STANDARD HMM BASED ASR

In HMM-based ASR, given the acoustic model, lexicon and leg model, finding the most likely word

sequence is achieved by finding the most likely state segu@iic

Q"= argmax P(Q, X|09) (4)
QeQ
T
~ argmapr(xt|qt, ©4) - P(gt|gt-1,0) (5)
QeQ
T
~ argmgaleogp(qut,@A) + log P(qt|qt—1,©) (6)
€L =1
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where Q denotes set of all possible HMM state sequen€gss {q1, - ¢, - gr} denotes a sequence of HMM
states, T’ denotes number of frames, a@l= {© 4,0} denotes the set of parameters, more specifically acoustic
model and lexical model parameters et and language model paramet&g. Eqn. (5) results afteiri.d and first
order Markov assumptions. Usuallyg p(x¢|q:, ©.4) is referred to adocal emission score andlog P(q:|q:—1,90)
is referred to agransition score.

In HMM/GMM system, the emission likelihoog(x:|q:, © 4) is estimated using GMMs. In hybrid HMM/ANN
system, the emission likelihood is estimated using ANN. &orecisely, the ANN estimates a posteriori probability

of state P(q;|x:, ©®4) which is then converted into scaled-likelihopg, (x:|q:, ©4),
p(x¢]q:,©4)  P(qi|x¢,024)

pailxelas ©4) == S = P04 "

and used as local emission score. Though the literaturensndted by the approach of using likelihood as local

emission score, in theory, HMMs can be also trained and detodingP (¢:|x:, © 4) as emission probabilities [2].
We differentiate between these two approaches by refetdraglikelihood based approach and posterior based
approach, respectively.

In practice, in HMM-based ASR system there are two kinds of Milgtates, namelyacoustic states denoted
as ¢¢°° corresponding to acoustic model atetical states denoted as;/** corresponding to lexical model. For

instance,

« in context-dependent subword unit based ASR system, tisteckd states are the acoustic states and the lexical
states are the states of context-dependent subword mogdelke/ae/+/t/.

e in hybrid HMM/ANN system, typically during the training pta the ANN is trained to classifi context-
independent phonemes, and during the decoding phase a uniniluration constraint is applied for each
phoneme [2]. In this case, there aké acoustic states and - K lexical states, where: is the minimum

duration.

Let ©4 = {6,,0,}, whered, denotes the parameters of acoustic model @ndenotes the parameters of lexical
model. The acoustic model parameters in the case of GMMshar&aussian means, variance and weights of each
acoustic state. In the case of ANNSs, the acoustic model peteamare the weights and biases. In standard HMM-
based ASR systems, the relationship between lexical statdsacoustic states is one-to-one, deterministic.
Thus, 0; consists of the set of subword units, pronunciation modélsards and a table that maps lexical states
(corresponding to the subword units) onto acoustic states.

During both training phase and decoding phase, the emidigielihood is estimated by matching the acoustic
state evidence with the lexical model. This is trivial as thkationship between the acoustic states and the lexical
states is one-to-one. More precisely, given the one-toretaionship,p(x;|¢i** = i,0.4) = p(x4|¢?®° = d, 0,) in
the case of likelihood based approach @@!*® = i|x;,0.4) = P(q*° = d|x;,0,) in the case of posterior based
approach, where € {1,--- I} here denotes a lexical stai¢,c {1,--- D} here denotes an acoustic stafehere
denotes the number of lexical states aichere denotes the number of acoustic states. Here afterinfiplisity

we will drop the notations for parameters.

February 27, 2013 DRAFT



IV. RELATION BETWEEN KL-HMM AND STANDARD HMM-BASED ASR

A strict one-to-one relationship between lexical stated acoustic states makes the ASR system overly rely on
prior knowledge resources in the lexical model, namely sardwinits and pronunciation models. This can lead to
mismatch between lexical model and acoustic model (e.gnywrciation variation), which in turn can affect ASR
performance. One way to handle this issue is to model thépsofftabilistic relationship between lexical states and

acoustic states.

A. Probabilistic Lexical Modeling and KL-HMM

The probabilistic relationship between lexical states aodustic states can be modeled g = d|¢\** =
i),Vi € {1,---1},d € {1,---D}. Lety; = [P(q?° = 1|¢}** = i)--- P(¢f*° = D|¢’** = i)]" be the vector
representing the relationship between lexical staiad theD acoustic states. Having said that, there are two main
guestions, namely

1) How to estimate lexical evidend@(qi® = d|q¢/*® = i) or simply,y;?

2) How to integrate/match lexical evidence with acoustidernce, which in the case of likelihood based approach

is p(x¢|gf°® = d) and in the case of posterior based approacR (g’ = d|x)?

KL-HMM is a posterior based probabilistic lexical modeliagproach, where

1) first, an acoustic state posterior probability estimésotrained with deterministic lexical model as done in
standard HMM-based ASR system.

2) then, a second HMM s trained by using acoustic state postprobability estimatew; = [P(¢f®° =
1x) -+ P(q2*° = D|x;)]T as feature observations. The states of the second HMM eréise lexical
states, which are parametrized fy;}!_,. The parameter§y;}!_, are trained by optimizing a cost function
based on KL-divergence as mentioned earlier in Section 1.

In theory, KL-divergence can be linked to hypothesis tesiBl, [9]. So, KL-HMM can be seen as a probabilistic
lexical modeling approach, where the local emission scerestimated by discriminatively matching the lexical
evidence and the acoustic evidence.

There are also other ways to achieve probabilistic lexicadl@ling. For instance,

« in likelihood based approach, this can be achieved by moglelix;|¢/** = i) as

D

= Y plxe, g =dlgi* =), Vie{l,---I} (8)
d=1
D

= > p(xilgp® = d,q;" = i) - P(qf* = d|gi" = i) ©9)
d=1
D

~ Y p(alg =d) - Pl = d|gi*" = i) (10)
d=1

Eqgn. (10) assumes that 1 ¢i*® | g#<°. Given a trained acoustic state likelihood estimaggrean be estimated

using a cost function based on Eqn. (10). In the case whethestic states are modeled by AN, |¢<° =

February 27, 2013 DRAFT



d) is replaced by (x:|¢f<® = d). It is interesting to note that, then, the likelihood baspdraach is exactly
same as the tied posterior approach proposed in [7].

« in posterior based approach, yet another way is to métel*” = i|x;) as
D
> Pgfe = dlgi™ = i) - P(gf* = dlxt) = ¥ 7 (11)
d=1

Given a trained acoustic mods}; can be estimated by training a second HMM similar to KL-HMMheve

z; is used as feature observation, the states of the HMM aremedrized byy,, and a cost function based on
Eqgn. (11), i.e. dot/scalar product of posterior probapwiectors is used. We refer to it as scalar product HMM
(SP-HMM). It can be noticed that tied posterior approachréduces to SP-HMM approach, when equal prior
for acoustic states is assumed.

In a recent work, a template based ASR approach using pasfeatures (estimated by ANN or GMM) has
been proposed [4], [10]. This approach can be linked to piostbased probabilistic lexical modeling approach. In
this template based ASR system, first an ANN or GMM needs tadieed which can be seen as acoustic state
posterior probability estimator. Then, reference tengddsequence of posterior features) are obtained and stored
Each time frame in a reference template can be interpreteth abstract lexical state, and the posterior feature
vector at each time frame in the reference template (thosgmated using acoustics) can be seen as probabilistic
relationship between abstract lexical state and acousstie.sDuring testing, the test template is matched with the
reference templates. In the template based system, ini@udd KL-divergence and scalar product other local
matching functions such as, Bhattacharya distance, caolist@nce have been investigated, and have been found to
yield competitive systems [10]. This suggests that in pastdased probabilistic lexical modeling approach there
are other local matching functions that could also be ingattd.

It is worth mentioning that the approach of modeling probsiic relationship between lexical states and acoustic
states is ideologically similar to the hidden model seqeeridM (HMS-HMM) approach proposed in [11].
However, HMS-HMM approach is implementation wise very @iéint. Also, it was particularly developed for
context-dependent subword unit (phone) modeling. Theagmres described in this section does not put any such
limitation.

Finally, when compared to standard approach of using détestic lexical model, it is important to note that
probabilistic lexical modeling does not changes the adousbdel complexity. It only changes the lexical model

complexity, wheref; now consists of subword unit set, pronunciation model ofdscand{y;}._,.

B. Interpretation of Previous Work on KL-HMM

The above described relation to probabilistic lexical mMiodehelps us to better understand the potentials of

KL-HMM approach and elucidate previous work. KL-HMM has heavestigated for

1) development of context-dependent subword unit based AgfRem without explicitly modeling the rela-

tionship between context-dependent subword unit and &coolsservations [5], [12], [13], [14]. Here, the
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acoustic states are the context-independent phonemesharidxical states are context-dependent subword
units.

2) use of graphemes as subwords [12], [13]. In this case, toeisic states represent context-independent
phonemes and the lexical states represent context-indepewr -dependent graphemes. Heyre captures
the probabilistic relationship between graphemes and grnes.

3) non-native speech recognition and rapid development 8R Aystem for new language using multilin-
gual phonemes and auxiliary/out-of-domain data [12], [14]these works, the acoustic states are context-
independent multilingual phonemes and the lexical statescantext-dependent monolingual phonemes or
graphemes. The acoustic states probabitityestimator is trained on auxiliary data agd is trained on

in-domain data.

V. EXPERIMENTS AND RESULTS

In the past, KL-HMM approach has been investigated in theidydMM/ANN framework, where the acoustic
states modeled by ANN are context-independent phonemgd 8] [14]. In these studies, it has been often observed
that KL-HMM approach performs better than state-of-thietdlMM/GMM system only when very little data is
available, e.g. see [14]. In this section, we present ASHissuwhich show that KL-HMM or SP-HMM approach
is equally applicable to state-of-the-art HMM/GMM framekpand can improve over standard HMM/GMM system.

We present ASR studies on DARPA Resource Management tagk \N& use the setup described in [11].
The only difference is that we use UNISYN dictionary [16] aextept for 35 words rest of the words have single
pronunciation. We compare the standard HMM/GMM approadiere the relationship between lexical and acoustic
states is deterministic, with probabilistic lexical madgl approach. More precisely,

« Deterministic lexical model based system: we train and destossword triphone based HMM/GMM system
with state tying using HTK, where each triphone is modeled3bgtates. The acoustic featusg is 39
dimensional PLP cepstral feature. The number of clustacedstic state® = 1611.

« Probabilistic lexical model based system: Given the chast@coustic state models of the deterministic lexical
model system, the training phase involves estimation of

1) acoustic state posterior featwe= [z} ---2Z--- zP]T assuming equal priors for the acoustic states,

p(x:|qi*” = d)
S p(xelgie = 5)
wherep(x;|¢f® = d) is the likelihood of acoustic staté
2) and theny; by SP-HMM approach or KL-HMM approach.

zf = P(gf® = dlx;) = (12)

We train and test word internal triphone system (withouteststing) and cross word triphone system (with

state tying), where, in both systems similar to HMM/GMM systeach triphone is modeled by 3 states. The
state tying is performed using the approach proposed in it state occupancy count of one. In order to

compare across different estimatesygfand to limit the number of experiments, all the systems amodied

with local emission score based on Eqgn. (11).
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Table | presents the ASR performance of systems based ommileitstic lexical model and probabilistic lexical
model in terms of word error rate (WER). The performance ofedsinistic lexical model based system is
comparable to 4.1% WER reported in [11]. It can be observed liajust modeling word internal triphones,
the KL-HMM approach (with local scor&K L) and the SP-HMM approach of estimatigg yields improvement
over deterministic lexical model based system. With crasdwnodeling, the KL-HMM approach with local score
SKL also improves over the deterministic lexical model basestesy, while the KL-HMM approach with local
scoreRK L performs significantly better than the deterministic leximodel based system. In the case of SP-HMM,

cross word system is not reported as we could not apply the stimg approach.

TABLE |
WER FOR DIFFERENT SYSTEMSW/| DENOTES WORD INTERNAL TRIPHONE MODELING XWRD DENOTES CROSS WORD TRIPHONE
MODELING, AND N.A DENOTES NOT APPLICABLE THE LOCAL SCORE FORKL-HMM APPROACH IS MENTIONED BETWEEN PARENTHESIS

Lexical Vi WI | XWRD
model estimation
Deterministic - ‘ n.a.‘ 4.2 ‘

Probabilistic | KL-HMM ( KL) 7.1 6.6
Probabilistic | KL-HMM (RKL) | 3.8 29
Probabilistic | KL-HMM (SKL) | 4.6 3.7

Probabilistic SP-HMM \3.9\ ; \

In our recent work on grapheme-based ASR using KL-HMM apgindd 7], we have observed that local score
RKL models well one-to-many relation between lexical states @oustic states followed by local scase( L,
while local scoreK L models well one-to-one relation between lexical statesawilistic states. The general idea
of probabilistic lexical modeling approach is that the tiela between lexical states and acoustic states may not
be one-to-one but one-to-many. This aspect can be obsewedrbparing the performance across different local
scores in the KL-HMM approach. KL-HMM approach with localose K L yields significantly poor performance
compared to local scoreRK L and SK L, as it may not be able to capture the one-to-many relatipndtie best
performance of 2.9% WER compares favourably to 3.1% WER obthby HMS-HMM approach [11], which is
ideologically similar. Furthermore, to the best of our kiheslge, without any acoustic model adaptation, 2.9% is

the lowest WER to be reported on RM task.

VI. DIscussiON ANDCONCLUSION

In standard HMM-based ASR system, the relation betweemtdéstates and acoustic states is deterministic. In
this paper, we showed that approaches such as, KL-HMM, SRAHMd posterior are probabilistic lexical modeling
approaches, where the probabilistic relation betweerd¢states and acoustic states is learned by training adecon
HMM which uses a posteriori probability or likelihood of adiic states as feature observation. Furthermore, we
showed how KL-HMM approach and SP-HMM approach can be agppbiestate-of-the-art HMM/GMM system to

improve ASR performance.
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Probabilistic lexical modeling approach, at the cost oféasing lexical model complexity, can help in handling
pronunciation variation [13], modeling longer subwordturdntext without explicitly modeling the acoustic rela-
tionship [7], [5], modeling alternate subword units, suchgraphemess [12], [17], and effective use of auxiliary
resources (both acoustic and linguistic) [13], [14].

In this paper, we investigated the application of KL-HMM apgch and SP-HMM approach to HMM/GMM
system with context-dependent clustered acoustic sté¢ben comparing this study to previous studies on KL-
HMM, it can be observed that we increased the complexity efaboustic model (going from context-independent
phoneme states to clustered context-dependent phonemas)séad the complexity of lexical model (increasing
the posterior feature dimension). However, it may be pdsdi build competitive ASR systems by keeping the
acoustic model complexity low as done in previous studied,aly increase the lexical model complexity. It could

be, for instance, done in an hierarchical framework where,

1) ANN or GMM is trained for estimating context-independ@hibneme acoustic state posterior features

2) similar to previous studies [13], [14], [12], [17], modtie context-independent phoneme acoustic state
posterior features by a tied state context-dependent phermmsed ASR system using KL-HMM approach
or SP-HMM approach

3) estimate a new set of posterior features correspondirtiget@lustered states

4) finally, train a second context-dependent phoneme ba&§#l #ystem using KL-HMM approach or SP-HMM

approach, where the feature observations now are the &@dsstate posterior features

Such a framework is not only interesting from general ASRspective, but also for low acoustic resource scenarios,
and multilingual ASR scenarios (where multilingual datauged to train an acoustic model that is shared across
different languages), as context-independent phonemsd be considered more language independent than context-
dependent phonemes.

In our future work, we will investigate the above describ@graach while extending our current investigations

to conversational speech and grapheme-based ASR.
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